
Universidad Carlos III de Madrid

TESIS DOCTORAL

Planning and Learning
under Uncertainty

Autor

Sergio Jiménez Celorrio
Directores

Dr. D. Daniel Borrajo Millán y Dr. D.Fernando Fernández
Rebollo

Departamento

Departamento de Informática. Escuela Politécnica Superior

Leganés, Marzo 2011

TESIS DOCTORAL

Departamento de Informática. Escuela Politécnica Superior

Universidad Carlos III de Madrid

Planning and Learning
under Uncertainty

Presentada por: Sergio Jiménez Celorrio
Dirigida por: Dr. D. Daniel Borrajo Millán y Dr. D.Fernando Fernández Rebollo

Para la obtención del grado de DOCTOR EN INFORMÁTICA por la
UNIVERSIDAD CARLOS III DE MADRID

Escuela Politécnica Superior
Leganés, España

2011

Autor: Sergio Jiménez Celorrio

Tı́tulo: Planning and Learning under Uncertainty

Grado: Doctor

Departamento: Informática

Universidad: Escuela Politécnica Superior, Universidad Carlos III de Madrid

Firma del autor

En Leganés a ... de 2011

PLANNING AND LEARNING UNDER UNCERTAINTY

Autor: Sergio Jiménez Celorrio

Directores: Dr. D. Daniel Borrajo Millán y Dr. D.Fernando Fernández Rebollo

Tribunal Calificador Firma

Presidente:

Vocal:

Vocal:

Vocal:

Secretario:

Calificación: ..

Leganés, de de 2011

Contents

Acknowledgements xv

Resumen xvii

Abstract xix

1 Introduction 1
1.1 Overview . 1
1.2 Objectives . 3
1.3 Reader’s guide to the thesis . 4

I State of the art 5

2 Classical planning 7
2.1 Introduction . 7
2.2 The classical planning task . 8
2.3 The conceptual model . 9
2.4 The representation languages . 9
2.5 The algorithms . 13
2.6 The implementations . 17
2.7 Discussion . 19

3 Learning for classical planning 23
3.1 Introduction . 23
3.2 Learning techniques . 25

3.2.1 Inductive Logic Programming 25
3.2.2 Explanation Based Learning 29
3.2.3 Case Based Reasoning 29

3.3 Learning planning search control 30
3.3.1 Learning macro-actions 30
3.3.2 Learning planning cases 32
3.3.3 Learning control rules 34
3.3.4 Learning generalized policies 35

vii

viii CONTENTS

3.3.5 Learning hierarchical knowledge 36
3.3.6 Learning heuristic functions 39

3.4 Learning planning domain models 40
3.5 Discussion . 41

4 Planning under uncertainty 45
4.1 Introduction . 45
4.2 The conformant planning task 45

4.2.1 The conceptual model 46
4.2.2 The representation language 47
4.2.3 The algorithms . 47
4.2.4 The implementations . 49

4.3 The contingent planning task . 50
4.3.1 The conceptual model 51
4.3.2 The representation languages 52
4.3.3 The algorithms . 52
4.3.4 The implementations . 53

4.4 The probabilistic planning task 54
4.4.1 The conceptual model 54
4.4.2 The representation languages 55
4.4.3 The algorithms . 56
4.4.4 The implementations . 59

4.5 The conformant probabilistic planning task 60
4.5.1 The conceptual model 60
4.5.2 The representation language 61
4.5.3 The algorithms . 61
4.5.4 The implementations . 62

4.6 The contingent probabilistic planning task 63
4.6.1 The conceptual model 63
4.6.2 The representation language 64
4.6.3 The algorithms . 64
4.6.4 The implementations . 64

4.7 Interleaving planning and execution 64
4.7.1 Planning . 65
4.7.2 Execution . 66
4.7.3 Planning and execution in autonomous systems 67

4.8 Discussion . 70

5 Learning for planning under uncertainty 73
5.1 Introduction . 73
5.2 Learning techniques . 74

5.2.1 Learning Stochastic Logic Programs 74
5.2.2 Learning Bayesian Logic Programs 76
5.2.3 Learning Markov Logic Networks 77

CONTENTS ix

5.2.4 Reinforcement Learning 77
5.3 Learning planning search control 81
5.4 Learning planning domain models 82
5.5 Discussion . 84

II Integrating planning, execution and learning for planning un-
der uncertainty 85

6 Learning instances success for robust planning 87
6.1 Introduction . 87
6.2 Planning . 87
6.3 Execution . 89
6.4 Learning . 89
6.5 Exploitation of the learned knowledge 90
6.6 Evaluation . 91
6.7 Discussion . 93

7 PELA: Planning, Execution and Learning Architecture 97
7.1 Introduction . 97
7.2 The Planning, Execution and Learning architecture 98
7.3 Planning . 99
7.4 Execution . 100

7.4.1 Preliminary approach . 100
7.4.2 Current approach . 102

7.5 Learning . 103
7.5.1 Preliminary Approach 103
7.5.2 Current Approach . 106

7.6 Exploitation of the learned knowledge 109
7.6.1 Compilation to a Metric Representation 109
7.6.2 Compilation to a probabilistic representation 110

7.7 Evaluation . 112
7.7.1 The domains . 113
7.7.2 Correctness of the PELA models 116
7.7.3 PELA off-line performance 121
7.7.4 PELA on-line performance 127

7.8 Discussion . 133

8 Learning actions durations with PELA 139
8.1 Introduction . 139
8.2 Learning actions durations with PELA 139

8.2.1 Planning . 140
8.2.2 Execution . 140
8.2.3 Learning . 141

x CONTENTS

8.2.4 Exploitation of the learned knowledge 142
8.3 Evaluation . 143

8.3.1 Correctness of the duration models 144
8.3.2 Performance of the duration models 145

8.4 Discussion . 148

III Conclusions and Future Work 151

9 Conclusions 153
9.1 Summary . 153
9.2 Contributions . 154

10 Future Work 157

Bibliography 174

List of Figures

1.1 The Shakey robot (Nilsson, 1984) at the Stanford Research Institute. 2

2.1 Overview of a general problem solver. 7
2.2 Example of a classical planning task. 9
2.3 STRIPS representation for the action unstack from the Blocksworld. 11
2.4 ADL representation for the action unstack from the Blocksworld. 11
2.5 PDDL representation for the action unstack from the Blocksworld. 13

3.1 Integration of ML within classical planning. 23
3.2 Inputs for learning the grandfather(X,Y) concept with ILP. . 25
3.3 Hypothesis learned for the grandfather concept with ILP. 26
3.4 Relational decision tree for the concept of grandfather(X,Y). 28
3.5 Macro-action induced by MacroFF for the Depots domain. 31
3.6 Cases learned by the CABALA system for the Depots domain. . . 32
3.7 Control rule for the Depots domain. 34
3.8 A generalized policy for the Blocksworld domain. 35
3.9 Method for hierarchical planning in the Depots domain. 37

4.1 Planning under uncertainty paradigms. 46
4.2 Example of a conformant planning problem. 46
4.3 Problem from the Blocksworld of the conformant track of IPC. . . 48
4.4 Example of a contingent planning problem. 50
4.5 Sensing action to check the state of the robot hand in the Blocksworld. 52
4.6 Example of a probabilistic planning problem. 54
4.7 PPDDL representation for the action unstack from Blocksworld. 56
4.8 Overview of an architecture for interleaving planning and execution. 65
4.9 Example of Triangle Table for the Blocksworld. 67
4.10 Example of a mission plan for the Mars Rovers (Bresina et al., 2005). 68
4.11 Path-planning for (NAVIGATE WAYPOINT2 WAYPOINT1). . 69
4.12 Generic Architecture for an autonomous system. 69

5.1 Stochastic Logic Program for the blood type inheritance model. . 75
5.2 Bayesian Logic Program for the blood type inheritance model. . . 76
5.3 Example of a MLN. 77

xi

xii LIST OF FIGURES

5.4 Relational regression tree for the goals on(X,Y) in the Blocksworkd. 80
5.5 Relational decision tree for the goals on(X,Y) in the Blocksworkd. . 81

6.1 Architecture for learning instances success. 88
6.2 The reasoning cycle of the PRODIGY planner. 88
6.3 Algorithm for executing plans and updating the robustness table. . 89
6.4 Algorithm for updating the robustness table with a new execution. 90
6.5 Control rule for preferring the best day to visit a museum. 91
6.6 Example of PRODIGY planning guided by control rules. 91
6.7 Analysis of the problems complexity in the Tourist domain. 93
6.8 Evolution of the number of plan steps successfully executed. . . . 94
6.9 Plan steps successfully executed by the two planning configurations. 95

7.1 Overview of the planning, execution and learning architecture. . . 99
7.2 Two execution episodes in the Slippery-Gripper domain. 101
7.3 Executes a plan and classifies actions as SUCCESS or FAILURE. 101
7.4 Execution episodes for the move-car action in the tireworld. . . 102
7.5 Extended execution algorithm for domains with dead-ends. 103
7.6 Rule induced by ALEPH for action unstack(block,block). 104
7.7 Language bias for the operator unstack(block,block). . . 105
7.8 Learning examples for the action unstack(block,block). . 105
7.9 SLP induced for action unstack from the Slippery-gripper domain.106
7.10 Relational decision tree for move-car(Origin,Destiny). . 107
7.11 Language bias for the tireworld. 108
7.12 Knowledge base after the executions of Figure 7.4. 108
7.13 Compilation into a metric representation. 111
7.14 Compilation into a probabilistic representation. 112
7.15 Interchange of messages between a planner and MDPSim. 113
7.16 Integration of PELA with the MDPSim simulator. 114
7.17 Topology of the domains chosen for the evaluation of PELA. . . . 116
7.18 Error of the learned models in the Blocksworld domain. 118
7.19 Model error in the Slippery-gripper and Rovers domains. 119
7.20 Model error in the Openstacks and the Triangle-tireworld domains. 120
7.21 Error of the learned models in the Satellite domain. 121
7.22 Off-line performance of PELA in the Blocksworld. 123
7.23 Off-line performance of PELA in the Slippery-gripper and the Rovers

domains. 124
7.24 Off-line performance of PELA in the Openstacks domain. 125
7.25 Off-line performance of PELA in the Triangle-tireworld and Satel-

lite domains. 126
7.26 Summary of the problems solved by the off-line configurations of

PELA. 127
7.27 Summary of the planning time of the four off-line configurations

of PELA. 127

LIST OF FIGURES xiii

7.28 Actions used for solving the problems by the off-line configura-
tions of PELA. 128

7.29 Planning in the Blocksworld with models learned on-line by PELA. 130
7.30 Planning in the Slippery-gripper with models learned on-line by

PELA. 131
7.31 Planning in the Rovers with models learned on-line by PELA. . . . 132
7.32 Planning in the Openstacks with models learned on-line by PELA. 133
7.33 Planning in the Triangle-tireworld with models learned on-line by

PELA. 134
7.34 Planning in the Satellite with models learned on-line by PELA. . . 135
7.35 Summary of the number of problems solved by the off-line config-

urations of PELA. 136
7.36 Summary of the computation time used by the four off-line config-

urations of PELA. 136

8.1 Overview of the action duration modelling with PELA. 140
8.2 Regression tree induced for the Blocksworld action unstack. . . 141
8.3 Example of language bias for action unstack from the Blocksworld.142
8.4 Knowledge base corresponding to two executions of action unstack.142
8.5 The resulting PDDL action with conditional effects. 143
8.6 Example of STRIPS-like action initially considered by PELA. . . . 143
8.7 Deterministic configuration of the simulator for action unstack. 144
8.8 Situation-dependent configuration of the simulator. 145
8.9 Stochastic configuration of the simulator for action unstack. . . 146
8.10 Duration model for the deterministic configuration of the simulator. 146
8.11 Duration model for the situation-dependent configuration of the

simulator. 147
8.12 Duration model for the stochastic configuration of the simulator. . 147
8.13 Execution duration of plans for the 3 configurations of the simulator.149

xiv LIST OF FIGURES

Acknowledgements

First, I would like to thank Daniel Borrajo and Fernando Fernández for supervising
my PhD studies and for guaranteeing funds during the entire thesis course. Thanks
also to James Cussens, Maria Fox and Derek Long –visiting your research groups
was a turning point in my PhD.

Special thanks to all the people that contributed to this work. Thanks to Jesus
Lanchas, Amanda and Andrew Coles for their collaborations and thanks to Emil
Keyder for making his planner available.

Thanks to all the PLG members (Mr.Bedia and Mr.Manzano included), work-
ing with you has been fantastic. Thanks Carlos, for our talks in the corridors,
Raquel and Susana for our AI meals and Tomas. Tomas I want to be like you.

Of course, thanks to Lamarta, Eljose, the sunset crew and the frenchie one for
sharing real moments with me throughout these years of work.

Last but not least, I want to thank my parents, B.O.R.J.A., the Arganda-Carreras
Bunch, ojos-verdes and Acheipe Acheope for their unconditional support.

I dedicate this thesis to the colleagues that stopped their scientific careers be-
cause of the lack of funds.

xv

xvi

Resumen

La Planificación Automática es la rama de la Inteligencia Artificial que estudia los
procesos computacionales para la sı́ntesis de conjuntos de acciones cuya ejecución
permita alcanzar unos objetivos dados. Históricamente, la investigación en esta
rama ha tratado de resolver problemas teóricos en entornos controlados en los que
conocı́a tanto el estado actual del entorno como el resultado de ejecutar acciones en
él. En la última década, el desarrollo de aplicaciones de planificación (gestión de
las tareas de extinción de incendios forestales (Castillo et al., 2006), control de las
actividades de la nave espacial Deep Space 1 (Nayak et al., 1999), planificación de
evacuaciones de emergencia (Muñoz-Avila et al., 1999)) ha evidenciado que tales
supuestos no son ciertos en muchos problemas reales.

Consciente de ello, la comunidad investigadora ha multiplicado sus esfuerzos
para encontrar nuevos paradigmas de planificación que se ajusten mejor a este tipo
de problemas. Estos esfuerzos han llevado al nacimiento de una nueva área den-
tro de la Planificación Automática, llamada planificación con incertidumbre. Sin
embargo, los nuevos planificadores para dominios con incertidumbre aún presen-
tan dos importantes limitaciones: (1) Necesitan modelos de acciones detallados
que contemplen los posibles resultados de ejecutar cada acción. En la mayorı́a
de problemas reales es difı́cil obtener modelos de este tipo. (2) Presentan fuertes
problemas de escalabilidad debido a la explosión combinatoria que provoca la com-
plejidad de los modelos de acciones que manejan.

En esta Tesis se define un paradigma de planificación capaz de generar, de
forma eficiente y escalable, planes robustos en dominios con incertidumbre aunque
no se disponga de modelos de acciones completamente detallados. La Tesis que se
defiende es que la integración de técnicas de aprendizaje automático relacional con
los procesos de decisión y ejecución permite desarrollar sistemas de planificación
capaces de enriquecer automáticamente su modelo de acciones con información
adicional que les ayuda a encontrar planes más robustos. Los beneficios de esta in-
tegración son evaluados experimentalmente mediante una comparación con plani-
ficadores probabilı́sticos del estado del arte los cuales no modifican su modelo de
acciones.

xvii

xviii

Abstract

Automated Planning is the component of Artificial Intelligence that studies the
computational process of synthesizing sets of actions whose execution achieves
some given objectives. Research on Automated Planning has traditionally fo-
cused on solving theoretical problems in controlled environments. In such envi-
ronments both, the current state of the environment and the outcome of actions,
are completely known. The development of real planning applications during the
last decade (planning fire extinction operations (Castillo et al., 2006), planning
spacecraft activities (Nayak et al., 1999), planning emergency evacuation actions
(Muñoz-Avila et al., 1999)) has evidenced that these two assumptions are not true
in many real-world problems.

The planning research community is aware of this issue and during the last
years, it has multiply its efforts to find new planning systems able to address these
kinds of problems. All these efforts have created a new field in Automated Planning
called planning under uncertainty. Nevertheless, the new systems suffer from two
limitations. (1) They precise accurate action models, though the definition by hand
of accurate action models is frequently very complex. (2) They present scalability
problems due to the combinatorial explosion implied by the expressiveness of its
action models.

This thesis defines a new planning paradigm for building, in an efficient and
scalable way, robust plans in domains with uncertainty though the action model
is incomplete. The thesis is that, the integration of relational machine learning
techniques with the planning and execution processes, allows to develop planning
systems that automatically enrich their initial knowledge about the environment
and therefore find more robust plans. An empirical evaluation illustrates these
benefits in comparison with state-of-the-art probabilistic planners which use static
actions models.

xix

xx

Chapter 1

Introduction

This thesis work belongs to the area of Automated Planning in Artificial Intelli-
gence. More specifically, it approaches the task of synthesizing plans in environ-
ments with uncertainty and how machine learning can assist in this task.

1.1 Overview

Planning is the capability of human-intelligence that concerns with the choice and
organization of actions by anticipating their outcomes. As an example imagine
you arrange a weekend trip to Paris. In this situation you plan, constrained by the
money, the time and the knowledge you have, how to get there, which places to
visit, where to sleep, etc. This is really a complex intellectual capability: the world
where we live changes continuously and the vision we have of it is limited.

Automated Planning (AP) is the branch of Artificial Intelligence (AI) that stud-
ies the computational synthesis of sets of actions to carry out a given task. AP arose
in the late ’50s from converging studies into state-space search, theorem proving
and control theory to solve the practical needs of robotics. The STanford Research
Institute Problem Solver (STRIPS) (Fikes and Nilsson, 1971), developed for con-
trolling the autonomous robot SHAKEY (Figure 1.1), perfectly illustrates the inter-
action of these influences. Since the SHAKEY’S days, an AP task is defined as: (1)
the state-transition function of a dynamic system, (2) the initial state of the system
and (3) the goals to be achieved.

AP is a PSpace-complete problem (Bylander, 1991) and solving complex AP
problems with a general domain independent planner is still intractable. According
to the previous definition, AP tasks seem to be easily tackled by searching for
a path in a state-transition graph, which is a well-studied problem. However, in
AP this state-transition graph can easily be so large that specifying it explicitly is
not feasible (Bylander, 1994). Furthermore, when planning to solve real-world
problems, the execution of actions can result in different outcomes making the AP
processes even more complex. Regarding the trip to Paris example, our flight could
be overbooked, a museum closed, our hotel full, etc.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The Shakey robot (Nilsson, 1984) at the Stanford Research Institute.

Planning Under Uncertainty (PUU) is the subfield of AP that studies how
to address planning problems in non-deterministic environments. In the early
nineties, extensions to existing planners started to be developed to allow reason-
ing with partial perception of the environment and stochastic actions. At this mo-
ment, more elaborated PUU planners based on algorithms for solving MDPs and
POMDPs have been developed. But these planners still present two important
drawbacks: (1) Specifying accurate action models for non-deterministic environ-
ments is very complex and sometimes impossible, like when planning for the Mars
Rovers (Bresina et al., 2005). (2) They do not scale well. Their complexity grows
polynomially with the size of the state-space. In the AP problems this state-space
grows exponentially in the number of predicates defined in the domain, making the
current MDP-based algorithms not feasible for large problems.

But, how humans cope with the real-world planning-inherent difficulties? Ba-
sically we prioritize the possible situations and plan to cover only the most likely
ones (leaving others to be completed as more information is available). Besides,
we are able to use experience. We are endowed with learning skills that help us in
the decision-taking. Back to the trip to Paris example, if we had previously visited
Paris, we would have useful knowledge about how to get there, which places are
worthy, how crowded they are, etc.

Machine Learning (ML) is the branch of AI which studies the process of chang-

1.2. OBJECTIVES 3

ing the structure of computer programs in response to input information to improve
future performances. Since the beginning, research in AI has been concerned with
ML (as early as 1959 Arthur Samuel developed a program (Samuel, 1959) that
learned to play better the game of checkers) so, very often, ML has been referred
to changes in systems that perform tasks associated with AI, such as artificial per-
ception, robot control or AP. Particularly, in the first ’90s, ML was massively used
within AP. At this time, classical planners were only able to synthesize no more
than 10 action plans in many domains and ML allowed them to significantly speed
and scale up. Nowadays, classical planners are able to achieve impressive per-
formance in numerous domains, but the interest in intersecting ML with AP is
alive with other aims like learning expert control knowledge for the new planning
paradigms or learning planning action models.

In this thesis we claim that ML can efficiently assist AP to build robust
plans in stochastic environments by upgrading the planning action model with
knowledge learned from execution.

1.2 Objectives

Current PUU planners, based on heuristic search or dynamic programming, only
obtain robust plans when they have complete and correct action models. Neverthe-
less, planning applications need to address PUU tasks in domains where complete
and correct action models are not always available. Examples of these are the con-
trol of underwater vehicles, Mars planetary rovers, the management of emergency
evacuations, fire extinctions, etc. Besides, current PUU planners suffer from scala-
bility problems. These planners search for optimal or near-optimal plans reasoning
about complex action models that explicitly represent the potential outcomes of
actions. However, current techniques for finding optimal or near-optimal plans are
computationally expensive and achieve limited success even for classical planning.

In this thesis, I aim to provide an innovative solution to these two open issues
in PUU. This solution is based on complementing the planning and execution pro-
cesses of PUU with learning abilities. The overall objective of the thesis is the
definition of an integration of the processes of planning, execution and learn-
ing that helps to, efficiently and scalably, synthesize robust plans in stochastic
environments.

The integration of techniques for PUU and ML is poorly studied. There are
only few works on learning search control for MDPs (Yoon et al., 2002; Gretton
and Thiébaux, 2004) and action modelling for non-deterministic domains (Benson,
1997; Pasula et al., 2007a). The first specific objective of the thesis is to review
the state-of-the-art of PUU and to analyze how ML can improve it.

On the other hand, the use of ML within classical planning has been exhaus-
tively studied (Zimmerman and Kambhampati, 2003) but there are still open issues
that limit the practical use of current planning and learning systems: (1) tradi-
tionally planning and learning are integrated ad-hoc. That is, a specific learning

4 CHAPTER 1. INTRODUCTION

algorithm is designed to assist a particular planning algorithm; (2) the learning of
planning knowledge is generally done off-line; that is, new knowledge is not assim-
ilated during the planning process; and (3) the learning examples are provided by
an external agent. The second, third and fourth specific objectives of the thesis
are to propose an architecture design for PUU that (1) integrates interchange-
able and off-the-shelf planning and learning components, (2) implements both,
off-line and on-line learning and (3) autonomously collects significant learning
examples.

1.3 Reader’s guide to the thesis

This document is organized in three parts: Part I describes the state of the art in
AP. Specifically, it reviews the literature about classical planning (Chapter 2), ML
for assisting classical planning (Chapter 3), planning under uncertainty (Chapter 4)
and ML for assisting planning under uncertainty (Chapter 5). Part II explains the
work done along the thesis research. Particularly, it describes preliminary work in
learning for planning under uncertainty (Chapter 6); second, it analyzes an integra-
tion proposal of planning, execution and learning for robust planning in domains
with uncertainty (Chapter 7) and third, it illustrates how this integration proposal
can be applied for learning planning models of the action durations (Chapter 8).
Finally, Part III summarizes the contributions of this thesis and discusses some
conclusions and future work.

Part I

State of the art

5

Chapter 2

Classical planning

This chapter is a review of existing classical planning techniques. The review is
posed following a general problem solving approach.

Solver
Problem Solution

Algorithm
General

Figure 2.1: Overview of a general problem solver.

2.1 Introduction

In 1957 Herbert Simon and Allen Newell created the General Problem Solver
(GPS) (Ernst and Newell, 1969). The aim of this work was to establish a universal
mechanism that solves any problem that can be described in a high level repre-
sentation using a general algorithm (Figure 2.1). Still nowadays, AI researchers
continue exploring diverse forms in which computers might carry out the task of
the general problem solving. Normally they all fit within these three components:

1. A Conceptual Model. The formal definition of the problems to solve and the
shape of their solutions.

2. A Representation Language. The language used to describe the problem.

3. An Algorithm. The mechanism used to solve the problem.

Particularly, AP is a form of general problem solving concerned with the selec-
tion of actions in a dynamic system. Therefore AP requires a conceptual model able
to describe dynamic systems. Most of the AP approaches take the state-transitions

7

8 CHAPTER 2. CLASSICAL PLANNING

model as their conceptual model. But they introduce several assumptions to this
model that make it more operational:

1. Finite World. The dynamic system has a finite set of states.

2. Static World. The dynamic system stays in the same state until a new action
is executed.

3. Deterministic World. The execution of an action brings the dynamic system
to a single other state.

4. Fully Observable World. There is complete knowledge about the current
state of the dynamic system.

5. Implicit Time. Actions have no duration. As a consequence, the state transi-
tions are instantaneous.

6. Restrictive Goals. The only objective of the planning task is to find a set of
state transitions that links a given initial state to another state satisfying the
goals.

According to these assumptions, Classical Planning is the AP subfield that
studies how to tackle the planning problems that can be described within this con-
ceptual model. Otherwise, with the aim of addressing more realistic planning prob-
lems, some of these assumptions have been relaxed: Temporal Planning is the
subfield that studies how to tackle planning problems when actions effects may
not be instantaneous. Planning Under Uncertainty is the subfield that studies the
relaxation of the Full Observability and Deterministic World assumptions. That is,
planning problems with incomplete knowledge of the current state and where the
outcome of actions is stochastic. Planning with Continuous Actions studies how
to address the planning task when the effects of the actions are continuous, so the
Finite world assumption is not true anymore. And Planning with Extended Goals
studies how to find plans in domains where goals need to express requirements of
different strengths such as constraints and user preferences.

2.2 The classical planning task

Classical Planning is the task of finding a sequence of actions that reaches a de-
sired state in a deterministic and fully observable environment. Most of the re-
search done in AP has focused on solving classical planning tasks. Thanks to that,
classical planning is now a well formalized and well characterized problem with
algorithms and techniques that scale-up reasonably well. Figure 2.2 shows an ex-
ample of a classical planning task consisting of a robot navigation in a grid. In this
example an autonomous robot can move one cell in four different ways: up, down,
left or right. The robot is on cell A5 and must reach cell D2 avoiding the obstacles
(cells B2, D3, and E4).

2.3. THE CONCEPTUAL MODEL 9

A

B

1 2 3 4 5

D

E

C
G

Figure 2.2: Example of a classical planning task.

2.3 The conceptual model

The conceptual model for classical planning is a deterministic, finite and fully ob-
servable state-transition system denoted by

∑
= (S,A,C), where:

• S is a finite set of states.

• A is a finite set of actions.

• C(s, a) is a function representing the cost of applying the action a ∈ A in
the state s ∈ S.

According to this conceptual model, a classical planning problem is defined as a
triple P = (

∑
, s0, G) where s0 ∈ S is the initial state and G ⊆ S is the set

of goal states. Finding a solution to a classical planning problem P consists on
generating a sequence of actions (a1, a2, ..., an) corresponding to a sequence of
state transitions (s0, s1, ..., sn) such that si results from executing the action ai in
the state si−1 and sn ∈ G is a goal state. The optimal solution for a classical
planning problem is the one that minimizes the expression

∑n
i=1 c(si−1, ai).

2.4 The representation languages

A planning representation language is a notation for the syntax and the semantic
of planning tasks. Particularly this representation capability must support the de-
scription of: the initial state of the environment, the environment state transitions
(actions), the goals of the planning task and the solution plans. Next there is a
review of the main languages used for representing the planning task.

10 CHAPTER 2. CLASSICAL PLANNING

STRIPS

Though the STRIPS (Fikes and Nilsson, 1971) notation is one of the oldest plan-
ning representation languages, it is still very popular. STRIPS handled the Frame
Problem1 assuming that actions only change a small part of the world. That is, if
situation sn results from applying action an in situation sn−1, then STRIPS assumes
that sn and sn−1 are very much alike. According to this assumption any formula
non explicitly asserted in a state is taken to be false, which allows STRIPS to avoid
the explicit specification of negated literals.

The STRIPS representation of a planning problem is a tupleP =< L,A, I,G >
where:

• L: represents the literals set.

• A: represents the actions set.

• I⊆L: represents the subset of literals holding in the given initial state.

• G⊆L: represents the subset of literals holding in a goal state.

STRIPS represents state si as a conjunction of literals from L indicating the facts
holding in instant i and action a ∈ A as the following three lists of literals from the
set L:

1. The preconditions list, Pre(a)⊆L: subset of literals that need to be true for
the application of action a.

2. The delete list, Del(a)⊆L: subset of literals no longer true after the applica-
tion of action a.

3. The add list, Add(a)⊆L: subset of literals made true by the application of
action a.

The STRIPS representation of a solution plan is a sequence P of applicable
actions P = a0, ..., an that results in some goal state sn ∈ G starting from the
given initial state s0. Formally, the concepts of applicable action and resulting
state are defined as:

1. The actions applicable in a state si are those a ∈ A such that Pre(a) ⊆ si

2. The state resulting from applying the action a in the state si is
result(si, a) = {si/Del(a)} ∪Add(a)

Figure 2.3 shows an example of a planning action represented in the STRIPS

notation. Specifically, the example shows the STRIPS representation for the action
unstack(block,block) from the Blocksworld. The Blocksworld is a classic

1The Frame Problem (McCarthy and Hayes, 1969) is the problem of expressing a dynamic
system using logic without explicitly specifying which conditions are not affected by an action.

2.4. THE REPRESENTATION LANGUAGES 11

domain in AP which consists of a set of blocks, a table and a gripper: the Blocks
can be on top of other blocks or on the table, a block that has nothing on it is clear
and the gripper can hold one block or be empty. Given its clarity and complexity,
it is by far the most frequently domain used in the AI planning literature.

unstack(TOP,BOTTOM)
Pre: [emptyhand, clear(TOP), on(TOP,BOTTOM)]
Del: [emptyhand, clear(TOP), on(TOP,BOTTOM)]
Add: [holding(TOP), clear(BOTTOM)]

Figure 2.3: STRIPS representation for the action unstack from the Blocksworld.

ADL

The Action Description Language (ADL) (Pednault, 1994) augmented the repre-
sentation capability of the STRIPS notation with the expressive power of the situa-
tion calculus. The main contributions of ADL were:

1. The introduction of negations, disjunctions and quantified formulas in the
action preconditions and problem goals.

2. The introduction of the equality predicate for the comparison of variables.

3. The definition of conditional effects. Now, actions may have different out-
comes according to the current state.

Figure 2.4 shows an example of a planning action represented in ADL. This is
the ADL representation implemented in the UCPOP planner for the action unstack(block,block)
in a version of the Blocksworld. In this version the action unstack(block,block)
only succeed when the gripper is not blocked.

