
  

 

 UNIVERSIDAD CARLOS III DE MADRID 

 

 
  

 WORKING 

  PAPERS 

   Working Paper 

   Business Economic Series 

   WP. 11-04 

   ISSN 1989-8843 

Instituto sobre Desarrollo Empresarial 

Carmen Vidal Ballester. 

Universidad Carlos III de Madrid 

C/ Madrid, 126 

28903 Getafe Madrid (Spain) 

FAX (34-91)6249607 

 

 

 

 

 

 

CAPM-like formulae and good deal absence with 

ambiguous setting and coherent risk measure 
 
 
 
 
 

Alejandro Balbás1
 

Departamento de Economía e la Empresa 
Universidad Carlos III de Madrid 

 
 

Beatriz Balbás2
 

Departamento de Análisis Económico y Finanzas 
Universidad de Castilla-La Mancha 

 
 

Raquel Balbás3
 

Departamento Actuarial y Financiero 
Universidad Complutense de Madrid 

                                                           
1
 C/ Madrid, 126. 28903 Getafe (Madrid, Spain). 

2
  Avda. Real Fábrica de Seda, s/n. 45600 Talavera (Toledo, Spain). 

3
Somosaguas-Campus. 28223 Pozuelo de Alarcón (Madrid, Spain). 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/30044848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CAPM−like formulae and good deal absence with ambiguous setting and
coherent risk measure

Alejandro Balbás,∗Beatriz Balbás,†and Raquel Balbás. ‡

Abstract. Risk measures beyond the variance have shown theoretical
advantages when addressing some classical problems of Financial Economics, at
least if asymmetries and/or heavy tails are involved. Nevertheless, in portfolio
selection they have provoked several caveats such as the existence of good deals
in most of the arbitrage free pricing models. In other words, models such as
Black and Scholes or Heston allow investors to build sequences of strategies
whose expected return tends to infinite and whose risk remains bounded or
tends to minus infinite. This paper studies whether this drawback still holds if
the investor is facing the presence of multiple priors, as well as the properties
of optimal portfolios in a good deal free ambiguous framework.
With respect to the first objective, we show that there are four possible

results. If the investor uncertainty is too high he/she has no incentives to buy
risky assets. As the uncertainty (set of priors) decreases the interest in risky
securities increases. If her/his uncertainty becomes too low then two types of
good deal may arise. Consequently, there is a very important difference between
the ambiguous and the non ambiguous setting. Under ambiguity the investor
uncertainty may increase in such a manner that the model becomes good deal
free and presents a market price of risk as close as possible to that reflected by
the investor empirical evidence. Hence, ambiguity may help to overcome some
meaningless findings in asset pricing.
With respect to our second objective, good deal free ambiguous models

imply the existence of a benchmark generating a robust capital market line.
The robust (worst-case) risk of every strategy may be divided into systemic
and specific, and no robust return is paid by the specific robust risk. A couple
of “betas”may be associated with every strategy, and extensions of the CAPM
most important formulas will be proved.
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1. Introduction
The study of risk measures beyond the standard deviation has a long history in
finance. Since Artzner et al. (1999) introduced the coherent measures of risk and
gave a new impulse to this topic, many authors have further extended the discussion.
Among many others, Goovaerts et al. (2004) introduced the consistent risk measures,
Rockafellar et al. (2006) defined the expectation bounded risk measures, Zhiping and
Wang (2008) defined the two-sided coherent risk measures, Brown and Sim (2009)
defined the satisfying measures, and Foster and Hart (2009) provided an operational
measure of riskiness. This growing interest is mainly due to two reasons: Firstly, it
is not always possible to establish a clear relationship between the return variance
and potential capital losses (or capital requirements), and secondly, the presence of
asymmetric returns implies that the variance becomes non compatible with the second
order stochastic dominance and many utility functions (Ogryczak and Ruszczynski,
2002).
Many classical financial topics have been revisited using risk measures. With

respect to portfolio choice problems, among many others, Zhiping and Wang (2008)
present a very general analysis, and Bali et al. (2011) point out that the empirical
results indicate that some generalized measures of riskiness are very appropriate to
rank equity portfolios based on their expected returns per unit of risk. Besides, Balbás
et al. (2010a) prove the existence of caveats affecting the most important arbitrage
free and complete pricing models of Financial Economics. For instance, for the Black
and Scholes model, and for every coherent and expectation bounded measure of risk,
investors can build portfolios with the intended expected return (as large as desired)
whose risk is lower than zero. This pathological finding also holds for the same model
and some risk measures that are not expectation bounded or coherent, such as the
absolute deviation, in which case the risk level is as close to zero as desired, or the
value at risk (V aR), in which case the risk level is as negative as desired, i.e., the
expected return tends to ∞ while the V aR tends to −∞.
The presence of agents with multiple priors is usual in finance and affects many

pricing and equilibrium problems as well as investment decisions. It has been also
generating a growing interest, as demonstrated by the number of recent papers fo-
cusing on this issue. For instance, Epstein and Schneider (2008) study the existence
of ambiguity premia, Riedel (2009) deals with the valuation of American style deriv-
atives in an ambiguous framework, and Bossaerts et al. (2010) study the impact of
ambiguity and ambiguity aversion on equilibrium asset prices. With regard to port-
folio selection problems, Garlappi et al. (2007) deal with ambiguous expected returns
and empirically show that, compared with portfolios from classical and Bayesian
models, ambiguity aversion leads to optimal solutions that are more stable over time
and deliver a higher out-of sample Sharpe ratios. In this sense, the introduction of
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uncertainty may be more than realistic. It could also be interesting to many traders.
Recent literature has also focused on portfolio choice with both ambiguity and risk

measures beyond the variance. For instance, Calafiore (2007) provides algorithms if
the risk measure is the absolute deviation, Schied (2007) establishes duality linked
optimality conditions, and Zhu and Fukushima (2009) yield algorithms to minimize
the worst-case (or robust) conditional value at risk (CV aR) if the set of priors satisfies
some required assumptions.
This paper attempts to address several open problems arising from the discussion

above. Following Balbás et al. (2010a), who dealt with a coherent and expectation
bounded risk measure but did not consider any ambiguous framework, we analyze the
existence of benchmarks generating a robust capital market line for every ambiguity
level (or every set of priors) and risk measure, as well as the possibility to explain
the robust (or worst-case) expected return of every available security by using this
benchmark and a new notion of robust systemic risk. Furthermore, a second major
objective of this paper is to investigate whether the economic meaningless equality
(risk, return) = (0,∞) above may still hold when there are multiple priors. If this
pathological property holds in an arbitrage free market, we will say that there are
robust good deals.1 Besides, it seems that we consider the most general case because
ambiguity may affect both the set of states of nature and the probabilities of the
states. Obviously, this framework contains more restricted approaches dealing with
ambiguity with respect to volatilities, expected returns, price processes, etc.
The paper’s outline is as follows. Section 2 is devoted to summarizing the basic

notions and notations, as well as some background. We will focus on a discrete set
of states of the world and the CV aR as the risk measure. We selected the CV aR
because it has been becoming very popular among researchers, practitioners, supervi-
sors and regulators. It is compatible with the second order stochastic dominance and
the usual utility functions (Ogryczak and Ruszczynski, 2002) and appropriately over-
comes several shortcomings of other risk measures when dealing with asymmetries
and heavy tails (Agarwal and Naik, 2004). Choosing the CV aR in our analysis, we
simplify the paper’s exposition. However, it is worth pointing out that the extension
for a general coherent and expectation bounded risk measure is straightforward.
The portfolio selection problem is introduced in Section 3. As usual in finance,

ambiguity aversion is incorporated by dealing with the worst-case principle, as jus-
tified in Gilboa and Schmeidler (1989). Though there are alternative methods also

