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Abstract

Nested parameter spaces, either in the null or alternative hypothesis, constitute a guarantee for improving
the performance of the tests, however in the existing literature on order restricted inference they have been
usually skipped for being studied in detail. Divergence based divergence measures provide a flexible tool for
creating meaningful test-statistics, which usually contain the likelihood ratio-test statistics as special case.
The existing literature on hypothesis testing with inequality constraints using phi-divergence measures, is
centered in a very specific models with multinomial sampling. The contribution of this paper consists in
extending and unifying widely the existing work: new families of test-statistics are presented, valid for
nested parameter spaces containing either equality or inequality constraints and general distributions for
either single or multiple populations are considered.

Keywords: Chi-bar-square statistic; Chi-square statistic; Divergence based test-statistics; Equality constraints;
Exponential family of distributions; Inequality constraints.

1 Introduction

We consider samples coming from g populations

Xi1, ...,Xij , ...,Xini , i = 1, ..., g,

with ni being the sample size and Xij = (Xij1, ..., Xijmi)
T mi-dimensional independent and identically dis-

tributed random variables. The sampling units have the same distribution function (density function) Fθi(x)
(fθi(x)), i = 1, ..., g, which depend on an unknown parameter θi = (θi1, ..., θiki)

T ∈ Θi ⊂ Rki . For the i-th
population, the maximum likelihood estimator (MLE) of parameter θi is defined as

θ̂i = arg max
θi∈Θi

`ni(θi), (1)

where
`ni(θi) = logL(Xi1, ...,Xini ;θi), (2)

and L(Xi1, ...,Xini ;θi) =
∏ni
j=1fθi(Xij) is the likelihood function associated with the i-th population. For

each population i = 1, ..., g, we shall assume some regularity conditions with respect to the distributions:
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• ∂
∂θiu

fθi(x) and ∂2

∂θiu∂θiv
fθi(x) exist almost everywhere and are such that

∣∣∣ ∂
∂θiu

fθi(x)
∣∣∣ ≤ Gi,u(x),∣∣∣ ∂2

∂θiu∂θiv
fθi(x)

∣∣∣ ≤ Gi,uv(x), with
∫
Rmi Gi,u(x)dx <∞ and

∫
Rmi Gi,uv(x)dx <∞.

• ∂
∂θiu

log fθi(x) and ∂2

∂θiu∂θiv
log fθi(x) exist almost everywhere and

— the Fisher information matrix

IF (θi) = E

[(
∂

∂θi
log fθi(Xi1)

)(
∂

∂θi
log fθi(Xi1)

)T]
,

is finite positive definite;

— as δ → 0, ψi(δ) = E
[
sup{t:‖t‖≤δ}

∥∥∥ ∂2

∂θi∂θTi
log fθi+t(Xi1)− ∂2

∂θi∂θTi
log fθi(Xi1)

∥∥∥], is such that
ψi(δ)→ 0.

We would like to make statistical inference with respect to an r-dimensional function h which depends on
θ = (θT1 , ...,θ

T
g )T ∈ Θ = Θ1 × · · · ×Θg ⊂ Rk, with k =

∑g
i=1ki > r. Hypotheses of type h(θ) = 0r, h(θ) 6= 0r,

h(θ) � 0r, h(θ) ≤ 0r, h1(θ) = 0r1 , h2(θ) ≤ 0r2 , are established on h(θ) = (h1(θ),h2(θ)), with r = r1 + r2.
For this purpose, some regularity assumptions are considered:

• Function h is convex and first order differentiable in Θi, i = 1, ..., g.

• The r×k Jacobian matrix associated with h,H(θ) = ∂
∂θT

h(θ), has this shape,H(θ) = (H1(θ), ...,Hg(θ)),
where each r × ki submatrix Hi(θ) = ∂

∂θTi
h(θ), i = 1, ..., g, is of full rank.

In case of focussing only on an internal comparison of components of θi inside the i-th population, matrix
H(θ) is block diagonal. In such a case, if no further comparison is made it is more coherent to make statistical
inference separately for each population, that is to take the technics shown in this paper with g = 1.
The contribution of this paper consists in extending and unifying widely the existing work in different

directions. We shall consider two family of test statistics based on φ-divergence measures (Sφ and Tφ families)
for testing not only (15)-(16)-(17) but also (10)-(11)-(12). We consider one or more populations and for the
last case when having different sample sizes a different version of the test-statistics must be applied (S̃φ and
T̃φ families). We do not restrict ourselves to a specific kind of distribution for sampling because we consider
general populations. Furthermore, breaking with the previously existing papers our methodology for proving
the results is based on the theory developed by Aitchison and Silvey (1958) and Silvey (1959), and we follow
the trend initiated by El Barmi and Dykstra (1995) for multinomial sampling, which was extended to a more
general kind of populations in some of their posterior works. The paper is organized as follows. Sections 2
and 3 will constitute the basis for developing later the asymptotic theory of the proposed test-statistics. More
specifically, in Section 2 well-known results related to the joint asymptotic distribution of maximum likelihood
estimators and Lagrange multipliers are presented, and in Section 3 the coverage of hypothesis testing problems
treated in this paper is explained, as well as the classical test-statistics and their equivalent test-statistics in
term of divergence measures. In Section 4 the new test-statistics are introduced and their asymptotic behavior
are meticulously shown. Finally, in Section 5 a simple real data example with two Poisson populations is shown
and in Section 6 a simulation study is performed which considers a more complicated case of four Binomial
populations.

2 Joint asymptotic distribution of maximum likelihood estimators
and Lagrange multipliers

If we consider the likelihood function (2) associated with the i-th population, the following properties of (1) are
well-known from the basic statistics (see for instance, Sen and Singer (1993), page 210).
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i) The asymptotic distribution of the MLE of θi, separately for each population, is

√
ni(θ̂i − θi,0)

L−→
ni→∞

N (0ki , I−1
F (θi,0)).

ii) The asymptotic distribution of the MLE of θ of all populations assuming that exists {νi}gi=1 such that
νi = limn→∞

ni
n , with n =

∑g
i=1 ni, is

√
n
(
θ̂ − θ0

)
L−→

n→∞
N (0k, I−1

F (θ0)), (3)

where

I(n)
F (θ0) =

g⊕
i=1

νiIF (θi,0),

is the Information Matrix based on “all”the observations and ⊕ is the direct sum of matrices.
iii) In particular, when n1 = · · · = ng = n

g , apart from (3) with

I(n)
F (θ0) =

1

g

g⊕
i=1

IF (θi,0).

we can consider √
n

g

(
θ̂ − θ0

)
L−→

n→∞
N (0k, I−1

F (θ0)),

where

IF (θ0) =

g⊕
i=1

IF (θi,0),

that is we can consider directly that we have a population of size n
g with a single parameter θ0.

The asymptotic behavior of estimators with equality restrictions, was studied in origin by Aitchison and
Silvey (1958) and Silvey (1959). If we have the likelihood function

`n(θ) =

g∑
i=1

`ni(θi), (4)

the equality restrictions define a new parameter space

Θ′ = {θ ∈ Θ : h(θ) = 0r}.

The restricted maximum likelihood estimator is defined as

θ̂ = arg max
θ∈Θ′

`n(θ), (5)

and it is obtained solving

∂

∂θ
`n(θ) +HT (θ)λ = 0k,

h(θ) = 0r,

where λ ∈ Rr is the vector of Lagrange multipliers (Sen et al. (2010), page 267).
The joint asymptotic distribution of maximum likelihood estimators and Lagrange multipliers can be de-

composed as (√
n(θ̂ − θ0)

1√
n
λ̂

)
=

(
P (θ0) Q(θ0)

QT (θ0) R(θ0)

)( 1√
n

∂
∂θ `n(θ)

∣∣
θ0

0r

)
+ oP (1k+r),
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where (
P (θ0) Q(θ0)

QT (θ0) R(θ0)

)
=

(
IF (θi,0) −HT (θ0)
−H(θ0) 0r×r

)−1

,

that is

P (θ0)=I−1
F (θ0)− I−1

F (θ0)HT (θ0)
(
H(θ0)I−1

F (θ0)HT (θ0)
)−1

H(θ0)I−1
F (θ0), (6a)

Q(θ0)= −I−1
F (θ0)HT (θ0)

(
H(θ0)I−1

F (θ0)HT (θ0)
)−1

, (6b)

R(θ0) = −
(
H(θ0)I−1

F (θ0)HT (θ0)
)−1

. (6c)

Its asymptotic distribution is (√
n(θ̂ − θ0)

1√
n
λ̂

)
L−→

n→∞
N (0k+r,Σ(θ0)), (7)

where

Σ(θ0) =

(
Σ11(θ0) Σ12(θ0)
Σ21(θ0) Σ22(θ0)

)
,

with

Σ11(θ0)=P (θ0)IF (θ0)P T (θ0) = P (θ0), (8)

Σ12(θ0)=P (θ0)IF (θ0)Q(θ0) = 0k×r,

Σ21(θ0)=ΣT
12(θ0)= 0r×k,

Σ22(θ0)=QT (θ0)IF (θ0)Q(θ0) = −R(θ0).

When working with g populations, it is very interesting to be able to express P (θ0) and R(θ0) in terms of
submatrices

R(θ0) = −
(∑g

i=1

1

νi
Hi(θ)I−1

F (θi,0)HT
i (θ)

)−1

,

P (θ0) = (P ij(θ0))i,j∈{1,...,g},

P ij(θ0)=

{
1
νi
I−1
F (θi,0) + 1

ν2i
I−1
F (θi,0)HT

i (θ)R(θ0)Hi(θ)I−1
F (θi,0), if i = j

1
νiνj
I−1
F (θi,0)HT

i (θ)R(θ0)Hj(θ)I−1
F (θj,0), if i 6= j

.

When working with populations with equal sizes, we can work as we had a single population of size n
g , that is√n

g (θ̂ − θ0)

1√
n
g

λ̂

 L−→
n→∞

N (0k+r,Σ(θ0)),

and the structure of matrix Σ(θ0)) is the same but νi = 1, i = 1, ..., g, that is

R(θ0) = −
(∑g

i=1Hi(θ)I−1
F (θi,0)HT

i (θ)
)−1

,

P (θ0) = (P ij(θ0))i,j∈{1,...,g},

P ij(θ0)=

{
I−1
F (θi,0) + 1

ν2i
I−1
F (θi,0)HT

i (θ)R(θ0)Hi(θ)I−1
F (θi,0), if i = j

I−1
F (θi,0)HT

i (θ)R(θ0)Hj(θ)I−1
F (θj,0), if i 6= j

.
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3 Hypothesis testing formulation

In this section we are going to define a sequence of nested hypotheses which are nested by adding either equality
or inequality restrictions. We are going to focus on

Θ(1) = {θ ∈ Θ : h(θ) = 0r},
Θ(2) = {θ ∈ Θ : h1(θ) = 0r1},
Ω(3) = {θ ∈ Θ : h(θ) ≤ 0r},
Ω(4) = {θ ∈ Θ : h1(θ) ≤ 0r1},
Θ(5) = Θ,

where h(θ) = (h1(θ),h2(θ)), with r = r1 + r2, assuming that the regularity conditions presented in Section
1 hold. Note that Θ(1) ⊂ Θ(2) ⊂ Ω(4) ⊂ Θ(5), Θ(1) ⊂ Ω(3) ⊂ Ω(4) ⊂ Θ(5) and Θ(2) 6⊂ Ω(3), but Ω(1b) =
Θ(2) ∩ Ω(3) = {θ ∈ Θ : h1(θ) = 0r1 ,h2(θ) ≤ 0r2} ⊂ Θ(2). Observe also, that parameter spaces denoted by
Θ are vector spaces and parameter spaces denoted by Ω are closed and convex cones. We would like to test
hypotheses such as

HNull : θ ∈ Θ(1) vs. HAlt : θ ∈ Θ(2) −Θ(1); (9a)

HNull : θ ∈ Θ(1) vs. HAlt : θ ∈ Ω(3) −Θ(1); (9b)

HNull : θ ∈ Θ(1) vs. HAlt : θ ∈ Ω(4) −Θ(1); (9c)

HNull : θ ∈ Θ(1) vs. HAlt : θ ∈ Θ(5) −Θ(1); (9d)

HNull : θ ∈ Ω(1b) vs. HAlt : θ ∈ Θ(2) − Ω(1b); (9e)

HNull : θ ∈ Θ(2) vs. HAlt : θ ∈ Ω(4) −Θ(2); (9f)

HNull : θ ∈ Θ(2) vs. HAlt : θ ∈ Θ(5) −Θ(2); (9g)

HNull : θ ∈ Ω(3) vs. HAlt : θ ∈ Θ(5) − Ω(3); (9h)

HNull : θ ∈ Ω(4) vs. HAlt : θ ∈ Θ(5) − Ω(4); (9i)

We avoided pair Ω(3) ⊂ Ω(4) because we must have at least one vector space either as HNull or HAlt. As in
Section 3.2 of Silvapulle and Sen (2004) we classify the tests in three types. Let E ⊂ {1, ..., r} the set of indices
such that hi(θ) is active, that is E = {i ∈ {1, ..., r} : hi(θ) = 0}. We consider test of type O, type A and type
B according to the character of the parameter spaces in the null and alternative hypothesis

HO
Null : θ ∈ Θ(E) vs. HO

Alt : θ ∈ Θ(F ) and θ /∈ Θ(E), (10)

HA
Null : θ ∈ Θ(E) vs. HA

Alt : θ ∈ Ω(F ) and θ /∈ Θ(E), (11)

HB
Null : θ ∈ Ω(E) vs. HB

Alt : θ ∈ Θ(F ) = Θ and θ /∈ Ω(E), (12)

where F ⊂ E. For instance, in (9a) we have E = {1, ..., r} and F = {1, ..., r1}. Since Θ(1),Θ(2),Θ(5) are vector
spaces and Ω(3),Ω(4) closed and convex cones, type O tests are (9a), (9d), (9g), type A tests are (9b), (9c), (9f)
and type B tests are (9e), (9h), (9i). For MLEs under both hypotheses, null and alternative, and being S the
set of active indices, we distinguish

θ̂(S) = arg min
Θ(S)

`n(θ), (13)

when Θ(S) is a vector space, and
θ̃(S) = arg min

Ω(S)
`n(θ), (14)
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when Ω(S) is a closed and convex set. Furthermore, θ̂ = θ̂(∅) denotes the MLE without restrictions.
In the classical perspective of test-statistics the likelihood ratio test-statistic is used to perform (10)-(11)-(12).