Unstack(top,bottom)
PRECOND: top6=bottom∧On(top,bottom)∧∀¬Holding(b)∧∀¬On(b,top)
EFFECTS: ¬Blockedhand|Holding(top)∧¬On(top,bottom)

Figure 2.4: ADL representation for the action unstack from the Blocksworld.

PDDL

The Planning Domain Definition Language (PDDL) (Fox and Long, 2003) was
created with the aim of standardising the planning representation languages and
facilitate comparative analyses of the diverse planning systems. PDDL was de-
veloped as the planning input language for the International Planning Competition

12 CHAPTER 2. CLASSICAL PLANNING

(IPC).2 Along the different IPCs, PDDL has evolved to cover the representation
needs of the new AP challenges:

1. PDDL1.2 (used in IPC-1998 and IPC-2000) contained the STRIPS and the
ADL functionality plus the use of typed variables.

2. PDDL2.1 (IPC-2002) augmented the original PDDL version with:

• Numeric variables and the ability to test and update their values.

• Durative actions with both discrete and continuous effects.

3. PDDL2.2 (IPC-2004) extended the previous versions with:

• Derived predicates, which allow the planner to reason about higher-
level concepts in the domain. Additionally, these higher-level concepts
can be recursively defined.

• Timed initial literals, which are literals that will become true at a pre-
dictable time independent of what the planning agent does.

4. PDDL3.0 (IPC-2006) enriched the expresivity of the language to define:

• State trajectory constraints that the solution plan must satisfy.

• Goal and State trajectory preferences that the solution plan should sat-
isfy.

5. PDDL3.1 (IPC-2008) supports functional STRIPS (Geffner, 2001). Func-
tional STRIPS is a different encoding for the planning domain. Instead of
mapping the literals of the planning problem to true or false, functional
STRIPS maps the objects of the planning problem to their properties. This
encoding provides a more natural modelling for many planning domains
and makes easier the extraction of some heuristics, such as the causal graph
heuristic (Helmert and Geffner, 2008) or pattern database heuristics (Edelkamp,
2002).

Thought PDDL3.1 covers all these functionalities most of the existing planners do
not implement them; in fact, the majority only support the STRIPS subset besides
typing and the equality predicate. Figure 2.5 shows the action unstack(block,block)
from a version of the Blocksworld domain represented in PDDL. In this version the
execution of the action unstack takes 10 units of time and 5 units of the gripper’s
battery level.

2The International Planning Competition takes place every two years since 1998 with the aim of
evaluating the performance of state-of-the-art planning techniques (http://ipc.icaps-conference.org/)

2.5. THE ALGORITHMS 13

(:action unstack
:parameters (?top - block ?bottom)
:duration (= ?duration 10)
:precondition (and (not (= ?top ?bottom))

(on-top-of ?top ?bottom)
(forall (?b - block)

(not (holding ?b)))
(forall (?b - block)

(not (on-top-of ?b ?top)))
(> (battery) 5))

:effect (and (holding ?top)
(not (on-top-of ?top ?bottom))
(decrease (battery) 5)))

Figure 2.5: PDDL representation for the action unstack from the Blocksworld.

2.5 The algorithms

There are two main approaches to solve classical planning problems: (1) explicit
search for a solution plan or (2) compiling the classical planning problem into
another form of problem solving with effective algorithms.

Search for planning

Search algorithms systematically explore a graph trying to find a path that reaches
one of the goal nodes ng starting from a given initial node n0. The different search
algorithms are characterised by the following features:

• The search space. In AP the state-space, the plan-space and the planning-
graph are the most used search spaces.

1. The state-space. In this search space each graph node corresponds to a
state of the dynamic system and each arc corresponds to a state transi-
tion resulting from an action execution.

2. The plan-space search. In this case the graph nodes are partially speci-
fied plans and arcs correspond to plan refinement operations.

3. The planning-graph it is a middleground search space. It is a directed
layered graph where arcs are only permited from one layer to the next
one. There are two kinds of layer: (1) action layer, the set of actions
whose preconditions are holding in the previous proposition layer and
(2) proposition layer, the union of the effects added by the actions of
the previous action layer plus the literals of the previous proposition
layer (at first the literals of initial state). In this search space, the nodes
represent the literals holding in a given instant i. The arcs from a propo-
sition layer to an action layer represent the preconditions of the actions

14 CHAPTER 2. CLASSICAL PLANNING

and the arcs from the action layer to the proposition layer represent the
positive effects of the actions.

• The search direction. From the initial node to the goal nodes (forward), from
the goal nodes to the initial node (backward) or bidirectional, in this case a
forward and a backward search are run simultaneously until they meet in the
middle.

• The search algorithms. Once the search space and the search direction are
defined one can systematically search for a solution. The simplest search
algorithms are the brute-force algorithms that exhaustively visit the nodes of
the search space according to their depth to the root. Instances of these al-
gorithms are Breadth-First and Depth-First search. In AP the search space is
frequently extremely large, so, rather than brute-force search algorithms, one
needs algorithms that focus search on the nodes that seems more promising.
In order to focus the search, one can use a heuristic function h(n) that esti-
mates how close node n is to a goal node. Of course the performance of these
algorithms is determined by the accuracy of the defined heuristic function.
There are a whole bunch of different heuristic search algorithms (Russell
and Norvig, 1995): Hill-Climbing, Best-First Search, Iterative Deepening
Best-First Search, etc.

• The heuristic function. Heuristics can be directly derived as the cost of the
solutions to a relaxed task. To derive domain-independent heuristics, this re-
laxed task should be automaticaly extracted from the encoding of the original
one. The more common relaxations of the planning task are:

1. Ignoring the actions’ delete lists. Using the planning-graph one can
compute a solution to this relaxed task in linear time. Most of the
current heuristic planners rely on this idea to implement their heuristic
function.

2. Ignoring certain atoms. There is a new trend in building heuristics for
AP following the ideas of Pattern DataBases.3 However the applica-
tions of this technique to classical planning (Edelkamp, 2002) is still
not straightforward given that the quality of this kind of heuristics de-
pends crucially on the selection of a collection of abstractions (patterns)
that are appropriate to the domain.

3. Reducing the goal sets to subsets. One can partition the planning
problem into subproblems each with its own subset of goals, solve
these subproblems and combine the cost of these solutions to compute
heuristics.

3Pattern DataBases are dictionaries of heuristics that have been originally applied to the Fiffteen
Puzzle (Culberson and Schaeffer, 1998) and have achieved significant success in traditional heuristic
search benchmarks (Felner et al., 2004).

2.5. THE ALGORITHMS 15

Generally, the heuristics implemented in AP are non-admissible. This fact is
due to (1) the existing admissible heuristics are poorly informed and (2) the
application of optimal search algorithms to planning domains is frequently
too expensive in terms of computation time.

• The pruning method. The search algorithm can be aided with pruning mech-
anisms that eliminate the nodes considered non-promising. More precisely,
the heuristic search planner FF (Hoffmann and Nebel, 2001) introduced the
concept of helpful actions for restricting the successors of any state to those
produced by members of the respective relaxed solution.

Compilation for planning

The most popular compilations of the classical planning task are:

• Planning as boolean satisfiability (SAT).4 This compilation (Kautz and Sel-
man, 1992a) uses the good scalability performance of the SAT solvers for
addressing the classical planning problem. The compilation lies in encod-
ing all the potential solution plans of length N as a boolean formula. Thus
any assignment of truth values that makes the formula satisfiable represents
a valid plan for the planning problem. The planning problem is compiled as
follows:

1. Propositions and actions are instantiated and time-tagged.

(a) The initial state is coded as a set of propositions holding at time 0.

(b) The goals are coded as propositions holding at time at time N .

2. Different actions at the same time t (0 < t < N) are mutually exclu-
sive.

3. If the preconditions of an action are holding at time t the effects of this
action must hold at time t+ 1.

4. The frame problem is handled by stating that any proposition p is TRUE
at time t if: (1) it was TRUE at time t − 1 and the action taken at time
t does not make it FALSE, or (2) the action taken at time t makes p
TRUE.

Given that Planning as SAT correctly finds the plans of a given length N , it
can be directly used for finding optimal solutions in terms of plan length by
systematically increasing the value of N .

4The SAT problem is a NP-Complete problem (Garey and Johnson, 1979) that lies on determin-
ing if truth values can be assigned to the variables of a given boolean formula in such a way that the
formula evaluates to TRUE.

16 CHAPTER 2. CLASSICAL PLANNING

• Planning as a constraint satisfaction problem (CSP).5 Similar to the SAT
compilation, the CSP compilation (van Beek and Chen, 1999) encodes the
potential solution plans of length N as a CSP problem. In this case any
assignment of values that makes the resulting CSP problem satisfiable repre-
sents a valid plan for the planning problem. For this compilation the planning
problem is encoded into a state-variable representation as follows:

1. Let D be the set of objects of a planning problem and Dc ⊆ D the
subset of objects of the class C. And let A be the set of all instantiated
actions.

2. There are two types of variables in the compiled CSP problem:

(a) State variables of the form statei(t), with value v ranging overDc

represent that the fact i(v) is true at time t.

(b) An extra variable action(t), ranging over A, whose value repre-
sents the action taken in state t.

3. There are four types of constraints in the compiled CSP problem:

(a) Every state variable statei(t) whose value in the initial state is v
is encoded into the unary constraint statei(0) = v

(b) Every state variable statei(t) whose value in the goals is v is en-
coded into the unary constraint statei(N) = v

(c) Every precondition v of the action a is encoded as the binary con-
straint:

(action(t) = a, statei(t) = v)

(d) Every action effect v of the action a is encoded as the binary con-
straint:

(action(t) = a, statei(t+ 1) = v)

(e) In order to handle the frame problem, for every action action(t)
and every state variable value statei(t) non affected by the action
action(t), there is a constraint:

(action(t) = a, statei(t) = v, statei(t+ 1) = v)

Unlike the SAT compilation, the CSP compilation is more compact: (1) the
encoding of states using variables is smaller and (2) the variable action(t) al-
lows one to avoid the need of the mutual exclusion constraints. Furthermore,
this compilation can also cover planning problems with numeric variables.

5The CSP is a NP-Complete problem that lies on, given a set of variables, the domain of values
they can take and a set of constraints defining the incompatibilities of the variable values, determining
if there is a compatible assignment of values to the variables that does not violates the constraints.

2.6. THE IMPLEMENTATIONS 17

• Planning as model checking.6 In this compilation (Cimatti et al., 1997),
the planning domain is formalized as a specification of the possible models
for plans; the initial state plus the problem goals, usually described in tem-
poral logic, are formalized as requirements about the desired behavior for
the plans. Finally, the planning problem is solved by searching through the
possible plans, checking that there exists one that satisfies the specified re-
quirements. This compilation allows one to naturally define state trajectories
or soft goals as extra requirements over desired plans. Besides it supports the
definition of expressive search control knowledge also coding it as new plan
requirements.

2.6 The implementations

This is a summary of the planners that have introduced relevant advances in the
subfield of classical Planning.

STRIPS

The STRIPS planner (Fikes and Nilsson, 1971) based on simple backward chain-
ing in the state-space. STRIPS worked with a subgoals stack and tried to always
satisfy first the subgoal in the top of the stack to produce an ordered sequence of
actions that solves the planning task.

UCPOP

UCPOP (Penberthy and Weld, 1992) was based on searching in the plans space
so it could work on any subgoal non linearly. The UCPOP algorithm started with
a dummy plan that consists of a start action whose effects are the initial state and a
goal action whose preconditions are the goals. UCPOP attempted to complete this
dummy plan by adding new actions until all preconditions are guaranteed to be
satisfied. If UCPOP has not yet satisfied a precondition, then all action effects that
could satisfy the desired proposition are considered. UCPOP chooses one effect
and then adds a causal link to the plan to record this choice. If a third action might
interfere with the precondition being supported by the causal link, then UCPOP
tries to resolve the interference by: (1) reordering steps in the plan, (2) creating
additional subgoals, or (3) adding new equality constraints.

6The Model Checking problem (J.R. Burch et al., 1990) consists of determining whether a given
property, usually described as a temporal logic formula, holds in a given model of a system. Tradi-
tionally, this problem has been studied for the automatic verification of hardware circuits and network
protocols

18 CHAPTER 2. CLASSICAL PLANNING

SATPLAN

SATPLAN (Kautz and Selman, 1992b) constructs a planning-graph up to some
lengthN ; it compiles the constraints implied by the planning-graph into a conjunc-
tive normal form (CNF) formula and solve it using a state-of-the-art SAT solver. If
no solution was found at this length, SATPLAN increases N and starts again. The
output of this planner is an optimal plan in terms of solution length.

PRODIGY

PRODIGY (Veloso et al., 1995) is a non-linear planner provided with a depth-
first backward chaining means-ends analysis search. The search implementation
allowed goals interleaving to solve the non-linear problems. The PRODIGY rep-
resentation language was very expressive supporting conditional effects, numeric
predicates, invocations of external functions and the definition of domain depen-
dent control knowledge for pruning and guiding the search process.

GRAPHPLAN

GRAPHPLAN (Blum and Furst, 1995) starts with an initial planning-graph which
only contains the proposition layer with the literals of the initial state. Then
GRAPHPLAN builds a planning-graph expanding sequentially action and propo-
sition layers until it reaches a propositional layer that satisfies the goals of the
planning task. This planning-graph contains all potential parallel plans up to a
certain length N , where N is the number of action layers; after that, GRAPH-
PLAN tries to extract a plan by searching the graph backwards from the goals. The
GRAPHPLAN search either finds a solution plan or determines that the goals are
not all achievable by a plan of length N . In this case it extends the planning graph
one time step (the next action layer and the next propositional layer), and then it
searches again for a solution plan.

FF

FF (Hoffmann and Nebel, 2001) is a forward-chaining heuristic state-space plan-
ner. FF uses a domain independent heuristic function derived from the cost of
the solution to a relaxation of the planning problem. This relaxation consists of
ignoring the delete lists of all actions and extracting an explicit solution using a
GRAPHPLAN-style algorithm. The number of actions in the relaxed solutions
is taken as a goal distance estimation. These estimations guide the heuristic al-
gorithm enforced hill-climbing (EHC) that performs a variation of breadth-first
search. Specifically EHC performs a breadth-first search which is interrupted each
time a node successor s′ of node s satisfies h(s′) < h(s) retaking up the breadth-
first search again from s′. In case EHC search fails, FF automatically switches
to weighted best-first search. Moreover, the relaxed plans are used to prune the

2.7. DISCUSSION 19

search space. Usually, the actions that are really useful in a state are contained in
the relaxed plan.

SHOP

SHOP (Nau et al., 2003) is based on ordered task decomposition, which is a type
of Hierarchical Task Network (HTN) planning. HTN planners decompose tasks
into subtasks until they reach tasks that can be performed directly by the planning
actions. Thus, they need to have a set of methods indicating how to decompose
tasks into subtasks. For each of these tasks they may have more than one applicable
method, i.e., more than one way to decompose the tasks. At this point, SHOP
performs a forward search to decide the alternative decomposition that is solvable
at a lower level.

2.7 Discussion

The first classical planners, from the 70’s such as STRIPS (Fikes and Nilsson,
1971) performed a simple goal regression in the state-space. These planners pre-
sented two important drawbacks: They were not scalable because their search
process was non-informed, e.g., STRIPS implemented an exhaustive Depth-First
Search algorithm. And they were not able to solve non-linear problems like the
Sussman Anomaly.7

In the early 90’s two new planning paradigms attempted to address these lim-
itations. Partial order planners like UCPOP (Penberthy and Weld, 1992) solved
non-linear problems by searching in the plan space. However, because the search
of partial order planers was still not informed it still suffered from scalability prob-
lems. The second approach consisted on directly improving the STRIPS paradigm
(Veloso et al., 1995): (1) allowing the planner to interleave subgoals during the
search so non-linear problems can be solved and (2) providing the planner with
domain-dependent control knowledge for making the search more efficient.

In the mid 90’s two important contributions tackled the scalability deficiencies
of AP from a domain-independent point of view. On the one hand, the planning-
graph provided a framework to significantly reduce the AP search space. And on
the other, the first powerful domain independent heuristics were developed. The
Heuristic Search Planner (HSP) (Bonet and Geffner, 2001) implemented a hill-
climbing search algorithm with a heuristic function built by relaxing the planning
task into a simpler one that ignored the delete effects of all the actions. Later, the
FF (Hoffmann and Nebel, 2001) planner introduced a new heuristic computed
as the length of the relaxed plan automatically extracted from the relaxed planning

7The Sussman Anomaly (Sussman, 1975) is a Blocksworld problem with three blocks labeled
A, B, and C. The problem starts with B on the table, A on the table and C on top of A, and con-
sisted on stacking the blocks such that A is on top of B and B is on top of C. Typically, non-linear
planners separate the goals into two subgoals on(A,B) and on(B,C) and tried to satisfy them
independently.

20 CHAPTER 2. CLASSICAL PLANNING

graph, a new variation of the hill-climbing algorithm, called enforced hill-climbing,
for reducing the number of node evaluations and a novel pruning mechanism called
helpful actions for eliminating from the search the actions that are not promising
according to the relaxed planning graph. In the last years, the researchers working
on heuristic planning are making big efforts in defining domain-independent meth-
ods for extracting heuristics through the construction of pattern databases (Haslum
et al., 2007).

In the late 90’s the organization of the IPC caused a revolution in the AP re-
search community. The first competition (IPC-1998) allowed to compare the per-
formance of all these AP paradigms and established standard test benches and rep-
resentation languages to easily test and evaluate the new developed planning tech-
niques. At the next competition (IPC-2000), planners based on domain dependent
control knowledge participated for the first time. These planners were hand tuned
to guide their search processes according to the structure of the domain. They sig-
nificantly outperformed the rest of participants and achieved performance values
that even nowadays are not reachable by the state-of-the-art domain independent
planners. IPC-2002 augmented the scope of the planning tasks. Particularly, the ex-
pressiveness of the standard planning language PDDL was extended to cope with
durative actions and continuous resource consumption. IPC-2004 established a
separated competition for optimal planning. Since optimal planners prove a guar-
antee on the quality of the found solution their performance on computation time
and plan quality is not comparable with the satisfying planners. IPC-2006 gave em-
phasis to plan quality as defined by a external user in terms of trajectory constraints
and/or soft goals. IPC-2008 enriched the planning representation language to sup-
port functional STRIPS (Geffner, 2001) which provides a more natural encoding
for new promising AP heuristics based on the causal-graph or in the construction
of PDBs.

At the present time there are still important open issues in classical planning
that need to be tackled:

• Domain-dependent planners significantly outperform the existing domain-
independent planners. Contrary to the domain independent techniques they
are able to capture the regularities of the domains, meaning impressive speed
and scalability performance. However, the expert knowledge used by these
planners may not be completely available; this is partly because it is very
hard to encode such knowledge, and it is partly because there is no expert to
provide it, for example, in the space missions. An important open issue is
how this expert knowledge can be extracted and compiled automatically and
independently of the domain.

• Off-the-shelf classical planners cannot deal with the requirements of
real-world problems. Though the standard planning representation lan-
guage PDDL allows one to represent complex user requirements, such as
user preferences and restrictions, quality metrics, durative and concurrent

2.7. DISCUSSION 21

actions, . . . most of the state-of-the-art classical planners do not support them
or are not able to manage them efficiently.

• Classical planning models are hard to design, validate and maintain.
Knowledge acquisition is also a bottleneck in the field of classical plan-
ning. The process of encoding a planning domain model is laborious and
at present, most of the domain model designers use planners as their only
tool to develop and debug domain models.

22 CHAPTER 2. CLASSICAL PLANNING

Chapter 3

Learning for classical planning

This chapter is a review of the major approaches for classical planning that profit
from ML. The review is organized according to the target of the ML process: learn-
ing search control or learning planning action models.

Model

Search
Control

Learning

ExecutionPlanning

Action
Model

Search
Control

Action Action

State

E
nvironm

ent

Experience
Execution

Plan

Planning
Experience

Figure 3.1: Integration of ML within classical planning.

3.1 Introduction

As Mitchell points out in his ML textbook (Mitchell, 1997), there is a set of com-
mon issues when using ML to improve an automatic process:

1. The target concept. The type of knowledge that the ML process will learn.
When talking about planning this knowledge can be: search control to guide
the planners search or domain models to feed the planners (Figure 3.1).

2. The extraction of the experience. The experience can be self-extracted by the
planning agent or provided by an external agent, such as a human expert. In
the first case there are three different opportunities where knowledge can be
automatically extracted: before the planning starts, i.e., learning from the

23

24 CHAPTER 3. LEARNING FOR CLASSICAL PLANNING

problem representation, during the planning process, i.e., learning from
the search tree or after the planning process, i.e., learning from the execu-
tion of plans.

3. The knowledge representation. When learning for planning one must take
two representation decisions:

• The features space. The set of features that the ML algorithm consid-
ers for learning the target concept. In the case of planning these fea-
tures may be the state predicates, the goal predicates, the previous
selected action, etc.

• The representation language. The notation used for encoding the target
concept and the experience. The most used representation languages
for encoding planning features are predicate logic and description
logic.

4. The learning paradigm: inductive, analytical or hybrid algorithms.

• Inductive Learning. These learning techniques induce general theo-
ries based on observations. In this approach, the input to the learning
process is a set of observed instances and the output is a classifier con-
sistent with them used to classify the subsequent instances. Inductive
Learning can be broken into Supervised, Unsupervised and Reinforce-
ment Learning. In Supervised Learning inputs and correct classifica-
tion outputs are ’a priori’ known. In Unsupervised Learning just the
inputs are specified. Finally, in Reinforcement Learning the learning
agent collects its own inputs and correct outputs by trial and error.

• Analytical Learning. These techniques use prior knowledge and de-
ductive reasoning to explain the information provided by the learning
examples. This fact makes analytical techniques not to be so con-
strained to the learning examples to achieve good generalizations.

• Inductive-Analytical Learning. Purely inductive learning techniques
formulate general hypotheses by finding empirical regularities over the
learning examples. Purely analytical techniques use prior knowledge
to derive general hypothesis deductively. This learning approach com-
bines the two techniques to obtain the benefits of both: a better gener-
alization accuracy when prior knowledge is available and reliance on
observed learning data to overcome shortcomings of prior knowledge.

5. The learning environment. The environment determines the final learning
technique. For example, learning in stochastic environments means cop-
ing with noise, learning in partially observable environments means coping
with incomplete examples, etc.

3.2. LEARNING TECHNIQUES 25

3.2 Learning techniques

Since the STRIPS days, AP defines models of the planning tasks using dialects of
predicate logic because this language allows planners to represent problems (1)
compactly, it uses variables, and (2) relationally, it captures relations between ob-
jects. Therefore, the learning techniques for improving AP normally support these
two features. Nevertheless, other ML techniques like genetic algorithms have also
been used in AP. In these situations, a compilation of the planning knowledge to
other representations, such as attribute-value representation, has to be performed.
Next, there is description of the relational learning techniques that best fit to the
AP tasks.

3.2.1 Inductive Logic Programming

Inductive Logic Programming (ILP) arises from the intersection of ML and logic
programming and deals with the development of inductive techniques to learn a
given target concept from examples and background knowledge. Formally, the
inputs to an ILP system are:

1. A representation language L, specifying the syntactic restrictions of the do-
main predicates.

2. A set of ground learning examples E of the target concept, consisting of true
examples (positive examples) E+ and false examples (negative examples)
E− of the concept to learn.

3. Background knowledge B, which provides additional information to argu-
ment the classification of the learning examples.

Figure 3.2 shows an example of language bias, set of learning examples and back-
ground knowledge for learning the concept of grandfather(X,Y).

L={ grandfather(male,person),father(male,person),
mother(female,person)}

E+={ grandfather(pepe,juan),grandfather(pepe,ana),
grandfather(pepe,carlos)}

E-={ grandfather(pepe,luis),grandfather(ana,carlos)}
B={ father(pepe,luis),father(pepe,ana),father(luis,ana),

father(luis,juan),mother(ana,carlos)}

Figure 3.2: Inputs for learning the grandfather(X,Y) concept with ILP.

With these three inputs, ILP systems try to find a hypothesis H , expressed in L
which agrees with the examples E and the background knowledge B. In terms of

26 CHAPTER 3. LEARNING FOR CLASSICAL PLANNING

logical inference, this task is defined as the induction of a complete and consistent
logic program1 H:

• H is complete when for all e ∈ E+ it is true that H ` e.

• H is consistent when for none e ∈ E− it is true that H ` e.

Figure 3.3 shows an example of complete and consistent logic program found for
the concept of grandfather(X,Y) with the inputs of Figure 3.2.

H={ grandfather(X,Y) :- father(X,Z), father(Z,Y).
grandfather(X,Y) :- father(X,Z), mother(Z,Y).}

Figure 3.3: Hypothesis learned for the grandfather concept with ILP.

The ILP task can be viewed as a search process among all the hypothesis that
can be produced. The search process of an ILP system is characterised by:

• The search space. The search space in ILP, called the hypothesis space,
is determined by the language of the possible logic programs L. The se-
lected language L, syntactically restricts the form of the possible induced
logic programs. Additionally, since this hypothesis space is normally huge,
ILP systems structure it sorting hypothesis by their generability to make the
search process more efficient.

• The search goals. The search goals consist of finding a hypothesis satisfying
some quality criterion, usually based on these metrics:

– The classification accuracy that measures the ratio of learning exam-
ples correctly classified by the induced logic programs. An example
is the function faccuracy(h) =

p(h)
p(h)+n(h) , where p(h) and n(h) are the

number of positive and negative examples covered by the evaluated
hypothesis.

– The classification coverage which measures the amount of learning ex-
amples covered by the induced logic programs. An example is the
function fcoverage(h) = p(h) − n(h), where p(h) and n(h) are the
number of positive and negative examples covered by the evaluated
hypothesis.

– The information compression which denotes the understandability of
the learned hypothesis. A common measure is the length of the hypoth-
esis. An example is the function fcompression(h) = p(h)−n(l)− l(h),

1A logic program is a set of disjunctions of literals with maximum one positive literal each. This
class of disjunction is called Horn clause

3.2. LEARNING TECHNIQUES 27

where p(h) and n(h) are the number of positive and negative exam-
ples covered by the hypothesis, and l(h) is the number of literals in the
hypothesis.

• The search direction. It can be either bottom-up or top-down. A bottom-
up direction means a generalization process of the most specific hypotheses
allowed by the language bias. This approach includes ILP strategies like
the least general generalization implemented in the GOLEM system (Mug-
gleton and Feng, 1990) or inverse entailment implemented in the PROGOL
system (Muggleton, 1995a). A top-down direction means a specification
process starting from the most general logic program. This last approach is
basically an extension of the classical decision tree learning algorithms to
the first-order logic and it is better suited for learning with noisy learning
examples since the top-down search can be more easily guided by heuristics.
One of the first programs to follow this approach was FOIL (Quinlan and
Cameron-Jones, 1995).

• The search algorithms. Best-First search is the desired search strategy, but
due to the large size of the search spaces, greedy strategies such as hill-
climbing or beam-search algorithms have to be implemented.

• The heuristics. In the case of a top-down search, an accuracy measure can
be directly used to guide the search. In the case of the bottom-up search,
heuristics needs to also measure the information compression offered by the
hypothesis.

• The pruning methods. An structured hypothesis space allows one to prune
unpromising hypothesis by rejecting the hypothesis that inherit some unde-
sired properties of their ancestors such as covering a negative example or
not covering a given positive one. For example, if we know that a given
hypothesis covers an undesired negative examples we can reject all the gen-
eralizations of the hypothesis. And in the same way, if we know that a given
hypothesis does not cover a desired positive example, we can reject all the
specializations of this hypothesis.

ILP has traditionally being considered as a binary classification task for the
given target concept. However, in the recent years, ILP techniques have broadened
to cover the whole spectrum of ML task such as regression, clustering or associ-
ation analysis. Particularly there is a new trend in ILP that lies on extending the
classical propositional ML algorithms to the relational framework as for instance:

Learning relational trees

A very well-known approach for multiclass classification consists of finding the
smallest decision tree that fits a given data set. The common way to find these

28 CHAPTER 3. LEARNING FOR CLASSICAL PLANNING

decision trees is following a Top-Down Induction of Decision Trees (TDIDT) al-
gorithm (Quinlan, 1986). This approach builds the decision tree by splitting the
learning examples according to the values of a selected attribute that minimize a
measure of variance along the prediction variable. The leaves of the learned trees
are labelled by a value for the target concept that fits the examples that satisfy the
conditions along the path from the root of the tree to those leaves.

Relational decision trees (Blockeel and Raedt, 1998) are the first-order logic
upgrade of the classical decision trees. Unlike the classical ones, relational trees
work with examples described in a relational language such as predicate logic. This
means that each example is not described by a single feature vector but by a set of
logic facts. Thus, the nodes of the tree do not contain tests about the examples
attributes, but logic queries about the facts holding in the examples. In a similar
way, the algorithms for learning regression trees (Karalic, 1992) have also been
extended to the relational setting (Kramer, 1996). Figure 3.4 shows the relational
decision tree for the concept of grandfather(X,Y).

grandfather(X,Y,Class).
father(X,Z)?
+--yes: father(Z,Y)?
| +--yes: [Class=true]
| +--no: mother(Z,Y)?
| +--yes: [Class=true]
| +--no: [Class=false]
+--no: [Class=false]

Figure 3.4: Relational decision tree for the concept of grandfather(X,Y).

Relational instance based learning

Unlike tree learning methods that explicitly construct a classifier from the learning
examples, these techniques perform what is called lazy learning, i.e., they simply
store the learning examples and delay the generalization until the moment a new
example has to be classified. One disadvantage of these methods is that the cost of
classifying an instance can be high because it implies all the generalization com-
putations. On the other hand the generalization of these methods is local to the
neighborhood of the new example which allows one to achieve better performance
when the classification function is very complex.

Relational instance based learning methods include the relational versions of
propositional instance based methods such as nearest neighbors techniques or lo-
cally weighted regressions and also the Case-Based Reasoning (CBR) techniques
that make use of relational representations. The generalization in all these meth-
ods is done by analyzing instances similar to the new query instance ignoring the
ones that are very different. Thereby a critical issue is the definition of an accurate

3.2. LEARNING TECHNIQUES 29

similarity measure among the instances described in predicate logic (Sebag, 1997;
Ramon and Bruynooghe, 2001).

Relational kernels methods

Kernel methods require a positive definite covariance function to be defined be-
tween the learning examples. Given that learning examples are described in pred-
icate logic, kernels for structured data have to be used, such as the convolution
kernel (Haussler, 1999) or kernels defined on graphs (Gartner et al., 2003b). Be-
cause Gaussian processes are a Bayesian technique they provides more information
that just a classification prediction. They also give an indication of the expected
accuracy of this prediction.