1The notion of “good deal”was introduced in Cochrane and Saa-Requejo (2000). Mainly, a good
deal was an investment strategy providing traders with a “very high return/risk ratio”, in comparison
with the market portfolio. Risk is measured with the standard deviation, and the absence of good
deal is imposed in an arbitrage free model so as to price in incomplete markets.
In this paper we deal with alternative risk measures and identify the concept of good deal with a

strategy yielding an infinite return/risk ratio.
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consistent with the famous Ellsberg paradox (Maccheroni et al., 2006), most of the
authors adopt a worst-case approach; For instance, all of the ambiguity-linked papers
cited above.
Our portfolio choice problem minimizes the robust (worst-case) risk for every

robust expected return. Though this is not a linear problem, we extend the ap-
proach of Balbás et al. (2010b) in risk minimization so as to involve ambiguity too.
Consequently, we find a linear dual problem that characterizes the primal solutions.
Theorem 5 is the most important result of Section 3, since it provides Karush-Kuhn-
Tucker-like necessary and suffi cient optimality conditions for both the portfolio selec-
tion problem and its dual.2

In Section 4 we draw on the KKT − like conditions in order to address our two
major objectives: The existence of robust good deals and the existence of appropriate
benchmarks under the good deal absence. The Remark of Theorem 6 clarifies the
first point. Four disjoint and complementary results may arise. Firstly, if the investor
reflects a high level of uncertainty (the set of priors is large and contains the risk
neutral probability measure of the pricing model), then the market is risk neutral for
this investor. This means that there are no worst-case expected returns higher than
the risk free rate, and therefore the investor has no incentives to buy risky assets.
This result seems to be consistent with the theoretical and empirical findings of Cao
et al. (2005) and Bossaerts et al. (2010). Agents who are suffi ciently ambiguity
averse find open sets of prices for which they refuse to hold an ambiguous portfolio
or choose not to participate in the stock market. Secondly, if the set of priors of the
investor is lower, then he/she can find a benchmark that generates a robust capital
market line when combined with the riskless security. This market line provides a
robust market price of risk and the relationship between the worst-case expected
return and the worst-case risk level, as well as the systemic and specific robust risk
of every asset. Furthermore, if there is no ambiguity with respect to the states of
nature, and only their probabilities are uncertain, then for every available security
(or portfolio) the investor may measure two “betas” (regression coeffi cients) with
respect to the benchmark, which allows her/him to give lower and upper bounds for
the worst-case expected return. This is an obvious extension of the classical CAPM
formulae (Theorem 9 and Corollary 10) holding for ambiguous settings and coherent
and expectation bounded risk measures. For effi cient strategies both betas become
identical, and so do the lower and upper bound above.
The third and fourth cases in the Remark of Theorem 6 lead to the existence of

good deal. If the investor uncertainty is “too low”then the risk neutral probability of
the market may be in the frontier or outside a set of probabilities constructed from the

2Actually, the given KKT − like conditions are not exactly the same as the standard KKT
conditions of the problem, and that is the reason why we say “KKT − like”.
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set of priors. If it is in the frontier then the couple (robust_risk, robust_return) =
(0,∞) is available to the trader, and we will say that there are robust good deals of the
first type. If it is beyond the frontier then (robust_risk, robust_return) = (−∞,∞)
is available, and there are robust good deals of the second type.
In Section 5 we attempt to overcome the presence of good deals of any type.

The main results are Theorem 12 and its Remark. They show that there is a very
important difference between the ambiguous and the non ambiguous setting. At least
for complete markets, under ambiguity, if we increment the set of priors, then the
absence of good deal is guaranteed. Furthermore, the enlargement of the degree of
ambiguity may be done in such a manner that the new robust capital market line and
the new robust market price of risk may be as close as possible to those reflected by
the empirical evidence of the investor. In this sense, the introduction of ambiguity
may overcome several caveats of many important arbitrage free pricing models of
Financial Economics, such as Black and Scholes, Heston, etc. By adding ambiguity
these models stop reflecting the presence of good deals when risks are measured by
coherent and expectation bounded risk measures.
In Section 6 we switch from the CV aR to the variance. Though this is not a

suitable risk measure if there are asymmetries, it plays a crucial role in many topics
of Financial Economics, so it may be worth analyzing its properties in a portfolio
selection problem with ambiguity. We will see that the CAPM−linked properties
still hold, but the absence of good deal will be now guaranteed. Nevertheless, good
deals for alternative dispersion measures, such as the absolute deviation, might also
arise in uncertain settings.
The last section of the paper summarizes the most important conclusions.

2. Preliminaries, notations, and the robust CVaR

Consider a finite set of states of nature Ω = {ω1, ω2, ..., ωn} that may arise at a future
date T , and the convex and compact set

P =

{
p = (p1, p2, ..., pn) ∈ IRn;

n∑
j=1

pj = 1, pj ≥ 0 for j = 1, 2, ..., n

}
of probability measures on Ω. Consider 0 < µ0 < 1 and p = (p1, p2, ..., pn) ∈ P. As
usual, the conditional value at risk relative to {p} with confidence level µ0

CV aR(p,µ0) : IRn −→ IR
IRn 3 y −→ CV aR(p,µ0) (y)

is given by

CV aR(p,µ0) (y) = Max

{
−

n∑
j=1

pjyjzj : z = (z1, z2, ..., zn) ∈ ∆(p,µ0)

}
, (1)
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where the sub-gradient ∆(p,µ0) of CV aR(p,µ0) is given by

∆(p,µ0) =

{
(z1, z2, ..., zn) ∈ IRn;

n∑
j=1

pjzj = 1,
1

1− µ0
≥ zj ≥ 0 for j = 1, 2, ..., n

}
.

(2)
Obviously, ∆(p,µ0) is a convex and compact set, and therefore the maximum in (1) is
attained for every y ∈ IRn. Let K ⊂ P be a convex closed (and therefore compact)
set. K will represent the set of priors of a given investor. For p ∈ K we do not impose
the constraint pj > 0, j = 1, 2, ..., n, so the investor ambiguity may be beyond the
probabilities of the states of nature. He/she may also reflect ambiguity with respect
to the set of states Ω.
We will introduce the ambiguous or robust CV aR with confidence level µ0 relative

to K below (RCV aR(K,µ0)) by using the RCV aR(K,µ0) sub-gradient, given by

∇̃(K,µ0) =
{

(p1z1, p2z2, ..., pnzn) ∈ IRn; p ∈ K and z ∈ ∆(p,µ0)

}
. (3)

We will also consider the convex hull ∇(K,µ0) = Co
(
∇̃(K,µ0)

)
.