Moreover, usually their explanation is limited to

HO
Null : θ ∈ Θ(R) vs. HO

Alt : θ ∈ Θ(∅) = Θ and θ /∈ Θ(R), (15)

HA
Null : θ ∈ Θ(R) vs. HA

Alt : θ ∈ Ω(∅) and θ /∈ Θ(R), (16)

HB
Null : θ ∈ Ω(∅) vs. HB

Alt : θ ∈ Θ(∅) = Θ and θ /∈ Ω(∅), (17)

where R = {1, ..., r} = E is the hypothesis of being active all the constraints, and F = ∅.
The likelihood ratio test-statistics for testing (10)-(11)-(12) in the case of single population or g populations,

are given by

G(θ̂(F ), θ̂(E)) = 2
(
`n(θ̂(F ))− `n(θ̂(E))

)
= 2

(
g∑
i=1

`ni(θ̂i(F ))−
g∑
i=1

`ni(θ̂i(E))

)
, (18)

G(θ̃(F ), θ̂(E)) = 2
(
`n(θ̃(F ))− `n(θ̂(E))

)
= 2

(
g∑
i=1

`ni(θ̃i(F ))−
g∑
i=1

`ni(θ̂i(E))

)
, (19)

G(θ̂(F ), θ̃(E)) = 2
(
`n(θ̂(F ))− `n(θ̃(E)))

)
= 2

(
g∑
i=1

`ni(θ̂i(F ))−
g∑
i=1

`ni(θ̃i(E))

)
. (20)

and the asymptotic distribution of the first one under HO
Null is χ

2
card(F )−card(E), while for the the other two under

HA
Null and H

B
Null are respectively a mixture of {χ2

i }ri=0 random variables, known as chi-bar squared random
variable (χ2

0 ≡ 0). For more details about likelihood ratio test-statistics see Barlow et al. (1972), Robertson
et al. (1988) or Silvapulle and Sen (2004). Now we define the Kullback-Leibler divergence based test-statistics
and later in Proposition 2 we will show its relationship with the likelihood ratio test-statistics.

Definition 1 The Kullback divergence based test-statistics for testing (10)-(11)-(12) in the case of single
population (or g populations with the same sample size), are given by

TO(θ̂, θ̂(F ), θ̂(E)) = 2n
(

dKull(fθ̂, fθ̂(E))− dKull(fθ̂, fθ̂(F ))
)
, (21)

TA(θ̂, θ̃(F ), θ̂(E)) = 2n
(

dKull(fθ̂, fθ̂(E))− dKull(fθ̂, fθ̃(F ))
)
, (22)

TB(θ̂, θ̂(F ), θ̃(E)) = 2n
(

dKull(fθ̂, fθ̃(E))− dKull(fθ̂, fθ̂(F ))
)
, (23)

where

dKull(fθ1 , fθ2) = E

[
log

(
fθ1(X1)

fθ2(X1)

)
− fθ1(X1)

fθ2(X1)
+ 1

]
=

∫
X
fθ1(x) log

(
fθ1(x)

fθ2(x)

)
dx, (24)

and with fθ1(X1) being the density function of one individual in the sample and dKull(fθ1 , fθ2) the Kullback
divergence measure among two distributions.

The divergence is also applicable in discrete setting by replacing density function for probability mass
function and the integral by the summation.

Proposition 2 For the exponential family

fθ(x) = q(θ)r(x) exp(sT (θ)t(x)), x ∈ X , (25)

the Kullback divergence based test-statistics (21)-(22)-(23) for testing (10)-(11)-(12) in the case of single popu-
lation, are exactly equal to the likelihood ratio test-statistics (18)-(19)-(20).
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Proof. In Pardo (2006, Remark 9.4) we can find the proof for the simple null hypothesis,

2ndKull(fθ̂, fθ0) = 2
(
`n(θ̂)− `n(θ0)

)
.

From this formula it is straightforward to proof for testing (15) and (12)

TO(θ̂, θ̂(∅), θ̂(R)) = G(θ̂(∅), θ̂(R)),

TB(θ̂, θ̂(∅), θ̃(•)) = G(θ̂(∅), θ̃(•)),

where R = {1, ..., r} = E is the hypothesis of being active all the constraints, F = ∅ and • ⊂ R. All the rest of
the cases, i.e. with general sets E and F such that F ⊂ E, are immediately obtained from the previous ones,
because

TO(θ̂, θ̂(F ), θ̂(E)) = TO(θ̂, θ̂(∅), θ̂(E))− TO(θ̂, θ̂(∅), θ̂(F )),

TA(θ̂, θ̃(F ), θ̂(E)) = TO(θ̂, θ̂(∅), θ̂(E))− TB(θ̂, θ̂(∅), θ̃(F )),

TB(θ̂, θ̂(F ), θ̃(E)) = TB(θ̂, θ̂(∅), θ̃(E))− TO(θ̂, θ̂(∅), θ̂(F )).

Let M (n,π) the case of single “multinomial”population, where π = (π1, ..., πk, πk+1)T is so that the not
redundant part of the parameter is (π1, ..., πk)T = (θ1, ..., θk)T = θ.and πk+1 = 1−

∑k
j=1 πj = 1−θT1. Looking

at pages 239-240 of Robertson et al. (1988), in such a case the chi-square test-statistics for testing (10)-(11)-(12)
must be defined as

CO(θ̂(F ), θ̂(E)) = n

k+1∑
j=1

(π̂j(E)− π̂j(F ))
2

π̂j(F )
,

CA(θ̃(F ), θ̂(E)) = n
k+1∑
j=1

(π̂j(E)− π̃j(F ))
2

π̃j(F )
,

CB(θ̂(F ), θ̃(E)) = n
k+1∑
j=1

(π̃j(E)− π̂j(F ))
2

π̂j(F )
.

Now, focussing in general populations, such test-statistics are defined in term of a special divergence measure.

Definition 3 The Pearson divergence based test-statistics for testing (10)-(11)-(12) in the case of single
population (or g populations with the same sample size), are given by

CO(θ̂(F ), θ̂(E)) = 2ndPearson(fθ̂(F ), fθ̂(E)), (26)

CA(θ̃(F ), θ̂(E)) = 2ndPearson(fθ̃(F ), fθ̂(E)), (27)

CB(θ̂(F ), θ̃(E)) = 2ndPearson(fθ̂(F ), fθ̃(E)), (28)

where

dPearson(fθ1 , fθ2) =
1

2
E

[(
fθ(X)− fθ0(X)

fθ0(X)

)2
]

=
1

2

∫
X

(fθ(x)− fθ0(x))

fθ0(x)

2

dx, (29)

and with fθ1(X1) being the density function of one individual in the sample and dPearson(fθ1 , fθ2) the Pearson
divergence measure among two distributions.
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The aim of this work is to build new test-statistics for extending the Kullback-Leibler and Pearson divergence
to a more general divergence measures, φ-divergence measures, which are valid for testing (10)-(11)-(12) in
general populations. Let φ : R+ −→ R a convex function such that:

• φ(1) = φ′(1) = 0, φ′′(1) > 0;

• 0φ( 0
0 ) = 0, 0φ(p0 ) = limu→∞

φ(u)
u , for p 6= 0.

Definition 4 Let X be a random variable with distribution function (density function) Fθ(x) (fθ(x)), i =
1, ..., g, which depends on an unknown parameter θ= (θ1, ..., θk)T ∈ Θ ⊂ Rk, its support is X and hold the
regularity conditions of Section 1. The φ-divergence measure between fθ and fθ0 , with θ,θ0 ∈ Θ ⊂ Rk, is
defined as

dφ(fθ, fθ0) = E

[
φ

(
fθ(X)

fθ0(X)

)]
=

∫
X
fθ0(x)φ

(
fθ(x)

fθ0(x)

)
dx.

It is assumed that function dφ(θ) = dφ(fθ, fθ′) is one and two order differentiable under integration sign,
that is for ∂

∂θdφ(θ) = ( ∂
∂θ1

dφ(θ), ..., ∂
∂θ1

dφ(θ))T it holds

∂

∂θi
dφ(θ) =

∫
X

∂

∂θi

(
fθ0(x)φ

(
fθ(x)

fθ0(x)

))
dx =

∫
X
φ′
(
fθ(x)

fθ0(x)

)
∂fθ(x)

∂θi
dx, i = 1, ..., k, (30)

and for ∂2

∂θ∂θT
dφ(θ) =

(
∂2

∂θi∂θj
dφ(θ)

)
i,j∈{1,...,k}

∂2

∂θi∂θj
dφ(θ) =

∫
X

∂2

∂θi∂θj

(
fθ0(x)φ

(
fθ(x)

fθ0(x)

))
dx

=

∫
X
φ′′
(
fθ(x)

fθ0(x)

)
1

fθ0(x)

∂fθ(x)

∂θi

∂fθ(x)

∂θj
dx+

∫
X
φ′
(
fθ(x)

fθ0(x)

)
∂2fθ(x)

∂θi∂θj
dx. (31)

Remark 5 The Kullback-Leibler divergence (24) is a particular case of φ-divergence measure with φ(x) =
x log x−x+1 and the Pearson divergence (29) is a particular case of φ-divergence measure with φ(x) = 1

2 (x−1)2.

Definition 4 considers a broad family of divergence measures but there is a very well-known subfamily called
power-divergence measures (Read and Cressie (1988))

dφλ(fθ, fθ0) =
1

λ(1 + λ)

(
E

[(
fθ(X)

fθ0(x)

)λ+1
]
− 1

)
=

1

λ(1 + λ)

(∫
X

fλ+1
θ (x)

fλθ0(x)
dx− 1

)
, (32)

for λ ∈ R−{−1, 0} and dφλ(fθ, fθ0) = lim`→0 dφ`(fθ, fθ0) for λ ∈ {−1, 0}. It is a particular case of φ-divergence
measure with φλ(x) = 1

λ(1+λ) (xλ+1 − x− λ(x− 1)), and it covers the Kullback-Leibler and Pearson divergence
as special case, taking λ = 0 and λ = 1 respectively. Definition 4 is the basis in the test-statistics based on
φ-divergence measures that are going to be built in the following sections, for a single population as well as
for multiple populations with equal sizes, because joining the random variable of its population it is possible
on one hand to consider a common first individual, second one,... and so on for the whole population, and on
the other hand to consider its parameter to be (34). The product-multinomial distribution is a case of multiple
multinomial populations but how to manage the whole sample is shown in Section 6, even with different sample
sizes, as it were a single population. However in general, Definition 4 is not longer valid to construct test-
statistics for multiple populations and unequal sample sizes, and this the reason why a different divergence
measure must be defined.
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Definition 6 Let L(X;θ) the likelihood function on the whole sample of g populations, where

X = X11, ...,X1n1 , ...,Xg1, ...,Xgng , (33)

θ = (θT1 , ...,θ
T
g )T . (34)

The φ-divergence measure between Lθ and Lθ0 , with θ,θ0 ∈ Θ ⊂ Rk, is defined as

dφ(Lθ,Lθ0) = E

[
φ

(
Lθ(X)

Lθ0(X)

)]
=

∫
Xn
Lθ0(x)φ

(
Lθ(x)

Lθ0(x)

)
dx. (35)

It is assumed that the condition of differentiability under the integral sign for the likelihood function are the
same as defined for the density function.

4 New test-statistics and their asymptotic distributions

In the literature papers where φ-divergence measures are applied for testing (15) can be encountered (for
example, (9d) or (9g)). The idea of using the Kullback-divergence measure among two densities is attributable
to Kupperman (1957). However, when less restriction than established by R are taken into account, Θ(E) =
{θ = (θ1, ..., θk)T : hi(θ) = 0, i = 1, ..., card(E)}, with card(E) < k, and θ0

i , i = 1, ..., card(E) , composite null
hypothesis must be considered and in the paper of Zografos and other (1990) was performed this task but only
for multinomial populations. Later in Salicrú et al. (1994), even though general populations were taken into
account it was only for a very specific restrictions hi(θ) = θi − θ0

i , i = 1, ..., card(E), and in Morales et al.
(1997) general models and restrictions were analyzed for (15), either for a population or multiple populations.
In Menéndez et al. (1997), Zografos (1998), Morales et al. (1998) some problems related to the previous paper
with multiple populations were analyzed. In Morales et al. (2001) “likelihood φ-divergence test statistics”,
based on (35)

S̃Oφ (θ̂, θ̂(E)) =
2

φ′′(1)
dφ(Lθ̂,Lθ̂(E)), (36)

were introduced for the first time. In Hobza et al. (2003) the familiar data problem which is for multiple
populations was analyzed using (36). Test-statistics of type T̃φ have never been applied (see Definitions 9, 14,
20). In Menéndez et al. (2002), Menéndez et al. (2003a), Menéndez et al. (2003b), Pardo and Menéndez (2006),
Felipe et al. (2007) (16) and (17) hypotheses were studied only for some specific models with multinomial
populations. The last two paper are about 2 and k populations respectively, and the rest about a single
population. These papers are specially based on the techniques of Barlow et al. (1972), Robertson et al. (1988).
We think that it is important to mention the paper of Shapiro (1985), not only due to its contribution to
the general theory of statistical inference with inequality constraints, but also because it was the first in using
discrepancy measures as test-statistics inside such an area.
In the following subsections new test-statistics based on φ-divergence measures are proposed for testing

(10)-(11)-(12) for single or multiple populations with very general distributions which satisfy the regularity
conditions presented at the beginning of this paper.

4.1 Type O test-statistics based on φ-divergence measures

Definition 7 Let F ⊂ E. The type O test-statistics for the case of g = 1 population based on φ-
divergence measures for (10) are given by

SOφ (θ̂(F ), θ̂(E)) =
2n

φ′′(1)
dφ(fθ̂(F ), fθ̂(E)),

TOφ (θ̂, θ̂(F ), θ̂(E)) =
2n

φ′′(1)

(
dφ(fθ̂, fθ̂(E))− dφ(fθ̂, fθ̂(F ))

)
= SOφ (θ̂, θ̂(E))− SOφ (θ̂, θ̂(F )).
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Theorem 8 Under HO
Null, the asymptotic distribution of S

O
φ (θ̂(F ), θ̂(E)) and TOφ (θ̂, θ̂(F ), θ̂(E)) for the case

of g = 1, is χ2
df , with df = card(E − F ).

Proof. See Section A.1.
For g > 1 populations with n1 = ... = ng = n

g the definition is the same replacing n by n/ g in the
test-statistic, and in such a case Theorem 8 remains being true.

Definition 9 Let F ⊂ E. The type O test-statistics for the case of g > 1 populations based on φ-
divergence measures for (10) are given by

S̃Oφ (θ̂(F ), θ̂(E)) =
2

φ′′(1)
dφ(Lθ̂(F ),Lθ̂(E)),

T̃Oφ (θ̂, θ̂(F ), θ̂(E)) =
2

φ′′(1)

(
dφ(Lθ̂,Lθ̂(E))− dφ(Lθ̂,Lθ̂(F ))

)
= S̃Oφ (θ̂, θ̂(E))− S̃Oφ (θ̂, θ̂(F )).