3.2.2 Explanation Based Learning

Explanation Based Learning (EBL) deals with building explanations for justifying
why a subset of learning examples merit their assigned target concept. Unlike
ILP, EBL systems build these explanations making use of these two elements: A
domain theory that validates the correctness of the conjectured explanations and a
set of learning examples that statistically evaluate the coverage of the conjectured
explanations. Formally the inputs to an EBL system are:

• A representation language L specifying the syntactic constraints on the pred-
icate definitions.

• A set E of ground learning examples of the target concept.

• The current domain theory D consisting of background knowledge that can
be used to explain the set of learning examples. This knowledge can be
incomplete or should be redefined in other terms.

The EBL task is formally defined as finding a hypothesis H such that H is
complete and consistent with the learning examples E and the current domain the-
ory D. Unlike ILP, the EBL task reformulates the current domain theory D with
the learned hypothesis H to improve the effectiveness of D in subsequent explana-
tions.

3.2.3 Case Based Reasoning

Case Based Reasoning (CBR) memorizes cases (past experiences) in order to assist
in the solution of future problems. Examples of CBR are: a mechanic who fixes a
car by recalling another car that exhibited similar symptoms, a lawyer who defends
a particular client based on legal precedents, a cook who prepares chocolate muffins
for the first time recalling when he made plain muffins.

In general terms, a case can be described as the tuple C=(Problem, Solution,
Effects) where problem is the problem solved in a past episode, solution is a de-
scription of the way the problem was solved and effects is a description of the

30 CHAPTER 3. LEARNING FOR CLASSICAL PLANNING

result of applying the solution to the problem. The CBR process is formalized as a
four-step reasoning process:

1. Retrieve. Given a target problem, first CBR retrieves from memory the cases
that are relevant for solving it. In the previous muffins example, this step
retrieves the significant experience of making plain muffins.

2. Reuse. At this step CBR maps the solution from the previous case to the
target problem. This may involve adapting the solution as needed to fit the
new situation. In the muffins example, the retrieved solution must be adapted
to include the addition of chocolate.

3. Revise. After mapping the previous solution to the target situation, this step
tests the new solution in the real world and, if necessary, revises it. In the
muffins example, if the cook fails with the adapted recipe, for instance, he
added too few chocolate, he has to revise it.

4. Retain. Finally, once the solution has been successfully adapted to the target
problem, the resulting experience is stored as a new case in memory for new
demands.

CBR accepts anecdotal evidence as its main operating principle: it is not based
on statistical data, like ILP and it is not based on a domain theory, like EBL. There-
fore an important drawback of CBR is that there is no guarantee that the CBR
generalization is correct.

3.3 Learning planning search control

Results of the IPC-2002 evidenced that planners using hand-coded search control
performed orders of magnitude faster than the rest of planning systems. But hand-
coding this knowledge is frequently very tricky because it implies expertise on
of both the planning domain and the planning system. This section revises the
different systems that automatically learn search control knowledge to improve the
speed and/or the quality of the planning processes. On the one hand, the speed-
up techniques are based on making the planner avoid unpromising portions of the
search space without exploring it. On the other hand, the quality improvement
methods are based on biasing the search process towards the kind of solutions
preferred by the user.

3.3.1 Learning macro-actions

Macro-actions are the first attempt to speed-up the planning process. They are extra
actions added to a given domain theory resulting from combining the actions that

3.3. LEARNING PLANNING SEARCH CONTROL 31

are frequently used together. Figure 3.5 shows an example of the macro-action
UNLOAD-DROP induced by the MacroFF system for the Depots domain.2

(:action UNLOAD
:parameters (?x - hoist ?y - crate ?t - truck ?p - place)
:precondition (and (in ?y ?t) (available ?x) (at ?t ?p)

(at ?x ?p))
:effect (and (not (in ?y ?t)) (not (available ?x))

(lifting ?x ?y)))

(:action DROP
:parameters (?x - hoist ?y - crate ?s - surface ?p - place)
:precondition (and (lifting ?x ?y) (clear ?s) (at ?s ?p)

(at ?x ?p))
:effect (and (available ?x) (not (lifting ?x ?y)) (at ?y ?p)

(not (clear ?s)) (clear ?y) (on ?y ?s)))

(:action UNLOAD-DROP
:parameters (?h - hoist ?c - crate ?t - truck ?p - place

?s - surface)
:precondition (and (at ?h ?p) (in ?c ?t) (available ?h)

(at ?t ?p) (clear ?s) (at ?s ?p))
:effect (and (not (in ?c ?t)) (not (clear ?s))

(at ?c ?p) (clear ?c) (on ?c ?s)))

Figure 3.5: Macro-action induced by MacroFF for the Depots domain.

The use of macro-actions reduces the depth of the search tree. However, this
benefit decreases with the number of new macro-actions as they enlarge the branch-
ing factor of the search tree causing the utility problem.3 To decrease this negative
effect filters deciding the applicability of the macro-actions should be defined.

Since the beginning of AP the use of macro-actions has been widely explored.
Traditionally most of the techniques use an off-line approach to generate and filter
macro-actions before using them in search. Early works on macro-actions began
with a version of the STRIPS planner (Fikes et al., 1972). It used previous solution
plans and segments of the plans as macro-actions to solve subsequent problems.
Later, MORRIS (Korf, 1985) extended this approach by adding some filtering
heuristics to prune the generated set of macro-actions. This approach distinguished
between two types of macro-actions: S-macros that occur frequently during search

2The Depots domain was created for IPC-2002 combining two classic domains of AP, the Logis-
tics and the Blocksworld. In this domain trucks can transport crates around locations. Once crates
are at their destination locations, hoists stack them on pallets. So the stacking problem is like a
Blocksworld problem with multiple hands. Besides, trucks can also behave like tables, since the
pallets on which crates are stacked are limited.

3The utility problem (Minton, 1988) comes out when the cost of using learned knowledge over-
takes its benefit. This problem is due to the difficulty of storing the learned knowledge and the
difficulty of determining which knowledge is useful for a particular problem.

32 CHAPTER 3. LEARNING FOR CLASSICAL PLANNING

and T-macros, those that occur less often, but model some weakness in the heuris-
tic. The REFLECT system (Dawson and Silklossly, 1977) took the alternative
approach of forming macro-actions based on pre-processing of the domain. All
sound pairwise combinations of actions were considered as macro-actions and fil-
tered through some basic pruning rules. Due to the small size of the domains with
which the planner was reasoning, the number of macro-actions remaining follow-
ing this process was sufficiently small to use in planning.

More recent works on macro-actions include the IPC-2004 competitor MacroFF
(Botea et al., 2005). In this work macro-actions are extracted in two ways: from
solution plans and by the identification of statically connected abstract compo-
nents. Besides, an off-line filtering technique is used to prune the list of macro-
actions. Marvin (Coles and Smith, 2007) also competed in IPC-2004 using action-
sequence-memorization techniques to generate macro-actions on-line that allow
the planner escape from plateaus without any exploration. Recently, (Newton
et al., 2007) uses a genetic algorithm to generate a collection of macro-actions
independent of the source planner.

3.3.2 Learning planning cases

Planning cases are stored and indexed as cases for later retrieval. When a new
problem is presented, a case-based reasoner searches through its plans library for
similar problems. If an exact match is found, the previous plan may be returned
with no changes. Otherwise, the reasoner must either try to modify a previous case
to solve the new problem or to plan from scratch. Figure 3.6 shows planning cases
learned by the CABALA (de la Rosa et al., 2007) system for the Depots domain.

6: UNLOAD HOIST1 CRATE0 TRUCK0 DISTRIBUTOR0

7: DROP HOIST1 CRATE0 PALLET1 DISTRIBUTOR0

[(at1, on1, on2), null]

[(at1,on1,clear1),LIFT]

[(at1, on1,clear1), no−op]

[(lifting1), LIFT]

[(in1), LOAD]

[(in1), no−op]

[(lifting1), UNLOAD]

[(at1, on1,clear1, DROP]

PLAN

TYPED SEQUENCE FOR CRATE0

Initial typed substate

Goal typed substate

1: LIFT HOIST0 CRATE1 CRATE0 DEPOT0

2: LOAD HOIST0 CRATE1 TRUCK0 DEPOT0
3: LIFT HOIST0 CRATE0 PALLET0 DEPOT0

4: LOAD HOIST0 CRATE0 TRUCK0 DEPOT0

5: DRIVE TRUCK0 DEPOT0 DISTRIBUTOR0

Figure 3.6: Cases learned by the CABALA system for the Depots domain.

3.3. LEARNING PLANNING SEARCH CONTROL 33

The main drawback of this approach is finding an appropriate similarity metric
between the planning problems, determining how to modify an existing plan to
solve a new problem, and determining when it would be faster simply to plan for
the new problem from scratch. As with macro-actions and control rules, utility is
also a problem when handling libraries of plan cases. As the libraries get larger, the
search times for relevant cases can exceed the time required to plan from scratch
for a new case. But, unlike macro-actions, cases can memorize goals information.

By developing the first case-based planner (CHEF), Hammond helped to define
the case-based approach to problem solving and to explanation (Hammond, 1990).
Given a set of goals and a current situation, the first task for CHEF was to find an
old plan that solved a past problem that is similar to the current problem. The next
tasks were to adapt the old solution to fit the new circumstances and to store the
new solution so that it can be reused in the future. However in addition to old
plans, Hammond illustrated the use of memory for plan adaptation, plan repair,
and failure anticipation. The modification strategies of CHEF do not consider the
internal causal dependency structure of the plan, and thus can lead to incorrect
plans even relative to the domain knowledge contained in the case base and the
modifier. The PRIAR system (Kambhampati and Hendler, 1992) proposed to
integrate the modification of plans with generative planning, so the modifications
of plans are guided by the causal dependencies of the plan being modified, rather
than by execution-time failures or by the results of external simulation.

PRODIGY/ANALOGY (Veloso and Carbonell, 1993) introduced the applica-
tion of derivational analogy and abstraction to planning. This system stored plan-
ning traces to avoid failure paths in future exploration of the search tree. To retrieve
similar planning traces, PRODIGY/ANALOGY indexed them using the minimum
preconditions to reach a set of goals. The cased-based planning system PARIS
(Bergmann and Wilke, 1996) proposed the introduction of abstraction techniques
to store the cases organized in a hierarchical memory. This technique improves the
flexibility of the cases adaptation, thus increasing the coverage of a single case.

The DsPlanners (Winner and Veloso, 2003) were introduced by Winner and
Veloso with the aim of avoiding the cost of maintaining exhaustive plans cases
databases. A DsPlanner is an automatically generated domain-specific planning
program. This domain-specific planners are generated in a two-step process: (1)
converting example plans into DsPlanners and (2) merging DsPlanners. The first
step is performed by choosing the first parameterization that allows part of the
solution plan to match that of a previously-saved DsPlanner. The second step is
performed by searching if it is a sub-plan of the previously stored, or they overlap.
If such a match is found, the two DsPlanners are combined. If no match is found,
the plan is simply added to the end of the DsPlanner.

Recently, the CABALA (de la Rosa et al., 2007) system used typed sequences
cases in heuristic planning for node ordering during the plan search.

34 CHAPTER 3. LEARNING FOR CLASSICAL PLANNING

3.3.3 Learning control rules

A control rule is an IF-THEN rule for guiding the exploration of the planning
search tree. Control rules can guide the exploration in two different ways: propos-
ing node pruning or proposing node ordering during the tree exploration. Figure
3.7 shows an example of a control rule for node pruning learned by the PRODIGY
planner in the Depots domain.

(control-rule INDUCED-SELECT-UNLOAD
(if (and (current-goal (lifting <hoist1> <crate1>))

(true-in-state (clear <crate1>))
(true-in-state (on <crate1> <surface1>))
(true-in-state (available <hoist1))
(true-in-state (available <hoist2>))
(true-in-state (at <truck1> <depot1>))
(some-candidate-goals nil)
(type-of-object <hoist1> hoist)
(type-of-object <hoist2> hoist)
(type-of-object <crate1> crate)
(type-of-object <truck1> truck)
(type-of-object <depot1> depot)
(type-of-object <surface1> surface)))

(then select operators unload))

Figure 3.7: Control rule for the Depots domain.

Control-rules usually enrich the planning language with extra predicates, called
metapredicates,4 that allow the planner to capture specific knowledge of the given
domain. However, the knowledge captured strongly depends on the quality of the
learning examples used. When the learning examples are not significant enough,
the induced control rules may mislead the search process of the planner. Besides
control-rules also suffer from the utility problem.

On the one hand, there are systems that inductively learn control rules. Among
these systems Inductive Learning Programming (ILP) is the most popular learn-
ing technique. The GRASSHOPPER system (Leckie and Zukerman, 1991) used
FOIL (Quinlan and Cameron-Jones, 1995) to learn control rules that guide the
PRODIGY planner when selecting goals, operators and binding operators. Purely
inductive systems need a big number of learning examples to acquire efficient con-
trol knowledge. On the other hand, there are analytical systems: PRODIGY’s EBL
module (Minton, 1988) learned search control rules for the PRODIGY planner
from a few examples of correct and wrong decisions. STATIC (Etzioni, 1993)
obtains control rules without any learning example just using Explanation Based
Learning (EBL) to analyse the relations between actions’ preconditions and effects.

4Metapredicates are extra predicates used to reason about the metastate of the planner (e.g., the
goals that the planner is currently working on, the operators being considered, etc.).

3.3. LEARNING PLANNING SEARCH CONTROL 35

The main disadvantage of these methods is that, given that there are no learning ex-
amples, there is no measure of the learned knowledge utility.

With the aim of solving the problems of the purely inductive and purely an-
alytical approaches some researchers have tried to combine them: the pioneering
systems based on this principle are LEX-2 (Mitchell et al., 1982) and META-
LEX (Keller, 1987). AXA-EBL (Cohen, 1990) combined EBL + induction. It
first learns control rules with EBG and then refines them with learning examples.
DOLPHIN (Zelle and Mooney, 1993) was an extension of AXA-EBL which used
FOIL as the inductive learning module. The HAMLET (Borrajo and Veloso, 1997)
system combines deduction and induction incrementally. First it learns control
rules with EBL, that usually are too specific and then uses induction to generalize
and correct the rules. EVOCK (Aler et al., 2002) applies the genetic programming
paradigm to solve the learning problems caused by the hypothesis representation
language.

3.3.4 Learning generalized policies

A policy is a mapping between the world states and the preferred action to be exe-
cuted in order to achieve a certain set of goals. A generalized policy is a mapping
from the problems of a given domain, i.e., the diverse combinations of initial state
and goals, into the preferred action to be executed in order to achieve the goals.
Thereby, a good generalized policy is able to solve all the possible problems in-
stances of a given domain. For example, a generalized policy for the Blocksworld
can be given as follows:

(1) put all blocks on the table, and then
(2) move block x on block y when x should be on y,

both blocks are clear, and y is well placed

Figure 3.8: A generalized policy for the Blocksworld domain.

The problem of learning generalized policies was first studied by Roni Khardon.
Khardon’s L2ACT (Khardon, 1999), induced generalized policies for both the
Blocksworld and the Logistics domain by extending the decision list learning algo-
rithm (Rivest, 1987) to the relational setting. This first approach presented two im-
portant weaknesses: (1) it relied on human-defined background knowledge that ex-
pressed key features of the domain, e.g. the predicates above(block1,block2)
or in place(block) for the Blocksworld, and (2) the learned policies do not
generalize well when the size of the problems is increased. Martin and Geffner
solved these weaknesses of the Khardon’s approach in the Blocksworld domain
by changing the representation language of the generalized policies (Martin and
Geffner, 2000). Instead of representing the current state and the problems goals

36 CHAPTER 3. LEARNING FOR CLASSICAL PLANNING

using predicate logics they used a concept language.5 This representation allows
them to learn rules of the form: apply action type a to any object in class C.

In the last years the scope of generalized policy learning has been augmented
over a diversity of domains making this approach competitive with the state-of-the-
art planners. This achievement is due to the assimilation of two new ideas: (1) The
policy representation language is enriched with extra predicates. Like control-rule
based planners, these systems introduce metapredicates to capture more effective
domain specific knowledge. (2) The learned policies are not longer greedily ap-
plied but combined with heuristic planning algorithms. Specifically (Yoon et al.,
2007b) complements the information of the current state with the relaxed planning
graph and the learned policies are used during node expansions in a best-first search
heuristic algorithm. At each node expansion of the best-first search, they add to the
search queue the successors of the current best node as usual, but also they add the
states encountered by following the policy from the current best node for a given
horizon.

Recently the Roller system (de la Rosa et al., 2008) defined the problem of
learning generalized policies as a two-step standard classification process. At the
first step the classifier captures the preferred operator to be applied in the different
planning contexts. At the second step the classifier captures the preferred bindings
for each operator in the different planning contexts of a given domain. These con-
texts are defined by the set of helpful actions extracted from the relaxed planning
graph of a given state, the goals remaining to be achieved, and the static predicates
of the planning task. Additionally, Roller implemented two methods for guiding
the search of a heuristic planner with the learned policies. The first one consists
of using the resulting policy in a Depth First Search algorithm. The second one
consists of ordering the node evaluation of the Enforced Hill Climbing algorithm
with the learned policy.

3.3.5 Learning hierarchical knowledge

Hierarchical planning combines hierarchical domain-specific representation of the
planning models together with domain-independent search for problem solving.
One of the best-known approaches for modelling hierarchical knowledge about a
planning domain is Hierarchical Task Network (HTN). Current HTN planners can
outperform the state-of-the-art ones and provide a natural modelling framework in
many real-world applications like fire extinctions (Castillo et al., 2006), evacua-
tion planning (Muñoz-Avila et al., 1999), manufacturing, or autonomous vehicles
management. In HTN planning, complex tasks are decomposed into simpler tasks
until a sequence of primitive actions is generated. Therefore, the input to an HTN
planner includes a set of operators similar to the ones used in classical planning
(primitive actions) and a set of methods describing how tasks should be decom-

5Concept Languages also known as Description Logics (Brachman and Levesque, 1984; Geffner,
1999; Donini et al., 1995) have the expressive power of fragments of standard first-order logic but
with a syntax that is suited for representing and reasoning with classes of objects.

3.3. LEARNING PLANNING SEARCH CONTROL 37

posed into subtasks in this particular domain. Figure 3.9 shows the method for the
task transport-crate(crate,destination) from the HTN description
of the Depots domain.

(:method (transport-crate ?crate ?destination)
; precondition
(and (truck ?truck) (at ?truck ?place1)

(at ?crate ?place2) (different ?place1 ?place2))
; subtasks
(:ordered (drive ?truck ?place1)

(load ?crate ?truck)
(drive ?truck ?place2)
(unload ?crate ?truck)))

Figure 3.9: Method for hierarchical planning in the Depots domain.

The specification of these hierarchical methods by hand is a hard task that
requires expert knowledge. And defining a general algorithm for automatically
learning them for any domain is still an open issue. However there is existing work
about learning task decompositions of related tasks and subtasks.

The ALPINE system (Knoblock, 1990) completely automates the generation
of abstraction hierarchies from the definition of a problem space. Each abstraction
space in a hierarchy is formed by dropping literals from the original problem space;
thus it abstracts the preconditions and effects of operators as well as the states and
goals of a problem. Concerning abstraction in planning, the system PARIS stores
each case in different levels of abstraction (Bergmann and Wilke, 1996). To solve
new problems, the problem will be compared with cases of the hierarchy of ab-
stractions and the planner is used to refine the abstract case and to adapt it to the
new problem. X-LEARN (Reddy and Tadepalli, 1997) uses a generalize-and-test
algorithm based on ILP to learn goal-decomposition rules. These (potentially re-
cursive) rules are 3-tuples that tell the planner how to decompose a goal into a
sequence of subgoals in a given world state, and therefore are functionally sim-
ilar to methods in HTN domains. X-learns training data consists of solutions to
the planning problems ordered in an increasing order of difficulty (authors refer to
this training set as an exercise set, as opposed to an example set which is a set of
random training samples without any particular order). This simple-to-hard order
in the training set is based on the observation that simple planning problems are
often subproblems of harder problems and therefore learning how to solve simpler
problems will potentially be useful in solving. HICAP (Hierarchical Interactive
Case-based Architecture for Planning) (Muñoz-Avila et al., 1999) integrates the
SHOP hierarchical planner together with a case-based reasoning (CBR) system
named NACODAE to assist with the authoring of plans for noncombatant evacu-
ation operations. It interacts with users to extract a stored similar case that allows
one to solve the current problem. The system CASEADVISOR also integrates CBR

38 CHAPTER 3. LEARNING FOR CLASSICAL PLANNING

and hierarchical planning (Carrick et al., 1999). It uses plans previously stored to
obtain information of how to solve a task instead of choosing the refining method.
The KNOMIC (Knowledge Mimic) (van Lent and Laird, 2001) is a machine learn-
ing system which extracts hierarchical performance knowledge by observation to
develop automated agents that intelligently perform complex real-world tasks. The
knowledge representation learned by KNOMIC is a specialized form of Soar’s pro-
duction rule format (Rosenbloom et al., 1993). The rules implement a hierarchy
of operators with higher level operators having multiple sub-operators represent-
ing steps in the completion of the high level operator. These rules are then used by
an agent to perform the same task. Langley and Rogers describes how ICARUS,
a cognitive architecture that stores its knowledge of the world in two hierarchical
categories of concept memory and skill memory, can learn these hierarchies by
observing problem solving in sample domains (Langley and Choi, 2006).

There is a recent trend of work that attempts to solve the learning of HTN
domain descriptions. CAMEL (Ilghami et al., 2005) uses an extended version
of the Candidate Elimination incremental algorithm to learn expansions methods
in a HTN planner by observing plan traces. It is designed for domains in which
the planner is given multiple methods per task, but not their preconditions. That
is, the structure of the hierarchy is known in advance and the learning task is to
identify under what conditions different hierarchies are applicable. The problem
with this work is that it required very many plan traces to converge (completely
determine the preconditions of all methods). CAMEL++ is also an algorithm for
learning preconditions for HTN methods that enables the planner to start planning
before the method preconditions are fully learned. By doing so, the planner can
start solving planning problems with a smaller number of training examples than
is required to learn the preconditions completely with insignificant cost of few
incorrect plans. Camel required all information about the methods except for their
preconditions to be given to the learner in advance, so that the only information for
the learner to learn was the methods preconditions. Besides, each input plan trace
for Camel needed to contain a lot of information so that the learner could learn
from it. At each decomposition point in a plan trace, the learner needed to have
all the applicable method instances, rather than just the one that was actually used.
The HDL algorithm (Ilghami et al., 2006) starts with no prior information about
the methods. HDL does not need most of that information. At each decomposition
point, it only needs to know about one or at most two methods: The method that
was actually used to decompose the corresponding task; and one (if there are any)
of the methods that matched that task but whose preconditions failed (to serve as
a negative training sample). The system HTN-Maker (Hogg et al., 2008) receives
even less input information, HTN-Maker is able to produces an HTN domain model
from a STRIPS domain model, a collection of STRIPS plans, and a collection of
task definitions.

Apart from learning decomposition task methods, learning has also been ap-
plied to hierarchical planning for other purposes. Lotem and Nau build a method
for extracting knowledge on HTN planning problems for speeding up the search

3.3. LEARNING PLANNING SEARCH CONTROL 39

(Lotem and Nau, 2000). This knowledge is gathered by propagating properties
through an AND/OR tree that represents disjunctively all possible decompositions
of an HTN planning problem. This knowledge is used during the search process of
the GraphHTN planner, to split the current refined planning problem into indepen-
dent subproblems.

3.3.6 Learning heuristic functions

A heuristic function H(s;A; g) is a function of a state s, an action set A, and a
goals set g that estimates the cost of achieving the goals g starting from s and
using the actions of A. In case the estimation provided by the heuristic function
is accurate, a greedy application of the actions recommended by the heuristic will
achieve the goals without search. However, when a heuristic is imperfect, it must
be used in the context of a heuristic search algorithm, where the accuracy of the
heuristic impacts the search efficiency.

Most of the state-of-the-art planners are based on heuristic search over the
state-space (12 over the 20 IPC-2006 participants). The performance of these plan-
ners depend strongly on defining good domain-independent heuristic functions that
provide good guidance across the wide range of different domains. Currently these
heuristics are built by approximating the reachability of the goals by ignoring some
types of interactions among actions (usually, the delete effects of actions). Though
they are effective in general they are expensive to compute and there are many do-
mains where these functions misestimate the distance to the goal leading to poor
guidance. As a consequence, heuristic planners suffer from scalability problems.
This effect becomes more prominent in domains where the heuristic function is
less accurate because, in these domains heuristic planners spend most of the plan-
ning time computing useless node evaluations, e.g. Blocksworld. With the aim of
avoiding this undesirable effect one can try to directly learn the heuristic function
for a given domain: Regarding this approach, (Yoon et al., 2006; Xu et al., 2007)
build a state generalized heuristic function through a regression process. The re-
gression examples consists of observations of the true distance to the goal from
diverse states, together with extra information from the relaxed planning graph.
The obtained heuristic function provide more accurate estimations that capture do-
main specific regularities expressed as a weighted linear combination of features,
that is,

H(s;A; g) =
∑
i

wi ∗ fi(s;A; g)

where the wi are the weights and the fi represent the different features of the plan-
ning context. The main disadvantage of this leaning approach is that the result of
the regression is poorly understandable by humans making the verification of the
correctness of the acquired knowledge difficult.

40 CHAPTER 3. LEARNING FOR CLASSICAL PLANNING

3.4 Learning planning domain models

AP is a form of problem solving that requires accurate models of the dynamics of
the environment to reason about problems. However, building these models from
scratch is difficult and time-consuming, even for AP experts. This section revises
techniques for the automatic definition of planning action models in deterministic
and fully observable environments.

The LIVE system (Shen and Simon, 1989) is an extension of the GPS frame-
work (Ernst and Newell, 1969) with a learning component. LIVE alternates prob-
lem solving with rule learning for the automatic definition of STRIPS-like oper-
ators. The decision for alternation mainly depends on surprises, i.e., situations
where an action’s consequences violate its predicted models. When no rule can
be found for solving the problem, LIVE will generate and execute an exploration
plan, or a sequence of actions, seeking for surprises to extend the rule set. Once
new rules are learned, problem solving is resumed and a solution plan may be
constructed through means-ends analysis.

The EXPO system (Gil, 1992) refines incomplete planning operators, i.e., op-
erators with some missing preconditions and effects. EXPO generates plans, mon-
itors their execution and detects differences between the state predicted according
to the internal action model and the observed state. The diverse differences are
correlated with a typical cause for the expectation failure. EXPO constructs a set
of specific hypotheses to fix the detected difference. After being heuristically fil-
tered, each hypothesis is tested in turn with an experiment. After the experiment
is designed, a plan is constructed to achieve the situation required to carry out the
experiment. The experiment plan must meet constraints such as minimizing plan
length and negative interference with the main goals.

Unlike the previous works that refined planning operators by an active explo-
ration of the environment, OBSERVER (Wang, 1994) learns operators by ob-
serving expert agents. The observations of the expert agent consists of: (1) the
sequence of actions being executed, (2) the state in which each action is executed,
and (3) the state resulting from the execution of each action. Planning operators
are learned from these observation sequences in an incremental fashion utilizing a
conservative specific-to-general inductive generalization process. Eventually, the
system solves practice problems with the new operators to refine them from execu-
tion traces.

The LOPE system (Garcia-Martinez and Borrajo, 2000) learns planning op-
erators by observing the consequences of executing planned actions in the envi-
ronment. At the beginning, the system has no knowledge, it perceives the initial
situation, and selects a random action to execute in the environment. Then it loops
by (1) executing an action, (2) perceiving the resulting situation of the action ex-
ecution and its utility, (3) learning a model from the perception and (4) planning
for further interaction with the environment (in case the execution of the plan is
finished, or the system has observed a mismatch between the predicted situation
and the situation perceived). The planning component of LOPE does not explic-

3.5. DISCUSSION 41

itly receives a goal input given that LOPE creates its own goals from the situations
with the highest utility.

Despite the previous techniques were based on inductive learning, analytical
learning has also been used for action modelling. Specifically, EBL has been used
for learning low-level operators as encapsulated control loops that are specialized
to best fit a particular distribution of observed learning problems (Levine and De-
Jong, 2006). Finally, the techniques previously revised for the automatic definition
of HTN decomposition methods (Section 3.3.5) are also considered as action mod-
elling techniques.

3.5 Discussion

Before the mid 90’s ML was exhaustively used in AP to learn search control knowl-
edge that improved the scalability of planners. During this period planners imple-
mented uninformed search algorithms, so ML made planners achieve better perfor-
mance in many domains.

In the late 90’s two factors made the planning community decrease its interest
in ML. On the one hand, the appearance of powerful domain independent heuristics
boosted the performance of planners. Suddenly the baseline for evaluating the
performance of the learning-based planners shifted dramatically. On the other, the
existing relational learning algorithms were inefficient and performed poorly over
a diversity of domains.

At the present time, encouraged by the applications of AP to real-world prob-
lems and the maturity of relational learning, there is a renewed interest in learning
for planning. In fact, in 2005 the International Competition on Knowledge Engi-
neering for Planning Systems (ICKEPS) was created and in 2008, a learning track
took place for the first time at IPC. ML seems again to be the solution to current
challenges of AP ranging from learning control knowledge for large planning prob-
lems (Yoon et al., 2008) to learning action models for environments with unknown
dynamics (Yang et al., 2007). Nevertheless, deeper studies have still to be done in
different issues for providing planning systems with complete learning skills:

• There is no general method for generating good quality learning experi-
ence for planning. The effectiveness of the learning-based planners strongly
depends on the training examples used. In most systems these learning ex-
amples are collected solving small problems from the same domain. There-
fore, the quality of the learning examples will depend on the selection of
the problems used for training. Traditionally, these training problems are
obtained by a random generator but this approach presents two limitations.
First, guaranteeing that a given AP problem is solvable is as hard as solv-
ing it. Second, training problems are usually created by a random generator
with a set of parameters that define the problems difficulty. Adjusting these
parameters for generating significant learning examples implies domain ex-
pertise. Recent works discusses several active learning schemes to overcome

42 CHAPTER 3. LEARNING FOR CLASSICAL PLANNING

these limitations (Fern et al., 2004; Fuentetaja and Borrajo, 2006) however,
further studies have to be done to come up with a general solution.

• There is no evidence to extract the key features for a given planning
domain. The effectiveness of the learned knowledge strongly depends on
the set of features chosen for describing the learning examples and the target
concept. If the chosen features are not able to capture the relevant knowledge
of a given domain, the learning algorithms will produce useless knowledge.