Proposition 1. With the notations above, we have:
a) ∇̃(K,µ0) ⊂ IRn and its convex hull ∇(K,µ0) are convex and compact.
b) K ⊂ ∇̃(K,µ0) ⊂ ∇(K,µ0) ⊂ P.
c) The function RCV aR(K,µ0) : IRn −→ IR given by

RCV aR(K,µ0) (y) = Max
{
−
∑n

j=1
ξjyj; ξ = (ξ1, ξ2, ..., ξn) ∈ ∇̃(K,µ0)

}
= Max

{
−
∑n

j=1
ξjyj; ξ = (ξ1, ξ2, ..., ξn) ∈ ∇(K,µ0)

}
= Max

{
CV aR(p,µ0) (y) ; p ∈ K

} (4)

is well defined for every y ∈ IRn.
d)RCV aR(K,µ0) is translation invariant, homogeneous, sub-additive (and therefore

convex) and decreasing, i.e.,

RCV aR(K,µ0) (y + k (1, 1, ..., 1)) = RCV aR(K,µ0) (y)− k (5)

for every y ∈ IRn and k ∈ IR,

RCV aR(K,µ0) (αy) = αRCV aR(K,µ0) (y) (6)

for every y ∈ IRn and α ≥ 0,

RCV aR(K,µ0) (y1 + y2) ≤ RCV aR(K,µ0) (y1) +RCV aR(K,µ0) (y2) (7)
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for every y1, y2 ∈ IRn, and

RCV aR(K,µ0) (y2) ≤ RCV aR(K,µ0) (y1) (8)

for every y1, y2 ∈ IRn with y2 ≥ y1.3

Proof. a) Let us prove that every sequence

{(pm,1zm,1, pm,2zm,2, ..., pm,nzm,n)}∞m=1 ⊂ ∇̃(K,µ0)

has a convergent sub-sequence whose limit belongs to ∇̃(K,µ0), and therefore this set
will be compact. Since

{(pm,1, pm,2, ..., pm,n)}∞m=1 ⊂ K

andK is compact, there exists a sub-sequence that converges to p0 = (p0,1, p0,2, ..., p0,n) ∈
K. Without loss of generality we can represent the sub-sequence the same as the ini-
tial sequence. Since (2) and (3) show that

{(zm,1, zm,2, ..., zm,n)}∞m=1 ⊂
[
0,

1

1− µ0

]n
and this set is compact too, there exists a sub-sequence converging to

z0 = (z0,1, z0,2, ..., z0,n) ∈
[
0,

1

1− µ0

]n
.

It only remains to show that

(p0,1z0,1, p0,2z0,2, ..., p0,nz0,n) ∈ ∇̃(K,µ0),

which will be obvious if z0 ∈ ∆(p,µ0). Clearly,

n∑
j=1

p0,jz0,j = Limm→∞

(
n∑
j=1

pm,jzm,j

)
= 1,

because (zm,1, zm,2, ..., zm,n) ∈ ∆(pm,µ0) for every m ∈ IN.
With respect to ∇(K,µ0), this set is compact because in IRn the convex hull of every

compact set remains compact.

3According to the definition by Artzner et al. (1999), the fulfillment of (5), (6), (7) and (8)
implies that RCV aR(K,µ0) is a coherent measure of risk.
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b) If p = (p1, p2, ..., pn) ∈ K then (2) shows that z = (1, 1, ..., 1) ∈ ∆(p,µ0), so

p = (p1z1, p2z2, ..., pnzn) ∈ ∇̃(K,µ0).

Besides, ∇̃(IP,µ0) ⊂ P obviously follows from (2) and (3), and then∇(K,µ0) ⊂ P because
P is convex.
The first maximum in (4) is attainable because ∇̃(K,µ0) is compact, and the re-

maining equalities are trivial.
d) The result trivially follows from (4) and bearing in mind that CV aR(p,µ0) is

translation invariant, homogeneous and sub-additive for every p ∈ K. �

Suppose that Y ⊂ IRn is a linear manifold of reachable pay-offs. Every y ∈ Y has
a current price π (y) ∈ IR, and the pricing rule

π : Y −→ IR
Y 3 y −→ π (y)

is linear. We will assume that there exists a riskless asset, so

(1, 1, ..., 1) ∈ Y

and its price will be denoted by

π (1, 1, ..., 1) = e−rfT (9)

rf denoting the risk-free rate. Being π linear, the Riesz representation theorem guar-
antees the existence of a unique yπ ∈ Y such that

π (y) = e−rfTyπy (10)

holds for every y ∈ Y , where products in IRn are usual inner products. We will also
assume that there are no arbitrage opportunities, so

π (y2) ≥ π (y1) (11)

for every y1, y2 ∈ Y with y2 ≥ y1.
Henceforth, the linear function L : IRn −→ IR given by

L (y) = (y1, y2, ..., yn) (1, 1, ..., 1) =
n∑
j=1

yj (12)

for every y = (y1, y2, ..., yn) ∈ IRn will play an important role. Obviously, L (p) = 1
for every p ∈ P, so the latter proposition guarantees that the equality also holds for
p ∈ ∇̃(K,µ0) and p ∈ ∇(K,µ0).
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As usual, the market is said to be complete if Y = IRn, and incomplete otherwise.
If the market is complete, then (10) and (11) trivially imply that the components of
yπ are non negative, i.e.,

yπ,j ≥ 0, j = 1, 2, ..., n. (13)

There is one orthogonal projection in IRn endowed with the usual inner product
that will be important in this paper. This is the projection on Y , and will be denoted
by ϕY . As usual, the manifold orthogonal to Y will be represented by Y

⊥, and similar
notations will be used for the rest of the manifolds of IRn.

Proposition 2. a) L (ϕY (y)) = L (y) for every y ∈ IRn. More generally, L (ϕW (y)) =
L (y) for every y ∈ IRn and for every subspace W ⊂ IRn with (1, 1, ..., 1) ∈ W .

b) L (yπ) = 1. Moreover, if the market is complete then yπ ∈ P.

Proof. a) Let y ∈ IRn. ϕW (y) is characterized by the property y − ϕW (y) ∈ W⊥,
so (1, 1, ..., 1) ∈ W and (12) lead to L (y − ϕW (y)) = 0.

b) (9), (10) and (12) imply that

e−rfT = e−rfTyπ (1, 1, ..., 1) = e−rfTL (yπ) ,

so L (yπ) = 1. Besides, if the market is complete (13) implies that yπ ∈ P. �

Remark 1. Thus, if the market is complete then yπ ∈ P, and (10) indicates that
agents know the (unique) risk neutral probability measure yπ of the market. In
general, regardless of the completeness of the market, (10) indicates that agents know
the pricing rule, so their uncertainty is not related to prices, but to probabilities and
therefore to the rest of statistical parameters (expected returns, variances, CV aR,
etc.) associated with the future market evolution. Uncertainty related to current
prices barely makes sense in practice, since real quotes are given by the market. �

We will provide a portfolio choice problem involving the space C (K) (respec-
tively, C

(
∇(K,µ0)

)
), of real valued continuous functions on the compact set K. The

dual problem will involve the dual space of C (K) (respectively, C
(
∇(K,µ0)

)
), which,

according to the Riesz representation theorem (Luenberger, 1969), isM (K) (respec-
tively, M

(
∇(K,µ0)

)
), space of real valued inner regular σ−additive measures on the

Borel σ−algebra ofK (respectively,∇(K,µ0)). P (K) (respectively, P
(
∇(K,µ0)

)
) will de-

note the subset ofM (K) (respectively,M
(
∇(K,µ0)

)
) whose elements are probability

measures.
Next, let us present a main Lemma which ends this section. We will omit the

proof because this is a particular case of several results regarding the representa-
tion of probability measures on convex sets by points. For instance, a more general
Proposition may be found in Phelps (2001), pp 3.
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Lemma 3. For every ν ∈ P (K) (respectively, ν ∈ P
(
∇(K,µ0)

)
) there exists a unique

pν ∈ K (respectively, pν ∈ ∇(K,µ0)) such that∫
K

(
n∑
j=1

pjyj

)
dν (p) =

n∑
j=1

pν,jyj

(respectively,
∫
∇(K,µ0)