Theorem 10 Under HO
Null, the asymptotic distribution of S̃

O
φ (θ̂(F ), θ̂(E)) and T̃Oφ (θ̂, θ̂(F ), θ̂(E)) is χ2

df , with
df = card(E − F ).

Proof. The steps to be followed are very similar to the proof of Theorem 8 except for an important detail in
the Fisher information matrix which should be clarified. From dφ(θ) = dφ(Lθ,Lθ̂(•)) we obtain

∂2

∂θ∂θT
dφ(θ)

∣∣∣∣
θ=θ̂(•)

= φ′′ (1) I(n)
F (θ̂(•)),

where I(n)
F (θ̂(•)) is based on “all” the observation. For instance, when g = 1 when I(n)

F (θ̂(•)) = nIF (θ̂(•)),
which is the justification of not having “n”in the expression of the test-statistic.

It is important to clarify that:

• When F = ∅, SOφ (θ̂(F ), θ̂(E)) = TOφ (θ̂, θ̂(F ), θ̂(E)) and S̃Oφ (θ̂(F ), θ̂(E)) = T̃Oφ (θ̂, θ̂(F ), θ̂(E)).

• The degrees of freedom of the asymptotic distribution of SOφ (θ̂, θ̂(E)) and S̃Oφ (θ̂, θ̂(E)), under the null hy-
pothesis of (15) is card(E), where E = R, which match the general result of Theorem 8 because F = ∅.

4.2 Type A test-statistics based on φ-divergence measures

Definition 11 Let E = {1, ..., r} and F ⊂ E. The type A test-statistics for the case of g = 1 population
based on φ-divergence measures for (11) are given by

SAφ (θ̃(F ), θ̂(E)) =
2n

φ′′(1)
dφ(fθ̃(F ), fθ̂(E)),

TAφ (θ̂, θ̃(F ), θ̂(E)) =
2n

φ′′(1)

(
dφ(fθ̂, fθ̂(E))− dφ(fθ̂, fθ̃(F ))

)
= SOφ (θ̂, θ̂(E))− SBφ (θ̂, θ̃(F )).

For g > 1 populations with n1 = ... = ng = n
g the definition is the same replacing n by n/ g in the

test-statistic.
In what follows, matrix H(θ0, •) is a submatrix of H(θ0) with row-indices in set •.

Theorem 12 Under HA
Null, the asymptotic distribution of S

A
φ (θ̃(F ), θ̂(E)) and TAφ (θ̂, θ̃(F ), θ̂(E)) for the case

of g = 1, is

lim
n→∞

Pr
(
SAφ (θ̃(F ), θ̂(E)) ≤ x

)
= lim
n→∞

Pr
(
TAφ (θ̂, θ̃(F ), θ̂(E)) ≤ x

)
=

r−card(F )∑
j=0

wAj (θ0) Pr
(
χ2
r−card(F )−j ≤ x

)
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where
wAj (θ0) =

∑
S∈F(E−F ),card(S)=j

Pr (Y 1(S) ≥ 0j) Pr
(
Y 2(S) ≥ 0r−card(F )−j

)
, (37)

Y 1(S) ∼ N
(
0card(S),Σ

A
1 (θ0, S)

)
, Y 2(S) ∼ N

(
0card(E−F )−card(S),Σ

A
2 (θ0, S)

)
, with

ΣA
1 (θ0, S) =

(
H(θ0, S)I−1

F (θ0)HT (θ0, S)
)−1

, (38)

ΣA
2 (θ0, S) = H(θ0, S

C)I−1
F (θ0)HT (θ0, S

C)−H(θ0, S
C)I−1

F (θ0)HT (θ0, S)ΣA
1 (θ0, S)H(θ0, S)I−1

F (θ0)HT (θ0, S
C),

(39)
and SC = E − F − S.

Proof. See Section A.3.

It is important to clarify these points:

i) χ2
0 is a degenerate random variable in the origin

χ2
0 ≡ 0, hence Pr

(
χ2

0 ≤ x
)

= I(x ≥ 0) =

{
1, x ≥ 0
0, x < 0

;

ii) the weight of order 0 (in correspondence with S = ∅) is wA0 (θ0) = Pr (Y 2(∅) ≥ 0r), where Y 2(∅) ∼
N
(
0r,Σ

A
2 (θ0,∅)

)
, with

ΣA
2 (θ0,∅) = H(θ0, E − F )I−1

F (θ0)HT (θ0, E − F );

iii) the weight of order r − card(F ) (in correspondence with S = E − F ) is wr−card(F )(θ0) =

Pr
(
Y 1(E − F ) ≥ 0r−card(F )

)
, where Y 1(E − F ) ∼ N

(
0r,Σ

A
1 (θ0, E − F )

)
, with

ΣA
1 (θ0, E − F ) =

(
H(θ0, E − F )I−1

F (θ0)HT (θ0, E − F )
)−1

.

iv) if card(S) = j = 1 then Pr (Y 1(S) ≥ 0) = 1
2 and if card(S) = j = r− card(F )− 1 then Pr (Y 2(S) ≥ 0) = 1

2 .
v) for the normal orthant probabilities Pr

(
Y 1(S) ≥ 0card(S)

)
, Pr

(
Y 2(S) ≥ 0r−card(F )−card(S)

)
, the multiplica-

tion of the variance-covariance matrix by a positive constant does not affect.
vi) In most of the cases the weights are unknown because depend on θ0, however in practice very good approx-
imations are usually obtained replacing wAj (θ0) by its consistent estimator wA0 (θ̂(E)).

Corollary 13 For g > 1, with n1 = ... = ng = n
g , Theorem 12 remains being true but the structure of the

variance-covariance matrices are given by

ΣA
1 (S) =

(∑g
i=1Hi(θ0, S)I−1

F (θi,0)HT
i (θ0, S)

)−1

,

ΣA
2 (S) =

∑g
i=1

∑g
i=jHi(θ0, S

C)P ij(θ0, S)HT
j (θ0, S

C),

P ij(θ0, S) =(1− δij)I−1
F (θi,0)− I−1

F (θi,0)HT
i (θ0, S)ΣA

1 (S)Hj(θ0, S)I−1
F (θj,0),

and SC = E − F − S.

Proof. From Sections 1 and 2, plugging in ni = n
g , νi = 1, we obtain

ΣA
2 (S) = H(θ0, S

C)(P ij(θ0,S))i,j∈{1,...,g}H
T (θ0, S

C) =
(∑g

i=1

∑g
i=jHi(θ0, S

C)P ij(θ0, S)HT
j (θ0, S

C)
)
.
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Definition 14 Let F ⊂ E. The type A test-statistics for the case of g > 1 populations based on
φ-divergence measures for (11) are given by

S̃Aφ (θ̃(F ), θ̂(E)) =
2

φ′′(1)
dφ(Lθ̃(F ),Lθ̂(E)),

T̃Aφ (θ̂, θ̃(F ), θ̂(E)) =
2

φ′′(1)

(
dφ(Lθ̂,Lθ̂(E))− dφ(Lθ̂,Lθ̃(F ))

)
= S̃Oφ (θ̂, θ̂(E))− S̃Bφ (θ̂, θ̃(F )).

Theorem 15 Under HA
Null, the asymptotic distribution of S̃

A
φ (θ̃(F ), θ̂(E)) and T̃Aφ (θ̂, θ̃(F ), θ̂(E)) is

lim
n→∞

Pr
(
S̃Aφ (θ̃(F ), θ̂(E)) ≤ x

)
= lim
n→∞

Pr
(
T̃Aφ (θ̂, θ̃(F ), θ̂(E)) ≤ x

)
=

r−card(F )∑
j=0

wAj (θ0) Pr
(
χ2
r−card(F )−j ≤ x

)
where

wAj (θ0) =
∑

S∈F(E−F ),card(S)=j

Pr
(
Ỹ 1(S) ≥ 0j

)
Pr
(
Ỹ 2(S) ≥ 0r−card(F )−j

)
,

with Ỹ 1(S) ∼ N
(
0j , Σ̃

A

1 (S)
)
, Ỹ 2(S) ∼ N

(
0r−card(F )−j , Σ̃

A

2 (S)
)
,

Σ̃
A

1 (S) =

(∑g
i=1Hi(θ0, S)

1

νi
I−1
F (θi,0)HT

i (θ0, S)

)−1

,

Σ̃
A

2 (S) =
∑g
i=1

∑g
i=jHi(θ0, S

C)P ij(θ0, S)HT
j (θ0, S

C),

P ij(θ0, S) =(1− δij)
1

νi
I−1
F (θi,0)− 1

νi
I−1
F (θi,0)HT

i (θ0, S)Σ̃
A

1 (S)Hj(θ0, S)
1

νj
I−1
F (θj,0),

and SC = E − F − S and δij is the Kronecker delta function, that is, its value is 1 if i = j and 0 otherwise.

4.3 Type B test-statistics based on φ-divergence measures

Definition 16 Let F ⊂ E ⊂ R = {1, ..., r}, such that card(E) < r. The type B test-statistics for the case
of g = 1 population based on φ-divergence measures for (12) are given by

SBφ (θ̂(F ), θ̃(E)) =
2n

φ′′(1)
dφ(fθ̂(F ), fθ̃(E)),

TBφ (θ̂, θ̂(F ), θ̃(E)) =
2n

φ′′(1)

(
dφ(fθ̂, fθ̃(E))− dφ(fθ̂, fθ̂(F ))

)
= SBφ (θ̂, θ̃(E))− SOφ (θ̂, θ̂(F )),

For g > 1 populations with n1 = ... = ng = n
g the definition is the same replacing n by n/ g in the test-

statistic. Let S∗(θ0, E) the unknown set of indices in R−E representing the positions where the true value of
θ0 equals zero.

Theorem 17 Under HB
Null, the asymptotic distribution of S

B
φ (θ̂(F ), θ̃(E)) and TBφ (θ̂, θ̂(F ), θ̃(E)) for the case

of g = 1, is

lim
n→∞

Pr
(
SBφ (θ̂(F ), θ̃(E)) ≤ x

)
= lim
n→∞

Pr
(
TBφ (θ̂, θ̂(F ), θ̃(E)) ≤ x

)
=

η(θ0,E)∑
j=0

wBj (θ0) Pr
(
χ2
j+card(E)−card(F ) ≤ x

)
,

where η(θ0, E) = card(S∗(θ0, E)), and

wBj (θ0) =
∑

S∈F(S∗(θ0,E)),card(S)=j

Pr (W 1(S) ≥ 0j) Pr
(
W 2(S) ≥ 0η(θ0,E)−j

)
, (40)
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with W 1(S) ∼ N
(
0j ,Σ

B
1 (θ0, S)

)
, W 2(S) ∼ N

(
0η(θ0,E)−j ,Σ

B
2 (θ0, S)

)
,

ΣB
1 (θ0, S) =

(
H(θ0, S)I−1

F (θ0)HT (θ0, S)
)−1

, (41)

ΣB
2 (θ0, S) = H(θ0, S

∗(θ0, E)− S)I−1
F (θ0)HT (θ0, S

∗(θ0, E)− S)

−H(θ0, S
∗(θ0, E)− S)I−1

F (θ0)HT (θ0, S)ΣB
1 (θ0, S)H(θ0, S)I−1

F (θ0)HT (θ0, S
∗(θ0, E)− S). (42)

Proof. See Section A.4.

Similar clarifications to those given in page 11 for the weights of the type A tests can be also valid for the
weights of type B tests.
Let sBφ (θ̂(F ), θ̃(E)) and tBφ (θ̂, θ̂(F ), θ̃(E)) be the observed values of SBφ (θ̂(F ), θ̃(E)) and TBφ (θ̂, θ̂(F ), θ̃(E))

based on a sample. It is not correct to consider that the p-values of (12) with the proposed test-statistics are re-
spectively limn→∞ Pr(SBφ (θ̂(F ), θ̃(E)) > sBφ (θ̂(F ), θ̃(E))) and limn→∞ Pr(TBφ (θ̂, θ̂(F ), θ̃(E)) > tBφ (θ̂, θ̂(F ), θ̃(E))).
Actually both probabilities depend on the true value of θ, θ0, which belongs to Ω(E) = {θ ∈ Θ : hi(θ) =

0, i ∈ E;hi(θ) ≤ 0, i ∈ R − E}. That is, under HB
Null, limn→∞ Pr(SBφ (θ̂(F ), θ̃(E)) > sBφ (θ̂(F ), θ̃(E))) and

limn→∞ Pr(TBφ (θ̂, θ̂(F ), θ̃(E)) > tBφ (θ̂, θ̂(F ), θ̃(E))) are not specific numbers because they depend on θ0 and
do not define p-values. The p-value must be the probability of rejecting a value as extreme or more than the
value of the test-statistic obtained with the sample and with the “least favorable”value of the parameter that
belongs to Ω(E). This means that if HB

Null is rejected for the least favorable value of the parameter, then it is
rejected for every value of the parameter. Hence,

p-value(SBφ (θ̂(F ), θ̃(E))) = lim
n→∞

sup
θ∈Ω(E)

Pr(SBφ (θ̂(F ), θ̃(E)) > sBφ (θ̂(F ), θ̃(E))),

p-value(TBφ (θ̂, θ̂(F ), θ̃(E)) = lim
n→∞

sup
θ∈Ω(E)

Pr(TBφ (θ̂, θ̂(F ), θ̃(E)) > tBφ (θ̂, θ̂(F ), θ̃(E))).

From Theorem 3.8.1 in Silvapulle and Sen (2004) the supremum is reached at θ = 0k, and this justifies the
following result.

Proposition 18 The p-values for the tests of Definition 16, are

p-value(SBφ (θ̂(F ), θ̃(E))) =

r−card(E)∑
j=0

w̄j(θ0) Pr
(
χ2
j+card(E)−card(F ) > sBφ (θ̂(F ), θ̃(E))

)
,

p-value(TBφ (θ̂, θ̂(F ), θ̃(E)) =

r−card(E)∑
j=0

w̄j(θ0) Pr
(
χ2
j+card(E)−card(F ) > tBφ (θ̂, θ̂(F ), θ̃(E))

)
,

where
w̄j(θ0) =

∑
S∈F(R−E),card(S)=j

Pr
(
W̄ 1(S) ≥ 0j

)
Pr
(
W̄ 2(S) ≥ 0r−card(E)−j

)
,

with W̄ 1(S) ∼ N
(
0card(S), Σ̄

B
1 (θ0, S)

)
, W̄ 2(S) ∼ N

(
0r−card(E)−card(S), Σ̄

B
2 (θ0, S)

)
Σ̄
B
1 (θ0, S) =

(
HT (θ0, S)I−1

F (θ0)H(θ0, S)
)−1

,

Σ̄
B
2 (θ0, S) = H(θ0, S

C)I−1
F (θ0)HT (θ0, S

C)−H(θ0, S
C)I−1

F (θ0)HT (θ0, S)Σ̄
B
1 (θ0, S)H(θ0, S)I−1

F (θ0)HT (θ0, S
C),

and SC = R− E − S.
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Corollary 19 For g > 1, with n1 = ... = ng = n
g , Theorem 17 remains being true but the structure of the

variance-covariance matrices are given by

ΣB
1 (θ0, S) =

(∑g
i=1Hi(θ0, S)I−1

F (θi,0)HT
i (θ0, S)

)−1

,

ΣB
2 (θ0, S) =

∑g
i=1

∑g
i=jHi(θ0, S

∗(θ0, E)− S)P ij(θ0, S)HT
j (θ0, S

∗(θ0, E)− S),

P ij(θ0, S) =(1− δij)I−1
F (θi,0)

− I−1
F (θi,0)HT

i (θ0, S)
(∑g

h=1Hh(θ0, S)I−1
F (θh,0)HT

h (θ0, S)
)−1

Hj(θ0, S)I−1
F (θj,0).