• The on-line learning of planning knowledge has not been studied in
depth. To completely integrate the planning and learning processes farther
studies in on-line learning search control and action models have to be done.
These studies, must cover autonomous generation of experience and plan-
ning with incomplete and/or incorrect models. These issues have already
been extensively studied in other related AI areas such as Reinforcement
Learning.

• There is no effective ML for the most successful domain-dependent plan-
ners. The planner TLPlan (Bacchus and Kabanza, 2000) guided a forward
state-space search with hand-written control rules represented in linear tem-
poral logic. The planner SHOP2 (Nau et al., 2001) used human-coded task-
decomposition rules for HTN planning. Given sufficient control knowledge,
these planners generate plans orders of magnitude faster than domain inde-
pendent planners. Learning this kind of control knowledge for a variety of
domains is still an open issue.

• There is no standard methodology to evaluate the performance of the
planning and learning systems. At IPC-2008, an evaluation of learning-
based planners over a diversity of domains has been carried out for the first
time. However, there are now neither standard metrics nor representation
languages that facilitates the comparison of the diverse learning-based tech-
niques.

• Learning-based planners do not improve the overall performance of the
best non-learning planners. As shown in IPC-2008 the state-of-the-art do-
main independent planners outperform learning-based planners over a diver-
sity of domains. The main reason is that learning can often degrade perfor-
mance. Current learning-based planners need to improve their robustness to
poor or wrong knowledge in order to be more competitive.

• In practice, the model learning proccess may not achieve perfect action
models. Learning examples may be faulty or insufficient, ML algorithms
can get stuck in local minima, . . . Regarding this situations, Kambhampati re-
cently introduced the concept of model-lite planning (Kambhampati, 2007).
This concept refers to a new research line for developping planning tech-
niques that (1) cope with incompletely specified domain models and pro-

3.5. DISCUSSION 43

vides plans according to the knowledge available and/or (2) automatically
improves the domain models with time and experience.

44 CHAPTER 3. LEARNING FOR CLASSICAL PLANNING

Chapter 4

Planning under uncertainty

This chapter reviews the different PUU paradigms. The review is organized ac-
cording to two dimensions: observability of the state and determinism of the action
models.

4.1 Introduction

The usefulness of classical planning for real-world problems is limited given that
almost never the whole truth about the environment is known. More specifically,
there are typically two different sources of uncertainty:

1. Action model. In many planning problems one cannot assume determinis-
tic world dynamics. For instance, planning domains that include stochastic
procedures such as the toggling of a coin or the rolling of a dice.

2. Observability. In many planning problems handling a complete and perfect
description of the state of the environment is unconceivable. For example
when planning for an underwater robot or a Mars rover.

PUU studies the extensions of the classical planning framework to develop
planning systems able to deal with non-deterministic action models, i.e., able to
generate plans reasoning about actions with diverse potential outcomes and able
to deal with partial observability of the environment, i.e., able to generate plans
in spite of the limited information of the current state available. Figure 4.1 shows
the diverse PUU paradigms according to how they extend the classical planning
framework.

4.2 The conformant planning task

Conformant planning is the task of solving a planning problem in a non-observable
environment. Conformant planners synthesize sequences of actions that safely
achieve the goals, starting from an undetermined initial state with no sensing during

45

46 CHAPTER 4. PLANNING UNDER UNCERTAINTY

ACTION MODEL
OBSERVABILITY Deterministic Stochastic

Full Classical Probabilistic
Partial Contingent Contingent Probabilistic
None Conformant Conformant Probabilistic

Figure 4.1: Planning under uncertainty paradigms.

the course of the action execution. Figure 4.2 shows an example of a conformant
planning problem consisting of a robot navigation in a grid. In this example the
robot has to reach cell D2 starting from cell A5 and avoiding the obstacles. In this
case, as the robot is not able to perceive the contents of cells C2,C3, E3 and E4 it
has to avoid them to generate a conformant solution.

A

D

E

C

B

1 2 3 4 5

G

Figure 4.2: Example of a conformant planning problem.

4.2.1 The conceptual model

The conformant planning task is modelled as a deterministic belief state transition
system

∑
= (B,A,C) where:

• B is the set of belief states. Conformant planning algorithms do not handle
single states but belief states. A belief state is the set of all the states the
system could possibly be at a given instant.

• A is the set of actions. Each action a ∈ A is a function that maps a belief
state b ∈ B into another belief state b′ ∈ B. The set of actions A(b) ⊆ A
that can be safely applied in a belief state b ∈ B are the actions a ∈ A that

4.2. THE CONFORMANT PLANNING TASK 47

can be applied in any state s that is possible according to b

A(b) = {a | Pre(a) ⊆ s, ∀s ∈ b}

The belief state b′ ∈ B resulting of applying action a ∈ A in the belief state
b ∈ B is described as:

b′ = {s′ | s′ ∈ result(a, s), ∀s ∈ b}

• C(a) represents the cost of applying the action a ∈ A.

Regarding this conceptual model, a conformant planning problem is defined
as the tuple P = (

∑
, b0, G) where b0 ∈ B is the initial belief state, i.e., the set

of possible initial states. And G ⊆ B is the set of belief states that contain only
goal states. Finding a solution to a conformant planning problem P consists of
synthesizing a sequence of actions (a1, a2, ..., an) corresponding to a sequence of
belief-states transitions (b0, b1, ..., bn) such that bi results from executing the action
ai in the belief-state bi−1 and bn is a belief-state that contains only goal states. The
optimal solution to a conformant planning problem is the one that minimizes the
expression

∑n
i=0 c(ai).

4.2.2 The representation language

Conformant planning problems are described using a standard classical planning
representation language augmented for specifying the set of possible initial states
of the problem. At IPC, the classical planning representation language PDDL is
augmented with the predicate (oneof l1 l2 . . . ln) for expressing that exactly one
of the li literals is true in the initial state and the predicate (or (not li) (not lj))
for expressing the mutual exclusion of the couple of literals li and lj . Figure 4.3
shows the representation of a conformant problem from the Blocksworld domain
of the conformant track of IPC.

4.2.3 The algorithms

There are three main approaches to tackle the conformant planning problem:

• Extending classical planning to handle belief states. The pioneer confor-
mant planners followed this approach; particularly they tried to extend the
planning-graph techniques to the conformant planning setting.

• Explicit search in the conceptual model. The problem of conformant plan-
ning can be addressed by directly searching in the belief-states space. To
guide this search process, one can use heuristic functions based on comput-
ing a distance measure between belief states.

• Compiling the conformant planning problem into another form of problem
solving for which there are efficient algorithms. The main compilations of
the conformant planning task are:

48 CHAPTER 4. PLANNING UNDER UNCERTAINTY

(define (problem prob01)
(:domain blocks)
(:objects A B - block)
(:init
(and (oneof (handempty) (holding A) (holding B)) ;(holding ?x)

(oneof (holding A) (clear A) (on B A)) ;(above A ?x)
(oneof (holding A) (ontable A) (on A B)) ;(on A ?x)
(oneof (holding B) (clear B) (on A B)) ;(above B ?x)
(oneof (holding B) (ontable B) (on B A)) ;(on B ?x)

(or (not (handempty)) (not (holding A)))
(or (not (handempty)) (not (holding B)))
(or (not (holding A)) (not (holding B)))

(or (not (holding A)) (not (clear A)))
(or (not (holding A)) (not (on B A)))
(or (not (clear A)) (not (on B A)))

(or (not (holding A)) (not (ontable A)))
(or (not (holding A)) (not (on A B)))
(or (not (ontable A)) (not (on A B)))

(or (not (holding B)) (not (clear B)))
(or (not (holding B)) (not (on A B)))
(or (not (clear B)) (not (on A B)))

(or (not (holding B)) (not (clear B)))
(or (not (holding B)) (not (on A B)))
(or (not (clear B)) (not (on A B)))

(or (not (on A B)) (not (on B A)))))
(:goal (and (ontable A) (on B A))))

Figure 4.3: Problem from the Blocksworld of the conformant track of IPC.

– SAT Problem. The conformant planning can be compiled into SAT
following two different approaches:

∗ Generate-and-test. Given a plan length, a SAT solver is used to
generate candidate conformant plans. Then, each candidate is
tested for conformant validity. This strategy only works well when
there are few candidate plans; otherwise it is too inefficient.
∗ Compiling the planning theory into a deterministic-Decomposable

Negated Normal Form (d-DNNF). The compiled theory is trans-
formed into a new theory over the action variables only, and finally
the conformant plan, if there is one, is obtained from this theory
by a single invocation of a SAT engine.

– Model Checking problem. In this compilation of the planning prob-

4.2. THE CONFORMANT PLANNING TASK 49

lem (Cimatti and Roveri, 2000), the planning domain is formalized as
a specification of the possible models for plans; the conformant plan-
ning problem is solved by searching through plans, checking that there
exists one plan p that satisfies two extra requirements: (1) p must be
still applicable after executing any prefix of p in any of the possible
initial states and (2) all the states resulting from the execution of p in
the initial belief state must be goal states.

– Classical planning. Given KL to denote literals L that are known to be
true and L/X to denote literals L that are true if a given literal X is
true. This compilation (Palacios and Geffner, 2007) generates a classic
planning problem by transforming conditions of the form C ∧X → L
into the form KC → L/X and merging these conditions according to
the rule L/X1, L/X2 → KL provided thatX1, X2 are known to hold.

4.2.4 The implementations

This is a enumeration of some of the most relevant conformant planners.

Conformant-Graphplan

CONFORMANT-GRAPHPLAN (CGP) (Smith and Weld, 1998). It expands separate
planning graphs for each different possible state of the environment and one for
each possible nondeterministic outcome. It keeps track of mutual exclusion rela-
tions among the different graphs and then it searches backwards for a plan that is
valid in all the possible worlds.

Conformant-MBP

The Conformant Model Based Planner (CMBP) (Cimatti and Roveri, 2000) is
based on the planning via model checking paradigm. It relies on Binary Decision
Diagrams (BDDs) (Bryant, 1986) to compactly represent and efficiently search for
a conformant plan in the space of possible plans.

Conformant-FF

CONFORMANT-FF (Brafman and Hoffmann, 2004) implements a forward heuris-
tic search in the space of belief states guided by an extension of the FF’s heuristic.
The belief states are coded by the intersections of propositions contained in all the
possible states of the belief state. The extension to the FF’s heuristic uses SAT tech-
niques to efficiently solve relaxed conformant planning tasks in the search states.
The relaxed planning tasks are built by ignoring (1) all the deletes of the action
effects (2) propositions of the conditional effects (all except one).

50 CHAPTER 4. PLANNING UNDER UNCERTAINTY

T0

The T0 planner (Palacios and Geffner, 2006) is the winner of the IPC-2006 con-
formant planning track. This planner maps conformant planning problems into
deterministic problems which are then solved by the classical planner FF.

Approximation-Based Conformant Planner

The APPROXIMATION-BASED CONFORMANT PLANNER (CPA) (Tran et al., 2008)
is the winner of the IPC-2008 conformant planning track. CPA implements a Best-
First Search in the space of partial states instead of the space of belief states. The
planner relies on the observation that a belief state can (sometimes) be replaced
by the intersection of its members, thereby reducing the size of the search space.
The search is guided by a combination of the following heuristics: the cardinality
of the partial state, the number of satisfied subgoals and the total sum heuristic (a
heuristic computed adding the heuristic values of completions of the partial state).

4.3 The contingent planning task

Contingent planning is the task of solving a planning problem in a environment
where the current state is undetermined, but it is possible to observe some aspects
of it during the execution of the plan. Contingent planning is also referred in litera-
ture as conditional planning. Figure 4.4 shows an example of a contingent planning
problem. In this example a mobile robot has to plan its actions to navigate from cell
A5 to the goal cell C2 avoiding obstacles. In this example the robot cannot initially
determine the content of cells C2, C3, D3 and D4 but when it gets close to them,
it can sense their contents and decide whether to cross C2 and C3, if there is no
obstacle, or to follow the path through A1,A2,A3,A4 which is free of obstacles.

A

D

E

C

B

1 2 3 4 5

G

Figure 4.4: Example of a contingent planning problem.

4.3. THE CONTINGENT PLANNING TASK 51

4.3.1 The conceptual model

In contingent planning, part of the initial state of the environment is unknown. As
a consequence, contingent planning does not reason about states, but about belief
states. Additionally, the outcomes of the observations cannot be predicted thus, the
contingent planning task is modelled as a non-deterministic belief-states-transition
system

∑
= (B,A,C,O) where:

• B is the set of belief states. A belief state is the set of all the states the system
could possibly be at a given instant.

• A is the set of actions. Each action a ∈ A is a function that maps a given
belief state b ∈ B into a set of belief states. The set A(b) ⊆ A of actions that
can be safely applied in a belief state b ∈ B are the actions a ∈ A that can
be applied in any state s that is possible according to b

A(b) = {a | Pre(a) ⊆ s, ∀s ∈ b}

• C(a) is the cost of applying the action a ∈ A.

• O(a, b) is the noise-free sensor model function. This function returns the
possible observed states after applying the action a in the belief state b.

O(a, b) = {o(a, s) | ∀s ∈ b}

where o(a, s) is the observed state after applying the action a in the state
s. After the execution of action a ∈ A, an observation o is performed to
exclude from the resulting belief-state bo the states inconsistent with o. Thus,
the resulting belief state bo ∈ B is given by:

bo = {s′ ∈ S | s′ = o(a, s), s ∈ b}

Regarding this conceptual model, a contingent planning problem is defined as
the tuple P = (

∑
, b0, G) where b0 ∈ B is the initial belief state, i.e., the set of

possible initial states. And G ⊆ B is the set of belief states that contain only goal
states. The solution to a contingent planning problem is a conditional plan normally
expressed as a belief state-action policy π(bi−1) = ai whose execution starting
from the initial belief-state b0 results in a belief-state bn ∈ G which contains only
goal states. The optimal solution to a contingent planning problems is the policy
π∗(bi−1) = ai that minimizes the sum of costs to reach a belief-state bn ∈ G from
all the possible reachable states. A solution to a contingent planning problem can
also be expressed as a decision tree where the internal nodes of the tree correspond
to observations of the current state of the environment that is not available in plan-
synthesis time.

52 CHAPTER 4. PLANNING UNDER UNCERTAINTY

4.3.2 The representation languages

Contingent planners extend the classical planning representation languages to cap-
ture two new features: (1) like in conformant planning, there is no initial state but
a set of possible initial states and (2) the sensor model indicating the observations
available at execution time. Normally these observations available are modelled
in the planning domain as sensing actions. Sensing actions are planning actions
with effects representing some information observed from the current state. There-
fore, a planner should choose sensing actions when the lack of information can
prevent it to achieve the problem goals. Currently there is no standard representa-
tion language for the sensing actions and normally each contingent planner defines
its own representation. Figure 4.5 shows an example of a sensing action for the
CNLP planner (Peot and Smith, 1992). In this action, effect1 and effect2
are mutually exclusive and cover all the possible outcomes for the observation.

(:observation test-robot-handempty
pre: (unknown(handempty))
effect1: (handempty)
effect2: (not (handempty)))

Figure 4.5: Sensing action to check the state of the robot hand in the Blocksworld.

4.3.3 The algorithms

There are three main approaches for contingent planning:

• Extending classical planning algorithms for dealing with contingencies. The
first contingent planners followed this approach.

• Explicit search in the conceptual model. Contingent planning can solved by
AND/OR search algorithms able to deal with disjunctive transitions such as
LAO* or the family of dynamic programming algorithms.

• Compiling the contingent planning problem into another form of problem
solving. The size of a valid contingent plan constructed by searching in the
conceptual model is exponential in the number of observations. Another ap-
proach to deal with this drawback is compiling the contingent planning prob-
lem in another form of problem solving for which there are effective algo-
rithms. An example is the Conformant Planning compilation (Albore et al.,
2007). This compilation transform the sensings in the contingent problem
into a set of non-deterministic actions for a conformant planning problem.

4.3. THE CONTINGENT PLANNING TASK 53

4.3.4 The implementations

CNLP

The Conditional Non-Linear Planner CNLP (Peot and Smith, 1992) was one of
the first planners that included sensing actions. CNLP is a conditional version of
the Systematic Nonlinear Planner (SNLP) (Mcallester and Rosenblitt, 1991) that
allowed to represent uncertain information in planning time using the predicate
function unknown. CNLP used sensing actions to know if some unknown literal
is true or false during execution time.

Cassandra

CASSANDRA (Pryor and Collins, 1996) does not attempt to construct a contin-
gency plan until it encounters an uncertainty. In fact, if it encounters no uncertainty
it constructs a solution plan in the same way as the classical planner UCPOP. Cas-
sandra notices uncertainty when its current plan becomes dependent upon a partic-
ular outcome of an action. At this moment, the plan constructed by CASSANDRA

becomes a plan branch for that outcome and CASSANDRA plans again to reach the
problem goals assuming that the action produced a different outcome.

Sensory GraphPlan

Sensory GraphPlan SGP (Weld et al., 1998) is an extension of GRAPHPLAN

to handle sensing actions. Like CONFORMANT-GRAPHPLAN (Smith and Weld,
1998), SGP expands separate planning graphs for each different possible state of
the environment and one for each possible nondeterministic outcome. The dif-
ference is that the SGP expansion considers the set of possible sensor values and
takes the cross product to determine the set of partitions which could be induced
by the sensor. These partitions lead to the introduction of new propositions to the
subsequent layers.

Contingent-FF

CONTINGENT-FF (Hoffmann and Brafman, 2005) extends the FF PLANNER with
the ability to handle initial state uncertainty expressed in the form of a CNF for-
mula. Contingent-FF implements a heuristic AO* search. The output of Contingent-
FF are tree-shaped plans with branches.

MBP

MBP (Bertoli et al., 2006) is implemented on the top of the NuSMV (Cimatti
et al., 1999) model checker. As CMBP, it relies on BDDs (Bryant, 1986) to com-
pactly represent and efficiently search for a solution plan in the space of possible
plans.

54 CHAPTER 4. PLANNING UNDER UNCERTAINTY

4.4 The probabilistic planning task

Probabilistic Planning is the task of finding a plan that reaches a set of goals in
a stochastic environment. In stochastic environments, frequently, there is no plan
that guarantees reaching the goals. So, probabilistic planners must reason about the
likelihood of the actions’ outcomes to obtain plans that (1) maximize the probabil-
ity of reaching the goals and (2) balance the risk of producing undesirable states.
Figure 4.6 shows an example of a probabilistic planning problem consisting of a
robot navigation in a grid. In this problem the robot must reach the cell D2 starting
from the cell A5, avoiding the obstacles (cells B2, D3 and E4) and considering that
every movement has a known probability of reaching a wrong cell. For instance,
moving the robot from cell A5 to B5 might result in the robot at wrong cells A4 or
B4.

A

D

E

C

B

1 2 3 4 5

G

Figure 4.6: Example of a probabilistic planning problem.

4.4.1 The conceptual model

Probabilistic Planning tasks are modelled as a stochastic fully observable state-
transition system with probability distributions associated to each state transition.
This model, also known as MDP, is denoted by

∑
= (B,A, P,C,R), where:

• S is the finite set of states.

• A is the finite set of actions with stochastic effects.

• Pa(si|s), is the probability that action a ∈ A executed in state s ∈ S, leads
to state si ∈ S. So, for each s ∈ S, if there exists a ∈ A and si ∈ S such
that Pa(si|s) 6= 0, it is true that

∑
i Pa(si|s) = 1.

• C(s, a) is the cost of applying action a ∈ A in state s ∈ S.

4.4. THE PROBABILISTIC PLANNING TASK 55

• R(si) is the reward achieved when reaching state si ∈ S.

According to this conceptual model, a probabilistic planning problem is defined as
a tuple P = (

∑
, s0, G) where s0 ∈ S is the initial state and G ⊆ S is the set

of goal states. Finding a solution to a probabilistic planning problem P consists
of generating a sequence of actions (a1, a2, ..., an) corresponding to a sequence of
state transitions (s0, s1, ..., sn) such that si results from executing action ai in state
si−1 and sn ∈ G is a goal state. The quality of a solution to a probabilistic plan-
ning problem depends on three factors: (1) the probability of achieving the goals∏n
i=0 Pa(si|si−1), (2) the cost of the solution

∑n
i=0 c(si, ai) and (3) the achieved

reward
∑n
i=0 r(si). When the cost and the reward functions are expressed in the

same units, the optimal solution to the probabilistic planning problem is the one
that maximizes the expression

∏n
i=0 Pa(si|si−1) ∗

∑n
i=0 r(si)− c(si−1, ai)

4.4.2 The representation languages

The Probabilistic Planning Domain Definition Language (PPDDL) (Younes et al.,
2005) is the representation language for the probabilistic planning track of IPC.
PPDDL is essentially an extension of PDDL2.1 (Fox and Long, 2003) to represent
actions with probabilistic effects and state rewards.

• Probabilistic effects are an explicit declaration of the possible outcomes of
an action execution. Their PPDDL syntax is as follows:

(probabilistic p1 o1 p2 o2 . . . pk ok)

where the outcome oi of the action occurs with probability pi. It is re-
quired that pi >= 0 and

∑k
i=1 pi = 1. However, PPDDL1.0 allows a

probability-outcome pair to be left out if the effect is empty. In other words,
q = 1 −

∑k
i=1 pi with q > 0. PPDDL1.0 allows arbitrary nesting of con-

ditional and probabilistic effects, contrary to popular propositional encod-
ings, such as probabilistic STRIPS operators (PSO’s) (Kushmerick et al.,
1995), which do not allow conditional effects nested inside probabilistic ef-
fects. While arbitrary nesting does not increase the expressiveness of the
language, it can allow for exponentially more compact representations of
certain effects given the same set of state variables and actions (Rintanen,
2003). However, any PPDDL action can be translated into a set of PSOs
with at most a polynomial increase in the size of the representation. Conse-
quently, it follows from the results of Littman (Littman, 1997) that PPDDL
is representationally equivalent to dynamic Bayesian networks, which is also
another popular representation of probabilistic planning problems.

• State rewards, are associated with state transitions and are encoded using
fluents. PPDDL reserves the fluent (reward) to represent the total accu-
mulated reward since the start of execution. Action preconditions and effect

56 CHAPTER 4. PLANNING UNDER UNCERTAINTY

conditions are not allowed to refer to the reward fluent, which means that the
accumulated reward does not have to be considered part of the state-space.
Besides, the initial value of reward is always zero. These two restrictions on
the use of the reward fluent allow a probabilistic planner to handle domains
with rewards, without implementing full support for fluents.

As an example, Figure 4.7 shows the action unstack(block,block) from
the probabilistic version of the Blocksworld domain at the IPC-2004. This action
indicates that with probability 0.75 a robot arm will unstack successfully the block
?top from the block ?bot and that with probability 0.25 the block ?top will fall
down.

(:action unstack
:parameters (?top - block ?bot)
:precondition
(and (not (= ?top ?bot))

(forall (?b - block)
(not (holding ?b)))

(on-top-of ?top ?bot)
(forall (?b - block)

(not (on-top-of ?b ?top))))
:effect
(and (probabilistic 0.7 (and(holding ?top)

(not (on-top-of ?top ?bot)))
0.3 (when(not (= ?bot table))

(and (decrease (reward) 10)
(not (on-top-of ?top ?bot))
(on-top-of ?top table))))))

Figure 4.7: PPDDL representation for the action unstack from Blocksworld.

4.4.3 The algorithms

There are three main approaches to tackle the probabilistic planning problem:

• Extending a classical planner to handle probabilistic effects. The first at-
tempts to face probabilistic planning problems followed this approach. Par-
ticularly, they extended partial order planners (Onder and Pollack, 1999) or
graphplan planners (Blum and Langford, 1999). The solution plans pro-
vided by this approach consists on simple sequential plans, so they had to
be complemented with replanning and plan repairing techniques (Fox et al.,
2006a) to overcome unexpected outcomes of actions.

• Explicit search in the conceptual model. This group of algorithms model
the dynamics of the environment as a Markov Decision Process (MDP) and

4.4. THE PROBABILISTIC PLANNING TASK 57

search for state-action policies optimizing a given utility function.1 Exam-
ples of this approach are the classic dynamic programming algorithms for
solving MDPs (Bellman, 1957; Bertsekas, 1995) also used in model-based
Reinforcement Learning (Kaelbling et al., 1996). The drawback of this
group of algorithms is that they rely on complete state enumeration so their
time complexity is polynomial in the size of the state-space. In the AP prob-
lems, the size of the state-space grows exponentially with the number of
features describing the problem. This state-space explosion problem limits
the use of the MDP framework, and overcoming it has become an important
topic of research. Over the last years, three different solutions have been
posed:

1. Heuristic Search. Heuristic search algorithms limit the computation
to the states that are reachable from the initial state of the problem.
These solutions include the LAO* algorithm (Hansen and Zilberstein,
2001), a generalization of the A* algorithm for MDPS, or the Learning
Depth-First Search (LDFS) algorithm (Bonet and Geffner, 2006), a
generalization of the IDA* for MDPs.

2. Symbolic Dynamic Programming. Symbolic Dynamic Programming
(SDP) exploits relational representation in the construction of a logical
representation of the value function and the solution state-action policy.
This approach includes algorithms for:

(a) First-Order Approximate Linear Programming (Boutilier et al.,
2001) which uses EBL to implement a symbolic version of the
value function regression. In this case the learning examples cor-
respond to a sequence of actions that achieves a goal and EBL is
used to generalize the regression of the value function over this
actions sequence.

(b) Updating the Bellman’s backup operator to the relational setting
(Kersting et al., 2004).

(c) Using First-Order Binary Decision Diagrams (FODD) to capture
value functions in a compact way (Wang et al., 2007).

3. Factored Planning (Guestrin et al., 2002). This solution exploits inde-
pendence within a planning problem to decompose it, and then work on
each subproblem (factor) separately while trying to piece the factor’s
solutions into a valid global solution.

• Compiling the planning problem into another problem solving paradigm for
which there are effective algorithms. The main compilations of the proba-
bilistic planning problem are:

1The utility function is a numeric function combination of the cost and reward functions which
gives preference to the different states and transitions of the MDP.

58 CHAPTER 4. PLANNING UNDER UNCERTAINTY

1. The classical planning problem. This compilation (Jiménez et al.,
2006a) builds exactly one deterministic action per outcome of a proba-
bilistic action with an associated cost value indicating the probabilities
associated to the outcome.

2. The E-MAJSAT problem.2 This compilation (Majercik and Littman,
1998) is similar to the SAT compilation of the classical planning task
except the encoding of the action effects. In this case, each action effect
generates a clause consisting of random propositions, i.e., propositions
that are true with a given probability value. Once the planning prob-
lem is encoded, a E-MAJSAT solver determines all possible satisfying
assignments. For each satisfying assignment, computes the product of
probabilities associated to the satisfied clauses. Finally, it returns the
satisfying assignment the with highest product.

3. The CSP. Like the classical planning compilation, it fixes the length
of the solution plan and converts it into a CSP. For this compilation
the planning problem is encoded into a state-variable representation as
follows:

(a) For each step of the n-length plan there are three types of variables
in the compiled CSP problem:

i. i state variables whose values specify the state predicates hold-
ing at that step of the plan.

ii. One action variable whose value specifies the action taken at
that step of the plan.

iii. r random variables whose values specify the particular stochas-
tic outcome of the action taken at that step. The probability of
each random value in these variables is indicated by the prob-
ability of the corresponding stochastic outcome of the action.

(b) There are four types of constraints in the compiled CSP problem:
i. Every state variable statei(t) whose value in the initial state

is v is encoded into the unary constraint statei(0) = v

ii. Every state variable statei(t) whose value in the goals is v is
encoded into the unary constraint statei(N) = v

iii. For every possible action outcome there is a constraint over:
(1) the state variables at step t representing the action precon-
ditions, (2) the state variables at step t + 1 representing the
action outcome, (3) the random variables at step t represent-
ing the outcomes of the action, and (4) the action variable at
step t.

2E-MAJSAT is a NP-complete problem consisting of, given a set of clauses with associated prob-
abilities, finding the assignment of truth values that produces the highest product of the probabilities
of satisfied clauses.

4.4. THE PROBABILISTIC PLANNING TASK 59

4.4.4 The implementations

This is an enumeration of some of the most referenced probabilistic planners:

mGPT

MGPT (Bonet and Geffner, 2004) is based on heuristic search for solving MDP
models. It uses the algorithm Labelled Real-Time Dynamic Programming (LRTDP)
which is a heuristic-search algorithm that implements a labelling scheme on top of
the RTDP algorithm to get a faster convergence time together with a heuristic au-
tomatically extracted from the problem representation.

Foalp

FOALP (Sanner and Boutilier, 2006) translates the probabilistic planning prob-
lem into a First-Order Markov Decision Process (FOMDP) and uses approximate
solution techniques for FOMDPs to derive a utility function using First-Order Ap-
proximate Linear Programming.

FPG

FPG (Buffet and Aberdeen, 2006) is the winner of the probabilistic track of IPC-
2006. FPG uses gradient ascent for direct policy search and factors the parame-
terized policy by using a function approximation for each action.

Paragraph

PARAGRAPH (Little and Thiébaux, 2006) extends the Graphplan framework to
probabilistic planning by introducing a node for each of an action’s possible out-
comes, so that there are three different types of layers in the graph: proposition,
action, and outcome.

FF-Replan

FF-REPLAN (Yoon et al., 2007a) compiles the input probabilistic domain into a
deterministic domain. There is two alternative compilations: (1) keeping only the
most probable outcome or (2) creating a new deterministic domain with exactly one
deterministic action per outcome of a probabilistic action. Then it generates a plan
using the classical planner FF (Hoffmann and Nebel, 2001). If the execution of the
plan reaches an unexpected state, FF-REPLAN replans with the same compilation
of the problem to find a plan for this state.

RFF

RFF (Teichteil-Konigsbuch et al., 2008) is the winner of the probabilistic track
of IPC-2006. This planner is based on computing an off-line policy combining

60 CHAPTER 4. PLANNING UNDER UNCERTAINTY

classical planning and simulation. RFF compiles the probabilistic problem into
a deterministic problem with exactly one deterministic action per outcome of a
probabilistic action. Then it computes a solution plan with the classical planner FF
(Hoffmann and Nebel, 2001). Later, RFF uses Monte-Carlo simulation to estimate
the probability of failure of the plan steps. If this probability exceeds a threshold
at a given step, RFF computes a new plan for overcoming the failures of this step
and starts a new Monte-Carlo simulation for the new plan.