(∑n

j=1
pjyj

)
dν (p) =

∑n

j=1
pν,jyj) for every y ∈ IRn. �

3. Portfolio choice problem
Henceforth, we will fix the set K and the level of confidence µ0, and we will simplify
the notation by using ρ = RCV aR(K,µ0).
Consider the optimization problem

Min ρ (y)

yπy ≤ erfT∑n

j=1
pjyj ≥ r, ∀p ∈ K

y ∈ Y

(14)

The agent with uncertainty is minimizing the ambiguous or robust CV aR in the set
Y of attainable portfolios whose price is not higher than one dollar (first constraint)
and whose expected return will be at least r regardless of the real probability that
explains the market behavior (second constraint). Thus, the solution y∗ of (14) will
guarantee (at least) the robust (or worst-case) expected return r, and a real CV aR
never higher than ρ (y∗). In this sense, the uncertainty with respect to the statistical
parameters does not impede guaranteeing a lower bound for the expected return with
an upper bound for the CV aR. We will assume that the investor desires at least the
return of the riskless asset, so r ≥ erfT must hold.
Similarly to Balbás et al. (2010b), and bearing in mind (4), we can add a new

decision variable θ and consider the equivalent problem

Min θ

θ +
∑n

j=1
ξjyj ≥ 0, ∀

(
ξj
)n
j=1
∈ ∇(K,µ0)

yπy ≤ erfT∑n

j=1
pjyj ≥ r, ∀p ∈ K

θ ∈ IR, y ∈ Y

(15)



11

Notice that the first and third constraints are C
(
∇(K,µ0)

)
and C (K) valued, respec-

tively. Thus, the Lagrangian function is (Luenberger, 1969, or Balbás et al., 2010b)

L (θ, y, ν1, λ, ν2) =

θ
(

1−
∫
∇(K,µ0)

dν1 (ξ)
)
−
∫
∇(K,µ0)

(∑n

j=1
ξjyj

)
dν1 (ξ)

+λ
(
yπy − erfT

)
+ r

∫
K dν2 (p)−

∫
K

(∑n

j=1
pjyj

)
dν2 (p) ,

for every (θ, y, ν1, λ, ν2) ∈ IR× Y ×M
(
∇(K,µ0)

)
× IR×M (K). Moreover, (ν1, λ, ν2)

is dual-feasible if and only if ν1, λ, ν2 ≥ 0 and the infimum of L (θ, y, ν1, λ, ν2) in
(θ, y) ∈ IR×Y is bounded. Therefore, ν1 must become a probability (ν1 ∈ P

(
∇(K,µ0)

)
)

and so must ν2 (ν2 ∈ P (K)) if we add the variable Λ =
∫
K dν2 (p) ≥ 0. Then,

L (y, ν1, λ, ν2,Λ) =

−
∫
∇(K,µ0)

(∑n

j=1
ξjyj

)
dν1 (ξ)

+λ
(
yπy − erfT

)
+ Λr − Λ

∫
K

(∑n

j=1
pjyj

)
dν2 (p) .

The dual objective function at (ν1, λ, ν2,Λ) is the infimum of L (y, ν1, λ, ν2,Λ) for
y ∈ Y . Hence, bearing in mind Lemma 3, (ν1, λ, ν2,Λ) may be replaced by

(ξ, λ, p,Λ) ∈ ∇(K,µ0) × IR×K × IR,

the Lagrangian function becomes

L (y, ξ, λ, p,Λ) =(∑n

j=1
yj
(
−ξj + λyπ,j − Λpj

))
− λerfT + Λr,

and the dual problem is
Max − λerfT + Λr
−ξ + λyπ − Λp ∈ Y ⊥
ξ ∈ ∇(K,µ0), p ∈ K, λ,Λ ∈ IR, λ,Λ ≥ 0

(16)

Applying the function L = L ◦ ϕY of (12) in the first constraint of (16), and bearing
in mind Propositions 1 and 2, we get −1 + λ− Λ = 0, which leads to

Λ = λ− 1. (17)
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On the other hand, constraint −ξ + λyπ − Λp ∈ Y ⊥ is equivalent to

ϕY (−ξ + λyπ − Λp) = 0.

Thus, the dual problem simplifies to Max λ
(
r − erfT

)
− r

λyπ = ϕY (ξ + λp− p)
ξ ∈ ∇(K,µ0), p ∈ K, λ ∈ IR, λ ≥ 1

(18)

Proposition 4. If (14) is feasible for some r0 > erfT then for every r > erfT (14) is
also feasible and (15) satisfies the Slater condition, i.e., its three constraints hold as
strict inequalities for some feasible solution.

Proof. There exists a portfolio y0 ∈ Y such that π (y0) ≤ 1 and
∑n

j=1
pjy0,j >

erfT for every p ∈ K. Then, consider βy0 such that 0 < β < 1, π (βy0) < 1 and∑n

j=1
βpjy0,j > erfT for every p ∈ K. For every α > 0 we have that

π
(
(1 + α) βy0 − αerfT (1, 1, ..., 1)

)
=

(1 + α) π (βy0)− α = π (βy0) + α (π (βy0)− 1) ≤ π (βy0) < 1,

and
p
(
(1 + α) βy0 − αerfT (1, 1, ..., 1)

)
=

(1 + α) βpy0 − αerfT = α
(
βpy0 − erfT

)
+ βpy0 −→∞

as α −→∞. Thus, (1 + α) βy0− αerfT (1, 1, ..., 1) is a portfolio satisfying the second
and third constraints in (15) as strict inequalities. Besides, the first inequality may
be satisfied as a strict one if θ is large enough. Indeed, since ∇(K,µ0) is compact, it is
suffi cient to consider

θ > Max

{
−

n∑
j=1

ξjβy0,j;
(
ξj
)n
j=1
∈ ∇(K,µ0)

}
,

and (15) satisfies the Slater condition. �

Due to the fulfillment of the Slater condition there is no duality gap between
(15) and (16). Thus, proceeding as in Balbás et al. (2010b), there is no duality gap
between (14) and (18) either.

Theorem 5. Suppose that (14) is feasible. (14) is bounded if and only if (18) is
feasible, in which case the following conditions hold:

a) The infimum of (14) equals the (attainable) maximum of (18).
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b) y∗ ∈ Y and (ξ∗, λ∗, p∗) ∈ ∇(K,µ0) × IR×K solve (14) and (18) if and only if the
following Karush-Kuhn-Tucker-like conditions

∑n

j=1
ξjy
∗
j ≥

∑n

j=1
ξ∗jy
∗
j , ∀

(
ξj
)n
j=1
∈ ∇(K,µ0)

(λ∗ − 1)
(∑n

j=1
p∗jy
∗
j − r

)
= 0

yπy
∗ = erfT∑n

j=1
pjy
∗
j ≥ r, ∀p ∈ K

λ∗yπ = ϕY (ξ∗ + λ∗p∗ − p∗)

λ∗ ≥ 1

(19)

hold. �

Remark 2. Notice that the first constraint in (18) may be represented by

yπ = ϕY

(
1

λ
ξ +

(
1− 1

λ

)
p

)
. (20)

Since λ ≥ 1 then 1
λ
ξ +

(
1− 1

λ

)
p is a linear convex combination of ξ ∈ ∇(K,µ0) and

p ∈ K, and therefore,
1

λ
ξ +

(
1− 1

λ

)
p ∈ ∇(K,µ0) ⊂ P

(see Proposition 1). Hence, (10) and (20) imply that

π (y) = e−rfTyπy = e−rfT
(

1

λ
ξ +

(
1− 1

λ

)
p

)
y, (21)

and 1
λ
ξ +

(
1− 1

λ

)
p may be interpreted as a risk neutral probability measure of this

market. Thus, (18) is feasible (or (14) is bounded) if and only if there are risk neutral
probabilities that may be represented as linear convex combinations of an element
belonging to ∇(K,µ0) and a second element belonging to K.
Besides, the feasible set of (18) does not depend on r nor does its solution, since

problem 
Max λ
yπ = ϕY

(
1
λ
ξ +

(
1− 1

λ

)
p
)

ξ ∈ ∇(K,µ0), p ∈ K, λ ∈ IR, λ ≥ 1
(22)

provides us with the optimal dual solution (ξ∗, λ∗, p∗) for every r > erfT . �
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4. Capital market line and CAPM-like formulae
First of all, let us characterize those cases when (14) is feasible.