Definition 20 Let F ⊂ E ⊂ R = {1, ..., r}, such that card(E) < r. The type B test-statistics for the case
of g > 1 populations based on φ-divergence measures for (12) are given by

S̃Bφ (θ̂(F ), θ̃(E)) =
2

φ′′(1)
dφ(Lθ̂(F ),Lθ̃(E)),

T̃Bφ (θ̂, θ̂(F ), θ̃(E)) =
2

φ′′(1)

(
dφ(Lθ̂,Lθ̃(E))− dφ(Lθ̂,Lθ̂(F ))

)
= S̃Bφ (θ̂, θ̃(E))− S̃Oφ (θ̂, θ̂(F )).

Theorem 21 Under HB
Null, the asymptotic distribution of S̃

B
φ (θ̂(F ), θ̃(E)) and T̃Bφ (θ̂, θ̂(F ), θ̃(E)) is

lim
n→∞

Pr
(
S̃Bφ (θ̂(F ), θ̃(E)) ≤ x

)
= lim
n→∞

Pr
(
T̃Bφ (θ̂, θ̂(F ), θ̃(E)) ≤ x

)
=

η(θ0,E)∑
j=0

wBj (θ0) Pr
(
χ2
j+card(E)−card(F ) ≤ x

)
,

where
wBj (θ0) =

∑
S∈F(S∗(θ0,E)),card(S)=j

Pr
(
W̃ 1(S) ≥ 0card(S)

)
Pr
(
W̃ 2(S) ≥ 0card(S∗(θ0,E)−S)

)
,

with W̃ 1(S) ∼ N
(
0card(S), Σ̃

B

1 (θ0, S)
)
, W̃ 2(S) ∼ N

(
0η(θ0,E)−card(S), Σ̃

B

2 (θ0, S)
)
,

Σ̃
B

1 (θ0, S) =

(∑g
i=1Hi(θ0, S)

1

νi
I−1
F (θi,0)HT

i (θ0, S)

)−1

,

Σ̃
B

2 (θ0, S) =
∑g
i=1

∑g
i=jHi(θ0, S

∗(θ0, E)− S)P ij(θ0, S)HT
j (θ0, S

∗(θ0, E)− S),

P ij(θ0, S) =(1− δij)
1

νi
I−1
F (θi,0)

− 1

νi
I−1
F (θi,0)HT

i (θ0, S)

(∑g
h=1Hh(θ0, S)

1

νh
I−1
F (θh,0)HT

h (θ0, S)

)−1

Hj(θ0, S)
1

νj
I−1
F (θj,0).

A similar result to one given in Proposition 11 for the p-values of the type B tests with a single population
can be also valid for multiple populations.



Hypothesis Testing in a Generic Nesting Framework with General Population Distributions 15

5 Real data example: Divergence based one-sided testing for the
mean of two populations with Poisson distribution

In Simpson (1989) we can find an application example with two Poisson populations, different sample sizes, and

HB
Null : θ1 ≥ θ2 vs. HB

Alt : θ1 < θ2. (43)

This biological experiment consisted in exposing treated male flies to a specific degree of chemical and to
compare their behavior with a control group. It was counted the number of recessive lethal mutations among

the daughters of the explored flies (see Table 1) and this number is assumed to be Xij
ind∼ P(θi), θi > 0, i = 1, 2.

For g populations, (73) given in Section A.5, is equal to

d∗φλ(fθ, fθ0) =
exp{−(λ+ 1)θ}

exp{−λθ0}

∞∑
i=0

(exp {((λ+ 1) log θ − λ log θ0)})i

i!
= −(λ+ 1)θ + λθ0 +

θλ+1

θλ0
,

and hence for λ /∈ {−1, 0}, (69)-(72) given in Section A.5, are equal to

S̃Bφλ(θ̂(F ), θ̃(E)) =
2

λ(λ+ 1)

(
exp

{
g∑
i=1

ni

(
−(λ+ 1)θ̂i(F ) + λθ̃i(E) +

θ̂λ+1
i (F )

θ̃λi (E)

)}
− 1

)
(44)

T̃Bφλ(θ̂, θ̂(F ), θ̃(E)) =
2

λ(λ+ 1)

(
exp

{
g∑
i=1

ni

(
−(λ+ 1)θ̂i + λθ̃i(E) +

θ̂λ+1
i

θ̃λi (E)

)}

− exp

{
g∑
i=1

ni

(
−(λ+ 1)θ̂i + λθ̂i(F ) +

θ̂λ+1
i

θ̂λi (F )

)})
, (45)

where θ̂ = (θ̂1, ..., θ̂g)
T , θ̂i = 1

ni

∑ni
j=1Xij . Note that the Kullback based test-statistics (λ = 0) are

S̃BKull(θ̂(F ), θ̃(E)) = lim
λ→0

S̃Bφλ(θ̂(F ), θ̃(E)) = 2

g∑
i=1

ni

(
−θ̂i(F ) + θ̃i(E) + θ̂i(F ) log

θ̂i(F )

θ̃i(E)

)
,

T̃BKull(θ̂, θ̂(F ), θ̃(E)) = lim
λ→0

T̃Bφλ(θ̂, θ̂(F ), θ̃(E)) = 2

g∑
i=1

ni

(
−θ̂i(F ) + θ̃i(E) + θ̂i log

θ̂i(F )

θ̃i(E)

)
, (46)

but T̃BKull(θ̂, θ̂(F ), θ̃(E)) is the only test-statistic which is always equal to the likelihood ratio test-statistic
TB(θ̂(F ), θ̃(E)), even though we have to consider that S̃BKull(θ̂, θ̃(E)) = T̃BKull(θ̂, θ̂, θ̃(E)), for the case F = ∅.
Furthermore, the Pearson divergence based test-statistics (λ = 1) are

S̃Bφ1(θ̂(F ), θ̃(E)) = exp


g∑
i=1

ni

(
θ̂i(F )− θ̃i(E)

)2

θ̃i(E)

− 1,

T̃Bφλ(θ̂, θ̂(F ), θ̃(E)) = exp


g∑
i=1

ni

(
θ̂i − θ̃i(E)

)2

θ̃i(E)

− exp


g∑
i=1

ni

(
θ̂i − θ̂i(F )

)2

θ̂i(F )

 ,

but S̃Bφ1(θ̂(F ), θ̃(E)) is the only test-statistic which is always equal to the chi-square test-statistic CB(θ̂(F ), θ̃(E)),

even though we have to consider that S̃Bφ1(θ̂, θ̃(E)) = T̃Bφλ(θ̂, θ̂, θ̃(E)), for the case F = ∅. Taking into ac-
count that κ ∈ {S̃Bφλ(θ̂(F ), θ̃(E)), T̃Bφλ(θ̂, θ̂(F ), θ̃(E))} under HB

Null must be small as ni increases, it holds
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log(κ+ 1) ' κ, hence we can propose a modification of (44) and (45)

˜̃
S
B

φλ
(θ̂(F ), θ̃(E)) =

2

λ(λ+ 1)

g∑
i=1

ni

(
−(λ+ 1)θ̂i(F ) + λθ̃i(E) +

θ̂λ+1
i (F )

θ̃λi (E)

)
, (47)

˜̃
T
B

φλ
(θ̂, θ̂(F ), θ̃(E)) =

2

λ(λ+ 1)

g∑
i=1

ni

(
λ
(
θ̃i(E)− θ̂i(F )

)
+ θ̂λ+1

i

(
1

θ̃λi (E)
− 1

θ̂λi (F )

))
.

Such test-statistics are the so called Rényi-divergence based test-statistics (see Liese and Vajda (1987)), and
they contain also the Kullback-divergence based test-statistics as special case when λ = 0.
For the example of Simpson (1989) we propose totally different test-statistics, in fact the power and Rényi

divergence based test-statistics for the example of Simpson (1989) are (44) and (47), respectively with g = 2,
n1 = 177, n2 = 126, F = ∅ and E = ∅, and the likelihood ratio test-statistic we propose, (46), is not the same
because the basis of the methodology is not the same (in the paper a one sided test was aimed but on the basis
of a two sided test-statistic). The order restricted MLE of θ is

θ̃ = (θ̃1, θ̃2)T = arg max
θ∈Ω
−n1θ1 +

n1∑
j=1

X1j log θ1 − n2θ2 +

n2∑
j=1

X2j log θ2,

where Ω = {θ1, θ2 ∈ R+ : h(θ1, θ2) = θ2 − θ1 ≤ 0}. Asymptotically, the p-value when x is the value of one
of the proposed test-statistic, is given by 1

2 Pr(χ2
1 ≥ x) + 1

2I(x ≤ 0). That is 1
2 Pr(χ2

1 ≥ x), if x > 0 and 1 if
x ≤ 0. These weights, wB0 (θ0) = wB1 (θ0) = 1

2 , are directly obtained taking into account iv) of page 11. This is
a classical example for studying robustness. In Table 2 the values of the MLEs, power-divergence and Rényi
divergence based test-statistics with λ ∈ {− 1

2 , 0,
2
3 , 1,

3
2} and their p-values are summarized. Power-divergence

based test-statistics show a quit different behavior depending on the value of λ, while Rényi divergence based
ones behave more homogeneously. HypothesisHB

Null is accepted with 0.05 significance level in all the cases except
for S̃Bφ3/2(θ̂, θ̃). It could be concluded that Rényi divergence based test-statistics for g Poisson populations are
more robust that the power-divergence based ones.

Number of recessive lethal daughters 0 1 2
Observations in the sample of population 1 = Control group 159 15 3
Observations in the sample of population 2 = Treated group 110 11 5

Table 1: Observed frequencies in the example of Simpson (1989).

θ̂1 θ̂2 S̃Bφ− 1
2

(θ̂, θ̃) S̃Bφ0(θ̂, θ̃) S̃Bφ 2
3

(θ̂, θ̃) S̃Bφ1(θ̂, θ̃) S̃Bφ 3
2

(θ̂, θ̃)

0.118644 0.166666 1.114833 1.207049 1.741264 2.402724 4.876806
p-values 0.145517 0.135959 0.093489 0.060562 0.013610

θ̃1 θ̃2
˜̃
S
B

φ− 1
2

(θ̂, θ̃)
˜̃
S
B

φ0(θ̂, θ̃)
˜̃
S
B

φ 2
3

(θ̂, θ̃)
˜̃
S
B

φ1(θ̂, θ̃)
˜̃
S
B

φ 3
2

(θ̂, θ̃)

0.138614 0.138614 1.200577 1.207049 1.218055 1.224576 1.235671
p-values 0.136603 0.135959 0.134871 0.134232 0.133153

Table 2: Power-divergence based test-statistics in the example of Simpson (1989).
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6 Simulation study: Divergence based testing for isotonic binomial
proportions

In multinomial sampling we consider ki = k0 and hence

Xij
ind∼ M(1,πi); XT

ij1k0+1 = 1; (j = 1, ..., ni)

πi = (πi1, ..., πik0,πi,k0+1,)
T ; πTi 1k0+1 = 1;

ni∑
j=1

Xij = (Ni1, ..., Nik0,Ni,k0+1,)
T = N i; NT

i 1k0+1 = ni.

Suppose we know that the probability vectors of the populations are stochastically ordered, that is

j∑
h=1

πih ≤
j∑

h=1

πi+1,h, i = 1, ..., g − 1, j = 1, ..., k0, (48)

which means that hi(π1, ...,πg) =
∑j
h=1(πih − πi+1,h) ≤ 0 for i ∈ R = {1, ..., r} = E, where r = (g − 1)k0.

We shall denote (48) shortly with πi �s πi+1. This topic can be encountered for instance in Dardanoni and
Forcina (1998). In addition, suppose we know that there exists a subset F ⊂ E such that hi(π1, ...,πg) = 0 for
i ∈ F . Under these assumptions, we would like to test wether the probability vectors are equal, that is

HA
Null : πi = πi+1, i ∈ E vs. HA

Alt : πi �s πi+1, i ∈ E − F ; πi = πi+1, i ∈ F ,

being strict at least one of the inequalities in R− F . Because we are inside the exponential family, we can use
(73) given in Section A.5,

d∗φλ(fθ, fθ0) =

k0+1∑
j=1

π̂−λij (E)π̃λ+1
ij (F ),

and hence for λ /∈ {−1, 0}, (69)-(72) given in Section A.5, are equal to

S̃Aφλ(θ̃(F ), θ̂(E)) =
2

λ(λ+ 1)

 g∏
i=1

k0+1∑
j=1

π̂−λij (E)π̃λ+1
ij (F )

ni

− 1

 , (49)

T̃Aφλ(θ̂, θ̃(F ), θ̂(E)) =
2

λ(λ+ 1)

 g∏
i=1

k0+1∑
j=1

π̂−λij (E)π̂λ+1
ij

ni

−
g∏
i=1

k0+1∑
j=1

π̃−λij (F )π̂λ+1
ij

ni . (50)

where

θ̂(E) = (θ̂1(E), ..., θ̂g(E))T ; θ̂i(E) = (π̂i1(E), ..., π̂ik0(E))
T

; π̂i,k0+1(E) = 1− θ̂
T

i (E)1k0 ;

θ̃(F ) = (θ̃1(F ), ..., θ̃g(F ))T ; θ̃i(F ) = (π̃i1(F ), ..., π̃ik0(F ))
T

; π̃i,k0+1(F ) = 1− θ̃
T

i (F )1k0 ;

θ̂ = (θ̂1, ..., θ̂g)
T ; θ̂i = (π̂i1, ..., π̂ik0)

T
=
(
Ni1
ni
, ...,

Nik0
ni

)T
; π̂i,k0+1(E) = 1− θ̂

T

i 1k0 .