LPFF

LPFF (Kalyanam and Givan, 2008) follows a divide and conquer strategy. First,
it creates a new deterministic problem with exactly one deterministic action per
outcome of a probabilistic action. Second, it uses a classical planner to get a plan
(a1, a2, ..., an) corresponding to a sequence of state transitions (s0, s1, ..., sn) such
that sn is a goal state. Finally, LPFF uses a probabilistic planner to extract policies
for the subproblems consisting of reaching state si+1 from state si. The sequence
of these policies forms the policy for the original problem.

SEH

This planner implements the Stochastic Enforced Hill Climbing algorithm (SEH)
(Wu et al., 2008). This algorithm extends the heuristic search algorithm EHC for
classical planning to the probabilistic planning framework. Particularly, SEH uses
a heuristic function based on estimating the expected cost to the goals together with
a best-first search (instead of the breath first search of classic EHC) for escaping
plateaus.

HMDPP

HMDPP (Keyder and Geffner, 2008) implements a heuristic search guided by
two heuristics. The first one is hadd computed with the domain resulting from the
compilation of probabilistic actions into cost actions. The second one, used for
breaking ties, is a PDB heuristic.

4.5 The conformant probabilistic planning task

Conformant probabilistic planning is a generalization of conformant planning. Par-
ticularly, conformant probabilistic planning is the task of synthesizing plans that
maximize the probability of reaching a given set of goals in a non-observable
stochastic environment.

4.5.1 The conceptual model

The conceptual model for the conformant probabilistic planning is a non-observable
stochastic transition system with probability distributions associated to each tran-

4.5. THE CONFORMANT PROBABILISTIC PLANNING TASK 61

sition. This model, also known as Non-Observable MDP (NOMDP), is defined as
a tuple

∑
= (B,A, P,C), where:

• B is the set of belief states. In this case, a belief state b ∈ B is a probability
distribution over the states. The probability assigned by b to each state s ∈ S
is denoted by b(s).

• A is a finite set of actions with stochastic effects. Each action a ∈ A maps a
given belief state b ∈ B in a new belief state ba.

• Pa(s′|s), is the probability that action a ∈ A executed in state s ∈ S, leads to
state s′ ∈ S. Regarding this, the probability of a yielding s′ when applied in
b ∈ B, can be computed as the sum of the probability distribution determined
by b weighted by the probability that action a leads from s ∈ S to s′:

ba(s
′) =

∑
s∈S

Pa(s
′|s)b(s)

• C(a) represents the cost of applying action a ∈ A.

According to this conceptual model, a conformant probabilistic problem is a
tuple P = (

∑
, b0, G) where b0 ∈ B is the initial belief state, i.e., the set of

possible initial states. And G ⊆ B is the set of belief states that contain only goal
states. Finding a solution to a conformant probabilistic planning problem consists
of synthesizing the policy that maximizes the probability

∏n
i=0 bai(G) for all the

reachable belief states.

4.5.2 The representation language

Conformant probabilistic planning problems can be described in a probabilistic
planning representation language (such as PPDDL) specifying the initial state through
a disjunction of literals.

4.5.3 The algorithms

• Explicit search in the conceptual model. Heuristic search algorithms able
to deal with disjunctive transitions such as LAO* or dynamic programming
algorithms such as value iteration search for a solution plan in a NOMDP.

• Compilation into another problem solving paradigm

– E-MAJSAT Problem. This compilation is similar to the E-MAJSAT
compilation for probabilistic planning. The only difference is that this
compilation codes the possible initial states with random propositions.

– CSP Problem. This compilation is similar to the CSP compilation for
probabilistic planning. The only difference is the encoding of the initial
state. In this case, the initial belief state b0 is encoded using an extra

62 CHAPTER 4. PLANNING UNDER UNCERTAINTY

stochastic action. This action is always executed at time step zero, it
has no preconditions and it presents probabilistic effects corresponding
to the possible states of b0.

4.5.4 The implementations

Buridan

BURIDAN (Kushmerick et al., 1995) takes as input a probability distribution over
states and produces a plan such that the probability to reach the goals after the plan
execution is greater than a given threshold.

MAXPlan

MAXPLAN (Majercik and Littman, 1998) is based on compiling a planning in-
stance into an E-Majsat problem (a probabilistic version of SAT), and then draws
on techniques from Boolean satisfiability and dynamic programming to solve the
E-Majsat problem.

CPPlan

The CPP planner (Hyafil and Bacchus, 2003) implements the CSP compilation
for the conformant probabilistic planning task and then it uses standard CSP back-
tracking algorithms to compute the solution plans. Finally, among all the solution
plans, CPP chooses the one with the highest probability of success: the probability
that a given execution path is traversed by a given solution plan.

Probapop

PROBAPOP (Onder et al., 2004) is based on generating base plans with the deter-
ministic partial-order planner VHPOP and then refine the base plans until it finds a
solution plan that meets or exceeds a given probability threshold.

ComPlan

COMPLAN (Huang, 2006) performs depth-first branch-and-bound search in the
plan space. For each potential search node, an upper bound is computed on the
success probability of the best plans under the node, and the node is pruned if this
upper bound is not greater than the success probability of the best plan already
found. A major source of efficiency for this algorithm is the efficient computa-
tion of these upper bounds, which is possible by encoding the original planning
problem as a propositional formula and compiling the formula into deterministic
decomposable negation normal form.

4.6. THE CONTINGENT PROBABILISTIC PLANNING TASK 63

4.6 The contingent probabilistic planning task

Contingent probabilistic planning is the task of synthesising a contingent plan in
stochastic and partially observable environments.

4.6.1 The conceptual model

The conceptual model for contingent probabilistic planning is a partially observ-
able stochastic transition system with probability distributions associated to each
state transition. This model, also known as POMDP, can be represented as a tuple∑

= (B,A, P,O,C), where:

• B is the set of belief states. In this case, a belief state b ∈ B is a probability
distribution over the states. The probability assigned by b to each state s ∈ S
is denoted by b(s).

• A is a finite set of stochastic actions.

• Pa(s′|s), is the probability that action a ∈ A executed in state s ∈ S, leads to
state s′ ∈ S. Regarding this, the probability of a yielding s′ when applied in
b ∈ B, can be computed as the sum of the probability distribution determined
by b weighted by the probability that action a leads from s ∈ S to s′:

ba(s
′) =

∑
s∈S

Pa(s
′|s)b(s)

• O is the set of observations. For each o ∈ O, a ∈ A and s ∈ S there is a
known probability Pa(o|s) that represents the probability of observing o in
the state s after executing action a. These probabilities are defined for each
state s ∈ S and action a ∈ A thus,

∑
o∈O Pa(o|s) = 1.

• C(s, a) represents the cost of applying action a ∈ A in state s ∈ S.

With all these definitions, the probability of observing o ∈ O after executing
a ∈ A in belief state b is given by:

ba(o) =
∑
s∈S

Pa(o|s)b(s)

Finally, the probability of reaching state s after executing action a in belief state b,
observing o is given by:

boa(s) = Pa(o|s)
ba(s)

ba(o)

According to this conceptual model, a contingent probabilistic problem is a
tuple P = (

∑
, b0, G) where b0 ∈ B is the initial belief state, i.e., the set of

possible initial states. And G ⊆ B is the set of belief states that contain only goal
states. Finding a solution to a contingent probabilistic planning problem consists
of synthesizing the policy that maximizes the probability

∏n
i=0 b

o
ai(G) for all the

reachable belief states.

64 CHAPTER 4. PLANNING UNDER UNCERTAINTY

4.6.2 The representation language

Contingent probabilistic planning needs a representation language that is able to
describe probabilistic actions and the acquisition of information about the current
state at execution time. This can be captured with a probabilistic planning domain
description language –like PPDDL– extended with sensing actions. Nevertheless,
there is no standard representation.

4.6.3 The algorithms

• Explicit search in the conceptual model. Heuristic search algorithms able
to deal with disjunctive transitions such as LAO* or dynamic programming
algorithms such as value iteration search for a solution plan in a POMDP.

4.6.4 The implementations

GPT

GPT (Bonet and Geffner, 2004) is based on heuristic search for solving MDP
models. It uses the algorithm Labelled Real-Time Dynamic Programming(LRTDP)
which is a heuristic-search algorithm that implements a labelling scheme on top
of the RTDP algorithm to get a faster convergence time together with heuristics
automatically extracted from the problem representation.

Pond

POND (Bryce, 2006), like GPT, searches forward in the space of belief states. As
GPT, it implements various search algorithms (A*, AO*, LAO*, Enforced Hill-
Climbing) and relaxed plan heuristics that are applied depending on the user pref-
erences. One of these heuristics is a distance estimation between the current belief
state and the goal state. This distance value is computed as an aggregate measure
of the underlying distances between states in the belief states.

4.7 Interleaving planning and execution

The PUU algorithms seen in this chapter off-line reason about complete and cor-
rect action and sensor models. These models must capture the uncertainty of the
world, so defining them by hand, is a very hard task. Even in traditionally easy-
to-code planning domains like the Blocksworld, it is very complex (and sometimes
impossible) to ’a priori’ know all potential action outcomes and their associated
probabilities. Besides, many of the reviewed PUU algorithms concentrate on opti-
mizing plan quality in terms of the expected utility of solutions. Nevertheless, the
synthesis of optimal or near-optimal plans is computationally very expensive and
current AP techniques only achieve limited success when optimizing a numerical
function.

4.7. INTERLEAVING PLANNING AND EXECUTION 65

Because of these factors, using a PUU algorithm in the real-world does not
always pay off. As a matter of fact, practitioners frequently prefer to interleave
simple planning algorithms with execution monitoring and to adapt plans when
conflicts appear after a state update. Figure 4.8 shows an overview of a simple
architecture that interleaves planning and execution. According to this architec-
ture model, a classical planner synthesizes a plan regarding the description of the
initial state, the problem goals and a deterministic action model (note that this ac-
tion model is incomplete since it does not consider any contingency). The plan is
executed step by step and each execution is monitored for reacting to unexpected
events.

Plan
(a1,a2,...,an)

state s i+1Domain

Problem
state+goals action i

Planning Execution

a

E
nvironm

ent
N

on−D
eterm

inistic

Call for a New Plan

Figure 4.8: Overview of an architecture for interleaving planning and execution.

Next, there is a detailed description of the most common techniques for imple-
menting an architecture that interleaves planning and execution:

4.7.1 Planning

When interleaving planning and execution there is a trade-off between the quality
and the urgency of the planning response. On the one hand, the planning time must
be long enough for generating plans that reach the problem goals and satisfy the
quality requirements. On the other hand, the planning time must be short enough
for guaranteeing a smooth execution of the plan. This trade-off can be addressed
in different ways:

• Hard-coding reactive behavior. The designer specifies a library of plans that
define the actions to follow for solving a given set of tasks. However, hard-
coding a plan library is a hard task. Otherwise, one can automatically gen-
erate the plan library with AP (Kelly et al., 2008). In this case, HTN is a
powerful tool for specifying highly detailed alternative plans that fulfil a set
of tasks. In addition, CBR can be used to recover the most suitable plan ac-

66 CHAPTER 4. PLANNING UNDER UNCERTAINTY

cording to the current situation (Aha et al., 2005), as it is done in classical
planning.

• Implementing reactive behavior with time-bounded deliberative techniques.

– Anytime search algorithms (Hansen and Zhou, 2007). These algo-
rithms search greedily for a solution that can be quickly computed and
monotonically improve the solution as long as time is available.

– Real-Time search algorithms (Korf, 1990; Bulitko and Lee, 2006;
Hernández and Meseguer, 2007). These search algorithms fast pro-
vide steps towards a goal state though the complete solution is not
constructed. These steps will eventually converge to a solution when
enough time is available. This family of algorithms is convenient for
search problems unapproachable from traditional search algorithms.

4.7.2 Execution

The execution of plans in the real-world is monitored to guarantee the achievement
of the planning goals. The monitoring process consist of checking that:

• The goals of the planning task keep the same. If planning goals are added or
removed, the current plan may become useless.

• The execution of an action produces the action nominal effects. This in-
cludes checking that the action execution consumed/produced the expected
amount of resources and that both, the beginning and end of the execution,
happened on the expected time.

Plan monitoring was first implemented in the Shakey robot for checking whether
a remaining subplan was still executable. A given subplan was considered exe-
cutable when all the preconditions of the subplan actions that were not established
by actions of the subplan were currently holding in the environment. Figure 4.9
shows an example of a Triangle Table (Fikes et al., 1972) for checking the ex-
ecutability of the subplan unstack(A,C), put-down(A), pick-up(B)
in a two-blocks Blocksworld problem. The literals of the first column correspond
to the set of literals that have to hold for the subplan to be executable.

Action monitoring, opposite to plan monitoring, only checks the preconditions
of an action when it is executed so it does not keep track of the whole plan. Action
monitoring is less effective because it does not lookahead to see that an unexpected
event will cause an action failure in the future but it is easier to implement and do
not require annotations.

One cannot always rely on the agents to communicate their state to the monitor-
ing process. For this reason, new approaches for monitoring through deduction are
emerging. Among these are the report-based monitoring (Kaminka et al., 2002),
where the monitored state is inferred (via plan-recognition) from routine commu-
nications, or the knowledge-based execution monitoring, where the actual state is

4.7. INTERLEAVING PLANNING AND EXECUTION 67

unstack(A,B)* arm−empty()
* clear(A)
* on(A,B)

* holding(A)
 clear(B) put−down(A)

* arm−empty()

pick−up(B)
 holding(B) on−table(A)

 clear(A)

 clear(A)
 on−table(A)

* on−table(B) * clear(B)

Figure 4.9: Example of Triangle Table for the Blocksworld.

derived from the available perceptual information. This last approach is useful
for those domains in which it is only possible to monitor a subset of the action
preconditions.

When execution monitoring detects that the current plan does not longer attain
the goals, there are two alternative strategies to modify it:

• Replanning, this strategy computes a new plan from scratch for the new state
of the environment and/or the new planning goals.

• Repairing, this strategy adapts the existing plan to the new state of the en-
vironment and/or the new planning goals. Because planning is time con-
suming, repairing takes advantage of old plans to guide the search for new
plans (Gerevini and Serina, 2000; Koenig et al., 2002). However, as shown
in the recent work for repairing based on plan stability (Fox et al., 2006a)
the benefits of repairing decrease when the environment is highly dynamic.

4.7.3 Planning and execution in autonomous systems

An autonomous system is an entity (either software or hardware) which can per-
form desired tasks in unstructured environments without continuous human guid-
ance. Traditionally, architectures for controlling autonomous systems share the
following four layers.

1. Sensory layer: reads the sensor of the system and extracts a symbolic repre-
sentation of the state of the environment. Raw sensory data are too detailed
and sometimes noisy. This layer implements mechanisms for the fusion and
filtering of the sensory data to obtain a reliable representation of the current
state of the environment (Fox et al., 2006b).

2. High-level planning layer: builds mission plans consisting of high level
actions. Figure 4.10 shows an example of a mission plan for the Mars
Rovers (Bresina et al., 2005). At this layer, off-the-shelf planners are not

68 CHAPTER 4. PLANNING UNDER UNCERTAINTY

widely used. Instead, autonomous architectures implement specific plan-
ners designed for fitting the performance of certain tasks. Frequently, this
layer is implemented by a CSP-based domain dependent planner (Nayak
et al., 1999; Lemai and Ingrand, 2004; Bresina et al., 2005; McGann et al.,
2008). The CSP framework provides expressive representations of the plan-
ning tasks such as handling time, resources and preferences. In addition,
a CSP-planner can synthesize partially ordered plans which are convenient
for dynamic environments given that one can delay instantiation commit-
ments to the execution. Finally, a CSP search in the plan space can be easily
adapted to incremental planning and plan repair.

Time: (ACTION) [Duration; Cost]
-------- -------- --
00.000: (NAVIGATE WAYPOINT2 WAYPOINT1) [D:5.000; C:1.000]
05.000: (CALIBRATE CAMERA0 OBJECTIVE0 WAYPOINT1) [D:5.000;

C:1.000]
10.000: (SAMPLE_ROCK ROVER1STORE WAYPOINT1) [D:8.000; C:1.000]
18.000: (NAVIGATE WAYPOINT1 WAYPOINT2) [D:5.000; C:1.000]
23.000: (TAKE_IMAGE WAYPOINT2 OBJECTIVE0 CAMERA0 HIGH_RES)

[D:7.000; C:1.000]
30.000: (NAVIGATE WAYPOINT2 WAYPOINT3) [D:5.000; C:1.000]
35.000: (COMMUNICATE_ROCK_DATA GENERAL WAYPOINT1 WAYPOINT3

WAYPOINT2) [D:10.000; C:1.000]
45.000: (COMMUNICATE_IMAGE_DATA GENERAL OBJECTIVE0 HIGH_RES

WAYPOINT3 WAYPOINT2) [D:15.000; C:1.000]

Figure 4.10: Example of a mission plan for the Mars Rovers (Bresina et al., 2005).

3. Low-level planning layer: controls that the actions of the mission plans
succeed. Figure 4.11 shows an example of a path-planning problem corre-
sponding to the control of the high-level action (NAVIGATE WAYPOINT2
WAYPOINT1). This layer is frequently implemented as a set of controllers
for the diverse specific actions. An example of these low-level controllers
are the path-planning modules developed for controlling the movement of
Non-Player Character (NPCs) in commercial computer games such as UN-
REAL3 or DRAGON AGE4. These modules use informed search algorithms
such as A*,D* (Stentz, 1994), RTA* (Korf, 1990; Bulitko and Lee, 2006;
Hernández and Meseguer, 2007) or RRT (Lavalle, 2000) guided by the Eu-
clidean distance to synthesize the sequence of steps for transversing the dis-
tance between two given points.

4. Actuators layer: interacts with the environment through diverse mechanisms:
speakers, motors, robotic arms, etc.

3http://www.unreal.com/
4http://dragonage.bioware.com/

4.7. INTERLEAVING PLANNING AND EXECUTION 69

Waypoint2

Waypoint1

Figure 4.11: Path-planning for (NAVIGATE WAYPOINT2 WAYPOINT1).

Figure 4.12 shows an overview of a generic architecture for the control of an au-
tonomous system. According to this generic architecture the sensory layer extracts
a symbolic representation of the current state. With this information the high-level
planning layer chooses a task and synthesizes a mission plan to fulfill the task.
Each action in the mission plan is communicated to the low level planning layer
which tries to execute them in the environment controlling the actuators layer and
the sensory layer. If the execution of the action eventually fails, the low level plan-
ning demands the high-level planning layer a new plan for overcoming the failure.
Example of architectures that deal with the integration of sensory/motor functions,
low-level control and deliberative capabilities are (Simmons, 1994), (Alami et al.,
1998), (Hertzberg et al., 1998), (Beetz, 1999) or (Lenser et al., 2002).

E
nvironm

ent

Actuators

Sensoring

Planning

Planning
High−level

Low−level

Figure 4.12: Generic Architecture for an autonomous system.

70 CHAPTER 4. PLANNING UNDER UNCERTAINTY

4.8 Discussion

In the late 50’s Richard Bellman initiated the modern approach to Dynamic Pro-
gramming (Bellman, 1957). Since this work, more elaborated algorithms have
been develop to solve optimization problems over MDPs and POMDPs (Lovejoy,
1991; Bertsekas, 1995). However, the application of these algorithms to PUU was
limited given that their complexity is polynomial in the size of the state-space and
in AP, this size grows exponentially with the number of features describing the
problem.

In the last decade, there is a strong interest in boosting the scalability of Dy-
namic Programming. On the one hand, this interest has resulted in Symbolic Dy-
namic Programming that handles relational representation of the value function and
the state-space (Boutilier et al., 2001; Groote and Tveretina, 2003; Kersting et al.,
2004; Wang et al., 2007). On the other hand, heuristic planning, which is based
on propositional representation of the state-space, has developed efficient domain
independent heuristic and reachability tools for PUU (Brafman and Hoffmann,
2004; Hoffmann and Brafman, 2005; Bonet and Geffner, 2006). The models, al-
gorithms and representation languages of both approaches are getting closer and
ideas and benchmarks developed in one approach are fast applied and tested in the
other.

At the present time, PUU is still a young research area with many challenges
to prove the practical utility of this new planning paradigm:

• Current PUU planners have strong scalability limitations. Conformant
planning does not seem to be of relevance to most planning problems except
for the home-sequencing problem.5 Currently, conformant planners are far
from solving interesting problems like the home-sequencing problems. To
illustrate this drawback, the most difficult problem of the IPC-2008 confor-
mant track in the Blocksworld domain only had 4 blocks. Additionally, the
size of the current contingent plans is exponential with the number of ob-
servations. Because of that building or verifying complete contingent plans
for a realistic problem with the current contingent planners is in general not
feasible.

• Current PUU planners handle action models with limited expressive-
ness. Most of the reviewed PUU planners are only able to deal with STRIPS
actions and cannot express preconditions or problem goals with disjunctions
or quantified formulas, handle time, action cost or state rewards.

• PUU planning models are hard to design, validate and maintain. Like
classical planning, PUU need complete and correct action models. The de-
sign, validation and maintenance of PUU domain models is harder than the

5The home-sequencing problem is the problem of executing a sequence of instructions that makes
a processor move to a desired state. In this problem, no observation is available because memory
variables are not readable.

4.8. DISCUSSION 71

classical planning ones. Even in simple planning domains like the Blocksworld,
when actions have stochastic behavior they may result in innumerable dif-
ferent outcomes. Specifying by hand all of them and/or their associated
probabilities is hard, and if it is viable at a given instant, they could vary
over time.

As a consequence of the current limitations of the PUU techniques, practi-
tioners prefer interleaving deterministic planning with execution monitoring and
on-line replanning or plan repair: the current classical planners scale better (FF-
Replan achieved the best overall performance at the probabilistic competition of
IPC-2004 and IPC-2006), they are more expressive (last developed planners give
support to durative actions and user preferences) and their actions models are sim-
pler (deterministic planners just consider the nominal effects of actions). However,
this approach is not a panacea. Since classical planning assumes no action fail-
ures, it can produce too fragile plans that have to be continuously repaired or even
worse, plans that cannot be fixed when broken.

72 CHAPTER 4. PLANNING UNDER UNCERTAINTY

Chapter 5

Learning for planning under
uncertainty

This chapter analyzes how AP can benefit from ML when planning for domains
with uncertainty. The analysis is structured regarding the target of the ML process:
learning search control or learning action models.

5.1 Introduction

Like classical planning, PUU can benefit from ML for:

• Learning planning search control. The combinational explosion prob-
lem in PUU is even greater than in classical planning. The uncertainty
caused by partial observability and non-deterministic actions multiplies the
amount of possible reachable states and therefore, boosts the complexity of
the search processes. Search control knowledge can help PUU to reduce
this complexity but, again, hand-coding this knowledge is a hard task that
requires expertise on the domain and the planner.

• Learning planning action models. PUU requires correct and complete action
models but the task of defining correct and complete action models is
harder in environments with uncertainty. Even for traditionally simple
planning domains like the Blocksworld, it is very complex to ’a priori’ know
all potential action outcomes and their associated probabilities.

ML can be a solution to automatically define search control and action models
for PUU, but the integration of planning and learning in environments with un-
certainty presents new difficulties: (1) partial observations of the current state can
produce learning examples with missing or wrong literals. Besides, (2) the non-
determinism of the planning actions introduce extra noise to the learning examples.

73

74 CHAPTER 5. LEARNING FOR PLANNING UNDER UNCERTAINTY

5.2 Learning techniques

AI has considered diverse alternatives for representing uncertainty like certainty
factors (Shortliffe, 1976), the Dempster-Shafer theory (Shafer, 1976), default
logic (Reiter, 1980), non-monotonic logic (McDermott and Doyle, 1980) or fuzzy
logic (Zimmerman, 1990). This chapter focuses on learning techniques that repre-
sent uncertainty combining first-order logic and probability because they naturally
suit current representations of the PUU tasks. ML techniques for learning repre-
sentations combining first-order logic and probability share a two-steps strategy:

1. Structural Learning. At this step, relational learning algorithms are used
for inducing first-order logic formulas that generalize the relations over the
ground facts of the learning examples.

2. Parameter Estimation. This step estimates the probabilities associated to the
induced logic formulas. Frequently, the output of the Structural Learning
step is a set of rules of the form C → P where P is the prediction of the
rule and C is the set of conditions under which the prediction is true. In
this case, the Parameter Estimation step consists of a computation of the
conditional probability prob(P |C). When the induced rules are disjunctive,
this probability is directly extracted from the frequency of the learning exam-
ples. However, when rules are overlapping, the estimation of this conditional
probability requires more elaborated approaches:

(a) Bayesian Estimation (BE). The Bayes Theorem estimates the condi-
tional probability as follows

prob(P |C) = prob(C|P)prob(P)
prob(C)

(b) Maximum Likelihood Estimation (MLE). MLE is an statistical method
for fitting a mathematical model to some observed data. This method
assumes that data follow a known probability distribution and itera-
tively tunes the parameters of the distribution to achieve a good fit.

According to the type of structure of the induced logic formulas and the tech-
nique used for the parameter estimation there are different ML techniques. Next
there is a review of the most relevant ones for PUU.

5.2.1 Learning Stochastic Logic Programs

Stochastic Logic Programs (SLPs) (Muggleton, 1995b; Cussens, 2001) represent
a distribution probability over a Prolog proof tree. The probability over predicates
has to be obtained by marginalization. Specifically, a SLP consists of a set of
parametrised logic clauses p : C where p is the parameter (a real number that

5.2. LEARNING TECHNIQUES 75

belongs to the interval [0,1]) and C is a Horn clause. Figure 5.1 shows an example
of a SLP for the blood type inheritance model.1

0.97: bloodtype(X,ab) :- mother(M,X), mothercopy(M,a),
father(F,X), fathercopy(F,b).

0.01: bloodtype(X,a) :- mother(M,X), mothercopy(M,a),
father(F,X), fathercopy(F,b).

0.01: bloodtype(X,b) :- mother(M,X), mothercopy(M,a),
father(F,X), fathercopy(F,b).

0.01: bloodtype(X,0) :- mother(M,X), mothercopy(M,a),
father(F,X), fathercopy(F,b).

0.97: bloodtype(X,ab) :- mother(M,X), mothercopy(M,b),
father(F,X), fathercopy(F,a).

0.01: bloodtype(X,a) :- mother(M,X), mothercopy(M,b),
father(F,X), fathercopy(F,a).

0.01: bloodtype(X,b) :- mother(M,X), mothercopy(M,b),
father(F,X), fathercopy(F,a).

0.01: bloodtype(X,0) :- mother(M,X), mothercopy(M,b),
father(F,X), fathercopy(F,a).

0.97: bloodtype(X,T) :- mother(M,X), mothercopy(M,T),
father(F,X), fathercopy(F,0).

0.03: bloodtype(X,T2) :- mother(M,X), mothercopy(M,T),
father(F,X), fathercopy(F,0),
T2\=T.

0.97: bloodtype(X,T) :- mother(M,X), mothercopy(M,0),
father(F,X), fathercopy(F,T).

0.03: bloodtype(X,T2) :- mother(M,X), mothercopy(M,0),
father(F,X), fathercopy(F,T),
T2\=T.

0.97: bloodtype(X,T) :- mother(M,X), mothercopy(M,T),
father(F,X), fathercopy(F,T).

0.03: bloodtype(X,T2) :- mother(M,X), mothercopy(M,T),
father(F,X), fathercopy(F,T),
T2\=T.

Figure 5.1: Stochastic Logic Program for the blood type inheritance model.

The structural learning of SLPs is implemented by standard ILP algorithms for
inducing Logic Programs, like the algorithms developed in PROGOL (Muggleton,
1995a). The parameter estimation of SLPs requires an approach able to deal with
overlapping rules such as BE or MLE. Given a learning example e and a SLP s, it

1The blood type inheritance model (Friedman et al., 1999) is a genetic model of the inheritance
of a single gene that determines a person’s X blood type [a|b|ab|0]. Each person X has two copies
of the chromosome containing this gene, one inherited from the mother and one inherited from the
father.

76 CHAPTER 5. LEARNING FOR PLANNING UNDER UNCERTAINTY

is unknown which clause of s explains e. As an example, in the SLP of Figure 5.1,
two different rules could generate the example bloodtype(John, a).

5.2.2 Learning Bayesian Logic Programs

Bayesian Logic Programs (BLPs) (Wellman et al., 1992; Poole, 1993; Jaeger,
1997; Ngo and Haddawy, 1997; Kersting and Raedt, 2001) represent a first-order
Bayesian Network. Specifically, a BLP consists of two elements: (1) A set of
Bayesian clauses A | A1, ..., An where A,A1, .., An are logic atoms implicitly
quantified. (2) A set of conditional probability distributions corresponding to the
Bayesian clauses. Figure 5.2 shows an example of a BLP for the blood type inher-
itance model.

(1) Set of Bayesian clauses
bloodytype(X)| mothercopy(X), fathercopy(X).

mothercopy(X)| mother(Y,X), mothercopy(Y), fathercopy(Y).

fathercopy(X)| father(Y,X), mothercopy(Y), fathercopy(Y).

(2) Conditional probability distribution of clause bloodytype(X).

Probability(bloodtype(X))
mothercopy(X) fathercopy(X) a b ab 0

a a 0.97 0.01 0.01 0.01

a b 0.1 0.1 0.97 0.01

... ...
0 0 0.01 0.01 0.01 0.97

Figure 5.2: Bayesian Logic Program for the blood type inheritance model.

Unlike SLPs, BLPs explain each logical concept with exactly one rule. As a
consequence, the structural learning step must induce only one clause for each
concept. At this step, one can use ILP algorithms for learning from interpretation
(Muggleton et al., 1994; De Raedt and Dehaspe, 1997). These algorithms consider
all learning examples as positive examples and induce a hypothesis that is logically
true for them. The parameter estimation is implemented using the joint probability
distributions and the Bayes Theorem. As an example, the conditional probability
of having bloodytype(a) given mothercopy(a) and fathercopy(a) is
expressed as:

P (A | B,C) = P (A)P (B | A) P (C | A,B)

P (B)P (C | B)

where A is bloodytype(X), B is mothercopy(X) and B is fathercopy(X).

5.2. LEARNING TECHNIQUES 77

5.2.3 Learning Markov Logic Networks

The two previous ML techniques combined probability with restricted subsets of
first-order logic: Horn clauses in case of SLPs and Bayesian clauses in the case
of BLPs. Markov Logic Networks (MLNs) (Richardson and Domingos, 2006)
is a step further in generality from those because MLNs combine probability and
first-order logic with no restrictions other than finiteness of the domain. Specifi-
cally, a MLNs is a set of first-order logic formulas with a weight attached to each
formula. These formulas can be viewed as soft constraints over the examples and
their weights as measures of the strength of the constraints. The higher the weight,
the greater the difference in log probability between an example that satisfies the
formula and one that does not. Figure 5.3 shows an example of a MLN.