Theorem 6. (14) is feasible if and only if yπ /∈ ϕY (K).

Proof. Suppose that yπ ∈ ϕY (K). In such a case, take p ∈ K ⊂ ∇(K,µ0) with
yπ = ϕY (p) and we obviously have

yπ = ϕY

(
1

λ
p+

(
1− 1

λ

)
p

)
for every λ ≥ 1. Thus, (18) and (22) are unbounded and Theorem 5 shows that (14)
is not feasible for every r > erfT .
Conversely, suppose that yπ /∈ ϕY (K). Since yπ ∈ Y and ϕY (K) ⊂ Y is obviously

convex and compact, the Hahn Banach separation theorem (Luenberger, 1969) implies
that existence of y0 ∈ Y such that

yπy0 < Min {y0y; y ∈ ϕY (K)} . (23)

We can also assume that yπy0 > 0 because otherwise y0 could be substituted by
y0 + α (1, 1, ..., 1) with a large enough α. Indeed, notice that

(y0 + α (1, 1, ..., 1))ϕY (p) = y0ϕY (p) + α (1, 1, ..., 1) p = y0ϕY (p) + α

for every p ∈ K, whereas

(y0 + α (1, 1, ..., 1)) yπ = yπy0 + α.

Thus, considering erfTy0/(yπy0) if necessary, we can assume that yπy0 = erfT . Then,
(23) implies that (14) is feasible for every r lying within the spread

(yπy0,Min {y0y; y ∈ ϕY (K)}) ,

and Proposition 4 implies that (14) is feasible for every r > erfT . �

According to Theorem 5, Remark 2, and Theorem 6, we can consider four disjoint
and complementary situations:

Remark 3. H1. yπ ∈ ϕY (K). In such a case (14) is not feasible for every r > erfT .
We will say that the market is K−risk-neutral.

H2A. yπ ∈ ϕY
(
∇(K,µ0)

)
and yπ /∈ ϕY (K). In such a case (14) is feasible and,

bearing in mind that

yπ = ϕY

(
1

λ
ξ +

(
1− 1

λ

)
p

)
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for some ξ ∈ ϕY
(
∇(K,µ0)

)
, λ = 1, and every p ∈ K, (18) and (22) are also feasible.

Theorem 5 shows that (18) and (22) attain a maximum value. Let λ∗ be the maximum
value of (22). If λ∗ > 1 then, bearing in mind the objective function of (18), the
optimal robust CV aR is

ρ = λ∗
(
r − erfT

)
− r, (24)

or, equivalently,

r =
ρ+ λ∗erfT

λ∗ − 1
(25)

yields the relationship between the optimal robust CV aR and the guaranteed (or

robust) expected return. We will say that
1

λ∗ − 1
is the robust market price of risk

for the investor whose ambiguity is given by the set of priors K, and (25) will be
called the K−capital market line (K − CML).

H2B. yπ ∈ ϕY
(
∇(K,µ0)

)
and yπ /∈ ϕY (K). (14) (18) and (22) are feasible, but

the optimal solution of (22) satisfies λ∗ = 1. Then, bearing in mind the objective
function of (18), the optimal robust CV aR is

ρ = λ∗
(
r − erfT

)
− r = −erfT

and it does not depend on r. In fact, one can construct sequences of portfolios whose
robust expected return is as large as desired (tends to +∞) whereas their risk is as
close to −erfT as desired. There is no market price of risk because every guaranteed
expected return is reached with a similar risk level. We will say that there areK−good
deals of the first type.

H3. yπ /∈ ϕY
(
∇(K,µ0)

)
. (14) is feasible, but the first constraint in (22) cannot

hold because Proposition 1 guarantees that

ϕY

(
1

λ
ξ +

(
1− 1

λ

)
p

)
∈ ϕY

(
∇(K,µ0)

)
for every λ ≥ 1, every ξ ∈ ∇(K,µ0) and every p ∈ K. In this case (14) is unbounded
for every r > erfT (Theorem 5), i.e., one can construct a sequence of portfolios
guaranteeing an expected return as large as desired (tends to +∞) and whose risk,
given by the robust CV aR, is as negative as desired (tends to −∞). We will say that
there are K−good deals of the second type. �

We will devote the rest of this section to dealing with Case H2A, i.e., the natural

situation where (14) and (18) are feasible and bounded, λ∗ > 1,
1

λ∗ − 1
is the market

price of risk, and the K − CML of (24) and (25) gives the relationship between the
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optimal robust risk and its associated robust expected return. The remaining cases
will be analyzed in Section 5.
Fix r∗ > erfT and consider the corresponding primal and dual solutions, y∗ and

(ξ∗, λ∗, p∗). y∗ is a priced one portfolio due to the third condition in (19). Obviously,
the dual solution will remain the same if we modify the guaranteed return. However,
the optimal portfolio will be a combination of y∗ and the riskless asset. In fact, we
have:

Proposition 7. If r > erfT replaces r∗ then the primal solution becomes

αy∗ + (1− α)
(
erfT , erfT , ..., erfT

)
with

α =
r − erfT
r∗ − erfT .

Proof. It is suffi cient to see that αy∗+ (1− α)
(
erfT , erfT , ..., erfT

)
and (ξ∗, λ∗, p∗)

satisfy (19). With respect to the first inequality of (19), for
(
ξj
)n
j=1
∈ ∇(K,µ0) we have

that ∑n

j=1
ξj
(
αy∗j + (1− α) erfT

)
= α

∑n

j=1
ξjy
∗
j + (1− α) erfT

≥ α
∑n

j=1
ξ∗jy
∗
j + (1− α) erfT =

∑n

j=1
ξ∗j
(
αy∗j + (1− α) erfT

)
.

The second condition in (19) and λ∗ > 1 lead to
∑n

j=1
p∗jy
∗
j = r∗. Then,

∑n

j=1
p∗j

(
r − erfT
r∗ − erfT y

∗
j +

r∗ − r
r∗ − erfT e

rfT

)
=

r − erfT
r∗ − erfT

∑n

j=1
p∗jy
∗
j +

r∗ − r
r∗ − erfT e

rfT
∑n

j=1
p∗j

=
r − erfT
r∗ − erfT r0 +

r∗ − r
r∗ − erfT e

rfT = r.