Based on the same idea explained in Section 5 we can construct the Rényi divergence based test-statistics

˜̃
S
A

φλ
(θ̃(F ), θ̂(E)) =

2

λ(λ+ 1)

g∑
i=1

ni log

k0+1∑
j=1

π̂−λij (E)π̃λ+1
ij (F )

 , (51)

˜̃
T
A

φλ
(θ̂, θ̃(F ), θ̂(E)) =

2

λ(λ+ 1)

g∑
i=1

ni log

(∑k0+1
j=1 π̂−λij (E)π̂λ+1

ij∑k0+1
j=1 π̃−λij (F )π̂λ+1

ij

)
. (52)
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On the other hand, multinomial sample from multiple populations is suitable for the techniques of single
population, even for different sample sizes, taking into account that we can construct a global probability vector
weighting on the sample sizes

ϑ̂(E) = (ϑ̂1(E), ..., ϑ̂g(E))T ; ϑ̂i(E) =
(
ni
n π̂i1(E), ..., nin π̂ik0(E)

)T
; ni

n π̂i,k0+1(E) = ni
n − ϑ̂

T

i (E)1k0 ;

ϑ̃(F ) = (ϑ̃1(F ), ..., ϑ̃g(F ))T ; ϑ̃i(F ) =
(
ni
n π̃i1(F ), ..., nin π̃ik0(F )

)T
; ni

n π̃i,k0+1(F ) = ni
n − ϑ̃

T

i (F )1k0 ;

ϑ̂ = (ϑ̂1, ..., ϑ̂g)
T ; ϑ̂i =

(
ni
n π̂i1, ...,

ni
n π̂ik0

)T
=
(
Ni1
n , ...,

Nik0
n

)T
; ni

n π̂i,k0+1(E) = ni
n − ϑ̂

T

i 1k0 .

Therefore,

SAφλ(ϑ̃(F ), ϑ̂(E)) =
2

λ(λ+ 1)

 g∑
i=1

ni

k0+1∑
j=1

π̂−λij (E)π̃λ+1
ij (F )− n

 , (53)

TAφλ(ϑ̂, ϑ̃((F ), ϑ̂(E)) =
2

λ(λ+ 1)

 g∑
i=1

ni

k0+1∑
j=1

π̂−λij (E)π̂λ+1
ij −

g∑
i=1

ni

k0+1∑
j=1

π̃−λij (F )π̂λ+1
ij

 . (54)

Note that the Kullback based test-statistics (λ = 0) are

SAKull(ϑ̃(F ), ϑ̂(E)) = 2

g∑
i=1

ni

k0+1∑
j=1

π̃ij(F ) log
π̃ij(F )

π̂ij(E)
,

TAKull(ϑ̂, ϑ̃(F ), ϑ̂(E)) = 2

g∑
i=1

ni

k0+1∑
j=1

π̂ij log
π̃ij(F )

π̂ij(E)
. (55)

with SAKull(ϑ̃(F ), ϑ̂(E))) = S̃AKull(θ̃(F ), θ̂(E)) =
˜̃
S
A

Kull(θ̃(F ), θ̂(E)) and TAKull(ϑ̂, ϑ̃(F ), ϑ̂(E)) = T̃AKull(θ̂, θ̃(F ), θ̂(E)) =˜̃
T
A

Kull(θ̂, θ̃(F ), θ̂(E)). The likelihood ratio test-statistic is just TAKull(ϑ̂, ϑ̃(F ), ϑ̂(E)), and even though is not ex-
actly equal to SAKull(θ̃(F ), θ̂(E)), in practice their accepting and rejecting probabilities are equal with high
precision (it can be seen in the simulation study). It is also remarkable that among the Pearson divergence
based test-statistics (λ = 1) what is called usually called chi-square test-statistic is

SAφ1(θ̃(F ), θ̂(E)) =

g∑
i=1

ni

k0+1∑
j=1

(π̃ij(F )− π̂ij(E))
2

π̂ij(E)

(see expressions for one population in page 240 of Robertson et al. (1988)).
This general case of k0 ∈ N, was discussed for instance in Dardanoni and Forcina (1998) for testing (16)

with the likelihood ratio test-statistic. The case of k0 = 1 with small probabilities of success is known for being
problematic because the test-statistics have not a good behaviour (it can be seen in the plots shown at the end of
this section taking s = 1). In Tebbs and Bilder (2006) some tests were analyzed with a “pooling design”(s ≥ 2),
useful to overcome this problem. Taking into account that in the aforementioned paper, F = ∅, E = R and the
likelihood ratio test-statistic TAφ0(θ̃(∅), θ̂(R)) and the chi-square test-statistic (or “Bartholomew’s statistic”)

SAφ1(ϑ̂, ϑ̃(∅), ϑ̂(R)) were considered to be the best test-statistics among other alternative test-statistics, it is
of common sense to analyze what happens with power divergence test-statistics. Furthermore, we consider in
this paper hypothesis testing (11), which is more general than (16). The pooled testing for small proportions
coming from g binomial populations considers a prefixed number of s individuals, which are independently
pooled within each population and independently from other populations. An event of an individual of the
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sample in a specific population is considered to be successful if at least one of the s pools associated with it is
successful, that is calling pi (which is suppose to be small) the probability of having one successful pool in the
i-th population, i = 1, ..., g, we have Xi1 ∼ Ber(θi), Ni1 ∼ Bin(ni, θi) for i = 1, ..., g, where πi1 = θi, πi2 = 1−θi
and θi = 1− (1− pi)s. Our aim is to study

HA
Null : p1 = p2 = p3 = p4 vs. HA

Alt : p1 ≤ p2 = p3 ≤ p4, and (p1 < p2 or p3 < p4),

but this is equivalent to (56). The order restricted MLE of θ = (θ1, θ2, θ3, θ4)T = (π11, π21, π31, π41)T is

θ̃(F ) = (θ̃1(F ), θ̃2(F ), θ̃3(F ), θ̃4(F ))T = arg max
θ∈Ω(F )

g∑
i=1

(Ni1 log θi + (ni −Ni1) log(1− θi)) ,

where F = {2}, Ω(F ) = {θ1, θ2, θ3, θ4 ∈ (0, 1) : h1(θ) = θ1 − θ2 ≤ 0, h2(θ) = θ2 − θ3 = 0, h3(θ) = θ3 − θ4 ≤ 0},
and the estimators under equality restrictions, θ̂(E) = (θ̂1(E), θ̂2(E), θ̂3(E), θ̂4(E))T where θ̂i(E) =

∑g
i=1Ni1/n.

Different sample sizes for each population are considered, n1 = 20, n2 = 25, n3 = 30, n4 = 35. We shall perform
a simulation study to illustrate that the performance of the test is improved when nesting the models under
HA
Alt and moreover that for small sample sizes the likelihood ratio test (LRT) can be improved. It can be seen in

Section A.7 that the behaviour of T and S test statistics is quite similar, and (49)-(50) are non.recommendable
test-statistics. We have studied all the proposed test-statistics (see Section A.7) but are going to show plots

only for two families of test-statistics, ˜̃SAφλ(θ̃(F ), θ̂(E)) and SAφλ(ϑ̃(F ), ϑ̂(E)) with λ ∈ {0, 2
3 , 1}, for testing

HA
Null : π11 = π21 = π31 = π41 vs. HA

Alt : π11 ≤ π21 = π31 ≤ π41, and (π11 < π21 or π31 < π41), (56)

with different pool sizes, s ∈ {1, 5, 10, 15, 20}. These test-statistics are simpler to compute and the conclusions

for plots of ˜̃TAφλ(θ̂, θ̃(F ), θ̂(E)) and TAφλ(ϑ̂, ϑ̃(F ), ϑ̂(E)) are very similar Notation LRT, CRT(2/3), CRT(1), LRT,

RT(2/3), RT(1) simplifies respectively the notation of these test-statistics ˜̃SAφλ(θ̃(F ), θ̂(E)) and SAφλ(ϑ̃(F ), ϑ̂(E))

with λ ∈ {0, 2
3 , 1}. Asymptotically, the p-value when x is the value of one of the 12 test-statistics for (56), is

given by
wA0 (θ0) Pr(χ2

2 ≥ x) + wA1 (θ0) Pr(χ2
1 ≥ x) + wA2 (θ0) Pr(χ2

0 ≥ x),

where wA0 (θ0) = 1
4 , w

A
1 (θ0) = 1

2 , w
A
2 (θ0) = 1

4 (see details in Section A.6). The exact sizes with nomi-
nal size 0.05 are calculated by simulation with 30 000 replication, and three cases are distinguished, in sce-
nario A (p1, p2, p3, p4) = (0.1, 0.1, 0.1, 0.1), in scenario B (p1, p2, p3, p4) = (0.05, 0.05, 0.05, 0.05), in scenario C
(p1, p2, p3, p4) = (0.01, 0.01, 0.01, 0.01). Exact powers are also calculated for scenario A with (p1, p2, p3, p4) =
(0.05, 0.1, 0.1, 0.15), for scenario B with (p1, p2, p3, p4) = (0.01, 0.04, 0.04, 0.07), for scenario C with (p1, p2, p3, p4) =
(0.01, 0.025, 0.025, 0.04). In order to illustrate in what degree is the test improved when using (56) rather than

HA
Null : π11 = π21 = π31 = π41 vs. HA

Alt : π11 ≤ π21 ≤ π31 ≤ π41, and (π11 < π21 or π21 < π31 or π31 < π41),
(57)

we shall consider the same scenarios with the same values of (p1, p2, p3, p4). In this case, the order restricted
MLEs, θ̃, are defined in the same way but the parametric space is Ω(∅) = {θ1, θ2, θ3, θ4 ∈ (0, 1) : h1(θ) =
θ1 − θ2 ≤ 0, h2(θ) = θ2 − θ3 ≤ 0, h3(θ) = θ3 − θ4 ≤ 0}. Asymptotically, the p-value when x is the value of one
of the analyzed test-statistics for (57), is given by

wA0 (θ0) Pr(χ2
3 ≥ x) + wA1 (θ0) Pr(χ2

2 ≥ x) + wA2 (θ0) Pr(χ2
1 ≥ x) + wA3 (θ0) Pr(χ2

0 ≥ x),

where wA0 (θ0) = 0.04229179, wA1 (θ0) = 0.2515227, wA2 (θ0) = 0.4577082, wA3 (θ0) = 0.2484773 (see details in
Section A.6). In Figures 1, 2, 3, 4 the results all of these scenarios are shown. As expected, it can be seen that
as the pool size, s, is greater, the the power of the test increase and the approximation of the simulated size to
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the nominal size is much better (pooled-testing experiments use a larger number of individuals than individual
testing). When comparing all the tests-statistics what is very clear is that the estimated sizes are smaller for
test 56 than for test 57, and furthermore the LRT for test 57 is “liberal”because its simulated sizes tend to be
greater than the nominal size. This is the main reason to support the model with Ω({2})−Θ({1, 2, 3}) of test
(56) which is contained in Ω(∅)−Θ({1, 2, 3}) of test (57). For scenario C, it is not easy to conclude something
specific because the sample sizes are not large enough, the LRT tend to be “liberal”(simulated sizes above the
nominal size, 0.05) which is not convenient, but the powers are much greater. In scenarios A and B for test 57
either R(2/3) or R(1) are good choices since tend to be “conservative”(their simulated sizes are usually below
the nominal size, 0.05) and the powers are not much worse than for the LRT, while for test 56 none of them
can be considered clearly better than others.
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Figure 1: Simulated sizes for test (56) with different statistics (symbols) and pooling sizes (s) in three scenarios.
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Figure 2: Simulated powers for test (56) with different statistics (symbols) and pooling sizes (s) in three
scenarios.
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Figure 3: Simulated sizes for test (57) with different statistics (symbols) and pooling sizes (s) in three scenarios.
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Figure 4: Simulated powers for test (57) with different statistics (symbols) and pooling sizes (s) in three
scenarios.
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A Appendix

A.1 Proof of Theorem 8

The second order Taylor expansion of function dφ(θ) = dφ(fθ, fθ̂(•)) about θ̂(•) is

dφ(θ) = dφ(θ̂(•))+(θ−θ̂(•))T ∂

∂θ
dφ(θ)

∣∣∣∣
θ=θ̂(•)

+
1

2
(θ−θ̂(•))T ∂2

∂θ∂θT
dφ(θ)

∣∣∣∣
θ=θ̂(•)

(θ−θ̂(•))+o

(∥∥∥θ − θ̂(•)
∥∥∥2
)
,

(58)
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where • a general term to refer to the set of indices that are active in h, dφ(θ̂(•)) = 0, and according to (30)
and (31) we have

∂

∂θ
dφ(θ)

∣∣∣∣
θ=θ̂(•)

= 0k,

∂2

∂θ∂θT
dφ(θ)

∣∣∣∣
θ=θ̂(•)

= φ′′ (1) IF (θ̂(•)).

That is, in particular for θ = θ̂ we have

dφ(θ̂, θ̂(E)) =
φ′′ (1)

2
(θ̂ − θ̂(E))TIF (θ̂(E))(θ̂ − θ̂(E)) + o

(∥∥∥θ̂ − θ̂(E)
∥∥∥2
)
,

dφ(θ̂, θ̂(F )) =
φ′′ (1)

2
(θ̂ − θ̂(F ))TIF (θ̂(F ))(θ̂ − θ̂(F )) + o

(∥∥∥θ̂ − θ̂(F )
∥∥∥2
)
.

Multiplying both sides of the equality by 2n
φ′′(1) and taking the difference in both sides of the equality

TOφ (θ̂, θ̂(F ), θ̂(E)) =
2n

φ′′(1)

(
dφ(fθ̂, fθ̂(E))− dφ(fθ̂, fθ̂(F ))

)
=
√
n(θ̂ − θ̂(E))TIF (θ̂(E))

√
n(θ̂ − θ̂(E)) + o

(∥∥∥√n(θ̂ − θ̂(E)
)∥∥∥2

)
−
√
n(θ̂ − θ̂(F ))TIF (θ̂(F ))

√
n(θ̂ − θ̂(F )) + o

(∥∥∥√n(θ̂ − θ̂(F )
)∥∥∥2

)
.