English First-Order Weight
Friends of friends are friends. ∀x∀y∀zFriends(x, y) ∧ Friends(y, z) ⇒ Friends(x, z) 0.7
Friendless people smoke. ∀x(¬(∃yFriends(x, y)) ⇒ Smoke(x)) 2.3
Smoking causes cancer ∀xSmoke(x) ⇒ Cancer(x) 1.5
If two people are friends, either ∀x∀yFriends(x, y) ⇒ (Smoke(x) ⇔ Smoke(y)) 1.1
both smoke or neither does

Figure 5.3: Example of a MLN.

The structural learning of MLNs requires specific ILP algorithms because it
must induce not just Horn clauses but arbitrary formulas. An example of these
algorithms is presented in (Kok and Domingos, 2005; Mihalkova and Mooney,
2007). This algorithm implements a heuristic search in the space of formulas
guided by an evaluation function that measures the pseudo-likelihood (Besag,
1975) of a formula over the data. Candidate formulas are formed by adding each
predicate (negated or otherwise) to the current formula, with all possible com-
binations of variables, subject to the constraint that at least one variable in the
new predicate must appear in the current formula. The parameter estimation step
is done by maximizing the pseudo-likelihood of the data (Besag, 1975). Com-
bined with the L-BFGS optimizer, pseudo-likelihood yields efficient learning of
MLN weights even in domains with millions of ground atoms. On the contrary,
the pseudo-likelihood parameters may lead to poor results when long chains of
inference are required.

5.2.4 Reinforcement Learning

The revised ML techniques share a common feature: they depend on external ex-
pertise to (1) specify the learning target and (2) collect significant examples of the
learning target. Unfortunately, such external expertise is not always available.

Reinforcement Learning (RL) reduces the required external expertise to a re-
ward signal guidance learning to take decisions by trial and error. Since RL dis-
covers the best decisions by trying them, a key issue in RL is deciding when to try

78 CHAPTER 5. LEARNING FOR PLANNING UNDER UNCERTAINTY

a new decision. This is called the exploration-exploitation dilemma, where explo-
ration is defined as trying new decisions and exploitation is defined as trying de-
cision that succeeded in the past. The right answer to the exploration-exploitation
dilemma depends on the number of trials allowed; the larger this number is, the
worse is converging prematurely to a sub-optimal decision.

Model-Based RL

Model-Based RL requires a complete and correct model of the environment (a
transition model plus a reward model). In Model-Based RL, learning is understood
in the same sense of in Real-Time Heuristic search (Korf, 1990; Bulitko and Lee,
2006; Hernández and Meseguer, 2007), i.e., as local updates of the value/heuristic
function with information obtained from simulation. Specifically, Model-Based
RL relies on standard dynamic programming algorithms to find an optimal policy:

• Value iteration. This algorithm is based on local updates of the utility value
of the states. Initially, the utility of a state V (s) is given by the value of the
reward function in the state R(s). For each state, V (s) is locally updated to
V ′(s) moving the value of the state closer to the value of the best next state
plus the reward R(s):

V ′(s) = maxa(
∑
i

Pa(si|s) ∗ V (si)) +R(s)

Eventually, these local updates make the utility function converge to the true
expected utility. Once the function has converged, one can plan optimally
by greedily choosing, at each state, the action that maximizes the expected
utility.

• Policy iteration. This algorithm is based on local updates of a policy π which
greedily chooses the actions with respect to the utility function V (s) (ini-
tially R(s)). For each state, the value of the policy in the state is computed
as:

Vπ(s) =
∑
i

Pπ(s)(si|s) ∗ V (si)

If there is an action a that locally improves this value:

Vπ(s) < maxa(
∑
i

Pa(si|s) ∗ V (si))

Then the policy is updated (π(s) = a). Once the policy has converged, one
can plan optimally by choosing, at each state, the action proposed by the
policy.

Convergence in policy iteration requires fewer steps but, the process of finding
the improved V’ from V is more expensive. Both techniques perform complete
enumeration of the state-space which limits their application to tasks with small

5.2. LEARNING TECHNIQUES 79

state-spaces. To address large spaces, V’ can be sampled at any given state s by
averaging the utilities obtained on a number of sample trajectories from s acting
greedily according to V ; this is called policy rollout (Bertsekas and Tsitsiklis,
1996). Alternatively, given enough samples of V’ inductive learning can produce
an approximation of V’ (e.g., a linear combination of state-space features) that
provides a cheaper way to approximatively conduct policy iteration in large state
spaces.

Model-Free RL

Model-Free RL does not require a model of the environment. This category in-
cludes two different approaches:

• Model learning + Model-Based RL. This approach learns a transition model
of the environment and then applies standard dynamic programming algo-
rithms to find a good policy. The algorithms for learning action models
in fully observable deterministic environments are discussed in Section 3.4.
The algorithms for learning action models in environments with uncertainty
are discussed in Section 5.4.

• Purely model-free RL. In some domains, uncertainty is so large that learning
how to achieve goals is easier than learning an accurate model of the envi-
ronment. With this aim, purely model-free RL algorithms do not model the
decision-taking with a function on states, like the value/heuristic function,
but with a function on pairs (state,action) called action-value functions. An
example of an action-value function is the q-function which gives a measure
of the expected utility of taking the action at in the state st:

Q′(st, at) = Q(st, at) + α(R(st) +maxa(Q(st+1, a)−Q(st, at)))

Purely model-free RL includes Monte Carlo (Barto and Duff, 1994) and
Temporal-Difference methods such as q-learning (Watkins, 1989). Al-
though many of these methods guarantee to find optimal policies and use
very little computation time per experience, they make extremely inefficient
use of the data they gather and therefore, they require extensive experience
to achieve good performance.

Relational Reinforcement Learning

Most of the work on RL has focused on propositional representations for the states
and the actions. Thus, RL is not applicable to tasks with relational structure (like
the classical AP tasks) without extensive engineering effort. Recently, there are
coming up numerous attempts to bring together RL algorithms and the expressive-
ness of relational representations for encoding states and actions. They are grouped
in a new field called Relational Reinforcement Learning (RRL). This section only
considers the model-free RRL techniques because the model-based ones (Symbolic

80 CHAPTER 5. LEARNING FOR PLANNING UNDER UNCERTAINTY

Dynamic Programming techniques) were revised in Section 4.4.3 as algorithms for
probabilistic planning. The different approaches for model-free RRL are:

• Relational learning of the q-value function. This approach consists of using
relational regression tools to generalize the value function. So far, three
different relational regression algorithms have been used:

– Relational regression trees (Dzeroski et al., 2001). For each pair (ac-
tion, relational-goal), a regression tree is built from a set of examples
of the form (state,q-value). The leaf nodes of the induced tree
represent the predictions of the q-value. The test nodes represent the
set of facts that have to hold for the predictions to be true. Figure
5.4 shows an example of relational regression tree that captures the
q-values of the action move(Block,Block) for solving the set of tasks
on(Block,Block) in the Blocksworld domain.

goal_on(A,B), numberofblocks(C),action_move(D,E).
on(A,B)?
+ yes: [0]
+--no: clear(A)?

+--yes:[1]
+--no: clear(E)?

+--yes:[0.9]
+--no:[0.81]

Figure 5.4: Relational regression tree for the goals on(X,Y) in the Blocksworkd.

– Instance based algorithms with relational distance (Driessens and Ra-
mon, 2003). In this case, a k-nearest neighbor prediction is done. It
computes a weighted average of the q-values of the examples stored
in memory where the weight is inversely proportional to the distance
between the examples. The used distance requires to cope with the
relational representations of states and actions in the examples.

– Relational Kernels methods (Gartner et al., 2003a). They use the in-
crementally learnable ‘Bayesian’ regression algorithm Gaussian pro-
cesses to approximate the mappings between q-values and (state,action)
pairs. In order to employ Gaussian processes in a relational setting they
use graph kernels as the covariance function between state-action pairs.

• Relational learning of the optimal policy. An important drawback of the
previous methods is that the value function can be very hard to predict in
stochastic tasks. An alternative approach consist of directly learning the poli-
cies and only implicitly represent the value function. Note that this approach
requires relational classifiers (like relational decision trees (Dzeroski et al.,
2001)) rather than the regression learners used in the previous methods. The

5.3. LEARNING PLANNING SEARCH CONTROL 81

advantage of this alternative approach is that, usually, it is easier to represent
and learn suitable policies for structured domains than to represent and learn
accurate value functions. Figure 5.5 shows an example of relational deci-
sion tree that captures when the selection of the action move(Block,Block)
is optimal for solving the set of tasks on(Block,Block) in the Blocksworld
domain.

goal_on(A,B), numberofblocks(C),action_move(D,E).
above(D,A)?
+--yes: optimal
+--no: action_move(A,B)?

+--yes: optimal
+--no: nonoptimal

Figure 5.5: Relational decision tree for the goals on(X,Y) in the Blocksworkd.

5.3 Learning planning search control

Present algorithms for PUU fail to scale up: On the one hand, dynamic program-
ming algorithms scale polynomially with the size of the state-space. In AP the
state-space grows exponentially with the number of predicates defined in the do-
main. In addition, the state-space becomes larger with the presence of partial ob-
servability and/or non-determinism. On the other hand, heuristic search algorithms
should scale better because they only process the more promising states of the state-
space according to the heuristic function. Nevertheless, current heuristic functions
for PUU are both misleading and expensive to compute.

Next, there is a review of the PUU techniques that improve their scalability
through ML. These techniques adapt search control learning techniques for classi-
cal planning (discussed in Chapter 3) to the PUU framework. Basically, they adapt
the mechanism for generating learning examples to the PUU framework:

• Learning a generalized evaluation function (Gretton and Thiébaux, 2004).
Given a set of small probabilistic planning problems, this approach computes
the optimal policies for the problems with a MDP solver. Then, it uses a first-
order regression to generalize a first-order value function over the values of
optimal policies.

• Learning a generalized policy. Given a set of small probabilistic planning
problems, this approach (Yoon et al., 2002) uses the probabilistic planner
PGRAPHPLAN to synthesise plans p = a1, a2, . . . , an corresponding to a
sequence of state transitions (s0, s1, ..., sn) such that si results from execut-
ing the action ai in the state si−1 and sn is a goal state. Next, plans p are

82 CHAPTER 5. LEARNING FOR PLANNING UNDER UNCERTAINTY

simulated action by action. If the state resulting from simulating ai is dif-
ferent from si, then a new plan is computed for reaching the goals in the
new state. This process is repeated until a goal state is reached (or a limit of
simulations is exceeded). Finally, a generalized policy is learned from the
pairs (state, action) traversed in the simulation. In many domains, solu-
tions to small problems do not capture the singularities of larger problems.
As an alternative for those domains, (Fern et al., 2006) learns from the pairs
(state, action) generated following the Approximate Policy Iteration (API)
algorithm (Bertsekas and Tsitsiklis, 1996).

In contrast to RRL that captures how to reach a specific set of goals, the revised
learning techniques capture how to solve any problem from a given domain. RRL
requires learning from scratch, or at least a transfer learning,2 each time the set of
goals changes.

5.4 Learning planning domain models

This section revises the current ML techniques for the automatic definition of ac-
tion models in environments with uncertainty. The review is organised regarding
two dimensions: determinism and observability.

Action modelling in deterministic and fully observable environments

The techniques for learning deterministic action models in fully observable envi-
ronments are discussed in Section3.4.

Action modelling in stochastic and fully observable environments

The first work in this category (Oates and Cohen, 1996) induces propositional
rules corresponding to probabilistic effects of actions. Specifically, it explores a
given AP domain by taking random actions and observing their execution. For
each execution, it registers an observation oi = (si, ai, si+1); where si is a state,
ai is the action executed in si, and si+1 is the resulting state of executing ai in
si. Finally, it induces the effects of a given action by performing a general to
specific Best-First search on the space of possible conditional effects of the action.
This search is guided by the frequency of observations covered by the possible
conditional effect.

The TRAIL system (Benson, 1997) learns relational models of probabilistic
actions. TRAIL explores a given AP domain as follows: first it tries to solve a
certain problem with the current action model. When this model is too scarce to
solve the problem, it demands a solution plan to an external expert, it observes the
execution of the plan and it learns a new model from these observations. In case the

2Transfer learning is the use of data from one or more source tasks in order to learn a target task
with less data or to achieve a higher performance level.

5.4. LEARNING PLANNING DOMAIN MODELS 83

current action model allows TRAIL to synthesize a plan for the problem, TRAIL
executes that plan and observes its execution to refine the action model. TRAIL
action models are an extended version of Horn clauses so TRAIL makes use of
standard ILP tools for the learning.

(Pasula et al., 2007a) learns probabilistic action models from externally pro-
vided observations consisting of tuples (si, ai, si+1). The induced action models
are probabilistic STRIPS operators extended in two ways: (1) they can refer to
objects not mentioned in the action arguments, and (2) for each action, they add
a noise outcome that groups the set of possible outcomes that are poorly probable
for the action. The action modelling algorithm involves three layers of learning:

1. Learning the action structure. At this layer a greedy search process is per-
formed in the space of action sets to select the action preconditions and out-
comes that best fits the learning examples. An evaluation function which fa-
vors rule sets that assign high likelihood to the learning examples and penal-
izes model complexity (number of preconditions plus number of outcomes)
guides the search.

2. Learning the action outcomes. Given an action and a set of learning ex-
amples, greedy search is used to decide the best set of outcomes and their
corresponding parameters for the action. This learning is performed every
time a new rule is constructed in the previous layer.

3. Parameter estimation. Given an action, the learning examples are used to
estimate a distribution over action outcomes. In general, an action may have
overlapping outcomes. This work estimates the outcomes parameters using
the conditional gradient method. Note that this estimation is performed for
each set of outcomes considered in the previous layer.

Action modelling in deterministic and partially observable environments

The ARMS system (Yang et al., 2007) learns PDDL planning operators from ex-
amples consisting of tuples (s0, sn, p); where s0 is an initial state, sn is a goal
state and p = (a1, a2, ..., an) is a plan corresponding to a sequence of state tran-
sitions (s0, s1, ..., sn). ARMS encodes example plan traces as a weighted maxi-
mum satisfiability problem, from which a candidate STRIPS-like action model is
extracted. The output of ARMS is a single model, which is built heuristically in a
hill-climbing fashion. Consequently, the resulting model is sometimes inconsistent
with the input.

Alternatively, Eyal Amir introduced an algorithm that exactly learns all the
STRIPS-like models that could have lead to a historical of observations (Amir and
Chang, 2008). Given a formula representing the initial belief state, a sequence of
executed actions (a1, a2, ..., an) and the corresponding observed states (s1, ..., sn)
the learning algorithm updates the formula of the belief state with every action
and observation in the sequence. This update makes sure that the new formula

84 CHAPTER 5. LEARNING FOR PLANNING UNDER UNCERTAINTY

represents exactly all the transition relations that are consistent with the actions
and observations. The formula returned at the end includes all consistent models,
which can be retrieved then with additional processing.

Action modelling in stochastic and partially observable environments

By the time being there is no general strategy for addressing this modelling task.
Nevertheless, this task is related to a new area of AI called Plan recognition. Plan
recognition is the task of identifying the plan performed by an actor from observing
the actor’s actions and their effects on the environment. (Bui and Venkatesh, 2002)

5.5 Discussion

While the first learning based planning systems are from the early 70’s (Fikes et al.,
1972) learning for PUU is a new field with interesting research opportunities:

• There is little work on learning control knowledge for PUU. Despite PUU
algorithms present strong scalability problems, there is little work on learn-
ing search control for probabilistic planning and no work for contingent or
conformant planning.

• There is little work on action modelling for PUU. There is a lot of research
work done in learning actions models from observations in deterministic en-
vironments. But when the environment is stochastic, there are just few works
that only can learn rough models assuming perfect observations of the envi-
ronment. Besides contingent planning is poorly studied and therefore, there
is no work on learning sensor models.

• Model-Learning for PUU is off-line. The existing techniques for learning
model actions for PUU are not designed for planning and naturally acquir-
ing knowledge as more experience is available. Indeed, model-free RL is a
classic approach for the integration of learning and PUU. However, it has
strong deliberative limitations since it does not deal with resources, dura-
tion, preferences. Besides, RL do not generalize the acquired knowledge. As
a consequence, every time a new goal has to be achieved, new policies have
to be learnt again, even if the dynamics of the environment did not change.

Moreover, the traditional problems of the integration of planning and learn-
ing are also present when learning for PUU: Both the selection of the right train-
ing problems and the features of the domains is also vital for learning significant
knowledge in environments with uncertainty.

Part II

Integrating planning, execution
and learning for planning under

uncertainty

85

Chapter 6

Learning instances success for
robust planning

This chapter describes an integration of planning, execution and learning to auto-
matically capture the performance of instantiated actions (Jiménez et al., 2005).

6.1 Introduction

The execution of a plan that theoretically solves a problem, can fail because special
features of objects were not captured in the initial representation. These situations
are found in many real-world domains, such as project management, workflow
control, robotics and, generally, any domain where some agents perform some
actions better than the rest. In this kind of domains, the success of a plan execution
depends on how the plan actions are instantiated. However, AP action models
assume that all the objects from one type behave exactly the same (unless explicitly
specified in the domain theory with particular predicates).

This chapter presents an integration proposal for planning, execution and learn-
ing to automatically capture the performance of instantiated actions. To capture
this knowledge, the system observes whether an action execution is successful or
not and stores this knowledge in a table, called robustness table. To exploit the
knowledge registered at the robustness table, the system defines control knowl-
edge that decides the instantiation of the actions looking up in the robustness table.
Figure 6.1 shows a high level view of this integration for planning, execution and
learning to capture the success of instances. The following subsections describe
each component of the integration in more detail.

6.2 Planning

The nonlinear backward chaining planner PRODIGY (Veloso et al., 1995) imple-
ments the planning component of this integration proposal. The inputs to PRODIGY

87

88 CHAPTER 6. LEARNING INSTANCES SUCCESS FOR ROBUST PLANNING

Plan

Observations

(a1,a2,...,an)

PDDL
Domain

Problem
state+goals action i

Planning Execution

a

E
nvironm

ent

(ai,ci)Control Rules
Instances Robustness

N
on−D

eterm
inisticLearning

result ci

Figure 6.1: Architecture for learning instances success.

are the usual ones for a classical planner: a domain model and a problem definition.
Additionally, PRODIGY accepts declarative control knowledge described as a set
of control rules. These control rules act as domain dependent heuristics, and they
are the main reason for using this planner, given that they provide an easy method
for exploiting automatically acquired knowledge. As shown in Figure 6.2, the
reasoning cycle of PRODIGY involves four decision points: (1) choosing a goal
from the set of pending goals and subgoals; (2) choosing an operator to achieve a
particular goal; (3) choosing the bindings to instantiate the operator and (4) choos-
ing whether to apply an instantiated operator whose preconditions are satisfied or
to continue subgoaling on another unsolved goal.

goal1 goalg...

...operator1 operatoro

subgoalapply the
operator

1. Choosing a Goal

2. Choosing an Operator

bindings1 bindingsb

4. Applying the operator or subgoaling

3. Choosing the operator Bindings

...

1. Choosing a Goal

...

...

...

Figure 6.2: The reasoning cycle of the PRODIGY planner.

6.3. EXECUTION 89

In this integration proposal, PRODIGY is executed with control rules that
make the planner prefer the most robust bindings for a given action in order to
guide the planner towards robust solutions. The output of PRODIGY, as it is used
in this approach, is a total-ordered plan p = (a1, a2, ..., an).

6.3 Execution

The execution component executes the plan p = (a1, a2, ..., an) provided by the
planning component for solving a certain problem. After the execution of an action
ai, the execution component invokes the learning component for updating the ro-
bustness value of action ai. When the execution of an action ai is a FAILURE, the
execution component aborts the plan execution. The execution algorithm is shown
in Figure 6.3.

Function Execution (Plan, RobTable):RobTable
Plan: list of actions (a1, a2, ..., an)
RobTable: Table with the robustness of actions
For all actions ai in Plan do

class = execution(ai)
RobTable = Learning(ai, class,RobTable)
If class = FAILURE Then break;

Return RobTable;

Figure 6.3: Algorithm for executing plans and updating the robustness table.

6.4 Learning

The learning component updates the robustness table which stores the estimations
of the performance of actions. Specifically, the robustness table stores tuples of
the form (op-name, op-params, r-value), where op-name is the ac-
tion name, op-params is the list of instantiated parameters of the action, and
r-value, is the robustness value which indicates a measure of the probability
of success of the instantiated action. Table 6.1 shows an example of robustness
table for planning in the Tourist domain. In this domain a tourist needs a plan for
organizing his visits to the different places of a given city. This robustness-table
captures which is the best day for a tourist to visit a fixed place. According to
the table, the best day for visiting the Prado museum would be on Wednesday
because this instantiation presents the highest associated robustness value.

The learning component updates the robustness value of a given action instan-
tiation according to the following algorithm: when the action execution is success-
ful, the robustness value of the action is increased. Otherwise, when the execution
results in a FAILURE, the new robustness value is the square root of the old ro-
bustness value. In this way, we penalize actions with recent failures because we

90 CHAPTER 6. LEARNING INSTANCES SUCCESS FOR ROBUST PLANNING

Action Parameters Robustness
prepare-visit (PRADO MONDAY) 5.0
prepare-visit (PRADO TUESDAY) 6.0
prepare-visit (PRADO WEDNESDAY) 8.0
prepare-visit (PRADO THURSDAY) 4.0
prepare-visit (PRADO FRIDAY) 2.0
prepare-visit (PRADO SATURDAY) 1.0
prepare-visit (PRADO SUNDAY) 1.0
prepare-visit (ROYAL-PALACE MONDAY) 2.0
prepare-visit (ROYAL-PALACE TUESDAY) 2.0

...

Table 6.1: Example of a robustness-table for the Tourist domain.

assume they will be more likely to fail in the next future. The learning algorithm
for updating the robustness table is shown in Figure 6.4.

Function Learning (ai, r,RobTable):RobTable
ai: executed action
r: execution outcome (FAILURE or SUCCESS)
RobTable: Table with the robustness of actions
if r = success

Then
robustness(ai,RobTable) = robustness(ai,RobTable) + 1

Else
robustness(ai,RobTable) =

√
robustness(ai,RobTable)

Return RobTable;

Figure 6.4: Algorithm for updating the robustness table with a new execution.

6.5 Exploitation of the learned knowledge

We guide the search of the PRODIGY planner with control rules. Among all
the possible action instantiations, these rules choose the instantiation with the
greatest robustness value at the robustness table. An example of these control
rules for the Tourist domain is shown in Figure 6.5. This control rule makes
PRODIGY prefer the most robust day to prepare the visit of tourist <user-1> to
the place <place-1>. Specifically, the most robust day is the day when visiting
the <place-1> is more probable to please <user-1> according to the learned
robustness table.

Suppose that a tourist called Mike wants to obtain a plan to visit the Prado
museum and the Royal Palace in Madrid, Figure 6.6 shows the search tree of
PRODIGY for this example, and how the control-rule of Figure 6.5 prefers to
prepare the visit to the Prado museum on Wednesday, among all the possible
instantiations, because PREPARE-VISIT PRADO WEDNESDAY 8.0 is the in-

6.6. EVALUATION 91

(control-rule prefer-bindings-prepare-visit
(IF
(and (current-goal (prepared-visit <user-1> <place-1>))

(current-operator prepare-visit)
(true-in-state (current-time <user-1> <day-1> <time-1>))
(true-in-state (current-time <user-1> <day-2> <time-2>))
(diff <day-1> <day-2>)
(more-robust-than (prepare-visit <user-1> <place-1>

<day-1>)
(prepare-visit <user-1> <place-1>

<day-2>))))
(THEN prefer bindings ((<day> . <day-1>))((<day> . <day-2>))))

Figure 6.5: Control rule for preferring the best day to visit a museum.

stantiation with the greatest robustness value in the Robustness Table for the Prado
museum.

<visit−museum>

visited(Mike,Royal−Palace)

<prepare−visit

...

Mike Prado Monday>
<prepare−visit

Mike Prado Tuesday>Mike Prado Wednesday>
<prepare−visit<prepare−visit

Mike Prado Thursday>
<prepare−visit

Mike Prado Fryday>
<prepare−visit

Mike Prado Saturday>
<prepare−visit

visit−prepared(Mike,Prado)

visited(Mike,Prado)

Mike Prado Sunday>

Figure 6.6: Example of PRODIGY planning guided by control rules.

If the system greedily exploits these control rules, the behavior of the different
instantiations of actions are not explored. To avoid this effect we follow an e-greedy
strategy: control rules for preferring the more robust bindings are only followed
80% of times. In the remaining 20% of times, the bindings are chosen randomly
from among all the possible choices.

6.6 Evaluation

In this preliminary work, the execution of actions is simulated without considering
the current state of the world. Specifically, the simulator only takes into account
the values of the action parameters for determining the class of an action execution
(success or failure). Thereby, the input to the simulator is the action to execute and

92 CHAPTER 6. LEARNING INSTANCES SUCCESS FOR ROBUST PLANNING

the output is whether the execution was a success or a failure. For every instantiated
action ai in the domain, the simulator has a Bernoulli distribution bi that models
the performance of ai. To simulate the execution of a given instantiated action ai, a
random value is generated (success or failure) following the associated probability
distribution bi.

The domain

The architecture proposal is evaluated in the Tourist domain from the SAMAP
project (Castillo et al., 2008). This planning domain consists of the following
operators:

• MOVE, this operator computes the duration and cost of the tourist movements
and updates the predicates current time, money-available and current loca-
tion of the tourist according to these computations. For these experiments
the path-planning problem of the domain is not considered. Specifically, it
is a assumed that a tourist is always able to move between any two places in
a city in one hour.

• There is a VISIT-<PLACE> operator for each possible type of place con-
sidered in the ontology. From visiting a museum, to eating in a restaurant
or watching a film. The only difference between these operators is the type
of place (VISIT-MUSEUM, VISIT-RESTAURANT, . . .) and the partially
instantiated goal added by the action. For example, action VISIT-MUSEUM
adds visited-museum, action VISIT-RESTAURANT adds visited-
restaurant, . . .

• PREPARE-VISIT, this operator computes the preconditions and effects
shared by all operators VISIT-PLACE, such as the time of the beginning
of a visit, the price, the duration and the cost.

The problems

The test problem set consists of 100 random generated problems with increasing
complexity. The initial state of the random problems represents the free time of the
tourist for each day in the week, its available money and its initial location. The
problem goals describe the places the tourist wants to visit. The complexity of the
problems is defined in terms of the available time the user has to visit all the goals
by the following ratio:

complexity =
timegoals
timeavailable

Where timeavailable represent the sum of the tourist free time and timegoals rep-
resents the time needed to visit all the goals. So, when the complexity ratio of
a problem is over 1.0 the planner will not find a solution. Figure 6.7 shows how
problems complexity affects the number of plan steps successfully executed.

6.7. DISCUSSION 93

Figure 6.7: Analysis of the problems complexity in the Tourist domain.

Correctness of the learned knowledge

The first experiment aims to evaluate the correctness of the knowledge captured
in the robustness table. In this experiment we measure the number of successfully
executed actions as we solve 25 training problems. Results are shown in Figure 6.8.
This number converges quickly to approximately 13-14 steps. The average length
of the plans that solve the problems from the test set is 19,5. So, in terms of
percentage, 13-14 steps executed successfully represents approximately 66-72%
percentage of plan executed successfully. The speed of the convergence is due to
the fact that failure probabilities do not change along the time.

Performance of the learned knowledge

The second experiment aims to evaluate the benefit of planning with the learned
knowledge. In this experiment we solve 25 training problems and then we mea-
sure the usefulness of guiding the planning with the resulting robustness table and
the control-rules for binding preference. Figure 6.9 shows a comparison of the be-
havior of two different planning configurations: (1) the planning system without
control rules (Default Behavoiur) and (2) the planning system making use of the
captured control knowledge (With Control Rules).

6.7 Discussion

This chapter presented an architecture model to learn the success of instantiated
actions. The applicability of this approach is limited for the following reasons:

94 CHAPTER 6. LEARNING INSTANCES SUCCESS FOR ROBUST PLANNING

Figure 6.8: Evolution of the number of plan steps successfully executed.

1. Planning. The PRODIGY planner does not implement domain-independent
heuristics for guiding the synthesis of plans. Consequently, PRODIGY is
not competitive with the current state-of-the-art planners over a variety of
domains.

2. Execution. The execution process is very simplified. The outcome of an
action simulation is directly the class (success or failure). Normally, the
execution module infers this class from the state of the environment.

3. Learning. The success of actions may depend on the state. However, this
learning approach claims that the success of actions only depends on how
actions are instantiated. Besides, the size of the robustness-table grows ex-
ponentially with the number of parameters of actions.

4. Exploitation of the learned knowledge. PRODIGY control rules guide lo-
cally the planning process. However, locally choosing the most robust action
instantiation does not guarantee to find the most robust plan. In addition, the
proposed definition of control rules is domain-dependent. Domain knowl-
edge is necessary for determining which are the action parameters to select
regarding the robustness-table, i.e. which is the Then part of the control
rules. For example, in the Tourist domain, the parameter to select is the
<day> to visit a given place.

5. Integration. The proposed planning and learning integration is ’ad hoc’. The
robustness knowledge is captured in the form of control rules that are only
useful for planning with PRODIGY.

6.7. DISCUSSION 95

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70 80 90 100

S
te

ps
 o

f p
la

n
su

cc
es

sf
ul

ly
 e

xe
cu

te
d

Number or Problems

With Control Rules
Default Behaviour

Figure 6.9: Plan steps successfully executed by the two planning configurations.

Despite these limitations, the approach is able to capture execution knowledge
when the performace of actions depends on the parameter instantiation. As shown
experimentally, the proposed inclusion of execution knowledge makes PRODIGY
prefer robust intantation of actions reducing failures in plan executions.

96 CHAPTER 6. LEARNING INSTANCES SUCCESS FOR ROBUST PLANNING

Chapter 7

PELA: Planning, Execution and
Learning Architecture

This chapter describes the Planning, Execution and Learning Architecture (PELA)
for robustly planning in stochastic environments (Jiménez et al., 2008).

7.1 Introduction

AP algorithms reason about correct and complete action models for synthesising
plans that attain a given set of goals. However, the specification of correct and
complete action models is a complex task. When planning for environments with
uncertainty, like the real-world, the task of action modelling becomes harder: even
actions traditionally simple to code, like the classic four actions from Blocksworld,
may produce countless outcomes.