The third condition in (19) is

yπ
(
αy∗ + (1− α)

(
erfT , erfT , ..., erfT

))
=

αyπy
∗ + (1− α) yπ

(
erfT , erfT , ..., erfT

)
= erfT .
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Finally, the fourth condition in (19) leads to

n∑
j=1

pj
(
αy∗j + (1− α) erfT

)
≥ αr∗ + (1− α) erfT =

r − erfT
r∗ − erfT r

∗
+

r∗ − r
r∗ − erfT e

rfT = r

for every p ∈ K. �

Remark 4. (Systemic and specific risk). Henceforth, we will consider the benchmark
y∗ generating the set of effi cient portfolios by combinations with the riskless asset.
Notice that (19) implies that y∗ is a priced one strategy whose robust expected return
is r∗. According to the latter proposition and its proof, for every r > erfT

r − erfT
r∗ − erfT y

∗ +
r∗ − r
r∗ − erfT

(
erfT , erfT , ..., erfT

)
(26)

is a priced one effi cient strategy whose robust expected return is r.
For a general priced one portfolio y we will consider its robust expected return

IEK (y) = Min

{
n∑
j=1

pjyj; p ∈ K
}

and its guaranteed (or robust) CV aR, ρ (y). Moreover, the role of K may be also
played by every alternative closed convex subset of P. If IEK (y) = r > erfT then one
obviously has

ρ (y) ≥ ρ

(
r − erfT
r∗ − erfT y

∗ +
r∗ − r
r∗ − erfT

(
erfT , erfT , ..., erfT

))
,

and (5) and (6) lead to

ρ (y) ≥ r − erfT
r∗ − erfT ρ (y∗) +

r − r∗
r∗ − erfT e

rfT , (27)

i.e., the risk of y is never lower than the risk of the effi cient portfolio (26) with the
same guaranteed return as y. The right hand side in (27) will be said to be the
systemic risk of y, while

ρ (y)− r − erfT
r∗ − erfT ρ (y∗)− r − r∗

r∗ − erfT e
rfT ≥ 0 (28)

will be said to be its specific risk. Obviously, the inequality in (27) shows that “the
market does not pay anything” for the specific risk, since the effi cient portfolio of
Proposition 7 guarantees the same return r and it only reflects the systemic risk of
y. �
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The Remark above justifies that y∗ describes the set of effi cient strategies and
yields the proportion of the risk of every portfolio that is related to its robust return.
Next, let us see that some kind of “beta”between an arbitrary portfolio y and the
benchmark y∗ may explain the worst-case return guaranteed by y.
Suppose now that p = (p1p2, ..., pn) ∈ K and pj > 0, j = 1, 2, ..., n. Then, it is

known that IRn may be endowed with the alternative inner product

IEp (y1z2, y1z2, ..., ynzn) =
n∑
j=1

pjyjzj, (29)

for every y, z ∈ IRn. This different inner product does not modify the topological
properties, but geometrical ones will become different. So, the orthogonal projection
on Y will be denoted now by ϕ(Y,p), and, obviously, in general ϕ(Y,p) 6= ϕY . This also
applies if Y is replaced by another manifold of IRn.
Besides, the Riesz representation theorem also ensures the existence of a unique

zp ∈ Y such that

π (y) = e−rfT
n∑
j=1

pjyjzp,j (30)

for every y ∈ Y . We will denote by ϕp the orthogonal projection ϕp : IRn −→
L{(1, 1, ..., 1) , zp} with the inner product (29), and by y∗p = ϕp (y∗).

Proposition 8. If p = (p1p2, ..., pn) ∈ K and pj > 0, j = 1, 2, ..., n, then (1, 1, ..., 1)
and y∗p are not proportional.

Proof. y∗− y∗p must be orthogonal to (1, 1, ..., 1) and zp in the inner product (29),
so we have that

IEp
(
y∗p
)

= IEp (y∗) ≥ IEK (y∗) = r∗ > erfT

and π
(
y∗p
)

= π (y∗) = 1. If there existed a with y∗p = a (1, 1, ..., 1) then (9) and
π
(
y∗p
)

= 1 would imply a = erfT , which would lead to IEp
(
y∗p
)

= erfT . �

The previous proposition implies that the variance V arp
(
y∗p
)
under p of y∗p is

strictly positive, so we can consider the regression coeffi cient (under p) between every
y ∈ Y and y∗p given by

βp (y) =
Cvp(y, y

∗
p)

V arp
(
y∗p
) ,

Cvp denoting covariance under p. If p = p∗ the subscript “p”will be omitted. Simi-
larly, if there is no confusion, Portfolio y may be omitted too.
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Theorem 9. (CAPM−like formulae). Let y ∈ Y be a priced one portfolio with a
positive worst-case risk premium IEK (y) − erfT .4 Suppose that both p∗ and p have
strictly positive components, p ∈ K being such that IEK (y) = IEp (y). Then,

βp
(
IEK (y∗)− erfT

)
≤ IEK (y)− erfT ≤ β

(
IEK (y∗)− erfT

)
. (31)

Furthermore, if p = p∗ (which always holds for an effi cient portfolio, see (26)) then

IEK (y)− erfT = β
(
IEK (y∗)− erfT

)
. (32)

Proof. Consider the linear manifold L{(1, 1, ..., 1) , zp}. Proposition 8 shows that
L{(1, 1, ..., 1) , zp} = L

{
(1, 1, ..., 1) , y∗p

}
. Since (1, 1, ..., 1) and y∗p− IEp

(
y∗p
)

(1, 1, ..., 1)
are obviously orthogonal under p, the projection lemma of Hilbert spaces (Maurin,
1967) shows that

y = IEp (y) (1, 1, ..., 1) + βp
(
y∗p − IEp

(
y∗p
)

(1, 1, ..., 1)
)

+ ε,

where ε ∈ Y satisfies IEp (ε) = 0 and π (ε) = 0. Multiplying by yπ we have

erfT = IEp (y) + βp
(
π(y∗p)e

rfT − IEp
(
y∗p
))
.

As in the proof of the previous proposition, IEp
(
y∗p
)

= IEp (y∗) and π(y∗p) = π(y∗) = 1,
so straightforward manipulations lead to

IEp (y)− erfT = βp
(
IEp (y∗)− erfT

)
.

Since IEp (y)− erfT = IEK (y)− erfT > 0, and IEp (y∗)− erfT ≥ IEK (y∗)− erfT > 0, we
have that βp > 0. Then, the first inequality in (31) trivially follows from IEK (y) =
IEp (y) and IEp (y∗) ≥ IEK (y∗).
Proceeding in a similar manner, we can show that

IEp∗ (y)− erfT = β
(
IEp∗ (y∗)− erfT

)
,

so the second inequality in (31) becomes obvious if one bears in mind that IEK (y∗) =
IEp∗ (y∗) (second and fourth conditions in (19), along with λ∗ > 1) and IEp∗ (y) ≥
IEK (y). �

4Notice that there are portfolios with a negative risk premium, at least if the benchmark is sold.
For instance,

y = 2erfT (1, 1, ..., 1)− y∗

is priced one and for every p ∈ K we have that

IEp (y)− erfT = erfT − IEp (y∗) ≤ erfT − r∗ < 0.



20

If p ∈ K and pj = 0 for some j = 1, 2, ..., n, then one can interpret that there may
be less than n states of nature, i.e., the ambiguity affects both the states of nature
and their probabilities. The statement of Theorem 9 may be slightly simplified if
there is no ambiguity with respect to the states of nature.

Corollary 10. Suppose that every probability p ∈ K has strictly positive compo-
nents. Let y ∈ Y be a priced one portfolio with a positive worst-case risk premium
IEK (y) − erfT . Let p ∈ K such that IEK (y) = IEp (y). Then (31) holds, and so does
(32) if p = p∗. In particular, (32) holds for every effi cient portfolio. �

Expression (31) is an obvious extension of the well-known one in the classical
CAPM . Indeed, if there is no ambiguity and K = {p} is a singleton then both
inequalities in (31) lead to the equality

IEK (y)− erfT = β
(
IEK (y∗)− erfT

)
.