It is well-known that

√
n(θ̂ − θ0) = I−1

F (θ0)
√
n

∂

∂θ
`1(θ)

∣∣∣∣
θ=θ0

+ oP (1k), (59)

√
n(θ̂(•)− θ0) = P (θ0, •)

√
n

∂

∂θ
`1(θ)

∣∣∣∣
θ=θ0

+ oP (1k), (60)

where θ0 is the true and unknown value of the parameter,

P (θ0, •)=I−1
F (θ0)− I−1

F (θ0)HT (θ0, •)
(
H(θ0, •)I−1

F (θ0)HT (θ0, •)
)−1

H(θ0, •)I−1
F (θ0),

is the variance covariance matrix of θ̂(•) according to (7)-(8)-(6a), and
√
n ∂
∂θ `1(θ)

∣∣
θ=θ0

L−→
n→∞

N (0k, IF (θ0))

by the Central Limit Theorem. Taking the differences of both sides of the equality in (59) and (60), we obtain

√
n(θ̂ − θ̂(•)) =

(
I−1
F (θ0)− P (θ0, •)

)√
n

∂

∂θ
`1(θ)

∣∣∣∣
θ=θ0

+ oP (1k),

and taking into account IF (θ̂(E))
P−→

n→∞
IF (θ0),

TOφ (θ̂, θ̂(F ), θ̂(E))

=
√
n

∂

∂θT
`1(θ)

∣∣∣∣
θ=θ0

(P (θ0, F )− P (θ0, E))
T IF (θ0) (P (θ0, F )− P (θ0, E))

√
n

∂

∂θ
`1(θ)

∣∣∣∣
θ=θ0

+ oP (1)

= Y TY + oP (1),
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where
Y = A(θ0) (P (θ0, F )− P (θ0, E))A(θ0)

T
Z,

with Z ∼ N (0k, Ik) and A(θ0) is Cholesky’s factorization matrix for a non singular matrix such a Fisher
information matrix, that is IF (θ0) = A(θ0)

T
A(θ0). In other words

Y ∼ N (0k,A(θ0) (P (θ0, F )− P (θ0, E))A(θ0)
T

),

where the variance covariance matrix is idempotent and symmetric. Following Lemma 3 in Ferguson (1996,
page 57), A(θ0) (P (θ0, F )− P (θ0, E))A(θ0)

T is idempotent and symmetric, if only if TOφ (θ̂(E), θ̂(F )) is a
chi-square random variable with degrees of freedom

df = rank(A(θ0) (P (θ0, F )− P (θ0, E))A(θ0)
T

) = trace(A(θ0) (P (θ0, F )− P (θ0, E))A(θ0)
T

).

Since
(P (θ0, F )− P (θ0, E))

T IF (θ0) (P (θ0, F )− P (θ0, E)) = P (θ0, F )− P (θ0, E),

the condition is reached. The effective degrees of freedom are given by

df = trace(P (θ0, F )A(θ0)
T
A(θ0))− trace(P (θ0, E)A(θ0)

T
A(θ0)) = trace(P (θ0, F )IF (θ0))− trace(P (θ0, E)IF (θ0))

= trace(−
(
H(θ0, F )I−1

F (θ0)HT (θ0, F )
)−1

H(θ0, F )I−1
F (θ0)HT (θ0, F ))

− trace(−
(
H(θ0, E)I−1

F (θ0)HT (θ0, E)
)−1

H(θ0, E)I−1
F (θ0)HT (θ0, E))

= card(E − F ).

Regarding the other test-statistic SOφ (θ̂(F ), θ̂(E)), observe that if we take (58), in particular for θ = θ̂(F ) and

• = θ̂(E) it is directly obtained

dφ(θ̂(F ), θ̂(E)) =
φ′′ (1)

2
(θ̂(F )− θ̂(E))TIF (θ̂(E))(θ̂(F )− θ̂(E)) + o

(∥∥∥θ̂(F )− θ̂(E)
∥∥∥2
)
,

and the rest of the steps to reach the final result are very similar compared with the other test-statistic.

A.2 Lemma

Let Y be a k-dimensional random variable with normal distributionN (0k,P ) with P being a projection matrix,
that is idempotent and symmetric, and let fixed k-dimensional vectors di such that for them either Pdi = 0k

or Pdi = di, i = 1, ..., k, is true. Then
(
Y TY

∣∣∣dTi Y ≤ 0, i = 1, ..., k
)
∼ χ2

df , where df = rank(P ).

Proof. This result can be found in several sources, for instance in Kudô (1963, page 414), Barlow et al. (1972,
page 128) and Shapiro (1985, page 139).
Without any loss of generality we shall consider E = {1, ..., r} since otherwise the null hypothesis is not a

vector space. In case of E = {1, ..., r2} with r2 < r we are assuming that there are no restriction on hi(θ) with
i /∈ E, nor under the null hypothesis and neither for the alternative, which is essentially the same as taking
E = {1, ..., r}.

A.3 Proof of Theorem 12

We shall perform the proof for SAφ (θ̃(F ), θ̂(E)). Under HA
Alt, hi(θ0) = 0 for i ∈ F is conditionally established.

Hence, either hi(θ0) = 0 or hi(θ0) < 0 can be true for i ∈ E−F and we want to test hi(θ0) = 0, i ∈ E (HA
Null).

Since F ⊂ E, it is clear that if HA
Null is not true is because there exists i ∈ E − F such that hi(θ0) < 0. With
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respect to the estimators, under HA
Alt we know that hi(θ̃(F )) = 0 for i ∈ F , but if i ∈ E − F then either

hi(θ̃(F )) = 0 or hi(θ̃(F )) < 0 can be true. Let us consider the family of all possible subsets in E − F , denoted
by F(E − F ), then S ∈ F(E − F ) represents hi(θ̃(F )) = 0 for i ∈ S (by assumption hi(θ̃(F )) = 0 for i ∈ F )
and hi(θ̃(F )) < 0 for i ∈ SC , that is θ̃(F ) = θ̃(S ∪ F ). It is clear that for a sample θ̃(F ) = θ̃(S ∪ F ) can be
true only for a unique set of indices S ∈ F(E − F ), and thus by applying the Theorem of Total Probability

Pr
(
SAφ (θ̃(F ), θ̂(E)) ≤ x

)
=

∑
S∈F(E−F )

Pr
(
SAφ (θ̃(F ), θ̂(E)) ≤ x, θ̃(F ) = θ̃(S ∪ F )

)
,

where θ̃(S ∪ F ) was defined in (14). From the complementary slackness condition in the Karush-Khun-Tucker
Theorem (see for instance Theorem 4.2.13 in Bazaraa et al. (2006))), it holds for all S ∈ F(E − F )

Pr
(
SAφ (θ̃(F ), θ̂(E)) ≤ x, θ̃(F ) = θ̃(S ∪ F )

)
=

Pr
(
SAφ (θ̃(F ), θ̂(E)) ≤ x, λ̃(S) > 0card(S), hi(θ̃(S ∪ F )) < 0, i ∈ SC

)
,

where SC = E − F − S and λ̃(S) is the subvector of the vector of Karush-Khun-Tucker multipliers λ̃(S ∪ F )

associated with estimator θ̃(S∪F ) which only considers indices in S. Furthermore, under HA
Null, hi(θ̃(S∪F )) =

hi(θ̃(S ∪ F ))− hi(θ0), because hi(θ0) = 0, i = 1, ..., r, hence

Pr
(
SAφ (θ̃(F ), θ̂(E)) ≤ x

)
=

∑
S∈F(E−F )

Pr
(
SAφ (θ̃(F ), θ̂(E)) ≤ x, λ̃(S) > 0card(S),h(θ̃(S ∪ F ), SC)− h(θ0, S

C) < 0card(SC)

)
,

where h(θ,SC) = (hi(θ))i∈SC is the subvector of h(θ) which only considers indices in SC . The Taylor series
expansion of SAφ (θ̃(F ), θ̂(E)) is obtained in a similar way followed for the proof of Theorem 8, and its expression
is

SAφ (θ̃(F ), θ̂(E)) = (
√
n(θ̃(F )− θ̂(E)))TIF (θ0)(

√
n(θ̃(F )− θ̂(E))) + o

(∥∥∥√n(θ̃(F )− θ̂(E))
∥∥∥2
)
. (61)

The first order Taylor series expansion of h(θ,SC) about θ0 taking θ = θ̃(S ∪ F ), leads to

√
n
(
h(θ̃(S ∪ F ), SC)− h(θ0, S

C)
)

=
√
nH(θ0, S

C)(θ̃(S ∪ F )− θ0) + o
(∥∥∥√n(θ̃(S ∪ F )− θ0)

∥∥∥) , (62)

where H(θ,SC) = ∂
∂θT

h(θ,SC). On the other hand, from the Karush-Kuhn-Tucker Theorem it holds for(
θ̃
T

(S ∪ F ), λ̃
T

(S)
)T

∂

∂θT
`n(θ)

∣∣∣∣
θ=θ̃(S∪F )

+H(θ̃(S ∪ F ), SC)λ̃(S) = 0card(SC)

h(θ̃(S ∪ F ), SC) = 0card(SC)

λ̃(S) ≥ 0card(S)

and the first two equations are also true for (θ̂
T

(S∪F ), λ̂
T

(S))T according to the Lagrange multipliers method.
Hence, θ̃(S ∪ F ) = θ̂(S ∪ F ) and λ̃(S) = λ̂(S). From it and (60) it follows that:
• (62) leads to

√
n
(
h(θ̂(S ∪ F ), SC)− h(θ0, S

C)
)

=
√
nH(θ0, S

C)P (θ0, S)
∂

∂θ
`1(θ)

∣∣∣∣
θ=θ0

+ oP (1card(SC))

= H(θ0, S
C)P (θ0, S)A(θ0)

T
Z + oP (1card(SC)),
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where Z ∼ N (0k, Ik) and

P (θ0, S)=I−1
F (θ0) + I−1

F (θ0)HT (θ0, S)R(θ0, S)H(θ0, S)I−1
F (θ0),

R(θ0, S) = −
(
H(θ0, S)I−1

F (θ0)HT (θ0, S)
)−1

;

• from Sen et al. (2010, page 267)

1√
n
λ̂(S) =

√
nQT (θ0, S)

∂

∂θ
`1(θ)

∣∣∣∣
θ=θ0

+ oP (1card(S))

= QT (θ0, S)A(θ0)
T
Z + oP (1card(S)),

where
Q(θ0, S)=I−1

F (θ0)HT (θ0, S)R(θ0, S);

• under θ̃(F ) = θ̂(S ∪ F ) (61) leads to

SAφ (θ̂(S ∪ F ), θ̂(E)) = TOφ (θ̂, θ̂(S ∪ F ), θ̂(E)) + oP (1)

=
(
A(θ0) (P (θ0, S ∪ F )− P (θ0, E))A(θ0)

T
Z
)T (

A(θ0) (P (θ0, S ∪ F )− P (θ0, E))A(θ0)
T
Z
)

+ oP (1),

= ZTA(θ0) (P (θ0, S ∪ F )− P (θ0, E))A(θ0)
T
Z + oP (1),

where matrix A(θ0) is defined in the proof of Theorem 8.
That is,

lim
n→∞

Pr
(
SAφ (θ̃(F ), θ̂(E)) ≤ x

)
=

∑
S∈F(E−F )

Pr
(
Y T

3 (S)Y 3(S) ≤ x,Y 1(S) ≥ 0card(S),Y 2(S) ≥ 0card(SC)

)
=

∑
S∈F(E−F )

Pr
(
Y T

3 (S)Y 3(S) ≤ x|Y 1(S) ≥ 0card(S),Y 2(S) ≥ 0card(SC)

)
Pr
(
Y 1(S) ≥ 0card(S),Y 2(S) ≥ 0card(SC)

)
=

∑
S∈F(E−F )

Pr

(
Y T

3 (S)Y 3(S) ≤ x
∣∣∣∣(Y T

1 (S),Y T
2 (S)

)T
≥ 0k

)
Pr
(
Y 1(S) ≥ 0card(S),Y 2(S) ≥ 0card(SC)

)
,

where

Y 1(S) = M1(θ0, S)Z, M1(θ0, S) =QT (θ0, S)A(θ0)
T
,

Y 2(S) = M2(θ0, S)Z, M2(θ0, S) = −H(θ0, S
C)P (θ0, S)A(θ0)

T
,

Y 3(S) = M3(θ0, S)Z, M3(θ0, S) =A(θ0) (P (θ0, S ∪ F )− P (θ0, E))A(θ0)
T
.

Taking into account properties (8) it holdsM3(θ0, S)MT
2 (θ0, S) =MT

2 (θ0, S) andM3(θ0, S)MT
1 (θ0, S) =0k×card(S),

hence by applying the lemma given in Section A.2

Pr

(
Y T

3 (S)Y 3(S) ≤ x
∣∣∣∣(Y T

1 (S),Y T
2 (S)

)T
≥ 0k

)
= Pr

(
χ2
df ≤ x

)
where

df = rank
(
A(θ0) (P (θ0, S ∪ F )− P (θ0, E))A(θ0)

T
)

= trace
(
A(θ0) (P (θ0, S ∪ F )− P (θ0, E))A(θ0)

T
)

= trace(P (θ0, S ∪ F )A(θ0)
T
A(θ0))− trace(P (θ0, E)A(θ0)

T
A(θ0))

= trace(−
(
H(θ0, S ∪ F )I−1

F (θ0)HT (θ0, S ∪ F )
)−1

H(θ0, S ∪ F )I−1
F (θ0)HT (θ0, S ∪ F ))

− trace(−
(
H(θ0, E)I−1

F (θ0)HT (θ0, E)
)−1

H(θ0, E)I−1
F (θ0)HT (θ0, E))

= (−card(S ∪ F )) + card(E) = r − card(F )− card(S).
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Finally,

lim
n→∞

Pr
(
SAφ (θ̃(F ), θ̂(E)) ≤ x

)
=

∑
S∈F(E−F )

Pr
(
χ2
r−card(F )−card(S) ≤ x

)
Pr
(
Y 1(S) ≥ 0card(S),Y 2(S) ≥ 0card(SC)

)

=

r−card(F )∑
j=0

Pr
(
χ2
r−card(F )−j ≤ x

) ∑
S∈F(E−F ),card(S)=j

Pr
(
Y 1(S) ≥ 0card(S),Y 2(S) ≥ 0card(SC)

)
,

and since M1(θ0, S)MT
2 (θ0, S) = 0card(S)×card(SC) (see the second expression of (8)), Y 1(S) and Y 2(S) are

independent, that is

lim
n→∞

Pr
(
SAφ (θ̃(F ), θ̂(E)) ≤ x

)
=

r−card(F )∑
j=0

Pr
(
χ2
r−card(F )−j ≤ x

)
wAj (θ0)

where the expression of wAj (θ0) is (37) because

ΣA
1 (θ0, S) = M1(θ0, S)MT

1 (θ0, S) = QT (θ0, S)IF (θ0)Q(θ0, S) = −R(θ0, S),

ΣA
2 (θ0, S) = M2(θ0, S)MT

2 (θ0, S) = H(θ0, S
C)P (θ0, S)IF (θ0)P T (θ0, S)HT (θ0, S

C)

= H(θ0, S
C)P (θ0, S)HT (θ0, S

C).

The proof of TAφ (θ̂, θ̃(F ), θ̂(E)) is omitted because it is almost immediate from the proof for SAφ (θ̃(F ), θ̂(E))
and taking into account that for some S ∈ F(E − F )

TAφ (θ̂, θ̃(F ), θ̂(E)) = TOφ (θ̂, θ̂(S), θ̂(E)) + oP (1) = SAφ (θ̃(F ), θ̂(E)).