As a consequence, an extended approach for addressing planning problems
in domains with uncertainty consists of defining deterministic action models, ob-
taining plans with a classical planner and repairing these plans when necessary.
Though this approach is frequently more practical, it presents two shortcomings:

• Classical planners miss execution trajectories. The classical planning action
model only considers the nominal effects of actions. Thus, unexpected out-
comes of actions, that may result in execution dead-ends or new planning
opportunities, cannot be foreseen.

• Classical planners ignore probabilistic reasoning. Classical planners reason
about the length/cost/duration of plans without considering the probability
of success of the diverse trajectories that reach the goals.

A different approach for addressing deliberative tasks in domains with uncer-
tainty consists of integrating planning, execution and learning processes for cap-
turing the uncertainty of the environment interacting with it. At present, there are
two areas in AI which study this issue with different views:

97

98 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

• Reinforcement Learning. RL (Kaelbling et al., 1996) provides a framework
for integrating planning, execution and learning based on the strong theoret-
ical foundations of MDPs. However, RL presents significant shortcomings
for solving traditional AP problems. First, the scalability of the RL algo-
rithms depends on the size of the state-space; in AP this size is easily huge.
Second, RL suffers from generalization limitations. Given that RL focuses
learning on the achievement of particular goals, each time goals change, RL
requires learning from scratch, or at least a transfer learning process.

• Cognitive architectures. Architectures like PRODIGY (Veloso et al., 1995),
SOAR (Rosenbloom et al., 1993) or more recently ICARUS (Langley and
Choi, 2006), implement the integration of planning, execution and learning
skills combining automated planners and rule-learning mechanisms for guid-
ing them. These architectures scale better in the size of the state-space and
are able to learn general knowledge that is valid for any planning problem
within a given domain. Nevertheless, they are based on classical planning
so they do not solve problems robustly under uncertainty. Besides, these ar-
chitectures usually integrate specific tailored components that could not be
replaced by other equivalent ones. Finally, unlike RL, they do no implement
on-line learning mechanisms to incorporate knowledge as planning tasks are
solved.

The work presented in this chapter belongs to the AI area of cognitive architec-
tures. Specifically, the chapter describes PELA, an integration proposal of planning,
execution and learning for stochastic environments.

7.2 The Planning, Execution and Learning architecture

PELA displays its three components in a loop: (1) Planning the actions that solve a
given problem. Initially, the planning component plans with an off-the-shelf clas-
sical planner and a STRIPS-like action model A. This model is described in the
standard planning language PDDL (Fox and Long, 2003) and contains no informa-
tion about the uncertainty of the world. (2) Execution of plans and classification
of the execution outcomes. PELA executes plans in the environment and labels
the actions executions according to their outcomes. (3) Learning prediction rules
of the action outcomes to upgrade the action model of the planning component.
PELA learns these rules from the actions performance and uses them to generate
an upgraded action model A′ with knowledge about the actions performance in
the environment. The upgraded model A′ can have two forms: A′c a PDDL action
model for deterministic cost-based planning over a metric that we call plan fragility
or A′p an action model for probabilistic planning in PPDDL (Younes et al., 2005),
the probabilistic version of PDDL. In the following cycles of PELA, the planning
component uses either A′c or A′p, depending on the planner we use, to synthesize
robust plans. Figure 7.1 shows the high level view of this integration proposal.

7.3. PLANNING 99

New Domain

Plan

Observations

(a1,a2,...,an)

state s i+1

PDDL+Costs
PPDDL

PDDL
Domain

Problem
state+goals action i

New Problem

Planning Execution

Learning

a

E
nvironm

ent
N

on−D
eterm

inistic

Domain
PDDL

oi=(si,ai,ci)

Figure 7.1: Overview of the planning, execution and learning architecture.

The following subsections describe each component of the integration in more
detail.

7.3 Planning

The inputs to the planning component are: a planning problem denoted by P to-
gether with a domain model denoted by A, in the first planning episode, and by A′c
or A′p, in the subsequent ones. The planning problem P = (I,G) is defined by I ,
the set of literals describing the initial state and G, the set of literals describing the
problem goals. Each action a ∈ A is a STRIPS-like action consisting of a tuple
(pre(a), add(a), del(a)) where pre(a) represents the action preconditions, add(a)
represents the positive effects of the action and del(a) represents the negative ef-
fects of the action.

Each action a ∈ A′c is a tuple (pre(a), eff(a)). Again pre(a) represents
the action preconditions and eff(a) is a set of conditional effects of the form
eff(a) = (and(when c1(and o1f1)) . . . (when ck(and okfk))) where, oi is the
outcome of action a and fi is a fluent that represents the fragility of the outcome
under conditions ci. We will define later the fragility of an action.

Each action a ∈ A′p is a tuple (pre(a), eff(a)), pre(a) represents the action
preconditions and eff(a) = (probabilistic p1 o1 . . . pl ol) represents the effects
of the action, where oi is the outcome of a , i.e., a formula over positive and nega-
tive effects that occurs with probability pi.

The planning component synthesizes a plan p = (a1, a2, ..., an) consisting of
a total ordered sequence of instantiated actions. When applying p to I , it would
generate a sequence of state transitions (s0, s1, ..., sn) such that si results from ex-
ecuting the action ai in the state si−1 and sn is a goal state, i.e., G ⊆ sn. When the
planning component reasons with the action modelA, it tries to minimize the num-

100 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

ber of actions in p. When reasoning with action modelA′c, the planning component
tries to minimize the value of the fragility metric. In the case of planning with A′p,
the planning component tries to maximize the probability of reaching the goals. In
addition, the planning component can synthesize a plan prandom which contains
applicable actions chosen randomly. Though prandom does not necessarily achieve
the problems goals, it allows PELA to implement different exploration/exploitation
strategies.

7.4 Execution

The inputs to the execution component are provided by the planning component.
These inputs are the total ordered plan p = (a1, a2, ..., an) and the initial STRIPS-
like action model A. The output of the execution component is the set of obser-
vations O = (o1, . . . , oi, . . . , om) collected during the executions of plans. The
execution component executes a plan p one action at a time. For each executed
action ai, this component stores an observation oi = (si, ai, ci), where:

• si is the conjunction of literals representing the facts holding before the ac-
tion execution;

• ai is the action executed; and

• ci is the class of the execution. This class (SUCCESS, FAILURE or DEAD-END)
is inferred by the execution component from si and si+1 (the conjunction of
literals representing the facts holding after executing ai in si) together with
the STRIPS-like action model of ai ∈ A.

We have devised two approaches for the execution component: a preliminary one
and the current one.

7.4.1 Preliminary approach

The preliminary approach for the execution component (Jiménez, 2007) was only
valid for domains free from execution dead-ends, e.g. the Slippery-Gripper.1 Ac-
cording to this approach, the class ci of an action ai executed in a state si is:

1. SUCCESS. When si+1 matches the STRIPS model of ai defined in A. That
is, when it is true that si+1 = {si/Del(ai)} ∪Add(ai).

2. FAILURE. When si+1 does not match the STRIPS model of ai defined in A.
That is, when it is not true that si+1 = {si/Del(ai)} ∪Add(ai).

1The Slippery-gripper domain is a non-deterministic Blocksworld with a gripper to manipulate
the blocks and a nozzle to paint them. Painting a block may wet the gripper, which makes it more
likely to fail. The gripper can be dried to move blocks more safely.

7.4. EXECUTION 101

Figure 7.2 shows two execution episodes in the Slippery-Gripper domain with
the same si and ai, but with different si+1. The first execution corresponds to an
execution classified as a SUCCESS and the second one to an execution classified
as a FAILURE.

SUCCESS FAILURE

A

B
A

Bunstack(B,A)

A

B
AB

unstack(B,A)

Figure 7.2: Two execution episodes in the Slippery-Gripper domain.

When the execution of an action ai is classified as SUCCESS, the execution
component continues executing the next action in the plan ai+1 until there are
no more actions in the plan. When the execution of an action is classified as a
FAILURE, the execution module invokes the planning component with si+1 as the
new initial state of the problem so the planning component can replan for solv-
ing the planning problem in this new state. This execution algorithm is shown in
Figure 7.3.

Function Execution (InitialState, Plan, Domain):Observations
InitialState: initial state
Plan: list of actions (a1, a2 , ..., an)
Domain: Strips action model
Observations: Collection of Observations
Observations = ∅
state = InitialState
While Plan is not ∅ do

ai = Pop(Plan)
newstate = executes(state, ai)
if matches(state, newstate, ai, Domain)

Observations = collectObservation(Observations, state, ai, SUCCESS)
else

Observations = collectObservation(Observations, state, ai, FAILURE)
Plan = replan(newstate)

state = newstate
Return Observations;

Figure 7.3: Executes a plan and classifies actions as SUCCESS or FAILURE.

102 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

7.4.2 Current approach

This implementation of the execution component extends the previous one for han-
dling domains with execution dead-ends, e.g., the tireworld.2 In this new imple-
mentation of the execution component, the class ci of an action ai executed in a
state si is:

1. SUCCESS. When si+1 matches the STRIPS model of ai defined in A. That
is, when it is true that si+1 = {si/Del(ai)} ∪Add(ai).

2. FAILURE. When si+1 does not match the STRIPS model of ai defined in
A, but the problem goals can still be reached from si+1, i.e., the planning
component can synthesize a plan that theoretically reaches the goals from
si+1.

3. DEAD-END. When si+1 does not match the STRIPS domain model of ai
defined in A, and the problem goals cannot be reached from si+1, i.e., the
planning component cannot synthesize a plan that theoretically reaches the
goals from si+1.

Figure 7.4 shows three execution episodes of the action move-car from the
tireworld: the execution of action move-car(A,B) could result in SUCCESS
when the car does not get a flat tire or in DEAD-END when the car gets a flat
tire because at location B there is no possibility of replacing flat tires. On the
other hand, the execution of action move-car(A,D) is safer. The reason is that
move-car(A,D) can only result in either SUCCESS or FAILURE because at
location D there is a spare tire for replacing flat tires.

A

B

C

D E

Success State

A

B

C

D E

Failure State

A

B

C

D E

Dead−End State

Figure 7.4: Execution episodes for the move-car action in the tireworld.

When the execution of an action ai is classified as SUCCESS, the execution
component continues executing the next action in the plan ai+1 until there are no
more actions in the plan. When the execution of an action does not match its

2In the tireworld a car needs to move from one location to another. The car can move between
different locations via directional roads. For each movement there is a probability of getting a flat
tire and flat tires can be replaced with spare ones. Unfortunately, some locations do not contain spare
tires which leads to execution dead-ends.

7.5. LEARNING 103

STRIPS model, then the planning component tries to replan and provide a new
plan for solving the planning problem in this new scenario. In case replanning is
possible, the execution is classified as a FAILURE and the execution component
continues executing the new plan. In case replanning is impossible, the execution
is classified as a DEAD-END and the execution terminates. The extended algorithm
for the execution component is shown in Figure 7.5.

Function Execution (InitialState, Plan, Domain):Observations
InitialState: initial state
Plan: list of actions (a1, a2 , ..., an)
Domain: Strips action model
Observations: Collection of Observations
Observations = ∅
state = InitialState
While Plan is not ∅ do

ai = Pop(Plan)
newstate = executes(state, ai)
if matches(state, newstate, ai, Domain)

Observations = collectObservation(Observations, state, ai, SUCCESS)
else

Plan = replan(newstate)
If Plan is not ∅

Observations = collectObservation(Observations, state, ai, FAILURE)
else

Observations = collectObservation(Observations, state, ai, DEADEND)
state = newstate

Return Observations;

Figure 7.5: Extended execution algorithm for domains with dead-ends.

7.5 Learning

The learning component searches for rules that generalize the observed perfor-
mance of actions. Then, it compiles these rules together with the STRIPS-like action
model A into an upgraded action model A′ with knowledge about the performance
of actions in the environment.

The inputs to the learning component are the set of observations O collected
by the execution component and the original action model A. The output is the
upgraded action modelA′. We have also devised two approaches for implementing
the learning component.

7.5.1 Preliminary Approach

Again, the preliminary approach (Jiménez and Cussens, 2006) is only valid for
domains free from execution dead-ends. For each action a ∈ A, the learning com-
ponent induces a Stochastic Logic Program (SLP) that represent its state-dependent

104 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

probability of success. The induction of the SLP is performed in a two-step pro-
cess: A first step for inducing state-dependent rules about the success of a (struc-
tural learning) and a second step for estimating the probabilities associated to the
induced rules (parameter estimation).

Structural learning of action success rules

The structural learning is performed by the ALEPH3 system. ALEPH heuristically
searches for Horn clauses that explain as many positive examples of the target
concept as possible, covering the least possible amount of negative examples. The
heuristic search implemented in ALEPH is robust to noisy learning examples, and
supports declarative background knowledge in the form of PROLOG programs to
improve its efficiency.

For each action a ∈ A, ALEPH induces rules that capture the context in which
the action succeeds. The induced rules are Horn clauses, where the head of the
clause is the target concept ”success-actionName(actionParameters)” and the body
of the clause is the set of predicates that describe the context in which the action
succeeds. Additionally, ALEPH indicates the number of positive and negative ex-
amples covered by a rule. As an example, Figure 7.6 shows a rule induced by
ALEPH for the action unstack(block,block) of the Slippery-Gripper do-
main.

[Rule 1]
[Pos cover = 22 Neg cover = 27]
success_unstack(A,B,C) :- drygripper(A).

Figure 7.6: Rule induced by ALEPH for action unstack(block,block).

To induce the success rules of a given planning action, the inputs to the ILP
system ALEPH are:

• The language bias. This bias is automatically extracted from the domain
model and consists of PROLOG clauses that define the object types, the do-
main predicates and the learning target concept. Domain predicates are ex-
tended with an extra parameter called example for indicating the identifier of
the observation in the learning examples. Figure 7.7 shows the language bias
for learning the target concept of success-unstack(block,block)
in a two-blocks Slippery-Gripper domain.

• The knowledge base. This knowledge is a set of PROLOG ground clauses
encoding the observations collected by the execution component. Each ob-

3ALEPH is an ILP system based on Stephen Muggleton’s ideas of inverse entailment (Muggleton,
1995a) developed by Ashwin Srinivasan and Rui Camacho. ALEPH can be freely downloaded at
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph

7.5. LEARNING 105

% Types
type_of_object(blockA,block).
type_of_object(blockB,block).
% Predicates
modeb(*,drygripper(+example)).
modeb(*,wetgripper(+example)).
modeb(*,emptygripper(+example)).
modeb(*,ontable(+example,-block)).
modeb(*,clear(+example,-block)).
modeb(*,holdinggripper(+example,-block)).
modeb(*,on(+example,-block,-block)).
% Target concept
modeh(*,success_unstack(+example,+block,+block)).

Figure 7.7: Language bias for the operator unstack(block,block).

servation is encoded by: one clause indicating the action executed together
with a set of clauses capturing the state in which the action was executed.
Figure 7.8 shows a piece of knowledge base that encodes the observations
corresponding to the two execution episodes depicted at Figure 7.2. The
first observation (with identifier o1) corresponds to an execution classified
as SUCCESS and hence, it will be used as a positive example for learning the
success rules of action unstack(block,block). On the contrary, the
second observation (with identifier o2) corresponds to an execution clas-
sified as FAILURE and hence, it will be used as a negative example for
learning the success rules of action unstack(block,block).

% Observation o1
success_unstack(o1,blockB,blockA).

% State o1
drygripper(o1).
emptygripper(o1).
on(o1,blockB,blockA).
ontable(o1,blockA).
clear(o1,blockB).

% Observation o2
success_unstack(o2,blockB,blockA).
% State o2
wetgripper(o2).
emptygripper(o2).
on(o2,blockB,blockA).
ontable(o2,blockA).
clear(o2,blockB).

Figure 7.8: Learning examples for the action unstack(block,block).

Parameter estimation of action success rules

At this step, the probability associated to the induced rules is estimated through
Maximum Likelihood Estimation (MLE). In this approach, MLE is implemented

106 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

with a PRISM4 program that models the classification of the observations as pos-
itive or negative examples of the induced success rules. Particularly, the PRISM
program assumes the following generative model for the classification of the ob-
servations:

1. An unclassified observation is selected with a probability equal to its relative
frequency in the set of observations.

2. A rule is chosen according to an unknown probability over the induced rules.

3. When the chosen rule does not cover the selected observation, we have a
failure and the process returns to step 2. Otherwise, it continues.

4. The selected observation is finally classified as positive or negative according
to an unknown probability associated with the chosen rule.

The application of MLE over this PRISM program simultaneously estimates the
probabilities of choosing a given induced rule (step 2) and the classification prob-
ability of the rules (step 4). This estimation is a missing data problem, since we
do not know which rule classified each observation. In such situations, PRISM
handles MLE using the Expectation-Maximization algorithm (EM). The missing
data includes an unknown number of failures at step 3 so Failure-Adjusted Maxi-
mization (FAM) (Cussens, 2001), a particular version of EM, is used.

Figure 7.9 shows the final SLP induced for the unstack action from the
slippery-gripper domain consisting of one rule. The head of the rule represents the
target concept (in the example the success of the action unstack) and the body
of the rule represents the set of predicates describing the conditions that make the
target concept true. The parameter of the rule represent the probability of suc-
cess of the action given that the body of the rule is true in the current state. This
SLP states that when executing the action unstack(block,block) with the
gripper dry, the action is going to succeed 80% of times.

0.8 : unstack(A,B,C) :- drygripper(A).

Figure 7.9: SLP induced for action unstack from the Slippery-gripper domain.

7.5.2 Current Approach

The following rule learning approach is valid for capturing the performance of
actions in domains with presence of execution dead-ends, like the tireworld.

For each action a ∈ A, PELA learns a relational decision tree ta that models
the performance of a in terms of these three classes: success, failure and dead-end.

4PRISM (Sato and Kameya, 2001) is a general programming language intended for symbolic-
statistical modelling. PRISM can be freely downloaded at http://mi.cs.titech.ac.jp/prism/

7.5. LEARNING 107

PELA uses TILDE5 for the tree learning but there is nothing that prevents from
using any other relational decision tree learning tool. Given that rules captured
in a decision tree are disjunctive, this approach does not require the parameter
estimation step. Each branch of the learned decision tree will represent a rule of
performance of the corresponding action:

• the internal nodes of the branch contain the set of conditions under which
the rule of performance is true.

• the leaf nodes contain the corresponding class; in this case, the action perfor-
mance (success, failure or dead-end) and the number of examples
covered by the pattern. The estimation of the probability associated to the
rules is directly extracted from the frequency of the learning examples.

move-car(-A,-B,-C,-D)
spare-in(A,C) ?
+--yes: [failure] [[success:97.0,failure:129.0,deadend:0.0]]
+--no: [deadend] [[success:62.0,failure:0.0,deadend:64.0]]

Figure 7.10: Relational decision tree for move-car(Origin,Destiny).

Figure 7.10 shows the decision tree learned for action move-car(Origin,Destiny)
using 352 tagged examples. According to this tree, when there is a spare tire at
Destiny, the action failed 97 over 226 times, while when there is no spare tire at
Destiny, it caused an execution dead-end in 64 over 126 times.

To build a decision tree ta for an action a, the learning component receives two
inputs:

• The language bias specifying the restrictions in the parameters of the pred-
icates to constrain their instantiation. This bias is automatically extracted
from the STRIPS domain definition: (1) the types of the target concept are
extracted from action definition and (2) the types of the rest of literals are
extracted from the predicates definition. As in the previous rule learning ap-
proach, predicates are extended with an extra parameter called example that
indicates the identifier of the observation. Besides, the parameters list of
actions is also augmented with a label that describes the class of the learn-
ing example (success, failure or dead-end). Figure 7.11 shows
the language bias specified for learning the model of performance of action
move-car(Origin,Destiny) from the tireworld.

• The knowledge base, specifying the set of examples of the target concept,
and the background knowledge. In PELA, both are automatically extracted

5TILDE (Blockeel and Raedt, 1998) is a relational implementation of the Top-Down Induction
of Decision Trees (TDIDT) algorithm (Quinlan, 1986).

108 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

% The target concept
type(move_car(example,location,location,class)).
classes([success,failure,deadend]).

% The domain predicates
type(vehicle_at(example,location)).
type(spare_in(example,location)).
type(road(example,location,location)).
type(not_flattire(example)).

Figure 7.11: Language bias for the tireworld.

from the classified executions collected by the execution component. The
action execution (example of target concept) is linked with the state literals
(background knowledge) through the identifier of the execution observation.
Figure 7.12 shows a piece of the knowledge base for learning the patterns of
performance of the action move-car(Origin,Destiny). Particularly,
this example captures the execution examples with identifier o1, o2 and o3
that resulted in success, failure and dead-end respectively, corresponding to
the action executions of Figure 7.4.

% Example o1
move-car(o1,a,b,success).

% Background knowledge
vehicle-at(o1,a). not-flattire(o1).
spare-in(o1,d). spare-in(o1,e).
road(o1,a,b). road(o1,a,d). road(o1,b,c).
road(o1,d,e). road(o1,e,c).

% Example o2
move-car(o2,a,c,failure).

% Background knowledge
vehicle-at(o2,a).
spare-in(o2,d). spare-in(o2,e).
road(o2,a,b). road(o2,a,d). road(o2,b,c).
road(o2,d,e). road(o2,e,c).

% Example o3
move-car(o3,a,b,deadend).

% Background knowledge
vehicle-at(o3,a).
spare-in(o3,d). spare-in(o3,e).
road(o3,a,b). road(o3,a,d). road(o3,b,c).
road(o3,d,e). road(o3,e,c).

Figure 7.12: Knowledge base after the executions of Figure 7.4.

7.6. EXPLOITATION OF THE LEARNED KNOWLEDGE 109

7.6 Exploitation of the learned knowledge

PELA compiles the STRIPS-like action model A together with the learned knowl-
edge into an upgraded action model A′. PELA implements two different upgrades
of the action model: (1) compilation to a metric representation; and (2) compila-
tion to a probabilistic representation. Next, there is a detailed description of the
compilations.

7.6.1 Compilation to a Metric Representation

In this compilation, PELA transforms each action a ∈ A together with the corre-
sponding induced tree ta into a new action a′ ∈ A′c which contains a metric that
expresses the probability of success of the action.

Given prob(ai) as the probability of success of action ai, the probability of
success of a total ordered plan p = (a1, a2, ..., an) can be defined as:

prob(p) =
n∏
i=1

prob(ai).

Intuitively, taking the maximization of prob(p) as a planning metric should
guide planners to find robust solutions. However, planners do not efficiently deal
with a product maximization. Thus, despite this metric is theoretically correct, ex-
perimentally it leads to poor results in terms of solutions quality and computational
time. Instead, existing planners are better designed to minimize a sum of values
(like length/cost/duration of plans). This compilation defines a metric indicating
not a product maximization but a sum minimization, so off-the-shelf planners can
use it to find robust plans. The definition of this metric is based on the following
property of logarithms:

log(
∏
i

xi) =
∑
i

log(xi)

Specifically, we transform the probability of success of a given action into an action
cost called fragility. The fragility associated to a given action ai is computed as:

fragility(ai) = −log(prob(ai))

And consequently, the fragility associated to a total ordered plan is computed as:

fragility(p) =
n∑
i=1

fragility(ai).

Note that a minus sign is introduced in the fragility definition to transform the
maximization into a minimization. In this way, the maximization of the product of
success probabilities along a plan is transformed into a minimization of the sum of
the fragility costs.

Formally, the compilation is carried out as follows. Each action a ∈ A together
with the corresponding induced tree ta are compiled into a new action a′ ∈ A′c
where:

110 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

1. The parameters of a′ are the parameters of a.

2. The preconditions of a′ are the preconditions of a.

3. The effects of a′ are computed as follows. Each branch bj of the tree ta is
compiled into a conditional effect cej of the form cej=(when Bj Ej) where:

(a) Bj=(and bj1...bjm), where bjk are the relational tests of the internal
nodes of branch bj (in the tree of Figure 7.10 there is only one test,
referring to spare-in(A,C));

(b) Ej=(and {effects(a) ∪ (increase (fragility) fj)});
(c) effects(a) are the STRIPS effects of action a; and

(d) (increase (fragility) fj) is a new literal which increases
the fragility metric in fj units. The value of fj is computed as:

• when bj does not cover execution examples resulting in dead-ends,

fj = −log(
1 + s

2 + n
)

where s refers to the number of execution examples covered by
bj resulting in success, and n refers to the total number of exam-
ples that bj covers. Regarding the Laplace’s rule of succession we
add 1 to the success examples and 2 to the total number of ex-
amples. Therefore, we assign a probability of success of 0.5 to
actions without observed executions;
• when bj covers execution examples resulting in dead-ends.

fj =∞

Therefore, planners will try to avoid these situations because of
their high cost.

Figure 7.13 shows the result of compiling the decision tree of Figure 7.10. In
this case, the tree is compiled into two conditional effects. Given that there is only
one test on each branch, each new conditional effect will only have one condition
(spare-in or not(spare-in)). As it does not cover dead-end examples, the first
branch increases the fragility cost in −log(97+1

97+129+2). The second branch covers
dead-end examples, so it increases the fragility cost in∞ (or a sufficiently big
number; in the example 999999999).

7.6.2 Compilation to a probabilistic representation

In this case, PELA compiles each action a ∈ A together with the corresponding
induced tree ta into a new probabilistic action a′ ∈ A′p where:

1. The parameters of a′ are the parameters of a.

7.6. EXPLOITATION OF THE LEARNED KNOWLEDGE 111

(:action move-car
:parameters (?v1 - location ?v2 - location)
:precondition (and (vehicle-at ?v1) (road ?v1 ?v2)

(not-flattire))
:effect

(and (when (and (spare-in ?v2))
(and (increase (fragility) 0.845)

(vehicle-at ?v2) (not (vehicle-at ?v1))))
(when (and (not (spare-in ?v2)))

(and (increase (fragility) 999999999)
(vehicle-at ?v2) (not (vehicle-at ?v1))))))

Figure 7.13: Compilation into a metric representation.

2. The preconditions of a′ are the preconditions of a.

3. Each branch bj of the induced tree ta is compiled into a probabilistic effect
pej=(when Bj Ej) where:

(a) Bj=(and bj1...bjm), where bjk are the relational tests of the internal
nodes of branch bj ;

(b) Ej=(probabilistic pj effects(a));

(c) effects(a) are the STRIPS effects of action a;

(d) pj is the probability value and it is computed as:

• when bj does not cover execution examples resulting in dead-ends,

pj =
1 + s

2 + n

where s refers to the number of success examples covered by bj ,
and n refers to the total number of examples that bj covers. Again,
the probability of success is computed following the Laplace’s rule
of succession to assign a probability of 0.5 to actions without ob-
served executions;
• when bj covers execution examples resulting in dead-ends,

pj = 0.001

therefore, probabilistic planners try to avoid these situations be-
cause of their extremely low probability of success.

Figure 7.14 shows the result of compiling the decision tree of Figure 7.10 cor-
responding to the action move-car(Origin,Destiny). In this compilation,
the two branches are coded as two probabilistic effects. The first one does not cover
dead-end examples so it has a probability of 97+1

97+129+2 . The second branch cov-
ers dead-end examples so it has a probability of 0.001.

112 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

(:action move-car
:parameters (?v1 - location ?v2 - location)
:precondition (and (vehicle-at ?v1) (road ?v1 ?v2)

(not-flattire))
:effect
(and (when (and (spare-in ?v2))

(probabilistic 0.43
(and (vehicle-at ?v2)

(not (vehicle-at ?v1)))))
(when (and (not(spare-in ?v2)))

(probabilistic 0.001
(and (vehicle-at ?v2)

(not (vehicle-at ?v1)))))))

Figure 7.14: Compilation into a probabilistic representation.

7.7 Evaluation

In 2004, Michael Littman and Hakan Younes created the probabilistic track of IPC
with the aim of evaluating the existing techniques for probabilistic planning. This
track defined an evaluation methodology for probabilistic planners consisting of:

• A common representation language. PPDDL was defined as the standard
input language for probabilistic planners.

• A simulator of stochastic environments. MDPsim 6 was developed to simu-
late the execution of actions in stochastic environments. Planners communi-
cate with MDPsim in a high level communication protocol that follows the
client-server paradigm. This protocol is based on the interchange of mes-
sages through TCP sockets. Given a planning problem, the planner sends
actions to MDPsim, MDPsim executes these actions according to a given
probabilistic action model described in PPDDL and sends back the result-
ing states. Figure 7.15 illustrates the interchange of messages between a
probabilistic planner and the simulator MDPSim.

• A performance measure. Probabilistic planners are evaluated regarding these
metrics:

1. Number of problems solved. The more problems a planner solves the
better the planner performs.

2. Time invested to solve a problem. The less time a planner needs the
better the planner performs.

3. Number of actions to solve a problem. The less actions a planner needs
the better the planner performs. Though this metric is computed at IPC,

6MDPsim can be freely downloaded at http://icaps-conference.org/

7.7. EVALUATION 113

sesion−request

session−init

round−request

round−init

session−end

Planner Simulator

...
state

action

round−end

action

state

Figure 7.15: Interchange of messages between a planner and MDPSim.

comparing probabilistic planners with this metric is tricky because in
some domains, e.g., triangle tireworld, robust plans are longer than
fragile plans.

We use the methodology defined at the probabilistic track of IPC to evaluate
PELA. Specifically, PELA is integrated with MDPSim as follows: Both PELA and
MDPSim share the same problem description. However, they have different action
models. On the one hand, PELA tries to solve the problems starting with a STRIPS-
like description of the environment. On the other hand, MDPSim simulates the
execution of actions according to a PPDDL model of the environment. Figure 7.16
illustrates the integration of PELA with the MDPSim simulator.

7.7.1 The domains

We evaluate PELA over a set of probabilistically interesting domains. A given plan-
ning domain is considered probabilistically interesting (Little and Thiébaux, 2007)
when the shortest solutions to the domain problems do not correspond to the solu-
tions with the highest probability of success. Given that classical planners prefer
short plans, a classical replanning approach fails more often than a probabilis-
tic planner. These failures mean extra replanning episodes which usually involve

114 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

New Domain

Plan

Observations
(si,ai,ci)

(a1,a2,...,an)

states i+1

PDDL+Costs
PPDDL

PDDL
Domain

Problem
state+goals action i

New Problem

Planning Execution

Learning

a

Domain
PDDL

MDPSim
Domain

state+goals
Problem

PPDDL

Figure 7.16: Integration of PELA with the MDPSim simulator.

more computation time. And/or when the shortest solutions to the domain prob-
lems present execution dead-ends. Given that classical planners prefer short plans,
a classical replanning approach solves less problems than a probabilistic planner.