Nevertheless, it is worth remarking that y∗ does not optimize the variance but the
CV aR, which is relevant in the presence of asymmetric returns or fat tails because
CV aR is still compatible with the second order stochastic dominance (Ogryczak and
Ruszczynski, 2002, Agarwal and Naik, 2004, etc.), whereas the variance may present
incompatibility.

5. The no good deal condition
Remark 3 implies the existence of four disjoint and complementary scenarios. As
stated in Theorem 9 and Corollary 10, the most natural one (H2A) implies some
consequences quite parallel to those of the classical CAPM . Besides, H1 may be
also natural. If the investor reflected high uncertainty, then it could be impossible
to guarantee expected returns larger than the risk free rate. Theorem 6 implies
that this situation clearly holds, for instance, if the market is complete and K = P
(highest level of ambiguity). Actually, the absence of worst-case expected returns
higher than rf may imply that the investor has no incentives to buy risky assets.
This result seems to be consistent with the theoretical and empirical findings of Cao
et al. (2005) and Bossaerts et al. (2010). Agents who are suffi ciently ambiguity
averse find open sets of prices for which they refuse to hold an ambiguous portfolio
or choose not to participate in the stock market.
On the contrary, H2B or H3 imply the presence of good deals, which allows

investors to construct portfolios whose guaranteed expected return is as large as
desired and whose guaranteed risk is bounded from below (first type good deal) or as
close to −∞ as desired (second type good deal). This pathological finding has been
already pointed out by Balbás et al. (2010a). These authors do not consider any sort
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of ambiguity but they show that very important pricing models (Black and Scholes,
Heston etc.) imply the presence of good deals for every coherent and expectation
bounded risk measure. It seems to be a serious shortcoming non compatible with any
kind of equilibrium, since agents should try to create good deals to become as rich
as intended, regardless of the risk measure they are dealing with. Those securities
composing the good deal should be requested with the appropriate sign (long or
short), which would change the evolution of prices.
A major objective of this paper is to prove that the presence of ambiguity may

help to overcome this caveat, at least for complete markets. To this purpose, suppose
that H2B or H3 hold (i.e., there are good deals of the first or second type) and
assume the fulfillment of Condition C1 below.

C1. yπ ∈ ϕY (P).

Proposition 11. If the market is complete then C1 holds.

Proof. Since ϕY becomes the identity map, this result is an obvious consequence
of Proposition 2b. �

Consider the set⋃
= {H; K ⊂ H ⊂ P , H is convex and compact, H1 or H2A hold for H} .

Obviously,
⋃
is non void because P ∈

⋃
(Condition C1 and Theorem 6). For every

H ∈
⋃
we can consider the optimal value λ∗H of (22) with H replacing K. Obviously,

1 < λ∗H ≤ +∞.

Furthermore, for H = P, we have that

λ∗P = +∞,

since for yπ = ϕY (p) with p ∈ P = ∇(P,µ0) we have that

yπ = ϕY

(
1

λ
p+

(
1− 1

λ

)
p

)
and (p, λ, p) is (22)-feasible for every λ ≥ 1. In other words, given 1 < λ∗ ≤ ∞,⋃

λ∗
=
{
H ∈

⋃
; λ∗ ≤ λ∗H

}
6= ∅

because P ∈
⋃
λ∗.
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Theorem 12. If there are K−good deals of the first or second type and C1 holds
then given 1 < λ∗ <∞ there exists H0 ∈

⋃
λ∗ such that λ

∗ ≤ λ∗H0 and λ
∗
H0 ≤ λ∗H for

every H ∈
⋃
λ∗ .

Proof. Let us consider the (obviously convex a compact) set

H0 =
⋂
H∈

⋃
λ∗

H.

Let us prove that H0 is the set we are looking for. The inclusion K ⊂ H0 is obvious,
so let us see the remaining properties guaranteeing that H0 ∈

⋃
λ∗.

At the moment let us assume that λ∗H < ∞ if H is small enough. The theorem
of Caratheodory ensures that for every H ∈

⋃
λ∗ there exist

(
hH1 , ..., h

H
n+1

)
∈ ∇̃n+1

(H,µ0),(
tH1 , ..., t

H
n+1

)
∈ [0, 1]n+1 with

∑n+1
j=1 t

H
j = 1, and hH ∈ H such that

yπ = ϕY

(
1

λ∗H

(
n+1∑
j=1

tHj h
H
j

)
+

(
1− 1

λ∗H

)
hH

)
(33)

The compactness of the involved sets guarantees the existence of

(h1, ..., hn+1,t1, ..., tn+1, h, ν
∗)

agglomeration point of the net(
hH1 , ..., h

H
n+1, t

H
1 , ..., t

H
n+1, h

H, λ∗H
)
H∈

⋃
λ∗
.

Furthermore, since λ∗H obviously decreases with H,

ν∗ = Lim λ∗H = Inf λ∗H ≥ λ∗ > 1. (34)

Thus, (33) leads to

yπ = ϕY

(
1

ν∗

(
n+1∑
j=1

tjhj

)
+

(
1− 1

ν∗

)
h

)

and
(∑n+1

j=1 tjhj, ν
∗, h
)
will be (22)-feasible for H0 instead of K if we see that h ∈ H0

and hj ∈ ∇̃(H0,µ0) for j = 1, ..., n+ 1. h ∈ H0 is clear because every H is compact and
therefore h ∈ H, so let us focus on the second property. We will fix j = 1 since the
remaining cases are similar. For every H ∈

⋃
λ∗ there exist q

H ∈ H and zH ∈ ∆(q,µ0)

such that (
hH1,1, ..., h

H
1,n

)
=
(
qH1,1z

H
1,1, ..., q

H
1,nz

H
1,n

)
.
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As in the proof of Proposition 1a, there is an agglomeration point
(
qH0 , zH0

)
of(

qH, zH
)
H, and h1 being an agglomeration point of

(
hH1
)
H we can get

(h1,1, ..., h1,n) =
(
qH01,1z

H0
1,1 , ..., q

H0
1,nz

H0
1,n

)
∈ ∇̃(H0,µ0).

Once we have that
(∑n+1

j=1 tjhj, ν
∗, h
)
is (22)-feasible for H0 instead of K, and it is

obvious that (see (34))
1 < λ∗ ≤ ν∗ ≤ λ∗H0 ≤ λ∗H

for every H ∈
⋃
λ∗ .

To complete the proof, let us assume that λ∗H =∞ for every H ∈
⋃
λ∗. Fix m > 0

and consider the net satisfying (33) such that m ≤ λ∗H for every H ∈
⋃
λ∗. Consider

the agglomeration point and
(∑n+1

j=1 tjhj, ν
∗, h
)
as above with ν∗ ≤ ∞. If ν∗ < ∞

then proceed as in the previous case and, otherwise, (33) leads to yπ = ϕY (h) with
h ∈ H0, so Theorem 6 implies that λ∗H0 =∞ satisfies the required properties. �
Remark 5. (Interpretation of Theorem 12). Theorem 12 above shows that the pres-
ence of K−good deals may be overcome if one enlarges the degree of ambiguity (the
set of priors). Indeed, the presence of K−good deals of the first or second type (i.e.,
the fulfillment of H2B or H3) implies that the investor may become as rich as desired
with a risk level bounded from above by zero. Since it is not realistic, an investor

with uncertainty may estimate the robust market price of risk
1

λ∗ − 1
according to

different criteria. For instance, the empirical evidence could be adequate. Obviously,
1

λ∗ − 1
<∞, so the robust good deal would not exist with this estimation. If

0 <
1

λ∗ − 1
<∞,

then
1 < λ∗ <∞,

and Theorem 12 guarantees the existence of H0 ∈
⋃
λ∗ such that λ

∗ ≤ λ∗H0 and
λ∗H0 ≤ λ∗H. In other words,

1

λ∗H − 1
≤ 1

λ∗H0 − 1
≤ 1

λ∗ − 1
<∞,

which implies that the investor can enlarge the degree of ambiguity (the set of priors)

by replacing K with H0. If so, the market price of risk
1

λ∗H0 − 1
will be finite (so there

is no H0−good deal) and it will be as close as possible to the estimation
1

λ∗ − 1
.