A.4 Proof of Theorem 17

Under HB
Alt it is conditionally established that hi(θ0) = 0 for i ∈ F . No condition is established for i ∈ E − F

and we want to test hi(θ0) = 0, i ∈ E (HB
Null). Hence, either hi(θ0) = 0 or hi(θ0) < 0 can be true for i ∈ R−E.

Since F ⊂ E, it is clear that if HB
Nullis not true is because there exists i ∈ R − F such that hi(θ0) 6= 0. With

respect to the estimators, under HA
Null we know that it holds hi(θ̃(E)) = 0 for i ∈ E, but if i ∈ R − E then

either hi(θ̃(E)) = 0 or hi(θ̃(E)) < 0 can be true. Let S∗(θ0, E) ∈ F(R−E) the “unknown”set of indices such
that hi(θ0) = 0 if i ∈ S∗(θ0, E) and hi(θ0) < 0 if i ∈ R − S∗(θ0, E) ∪ E. Taking into account the consistency
of the MLEs, for n large enough:
a) if S 6⊂ S∗(θ0, E) then θ̃(E) 6= θ̃(S ∪ E) with probability 1;
b) if S ⊂ S∗(θ0, E) then θ̃(E) = θ̃(S ∪ E) with probability 1.
Thus, instead of taking all of the possible subsets of R − E, we shall consider the family of all of the possible
subsets of S∗(θ0, E), denoted by F(S∗(θ0, E)), where S ∈ F(S∗(θ0, E)) is such that hi(θ̃(E)) = 0 for i ∈ S
(hi(θ̃(E)) = 0 for i ∈ E is true by assumption) and hi(θ̃(E)) < 0 for i ∈ S∗(θ0, E) − S ∪ E, or equivalently
θ̃(E) = θ̃(S ∪ E). It is clear that for a particular sample of size n large enough, θ̃(E) = θ̃(S ∪ E) can be true
only for a unique set of indices S ∈ F(S∗(θ0, E)), and thus by applying the Theorem of Total Probability

lim
n→∞

Pr
(
SBφ (θ̂(F ), θ̃(E)) ≤ x

)
= lim
n→∞

∑
S∈F(S∗(θ0,E))

Pr
(
SBφ (θ̂(F ), θ̃(E)) ≤ x, θ̃(E) = θ̃(S ∪ E)

)
,
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where θ̃(S ∪ E) was defined in (14). From the complementary slackness condition in the Karush-Khun-Tucker
Theorem and a similar procedure to one followed in Theorem 12, we have

lim
n→∞

Pr
(
SBφ (θ̂(F ), θ̃(E)) ≤ x

)
= lim
n→∞

∑
S∈F(S∗(θ0,E))

Pr
(
SBφ (θ̂(F ), θ̃(E)) ≤ x, λ̃(S) ≥ 0card(S),h(θ̃(S ∪ E),

S∗(θ0, E)− S)− h(θ0, S
∗(θ0, E)− S) ≤ 0card(S∗(θ0,E)−S)

)
where h(θ,S∗(θ0, E)−S) = (hi(θ))i∈S∗(θ0,E)−S is the subvector of h(θ) that considers only indices in S∗(θ0, E)−
S, and h(θ0, S

∗(θ0, E)− S) = 0card(S∗(θ0,E)−S). The Taylor series expansion of SBφ (θ̂(F ), θ̃(E)) is obtained in
a similar way followed for the proof of Theorem 8, and its expression is

SBφ (θ̂(F ), θ̃(E)) = (
√
n(θ̂(F )− θ̃(E)))TIF (θ0)(

√
n(θ̂(F )− θ̃(E))) + o

(∥∥∥√n(θ̂(F )− θ̃(E))
∥∥∥2
)
.

The first order Taylor series expansion of h(S)(θ) about θ0 taking θ = θ̃(S ∪ F ), leads to

√
n
(
h(θ̃(S ∪ E), S∗(θ0, E)− S)− h(θ0, S

∗(θ0, E)− S)
)

=
√
nH(θ0, S

∗(θ0, E)− S)(θ̃(S ∪ E)− θ0) + o
(∥∥∥√n(θ̃(S ∪ E)− θ0)

∥∥∥) ,
where H(θ,S∗(θ0, E) − S) = ∂

∂θT
h(θ,S∗(θ0, E) − S). On the other hand, from the Karush-Kuhn-Tucker

Theorem it holds for
(
θ̃
T

(S ∪ E), λ̃
T

(S)
)T

∂

∂θT
`n(θ)

∣∣∣∣
θ=θ̃(S∪F )

+HT (θ̃(S ∪ E), S∗(θ0, E)− S)λ̃(S) = 0

h(θ̃(S ∪ E), S∗(θ0, E)− S) = 0

λ̃(S) ≥ 0

and the first two equations are also true for (θ̂
T

(S ∪E), λ̂
T

(S))T according to the Lagrange multipliers. Hence,
θ̃(S ∪ E) = θ̂(S ∪ E) and λ̃(S ∪ E) = λ̂(S ∪ E). From it and (60) it follows that:
• (62) leads to

√
n
(
h(θ̂(S ∪ E), S∗(θ0, E)− S)− h(θ0, S

∗(θ0, E)− S)
)

=
√
nH(θ0, S

∗(θ0, E)− S)P (θ0, S)
∂

∂θ
`1(θ)

∣∣∣∣
θ=θ0

+ oP (1η(θ0,E)−card(S))

= H(θ0, S
∗(θ0, E)− S)P (θ0, S)A(θ0)

T
Z + oP (1η(θ0,E)−card(S)),

where Z ∼ N (0k, Ik) and

P (θ0, S)=I−1
F (θ0) + I−1

F (θ0)HT (θ0, S)R(θ0, S)H(θ0, S)I−1
F (θ0),

R(θ0, S) = −
(
H(θ0, S)I−1

F (θ0)HT (θ0, S)
)−1

;

• from Sen et al. (2010, page 267)

1√
n
λ̂(S) =

√
nQT (θ0, S)

∂

∂θ
`1(θ)

∣∣∣∣
θ=θ0

+ oP (1card(S))

= QT (θ0, S)A(θ0)
T
Z + oP (1card(S)),
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where
Q(θ0, S)=I−1

F (θ0)HT (θ0, S)R(θ0, S);

• under θ̃(E) = θ̂(S ∪ E) (61) leads to

SBφ (θ̂(F ), θ̃(E)) = TOφ (θ̂, θ̂(S ∪ E), θ̂(F )) + oP (1)

=
(
A(θ0) (P (θ0, F )−P (θ0, S ∪ E))A(θ0)

T
Z
)T (

A(θ0) (P (θ0, S ∪ E)− P (θ0, F ))A(θ0)
T
Z
)

+ oP (1),

= ZTA(θ0) (P (θ0, F )−P (θ0, S ∪ E))A(θ0)
T
Z + oP (1).

That is,

lim
n→∞

Pr
(
SBφ (θ̂(F ), θ̃(E)) ≤ x

)
=

∑
S∈F(S∗(θ0,E))

Pr
(
W T

3 (S)W 3(S) ≤ x,W 1(S) ≥ 0card(S),W 2(S) ≥ 0η(θ0,E)−card(S)

)
=

∑
S∈F(S∗(θ0,E))

(
PrW T

3 (S)W 3(S) ≤ x
∣∣∣W 1(S) ≥ 0card(S),W 2(S) ≥ 0η(θ0,E)−card(S)

)
× Pr

(
W 1(S) ≥ 0card(S),W 2(S) ≥ 0η(θ0,E)−card(S)

)
=

∑
S∈F(S∗(θ0,E))

Pr

(
W T

3 (S)W 3(S) ≤ x
∣∣∣∣(W T

1 (S),W T
2 (S)

)T
≥ 0η(θ0,E)

)
× Pr

(
W 1(S) ≥ 0card(S),W 2(S) ≥ 0η(θ0,E)−card(S)

)
,

where

W 1(S) = N1(θ0, S)Z, N1(θ0, S) =QT (θ0, S)A(θ0)
T
,

W 2(S) = N2(θ0, S)Z, N2(θ0, S) =H(θ0, S
∗(θ0, E)− S)P (θ0, S)A(θ0)

T
,

W 3(S) = N3(θ0, S)Z, N3(θ0, S) =A(θ0) (P (θ0, F )−P (θ0, S ∪ E))A(θ0)
T
.

Taking into account properties (8) it holdsN3(θ0, S)NT
2 (θ0, S) =NT

2 (θ0, S) andN3(θ0, S)NT
1 (θ0, S) =0k×card(S),

hence by applying the lemma given in Section A.2

Pr

(
W T

3 (S)W 3(S) ≤ x
∣∣∣∣(W T

1 (S),W T
2 (S)

)T
≥ 0k

)
= Pr

(
χ2
df ≤ x

)
where

df = rank
(
A(θ0) (P (θ0, F )−P (θ0, S ∪ E))A(θ0)

T
)

= trace
(
A(θ0) (P (θ0, F )−P (θ0, S ∪ E))A(θ0)

T
)

= trace(P (θ0, F )A(θ0)
T
A(θ0))− trace(P (θ0, S ∪ E)A(θ0)

T
A(θ0))

= trace(−
(
H(θ0, F )I−1

F (θ0)HT (θ0, F )
)−1

H(θ0, F )I−1
F (θ0)HT (θ0, F ))

− trace(−
(
H(θ0, S ∪ E)I−1

F (θ0)HT (θ0, S)
)−1

H(θ0, S ∪ E)I−1
F (θ0)HT (θ0, S ∪ E))

= −card(F ) + card(S) + card(E).
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Finally,

lim
n→∞

Pr
(
SBφ (θ̂(F ), θ̃(E)) ≤ x

)
=

∑
S∈F(S∗(θ0,E))

Pr
(
χ2

card(S)+card(E)−card(F ) ≤ x
)

Pr
(
W 1(S) ≥ 0card(S),W 2(S) ≥ 0η(θ0,E)−card(S)

)

=

card(S∗(θ0,E))∑
j=0

Pr
(
χ2
j+card(E)−card(F ) ≤ x

) ∑
S∈F(S∗(θ0,E)),card(S)=j

Pr
(
W 1(S) ≥ 0card(S),W 2(S) ≥ 0η(θ0,E)−card(S)

)
,

and sinceN1(θ0, S)NT
2 (θ0, S) = 0card(S)×card(S∗(θ0,E)−S) (see the second expression of (8)),W 1(S) andW 2(S)

are independent, that is

lim
n→∞

Pr
(
SBφ (θ̂(F ), θ̃(E)) ≤ x

)
=

η(θ0,E)∑
j=0

Pr
(
χ2
j+card(E)−card(F ) ≤ x

)
wBj (θ0)

where the expression of wBj (θ0) is (40) because

ΣB
1 (θ0, S) = N1(θ0, S)NT

1 (θ0, S) = QT (θ0, S)IF (θ0)Q(θ0, S) = −R(θ0, S),

ΣB
2 (θ0, S) = N2(θ0, S)NT

2 (θ0, S) = H(θ0, S
∗(θ0, E)− S)P (θ0, S)IF (θ0)P T (θ0, S)HT (θ0, S

∗(θ0, E)− S)

= H(θ0, S
∗(θ0, E)− S)P (θ0, S)HT (θ0, S

∗(θ0, E)− S).

The proof of TBφ (θ̂, θ̂(F ), θ̃(E)) is omitted because it is almost immediate from the proof for SBφ (θ̂(F ), θ̃(E))
and taking into account

TBφ (θ̂, θ̂(F ), θ̃(E)) = TOφ (θ̂, θ̂(S ∪ F ), θ̂(E)) + oP (1) = SBφ (θ̂(F ), θ̃(E)).

A.5 Power divergence based test-statistics with populations in the exponential
family

Taking into account (32), the expressions of the power divergence based test-statistics for testing (10)-(11)-(12)
with populations in the exponential family (25), are as follows for λ /∈ {−1, 0}

S̃Oφλ(θ̂(F ), θ̂(E)) = 2
λ(1+λ)

(∏g
i=1d∗φλ(fθ̂i(F ), fθ̂i(E))− 1

)
, (67)

S̃Aφλ(θ̃(F ), θ̂(E)) = 2
λ(1+λ)

(∏g
i=1d∗φλ(fθ̃i(F ), fθ̂i(E))− 1

)
, (68)

S̃Bφλ(θ̂(F ), θ̃(E)) = 2
λ(1+λ)

(∏g
i=1d∗φλ(fθ̂i(F ), fθ̃i(E))− 1

)
, (69)

T̃Oφ (θ̂, θ̂(F ), θ̂(E)) = 2
λ(1+λ)

(∏g
i=1d∗φλ(fθ̂i , fθ̂i(E))−

∏g
i=1d∗φλ(fθ̂i , fθ̂i(F ))

)
, (70)

T̃Aφ (θ̂, θ̃(F ), θ̂(E)) = 2
λ(1+λ)

(∏g
i=1d∗φλ(fθ̂i , fθ̂i(E))−

∏g
i=1d∗φλ(fθ̂i , fθ̃i(F ))

)
, (71)

T̃Bφ (θ̂, θ̂(F ), θ̃(E)) = 2
λ(1+λ)

(∏g
i=1d∗φλ(fθ̂i , fθ̃i(E))−

∏g
i=1d∗φλ(fθ̂i , fθ̂i(F ))

)
, (72)

where

d∗φλ(fθ, fθ0) = qλ+1(θ)
qλ(θ0)

∫
X
r(x) exp

{
((λ+ 1)s(θ)− λs(θ0))

T
t(x)

}
dx, x ∈ X . (73)
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A.6 Weights computation for Section 6

For testing the isotonic binomial proportions we have

H(θ0) = (H1(θ0),H2(θ0),H3(θ0),H4(θ0)) =

1 −1 0 0
0 1 −1 0
0 0 1 −1

 ,

I−1
F (θ0) = θ0(1− θ0)


1
ν1

0 0 0

0 1
ν2

0 0

0 0 1
ν3

0

0 0 0 1
ν4

 =


5 0 0 0
0 30

7 0 0
0 0 15

4 0
0 0 0 10

3

 .

In particular, for testing (56), we have F = {2}, E = {1, 2, 3}, F(E − F ) = {∅, {1}, {3}, {1, 3}},

wA0 (θ0) = Pr
(
N
(
02,Σ

A
2 (θ0,∅)

)
≥ 02

)
= Pr

(
N (0, θ0(1− θ0) 85

12 )
)

Pr
(
N (0, θ0(1− θ0) 65

7 )
)

=
1

2

1

2
=

1

4
,

where

ΣA
2 (θ0,∅) = θ0(1− θ0)

(ν1+ν2
ν1ν2

0

0 ν3+ν4
ν3ν4

)
= θ0(1− θ0)

(
65
7 0
0 85

12

)
,

wA2 (θ0) = Pr
(
N
(
02,Σ

A
1 (θ0, {1, 3})

)
≥ 02

)
= Pr

(
N (0,

1

θ0(1− θ0)
12
85 )

)
Pr

(
N (0,

1

θ0(1− θ0)
7
65 )

)
=

1

2

1

2
=

1

4
,

where

ΣA
1 (θ0, {1, 3}) =

1

θ0(1− θ0)

( ν1ν2
ν1+ν2

0

0 ν3ν4
ν3+ν4

)
=

1

θ0(1− θ0)

(
7
65 0
0 12

85

)
,

and

wA1 (θ0) = Pr
(
N (0,ΣA

1 (θ0, {1}))
)

Pr
(
N (0,ΣA

2 (θ0, {1}))
)

+ Pr
(
N (0,ΣA

1 (θ0, {3}))
)

Pr
(
N (0,ΣA

2 (θ0, {3}))
)

=
1

2

1

2
+

1

2

1

2
=

1

2
.

On the other hand, for testing (57), we have F = ∅, E = {1, 2, 3}, F(E) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, E},
and wA0 (θ0) = Pr

(
N (03,Σ

A
2 (θ0,∅)) ≥ 03

)
= 0.04232627, wA3 (θ0) = Pr

(
N (03,Σ

A
1 (θ0, E)) ≥ 03

)
= 0.2484738,

wA1 (θ0) = 1
2

(
Pr
(
N
(
02,Σ

A
2 (θ0, {1})

)
≥ 02

)
+ Pr(N (02,Σ

A
2 (θ0, {2}) ≥ 02) + Pr

(
N (02,Σ

A
2 (θ0, {3}) ≥ 02

))
=

0.2550019, wA2 (θ0) = 1− wA0 (θ0)− wA1 (θ0)− wA3 (θ0) = 0.454198, where

ΣA
2 (θ0,∅) = θ0(1− θ0)

ν1+ν2
ν1ν2

− 1
ν2

0

− 1
ν2

ν2+ν3
ν2ν3

− 1
ν3

0 − 1
ν3

ν3+ν4
ν3ν4

 = θ0(1− θ0)

 65
7 − 30

7 0
− 30

7
225
28 − 15

4
0 − 15

4
85
12

 , (74)

ΣA
1 (θ0, E) =

1

θ0(1− θ0)


ν1(ν2+ν3+ν4)
ν1+ν2+ν3+ν4

ν1(ν3+ν4)
ν1+ν2+ν3+ν4

ν1ν4
ν1+ν2+ν3+ν4

ν1(ν3+ν4)
ν1+ν2+ν3+ν4

(ν3+ν4)(ν1+ν2)
ν1+ν2+ν3+ν4

ν4(ν1+ν2)
ν1+ν2+ν3+ν4

ν1ν4
ν1+ν2+ν3+ν4

ν4(ν1+ν2)
ν1+ν2+ν3+ν4

ν4(ν1+ν2+ν3)
ν1+ν2+ν3+ν4
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1

θ0(1− θ0)
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17
150

3
50

17
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900

13
100

3
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13
100

21
100

 ,

ΣA
2 (θ0, {1}) = θ0(1− θ0)

( ν1+ν2+ν3
ν3(ν1+ν2) − 1

ν3

− 1
ν3

ν3+ν4
ν3ν4

)
= θ0(1− θ0)

(
315
52 − 15

4
− 15

4
85
12

)
,

ΣA
2 (θ0, {2}) = θ0(1− θ0)

(
ν1+ν2+ν3
ν1(ν2+ν3) − 1

ν2+ν3

− 1
ν2+ν3

ν2+ν3+ν4
ν4(ν2+ν3)

)
= θ0(1− θ0)

(
7 −2
−2 16

3

)
,

ΣA
2 (θ0, {3}) = θ0(1− θ0)

(ν1+ν2
ν1ν2

− 1
ν2

− 1
ν2

ν2+ν3+ν4
ν2(ν3+ν4)

)
= θ0(1− θ0)

(
65
7 − 30

7
− 30

7
720
119

)
.
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There is available an R package called ‘mvtnorm’ for computing normal orthants via numerical integrals
(http://CRAN.R-project.org/package=mvtnorm). Note that from property v) in page 11 we can avoid the
constants (θ0(1 − θ0) and 1

θ0(1−θ0) ) for computing normal orthants.The specific R-commands and outputs for
the simulation study are:

> library(mvtnorm)
> m <- 3
> cov <- matrix(c(65/7,-30/7,0,-30/7,225/28,-15/4,0,-15/4,85/12),nrow=3)
> pmvnorm(mean = rep(0,m), sigma=cov, lower = rep(0,m), upper = rep(Inf,m))
[1] 0.04232627
attr(,"error")
[1] 8.327814e-05
attr(,"msg")
[1] "Normal Completion"
> m <- 3
> cov <- matrix(c(4/25,17/150,3/50,17/150,221/900,13/100,3/50,13/100,21/100),nrow=3)
> pmvnorm(mean = rep(0,m), sigma=cov, lower = rep(0,m), upper = rep(Inf,m))
[1] 0.2484738
attr(,"error")
[1] 0.0001767959
attr(,"msg")
[1] "Normal Completion"
> library(mvtnorm)
> m <- 2
> cov <- matrix(c(315/52,-15/4,-15/4,85/12),nrow=2)
> pmvnorm(mean = rep(0,m), sigma=cov, lower = rep(0,m), upper = rep(Inf,m))
[1] 0.1529911
attr(,"error")
[1] 1e-15
attr(,"msg")
[1] "Normal Completion"
> m <- 2
> cov <- matrix(c(7,-2,-2,7),nrow=2)
> pmvnorm(mean = rep(0,m), sigma=cov, lower = rep(0,m), upper = rep(Inf,m))
[1] 0.2038846
attr(,"error")
[1] 1e-15
attr(,"msg")
[1] "Normal Completion"
> m <- 2
> cov <- matrix(c(65/7,-30/7,-30/7,720/119),nrow=2)
> pmvnorm(mean = rep(0,m), sigma=cov, lower = rep(0,m), upper = rep(Inf,m))
[1] 0.1531281
attr(,"error")
[1] 1e-15
attr(,"msg")
[1] "Normal Completion"

http://CRAN.R-project.org/package=mvtnorm
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We can compare these values with the exact values of the weights obtained from the explicitly that are
available (only for r = 3 at most)

wA0 (θ0) = 1
4π (2π − arccos ρ12 − arccos ρ13 − arccos ρ23) = 0.04229179,

wA2 (θ0) = 1
2 − w

A
0 (θ0) = 0.4577082,

wA1 (θ0) = 1
4π (3π − arccos ρ12·3 − arccos ρ13·2 − arccos ρ23·1) = 0.2515227,

wA3 (θ0) = 1
2 − w

A
1 (θ0) = 0.2484773,

which depend on the marginal and conditional correlations

ρ12 = σ12√
σ11σ22

= − 4√
65
, ρ12·3 = ρ12−ρ13ρ32√

(1−ρ213)(1−ρ232)
= −

√
221
26 ,

ρ13 = σ13√
σ11σ33

= 0, ρ13·2 = ρ13−ρ12ρ23√
(1−ρ212)(1−ρ223)

= −
√

21
14 ,

ρ23 = σ23√
σ22σ33

= −
√

1785
85 , ρ23·1 = ρ23−ρ21ρ13√

(1−ρ221)(1−ρ213)
= −

√
4641
119 ,

associated with the variance-covariance matrix ΣA
2 (θ0,∅) = (σij)i,j∈E , given by (74). The simulation procedure

based on generating normal multivariate random variables and counting the proportions of times that the MLE
of the mean vector has exactly a specific quantity of non negative components, is also an accurate method for
weights computation (see Section 3.5 in Sen and Silvapulle (2005)).

A.7 Tables of the Simulation study

s λ S̃λ T̃λ
˜̃
Sλ

˜̃
Tλ Sλ Tλ

1 0 0.034 0.034 0.034 0.034 0.034 0.034
1 2/3 0.037 0.123 0.004 0.004 0.004 0.004
1 1 0.238 0.586 0.034 0.034 0.034 0.034
5 0 0.038 0.038 0.038 0.038 0.038 0.038
5 2/3 0.093 0.282 0.022 0.020 0.022 0.020
5 1 0.179 0.373 0.029 0.025 0.029 0.027
10 0 0.066 0.066 0.066 0.066 0.066 0.066
10 2/3 0.141 0.255 0.031 0.029 0.034 0.031
10 1 0.199 0.341 0.030 0.023 0.032 0.028
15 0 0.060 0.060 0.060 0.060 0.060 0.060
15 2/3 0.137 0.246 0.037 0.036 0.040 0.038
15 1 0.188 0.339 0.032 0.029 0.036 0.034
20 0 0.054 0.054 0.054 0.054 0.054 0.054
20 2/3 0.136 0.245 0.041 0.039 0.043 0.041
20 1 0.186 0.338 0.034 0.033 0.039 0.039

s λ S̃λ T̃λ
˜̃
Sλ

˜̃
Tλ Sλ Tλ

1 0 0.098 0.098 0.098 0.098 0.098 0.098
1 2/3 0.110 0.223 0.018 0.018 0.018 0.018
1 1 0.419 0.731 0.098 0.098 0.098 0.098
5 0 0.245 0.245 0.245 0.245 0.245 0.245
5 2/3 0.423 0.673 0.169 0.162 0.169 0.163
5 1 0.579 0.763 0.177 0.155 0.180 0.171
10 0 0.555 0.555 0.555 0.555 0.555 0.555
10 2/3 0.726 0.811 0.375 0.371 0.384 0.382
10 1 0.799 0.871 0.338 0.320 0.373 0.354
15 0 0.675 0.675 0.675 0.675 0.675 0.675
15 2/3 0.833 0.888 0.576 0.576 0.590 0.592
15 1 0.881 0.929 0.518 0.529 0.570 0.568
20 0 0.768 0.768 0.768 0.768 0.768 0.768
20 2/3 0.901 0.933 0.708 0.705 0.717 0.716
20 1 0.932 0.961 0.659 0.667 0.705 0.705

Table 3: Simulated sizes (left) and powers (right) for scenario A (nominal size=0.05).



Hypothesis Testing in a Generic Nesting Framework with General Population Distributions 38

s λ S̃λ T̃λ
˜̃
Sλ

˜̃
Tλ Sλ Tλ

1 0 0.039 0.039 0.039 0.039 0.039 0.039
1 2/3 0.095 0.283 0.022 0.020 0.022 0.020
1 1 0.180 0.372 0.029 0.025 0.029 0.027
5 0 0.049 0.049 0.049 0.049 0.049 0.049
5 2/3 0.133 0.244 0.039 0.038 0.041 0.041
5 1 0.186 0.339 0.035 0.032 0.039 0.039
10 0 0.046 0.046 0.046 0.046 0.046 0.046
10 2/3 0.140 0.245 0.043 0.040 0.044 0.043
10 1 0.185 0.345 0.038 0.036 0.043 0.042
15 0 0.046 0.046 0.046 0.046 0.046 0.046
15 2/3 0.143 0.254 0.041 0.041 0.045 0.045
15 1 0.190 0.355 0.039 0.038 0.044 0.044
20 0 0.046 0.046 0.046 0.046 0.046 0.046
20 2/3 0.142 0.247 0.043 0.042 0.045 0.046
20 1 0.183 0.347 0.040 0.039 0.046 0.046

s λ S̃λ T̃λ
˜̃
Sλ

˜̃
Tλ Sλ Tλ

1 0 0.153 0.153 0.153 0.153 0.153 0.153
1 2/3 0.299 0.536 0.105 0.098 0.105 0.098
1 1 0.439 0.631 0.112 0.097 0.113 0.106
5 0 0.511 0.511 0.511 0.511 0.511 0.511
5 2/3 0.712 0.793 0.467 0.461 0.475 0.472
5 1 0.787 0.858 0.439 0.435 0.467 0.464
10 0 0.713 0.713 0.713 0.713 0.713 0.713
10 2/3 0.880 0.917 0.704 0.700 0.706 0.706
10 1 0.915 0.949 0.686 0.680 0.705 0.704
15 0 0.819 0.819 0.819 0.819 0.819 0.819
15 2/3 0.937 0.958 0.804 0.803 0.817 0.817
15 1 0.957 0.975 0.798 0.797 0.817 0.817
20 0 0.869 0.869 0.869 0.869 0.869 0.869
20 2/3 0.957 0.970 0.860 0.859 0.866 0.867
20 1 0.970 0.983 0.855 0.853 0.872 0.871

Table 4: Simulated sizes (left) and powers (right) for scenario B (nominal size=0.05).

s λ S̃λ T̃λ
˜̃
Sλ

˜̃
Tλ Sλ Tλ

1 0 0.067 0.067 0.067 0.067 0.067 0.067
1 2/3 0.142 0.254 0.032 0.030 0.035 0.032
1 1 0.198 0.339 0.030 0.023 0.033 0.029
5 0 0.047 0.047 0.047 0.047 0.047 0.047
5 2/3 0.138 0.243 0.044 0.041 0.044 0.044
5 1 0.182 0.343 0.039 0.037 0.044 0.043
10 0 0.049 0.049 0.049 0.049 0.049 0.049
10 2/3 0.143 0.248 0.046 0.044 0.047 0.047
10 1 0.186 0.347 0.042 0.041 0.048 0.048
15 0 0.047 0.047 0.047 0.047 0.047 0.047
15 2/3 0.139 0.254 0.047 0.045 0.048 0.048
15 1 0.192 0.350 0.042 0.042 0.048 0.049
20 0 0.049 0.049 0.049 0.049 0.049 0.049
20 2/3 0.140 0.258 0.046 0.046 0.047 0.050
20 1 0.184 0.357 0.045 0.043 0.049 0.052

s λ S̃λ T̃λ
˜̃
Sλ

˜̃
Tλ Sλ Tλ

1 0 0.344 0.344 0.344 0.344 0.344 0.344
1 2/3 0.520 0.632 0.227 0.220 0.235 0.229
1 1 0.609 0.720 0.207 0.188 0.227 0.211
5 0 0.744 0.744 0.744 0.744 0.744 0.744
5 2/3 0.897 0.931 0.735 0.732 0.737 0.737
5 1 0.930 0.960 0.717 0.711 0.737 0.736
10 0 0.889 0.889 0.889 0.889 0.889 0.889
10 2/3 0.965 0.976 0.880 0.879 0.886 0.887
10 1 0.965 0.976 0.880 0.879 0.886 0.887
15 0 0.922 0.922 0.922 0.922 0.922 0.922
15 2/3 0.976 0.984 0.919 0.918 0.922 0.923
15 1 0.985 0.991 0.910 0.911 0.924 0.925
20 0 0.911 0.911 0.911 0.911 0.911 0.911
20 2/3 0.975 0.983 0.913 0.911 0.916 0.918
20 1 0.981 0.990 0.906 0.905 0.919 0.923

Table 5: Simulated sizes (left) and powers (right) for scenario C (nominal size=0.05).
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