Furthermore, the H0−CML will be also as close as possible to that indicated by the
empirical evidence. �
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6. Switching to the standard deviation
Let us consider the standard deviation instead of the CV aR. Although asymmetries
and fat tails could make it rather unsuitable to use this risk measure,5 it plays a
central role in financial literature, and it may be worthwhile analyzing its properties
in a portfolio selection problem with ambiguity. Most of the proofs are similar to
those above, so we will merely summarize the main analogies and differences between
both the standard deviation and the CV aR.
Consider the set of states Ω = {ω1, ω2, ..., ωn} and the compact and convex set of

priors K ⊂ P. Suppose that for every p ∈ K

σp : IRn −→ IR

is a deviation measure in the sense of Rockafellar et al. (2006). Suppose finally that
a parallel result to Proposition 1a may be proved, in the sense that the union of the
sets with elements (p1z1, p2z2, ..., pnzn) ∈ IRn, p ∈ K and (z1, z2, ..., zn) in the sub-
gradient of σp, is compact. For instance, similarly to Proposition 1a, we can prove
that this property holds for the standard deviation if every p ∈ K has strictly positive
coordinates, since the sub-gradient of the standard deviation is

∆σp =

{
(z1, z2, ..., zn) ∈ IRn;

n∑
j=1

pjzj = 0,
n∑
j=1

pjz
2
j ≤ 1

}
(35)

for every p ∈ K (Rockafellar et al., 2006). Denote by ∇σ the convex and compact
convex hull of the union above and by

σ (y) = Max {σp (y) ; p ∈ K} .

Due to the differences between expectation bounded risk measures and deviations,
∇(K,µ0) ⊂ P in Proposition 1b must be replaced by

L (ξ) = 0 (36)

for every ξ ∈ ∇σ,6 and then (17) becomes

Λ = λ. (37)

Let us now consider Problem (14) with σ rather than ρ. Bearing in mind (35),
(36), (37) and the comments above, and proceeding as in Section 3, the dual problem
becomes  Max

(
r − erfT

)
λ

λyπ = ϕY (ξ + λp)
ξ ∈ ∇σ, p ∈ K, λ ∈ IR, λ ≥ 0

(38)

5obviously, symmetry can hardly be guaranteed by an investor reflecting multiple priors.
6See the first constraint in (35).
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Proposition 4 still applies with the same proof, and so does Theorem 5 properly
modified. Since the existence of (14)-feasible elements does not depend on the selected
risk measure, Theorem 6 also applies for σ. As in Remark 3, let us consider disjoint
and complementary situations related to (14). We will assume that σp is the standard
deviation and that therefore σ is a worst-case standard deviation. We will also assume
that every p ∈ K has strictly positive coordinates.

Remark 6. H1. yπ ∈ ϕY (K). In such a case (14) is not feasible for every r > erfT .
We will say that the market is K−risk-neutral.

H2. yπ /∈ ϕY (K). In such a case Theorem 6 guarantees that (14) is feasible and
Theorem 5 guarantees that (38) achieves its optimal value (if feasible) and there is
no duality gap. Suppose that we prove that (38) is feasible with some λ > 0. Then
cases H2B or H3 in Remark 3 cannot hold and we will be under the conditions of
H2A. Proceeding as in Section 4 one can prove the existence of a robust CML, a
robust market price of risk, systemic and specific risk for every strategy, and adapted
versions of Theorem 9.
Let us prove now that (38) is feasible with some λ > 0.7 Indeed, the first con-

straint in (38) is equivalent to λ (yπ − ϕY (p)) = ϕY (ξ), which will obviously hold if
λ (yπ − p) = ξ. Take p ∈ K and

zπ,j =
yπ,j
pj
, j = 1, 2, ..., n.

Then, it is suffi cient to see that

λ (zπ,j − 1) pj = ξj, j = 1, 2, ..., n. (39)

Since L (yπ) = 1 (Proposition 2b),
∑n

j=1 pjzπ,j = 1, so

n∑
j=1

pj(zπ,j − 1) = 0.

Hence,

λ

n∑
j=1

pj(zπ,j − 1) = 0

for every λ > 0, and

λ2
n∑
j=1

pj(zπ,j − 1)2 ≤ 1

7For a general deviation measure this assertion cannot be proved, so the presence of first type
good deals might hold. Second type good deals cannot exist because every deviation is bounded
from below by zero, and the risk cannot tend to −∞.
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if λ > 0 is small enough. Whence, (35) implies that (λ(zπ,j − 1))nj=1 ∈ ∆σp, so
ξ = (λpj(zπ,j − 1))nj=1 ∈ ∇σ, and (39) holds. �

7. Conclusions
The presence of multiple priors is a common property affecting many pricing prob-
lems and investment decisions. Recent literature has addressed this problem from
different perspectives. This paper considers the most general case because ambiguity
may affect both the set of states of nature and the probabilities of the states. Ob-
viously, this framework contains more restricted approaches dealing with ambiguity
with respect to volatilities, expected returns, price processes, etc.
In this wide setting a general portfolio choice problem has been studied. We

minimize the guaranteed (ambiguous, or robust) CV aR for a given guaranteed (or
robust) expected return. We have chosen the CV aR as the risk measure because it
presents some advantages when facing asymmetric returns and/or heavy tails, but the
analysis may be extended to other coherent and expectation bounded risk measures
in a straightforward manner.
Depending on how large the investor uncertainty is, we have shown the existence

of four disjoint and complementary possible results of the portfolio choice problem.
Under the most realistic one there is a benchmark that creates a robust CML when
combined with the riskless asset. Consequently, there is a robust market price of
risk for the investor with uncertainty, the global risk (robust CV aR) of every port-
folio may be divided into systematic and specific, and no robust expected return is
paid by the specific risk that can be diversified. Moreover, if there is no ambiguity
with respect to the states of nature (only their probabilities are uncertain), then the
classical CAPM−formulae may be extended to our general context. In this sense,
some correlations between every strategy and the benchmark allow us to explain this
strategy robust expected return.
Two of the four complementary results above lead to the existence of good deal,

i.e., the agent with uncertainty can guarantee every expected return with a maxi-
mum (or robust) CV aR bounded from above by zero. This drawback has already
been pointed out for very important arbitrage free non ambiguous pricing models.
For instance, the Black and Scholes and the Heston model lead to this pathological
situation. However, there is a very important difference between the ambiguous and
the non ambiguous setting. If we increment the degree of ambiguity, i.e., if we incre-
ment the set of priors, then the absence of good deal is guaranteed. Furthermore, the
enlargement of the degree of ambiguity may be done in such a manner that the new
robust CML and the new robust market price of risk may be as close as possible to
those reflected by the empirical evidence. In this sense, the introduction of ambiguity
may overcome several caveats of many important pricing models.
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