Probabilistically interesting domains can be generated from classical domains
by increasing their robustness diversity, i.e., the number of solution plans with
different probability of success. In this thesis we propose to artificially increase
the robustness diversity of a classical planning domain following any of the posed
methods:

• Cloning actions. Cloned actions of diverse robustness are added to the do-
main model. Particularly, a cloned action a′ keeps the same parameters and
preconditions of the original action a but presents (1) different probability
of success and/or (2) a certain probability of producing execution dead-ends.
Given that classical planners handle STRIPS-like action models, they do not
reason about the probability of success of actions and they arbitrarily choose
among cloned actions ignoring their robustness.

• Adding fragile macro-actions. A macro-action a′ with (1) low probability of
success and/or (2) with a certain probability of producing execution dead-
ends is added to the domain. Given that classical planners ignore robustness
and prefer short plans, they tend to select the fragile macro-actions though
they are less likely to succeed.

• Transforming action preconditions into success preferences. Given an ac-
tion with the set of preconditions p and effects e, a precondition pi ∈ p
is removed and transformed into a condition for e that (1) increases the
probability of success and/or (2) avoids execution dead-ends. For example,
when pi (probability 0.9 (and e1, . . . , ei, . . . , en)) andwhen¬pi (probability
0.1 (and e1, . . . , ei, . . . , en)). Again, classical planners prefer short plans,
so they skip the satisfaction of these actions conditions though they produce

7.7. EVALUATION 115

plans more likely to fail.

We test the performance of PELA over the following set of probabilistically inter-
esting domains:

Blocksworld. This domain is the version of the classical four-actions Blocksworld
introduced at the probabilistic track of IPC-2006. This version extends the original
domain with three new actions that manipulate towers of blocks at once. Gener-
ally, off-the-shelf classical planners prefer manipulating towers because it involves
shorter plans. However, these new actions present high probability of failing and
causing no effects.

Slippery-gripper (Pasula et al., 2007b). This domain is a version of the four-
actions Blocksworld which includes a nozzle to paint the blocks. Painting a
block may wet the gripper, which makes it more likely to fail when manipulating
blocks. The gripper can be dried to move blocks safer. However, off-the-shelf
classical planners will generally skip the dry action, because it involves longer
plans.

Rovers. This domain is a probabilistic version of the IPC-2002 Rovers domain
specifically defined for the evaluation of PELA. The original IPC-2002 domain was
inspired by the planetary rovers problem. This domain requires that a collection of
rovers equipped with different, but possibly overlapping, sets of equipment, navi-
gate a planet surface, find samples and communicate them back to a lander. In this
new version, the navigation of rovers between two waypoints can fail. Navigation
fails more often when waypoints are not visible and even more when waypoints are
not marked as traversable. Off-the-shelf classical planners ignore that navigation
may fail at certain waypoints, so their plans fail more often.

OpenStacks. This domain is a probabilistic version of the IPC-2006 Open-
Stacks domain. The original IPC-2006 domain is based on the minimum maximum
simultaneous open stacks combinatorial optimization problem. In this problem a
manufacturer has a number of orders. Each order requires a given combination
of different products and the manufacturer can only make one product at a time.
Additionally, the total quantity required for each product is made at the same time
(changing from making one product to making another requires a production stop).
From the time that the first product included in an order is made to the time that
all products included in the order have been made, the order is said to be open and
during this time it requires a stack (a temporary storage space). The problem is
to plan the production of a set of orders so that the maximum number of stacks
simultaneously used, or equivalently, the number of orders that are in simultaneous
production, is minimized. This new version, specifically defined for the evalua-
tion of PELA, extends the original one with three cloned setup-machine actions
and with one macro-action setup-machine-make-product that may produce execu-
tion dead-ends. Off-the-shelf classical planners ignore the robustness of the cloned
setup-machine actions. Besides, they tend to use the setup-machine-make-product
macro-action because it produces shorter plans.

116 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

Triangle Tireworld (Little and Thiébaux, 2007). In this version of the Tire-
world both the origin and the destination locations are at the vertex of an equilateral
triangle, the shortest path is never the most probable one to reach the destination,
and there is always a trajectory where execution dead-ends can be avoided. There-
fore, an off-the-shelf planner using a STRIPS action model will generally not take
the most robust path.

Satellite. This domain is a probabilistic version of the IPC-2002 domain de-
fined for the evaluation of PELA. The original domain comes from the satellite
observation scheduling problem. This domain involves planning a collection of
observation tasks between multiple satellites, each equipped with slightly different
capabilities. In this new version a satellite can take images without being cali-
brated. Besides, a satellite can be calibrated at any direction. The plans generated
by off-the-shelf classical planners in this domain skip calibration actions because
they produce longer plans. However, calibrations succeed more often at calibration
targets and taking images without a calibration may cause execution dead-ends.

With the aim of making the analysis of results easier, we group the domains
according to two dimensions, the determinism of the action success and the pres-
ence of execution dead-ends. Table ?? shows the topology of the domains chosen
for the evaluation of PELA.

• Action success. This dimension values the complexity of the learning step.
When probabilities are not state-dependent one can estimate their value count-
ing the number of success and failure examples. In this sense, it is more
complex to correctly capture the success of actions in domains where action
success is state-dependent.

• Execution Dead-Ends. This dimension values the difficulty of solving a
problem in the domain. When there are no execution dead-ends the num-
ber of problems solved is only affected by the combinatorial complexity of
the problems. However, when there are execution dead-ends the number of
problems solved depends also on the avoidance of these dead-ends.

ACTIONS SUCCESS
Probabilistic Situation-Dependent + Probabilistic

Dead-Ends Free Blocksworld Slippery-Gripper, Rovers
Dead-Ends Presence OpenStacks Triangle-tireworld, Satellite

Figure 7.17: Topology of the domains chosen for the evaluation of PELA.

7.7.2 Correctness of the PELA models

This experiment evaluates the correctness of the models learned by PELA. The
experiment is designed as follows: For each domain, PELA addresses a set of

7.7. EVALUATION 117

randomly-generated problems and learns a new action model after every twenty
actions executions. Once a new model is learned, the correctness of the model
is evaluated computing the absolute error between the probability of success of
actions in the learned model and in the true model (the PPDDL model of the MDP-
sim simulator). Since the probability of success may be state-dependent, each error
measure is computed as the mean error over a test set of 1000 states. The test states
are extracted from randomly generated problems. Half of the test states are gen-
erated with random walks and the other half with walks guided by LPG plans,
because as shown experimentally, in some planning domains random walks pro-
vide poor states diversity given that some actions end up unexplored. Besides, we
compute the deviation of the mean error to have a confidence estimation of the
obtained measures.

The experiment compares four different strategies to automatically collect the
execution experience:

1. FF: Under this strategy, PELA collects examples executing the actions pro-
posed by the deterministic planner Metric-FF (Hoffmann, 2003). When the
execution of a plan yields an unexpected state, FF replans to find a new plan
for this state.

2. LPG: In this strategy examples are collected executing the actions proposed
by the stochastic planner LPG (Gerevini et al., 2003). Precisely, the stochas-
tic nature of LPG is interesting for covering a wider range of the problem
space. Like the previous strategy, LPG replans to overcome unexpected
states.

3. LPG-εGreedy: With probability ε, examples are collected executing the ac-
tions proposed by LPG. With probability (1 − ε), examples are collected
executing an applicable action chosen randomly. For this experiment the
value of ε is 0.75.

4. Random: In this strategy examples are collected executing applicable actions
chosen randomly.

In the Blocksworld domain all actions are applicable in most of the state con-
figurations. As a consequence, the four strategies explore well the performance of
actions and achieve action models with low error rates and low deviations. Despite
the set of training problems is the same for the four strategies, the Random strategy
generates more learning examples because it is not able to solve problems. Conse-
quently, the Random strategy exhausts the limit of actions per problem. Figure 7.18
shows the error rates and their associated deviations obtained when learning mod-
els for the actions of the Blocksworld domain. The training set for this domain
consisted of forty five-blocks problems.

In the Slippery-gripper there are differences in the speed of convergence of the
different strategies. Specifically, pure planning strategies FF and LPG converge
slower. In this domain, the success of actions depends on the state of the gripper

118 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000

M
od

el
 E

rr
or

Number or Examples

blocksworld

random
lpgegreedy

lpg
ff

Figure 7.18: Error of the learned models in the Blocksworld domain.

(wet or dry). Capturing this knowledge requires examples of action executions
under both types of contexts, i.e., actions executions with a wet gripper and with a
dry gripper. However, pure planning strategies FF and LPG present poor diversity
of contexts because they skip the action dry as it means longer plans.

In the Rovers domain the random strategy does not achieve good error rates
because this strategy does not explore the actions for data communication. The
explanation of this effect is that these actions only satisfy their preconditions with
a previous execution of actions navigate and take-sample. Unfortunately,
randomly selecting this sequence of actions with the right parameters is very un-
likely. Figure 7.19 shows error rates obtained when learning the models for the
Slippery-gripper and the Rovers domain. The training set for the Slippery-gripper
consisted of forty five-blocks problems. The training set for the Rovers domain
consisted of sixty problems of ten locations and three objectives.

In the Openstacks domain pure planning strategies (FF and LPG) prefer the
macro-action for making products despite it produces dead-ends. As a conse-
quence, the original action for making products ends up being unexplored. As
shown by the LPG-εGreedy strategy, this negative effect is relieved including extra
stochastic behavior in the planner. On the other hand, a full random strategy ends
up with some actions unexplored as happened in the rovers domain.

In the Triangle-tireworld domain, error rates fluctuate roughly because the ac-
tion model consists only of two actions. In this domain the FF strategy does
not reach good error rates because the shortest path to the goals always lack of

7.7. EVALUATION 119

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500

M
od

el
 E

rr
or

Number or Examples

slippery-gripper

random
lpgegreedy

lpg
ff

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500 3000

M
od

el
 E

rr
or

Number or Examples

rovers

Figure 7.19: Model error in the Slippery-gripper and Rovers domains.

spare-tires. The performance of the FF strategy could be improved by ini-
tially placing the car in diverse locations of the triangle. Figure 7.20 shows error
rates obtained for the Openstacks and the Triangle-tireworld domain. The train-
ing set for the Openstacks consisted of one hundred problems of four orders, four
products and six stacks. The training set for the Triangle-tireworld consisted of
one hundred problems of size five.

For the Satellite domain we used two sets of training problems. The first one
was generated with the standard problem generator provided by IPC. Accordingly,
the goals of these problems always are either have-image or pointing. Given
that in this version of the satellite domain can have images without calibrating, the
action calibrate was only explored by the random strategy. However, the ran-
dom strategy cannot explore action take-image because it implies a previous
execution of actions switch-on and turn-to with the right parameters. To

120 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500 3000

M
od

el
 E

rr
or

Number or Examples

openstacks

random
lpgegreedy

lpg
ff

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500

M
od

el
 E

rr
or

Number or Examples

triangle-tireworld

Figure 7.20: Model error in the Openstacks and the Triangle-tireworld domains.

avoid these effects and guaranteeing the exploration of all actions, we built a new
problem generator that includes as goals any dynamic predicate of the domain.
Figure 7.21 shows the results obtained when learning the models with the two dif-
ferent training sets. As shown in the graph titled satellite2, the second set of train-
ing problems improves the exploration of the configurations guided by planners
and achieves models of a higher quality. The training set for the satellite domain
consisted of sixty problems with one satellite and four objectives.

Overall, the random strategy does not explore actions that involve strong causal
dependencies. Besides, random strategies generate a greater number of learning ex-
amples because random selection of actions is not a valid strategy for solving plan-
ning problems. Hence, the random strategy (and sometimes also the LPGεgredy)
exhausts the limit of actions for addressing the training problems. This effect is
more visible in domains with dead-ends. In these domains FF and LPG generate

7.7. EVALUATION 121

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500 3000

M
od

el
 E

rr
or

Number or Examples

satellite

random
lpgegreedy

lpg
ff

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

M
od

el
 E

rr
or

Number or Examples

satellite2

Figure 7.21: Error of the learned models in the Satellite domain.

fewer examples from the training problems because they usually produce execu-
tion dead-ends. On the other hand one can use a planner for exploring domains
with strong causality dependencies. However, as shown experimentally by the FF
strategy, deterministic planners present a strong bias and in many domains the bias
keeps execution contexts unexplored. Even more, in domains with presence of ex-
ecution dead-ends in the shortest plans, this strategy may not be able to explore
some actions, though they are considered in the plans.

7.7.3 PELA off-line performance

This experiment evaluates the planning performance of the action models learned
by PELA. The experiment is designed as follows: for each domain, PELA solves
fifty small training problems and learns a set of decision trees that capture the ac-

122 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

tions performance. Then PELA compiles the learned trees into a new action model
and uses the new action model to address a test set of fifteen planning problems
of increasing difficulty. Given that the used domains are stochastic, each planning
problem from the test set is addressed thirty times. The experiment compares the
performance of four planning configurations:

1. FF + STRIPS model. This configuration represents the classical re-planning
approach in which no learning is performed and serves as the baseline for
comparison. In more detail, FF plans with the PDDL STRIPS-like action
model and re-plans to overcome unexpected states. This configuration (?)
corresponds to the best overall performer at the probabilistic tracks of IPC-
2004 and IPC-2006.

2. FF + PELA metric model. In this configuration Metric-FF plans with the
model learned and compiled by PELA. Model learning is performed after the
collection of 1000 execution episodes by the LPGεGREEDY strategy. The
learned model is compiled into a metric representation (Section 7.6.1).

3. GPT + PELA probabilistic model. The probabilistic planner GPT (Bonet and
Geffner, 2004) plans with the action model learned and compiled by PELA.
This configuration uses the same models than the previous configuration but,
in this case, the learned models are compiled into a probabilistic representa-
tion (Section 7.6.2).

4. GPT + Perfect model. This configuration is hypothetical given that in many
planning domains, the perfect probabilistic action model is unavailable. Thus,
this configuration only serves as a reference to show how far is PELA from
the solutions found with a perfect model. In this configuration the probabilis-
tic planner GPT plans with the exact PPDDL probabilistic domain model.

In the Blocksworld domain the configurations based on the deterministic plan-
ning (FF + STRIPS model and FF + PELA metric model) solve all the problems in
the time limit (1000 seconds). On the contrary, configurations based on probabilis-
tic planning do not solve problems 10, 14 and 15 because considering the diverse
probabilistic effects of actions boosts planning complexity. In terms of planning
time, planning with the actions models learned by PELA generate plans that fail less
often and require less replanning episodes. In problems where replanning is expen-
sive, i.e., in large problems (problems 9 to 15), this effect means less planning time.
Figure 7.22 shows the results obtained by the four planning configurations in the
Blocksworld domain. The training set consisted of fifty five-blocks problems. The
test set consisted of five eight-blocks problems, five twelve-blocks problems and
five sixteen-blocks problems.

In the Slippery-gripper domain the FF + STRIPS model configuration is not
able to solve all problems in the time limit. Since this configuration prefers short
plans, it tends to skip the dry action. As a consequence, planning with the STRIPS

model fails more often and requires more replanning episodes. In problems where

7.7. EVALUATION 123

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

Problem Instance

blocksworld

FF+STRIPS
FF + metric compilation

GPT + probabilistic compilation
GPT + perfect model

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
us

ed
 (

so
lv

ed
 p

ro
bl

em
s)

Problem Instance

Figure 7.22: Off-line performance of PELA in the Blocksworld.

replanning is expensive, this configuration exceeds the time limit. Alternatively,
the configurations that plan with the models learned by PELA include the dry
action because this action reduces the fragility of plans. Consequently, plans fail
less often, less replanning episodes take place and less planning time is required.

In the Rovers domain the probabilistic planning configurations are not able to
solve all the problems because they handle more complex action models and con-
sequently they scale worse. In terms of planning time, planning with the learned
models is not always better (problems 7, 12, 13, 15). In this domain, replanning
without the fragility metric is very cheap and it is worthy even if it generates frag-
ile plans that fail very often. Figure 7.23 shows the results obtained by the four
planning configurations in the Slippery-gripper and the Rovers domain. The train-
ing set for the Slippery-gripper consisted of fifty five-blocks problems. The test
set consisted of five eight-blocks problems, five twelve-blocks problems and five

124 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

sixteen-blocks problems. The training set for the Rovers domain consisted of sixty
problems of ten locations and three objectives. The test set consisted of five prob-
lems of five objectives, five of six objectives and five of eight objectives.

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

Problem Instance

slippery-gripper

FF+STRIPS
FF + metric compilation

GPT + probabilistic compilation
GPT + perfect model

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

Problem Instance

rovers

FF+STRIPS
FF + metric compilation

GPT + probabilistic compilation
GPT + perfect model

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
us

ed
 (

so
lv

ed
 p

ro
bl

em
s)

Problem Instance

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
us

ed
 (

so
lv

ed
 p

ro
bl

em
s)

Problem Instance

Figure 7.23: Off-line performance of PELA in the Slippery-gripper and the Rovers
domains.

In the Openstacks domain planning with the STRIPS model solves no problem.
In this domain the added macro-action for making products may produce execution
dead-ends. Given that the deterministic planner FF prefers short plans, it tends to
systematically select this macro-action and consequently, it produces execution
dead-ends. On the contrary, models learned by PELA capture this knowledge about
the performance of this macro-action so it is able to solve problems. However, they
are not able to reach the performance of planning with the perfect model. Though
the models learned by PELA correctly capture the performance of actions, they
are less compact than the perfect model so they produce longer planning times.
Figure 7.24 shows the results obtained in the Openstacks domain.

In the Triangle-tireworld robust plans move the car only between locations
with spare tires available despite these movements mean longer plans. The STRIPS

action model ignores this knowledge because it assumes the success of actions. On
the contrary, PELA correctly captures this knowledge learning from plans execu-
tion and consequently, PELA solves more problems than the classical replanning
approach. In terms of time, planning with the models learned by PELA means
longer planning times than planning with the perfect models because the learned

7.7. EVALUATION 125

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

Problem Instance

openstacks

FF+STRIPS
FF + metric compilation

GPT + probabilistic compilation
GPT + perfect model

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
us

ed
 (

so
lv

ed
 p

ro
bl

em
s)

Problem Instance

Figure 7.24: Off-line performance of PELA in the Openstacks domain.

models are less compact.
In the Satellite domain planning with the STRIPS model solves no problem. In

this domain the application of action take-image without calibrating the instru-
ment of the satellite may produce an execution dead-end. However, this model
assumes that actions always succeed and as FF tends to prefer short plans, it skips
the action calibrate. Therefore, it generates fragile plans that can lead to exe-
cution dead-ends. Figure 7.25 shows the results obtained in the Triangle-tireworld
and Satellite domain. The training set for the Openstacks consisted of one hundred
problems of four orders, four products and six stacks. The test set consisted of five
problems of ten orders, ten products and fifteen stacks; five problems of twenty
orders, twenty products and twenty-five stacks and five problems of twenty-five
orders, twenty-five products and thirty stacks. The training set for the Triangle-
tireworld consisted of one hundred problems of size five. The test set consisted of

126 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

fifteen problems of increasing size ranging from size two to size sixteen.

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

Problem Instance

triangle-tireworld

FF+STRIPS
FF + metric compilation

GPT + probabilistic compilation
GPT + perfect model

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

Problem Instance

satellite

FF+STRIPS
FF + metric compilation

GPT + probabilistic compilation
GPT + perfect model

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
us

ed
 (

so
lv

ed
 p

ro
bl

em
s)

Problem Instance

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
us

ed
 (

so
lv

ed
 p

ro
bl

em
s)

Problem Instance

Figure 7.25: Off-line performance of PELA in the Triangle-tireworld and Satellite
domains.

To sum up, in dead-ends free domains planning with the models learned by
PELA takes less time to solve a given problem when replanning is expensive, i.e.,
in large problems or in hard problems (problems with strong goals interactions). In
domains with presence of execution dead-ends, planning with the models learned
by PELA solves more problems because dead-ends are skipped when possible. Oth-
erwise, probabilistic planning usually yields shorter planning times than a replan-
ning approach. Once a probabilistic planner finds a good policy, then it uses the
policy for all the attempts of a given problem. However, probabilistic planners
scale poorly because they handle more complex action models that produce greater
branching factors during search. On the other hand a classical planner needs to
plan from scratch to deal with the unexpected states in each attempt. However,
since they ignore diverse action effects and probabilities, they generally scale bet-
ter. Table 7.26 summarizes the number of problems solved by the four planning
configurations in the different domains. For each domain, each configuration at-
tempted thirty times fifteen problems of increasing difficulty (450 problems per
domain). Table 7.27 summarizes the results obtained in terms of computation
time in the solved problems by the four planning configurations in the different
domains. Both tables show results split in two groups: domains without execution
dead-ends (Blocksworld, Slippery-Gripper and Rovers) and domains with execu-

7.7. EVALUATION 127

tion dead-ends (OpenStacks, Triangle-tireworld, Satellite).

Number of Problems Solved
FF FF+ metric model FF+ probabilistic model GPT

Blocksworld (450) 443 450 390 390
Slippery-Gripper (450) 369 450 450 450
Rovers (450) 450 421 270 270

OpenStacks (450) 0 90 300 450
Triangle-tireworld (450) 5 50 373 304
Satellite (450) 0 300 300 420

Figure 7.26: Summary of the problems solved by the off-line configurations of
PELA.

Planning Time of Problems Solved (seconds)
FF FF+ metric model FF+ probabilistic model GPT

Blocksworld 78454.6 35267.1 26389.4 38416.7
Slippery-Gripper 36771.1 4302.7 1238.3 2167.1
Rovers 28220.0 349670.0 18635.0 18308.9

OpenStacks 0.0 8465.3 33794.6 12848.7
Triangle-tireworld 34.0 306.0 10390.1 6034.1
Satellite 0.0 17244.1 2541.3 21525.9

Figure 7.27: Summary of the planning time of the four off-line configurations of
PELA.

The performance of the different planning configurations is also evaluated in
terms of actions used to solve the problems. Figure 7.28 shows the results obtained
according to this metric for all the domains. Though this metric is computed at
the probabilistic track of IPC, comparing the performance of probabilistic planners
regarding the number of actions is tricky. In probabilistically interesting problems,
robust plans are longer than fragile plans. When this is not the case, i.e., robust
plans correspond to short plans, then a classical replanning approach that ignores
probabilities will find robust solutions in less time than a standard probabilistic
planner because it handles simpler action models.

7.7.4 PELA on-line performance

This experiment evaluates the planning performance of the models learned by
PELA within an on-line setup. The on-line setup of PELA consists of a closed

128 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

 0
 50

 100
 150
 200
 250
 300

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ct

io
ns

 u
se

d
(s

ol
ve

d
pr

ob
le

m
s)

Problem Instance

blocksworld

FF+STRIPS
FF + metric compilation

GPT + probabilistic compilation
GPT + perfect model

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ct

io
ns

 u
se

d
(s

ol
ve

d
pr

ob
le

m
s)

Problem Instance

slippery-gripper

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ct

io
ns

 u
se

d
(s

ol
ve

d
pr

ob
le

m
s)

Problem Instance

rovers

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
ct

io
ns

 u
se

d
(s

ol
ve

d
pr

ob
le

m
s)

Problem Instance

openstacks

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ct

io
ns

 u
se

d
(s

ol
ve

d
pr

ob
le

m
s)

Problem Instance

triangle-tireworld

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ct

io
ns

 u
se

d
(s

ol
ve

d
pr

ob
le

m
s)

Problem Instance

satellite

Figure 7.28: Actions used for solving the problems by the off-line configurations
of PELA.

loop that incrementally upgrades the planning action model of the architecture as
more execution experience is available. The experiment is designed as follows:
PELA starts planning with an initial STRIPS-like action model and every fifty ac-
tion executions, PELA upgrades its current action model. At each upgrade step, the
experiment evaluates the resulting action model over a test set of thirty problems.

The experiment compares the performance of the two baselines described in the
previous experiment (FF + STRIPS and GPT + Perfect model) against five configu-
rations of the PELA on-line setup. Given that the baselines implement no learning,
their performance is constant in time. On the contrary, the on-line configurations of
PELA vary their performance as more execution experience is available. These five
on-line configurations of PELA are named FF-εGreedy and present ε values of 0,
0.25, 0.5, 0.75 and 1.0 respectively. Accordingly, actions are selected by the plan-

7.7. EVALUATION 129

ner FF using the current action model with probability ε and actions are selected
randomly among the applicable ones with probability 1− ε. These configurations
range from FF-εGreedy0.0, a fully random selection of actions among the appli-
cable ones, to FF-εGreedy1.0, an exploration fully guided by FF with the current
action model. The FF-εGreedy1.0 configuration is different from the FF+STRIPS
off-line configuration because it modifies its action model with experience.

In the blocksworld the five online configurations of PELA achieve action mod-
els able to solve the test problems faster than the classical replanning approach. In
particular, except the pure random configuration (FF-εGreedy0.0), all PELA con-
figurations achieve this performance after one learning iteration. This effect is due
to two factors: (1) in this domain the knowledge about the success of actions is
easy to capture, is not situation-dependent and (2) in this domain it is not neces-
sary to capture the exact probability of success of actions for robust planning, it
is enough to capture the differences between the probability of success of actions
that handle blocks and actions that handle towers of blocks. Figure 7.29 shows the
results obtained by the online configurations of PELA in the Blocksworld.

In the slippery-gripper domain the convergence of the PELA configurations is
slower. In fact, the FF-εGreedy1.0 PELA configuration is not able to solve the
test problems in the time limit until completing the fourth learning step. In this
domain, the probability of success of actions is more difficult to capture because it
is situation dependent. However, when the PELA configurations properly capture
this knowledge they need less time than the classical replanning approach to solve
the test problems because they require less replanning episodes. Figure 7.30 shows
the results obtained by the online configurations of PELA in the Slippery-gripper
domain.

In the rovers domain the performances of planning with STRIPS-like and plan-
ning with perfect models are very close because in this domain there is no execu-
tion dead-ends and replanning is cheap in terms of computation time. Accordingly,
there is not much benefit on upgrading the initial STRIPS-like action model. Fig-
ure 7.31 shows the results obtained by the online configurations of PELA in the
Rovers domain.

In the openstacks domain the FF+Strips baseline does not solve any problem
because it generates plans that do not skip the execution dead-ends. On the con-
trary, all the online configurations of PELA achieve action models able to solve the
test problems after one learning step. In terms of planning time, planning with the
PELA models spend more time than planning with the perfect models because they
are used in a replanning approach. Figure 7.32 shows the results obtained by the
online configurations of PELA in the Openstacks domain.

In the triangle-tireworld the FF-εGreedy1.0 configuration is not able to solve
more problems than a classical replanning approach because it provides learning
examples that always correspond to the shortest paths in the triangle. Though the
PELA configurations solve more problems than a classical replanning approach, it
is far from planning with the perfect model because FF does not guarantee optimal
plans. Figure 7.33 shows the results obtained by the online configurations of PELA

130 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

 0

 5

 10

 15

 20

 25

 30

 0 150 300 450 600 750 900 1050 1200 1350 1500N
um

be
r

of
 p

ro
bl

em
s

so
lv

ed

Examples

blocksworld

STRIPS
PELA - FF-eGreedy0.0

PELA - FF-eGreedy0.25
PELA - FF-eGreedy0.5

PELA - FF-eGreedy0.75
PELA - FF-eGreedy1.0

perfect model

 1

 10

 100

 1000

 10000

 100000

 0 150 300 450 600 750 900 1050 1200 1350 1500

T
im

e(
s)

Examples

Figure 7.29: Planning in the Blocksworld with models learned on-line by PELA.

in the Triangle-tireworld domain.
In the satellite domain only the FF-εGreedy1.0 and FF-εGreedy0.75 configu-

ration are able to solve the test problems because the strong causal dependencies of
actions of the domain. These configurations are the only ones capable of capturing
the fact that take-image may produce execution dead-ends when instruments
are not calibrated. Figure 7.34 shows the results obtained in the Satellite domain.

Overall, given that the upgrade of the action model performed by PELA does
not affect to actions causality, the PELA on-line configurations assimilate execution
knowledge without degrading the performance of a classical replanning approach.
Besides, once PELA is presented with enough execution experience, the PELA on-
line configurations address probabilistic planning problems more robustly than the
classical replanning approach. Nevertheless, the action models learned within the
on-line setup may not properly capture the performance of all actions in a given

7.7. EVALUATION 131

 0

 5

 10

 15

 20

 25

 30

 0 150 300 450 600 750 900 1050 1200 1350 1500N
um

be
r

of
 p

ro
bl

em
s

so
lv

ed

Examples

slippery-gripper

STRIPS
PELA - FF-eGreedy0.0

PELA - FF-eGreedy0.25
PELA - FF-eGreedy0.5

PELA - FF-eGreedy0.75
PELA - FF-eGreedy1.0

perfect model

 1

 10

 100

 1000

 10000

 100000

 0 150 300 450 600 750 900 1050 1200 1350 1500

T
im

e(
s)

Examples

Figure 7.30: Planning in the Slippery-gripper with models learned on-line by
PELA.

domain. Execution experience may be insufficient (generally at the first learning
steps) or too biased (the training problems may provide learning examples of the
same kind). As shown experimentally, these problems are more noticeable in do-
mains with execution dead-ends. In these domains, the performance of the PELA

on-line configurations depend on capturing some key actions, i.e., the actions that
produce execution dead-ends. When a given configuration does not capture the
success of the key actions it will perform poorly. On the other hand, this effect
is less noticeable in domains free from execution dead-ends. In this kind of do-
mains, configurations can outperform a classical replanning approach though the
success of actions is not exactly captured. Table 7.35 summarizes the number of
problems solved by the four planning configurations in the different domains at
the end of the on-line learning process. For each domain, each configuration at-

132 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

 0

 5

 10

 15

 20

 25

 30

 0 150 300 450 600 750 900 1050 1200 1350 1500N
um

be
r

of
 p

ro
bl

em
s

so
lv

ed

Examples

rovers

STRIPS
PELA - FF-eGreedy0.0

PELA - FF-eGreedy0.25
PELA - FF-eGreedy0.5

PELA - FF-eGreedy0.75
PELA - FF-eGreedy1.0

perfect model

 1

 10

 100

 1000

 10000

 100000

 0 150 300 450 600 750 900 1050 1200 1350 1500

T
im

e(
s)

Examples

Figure 7.31: Planning in the Rovers with models learned on-line by PELA.

tempted thirty problems of increasing difficulty. Table 7.36 summarizes the results
obtained in terms of computation time in the solved problems by the four plan-
ning configurations in the different domains. Both tables show results split in two
groups: domains without execution dead-ends (Blocksworld, Slippery-Gripper and
Rovers) and domains with execution dead-ends (OpenStacks, Triangle-tireworld,
Satellite). The number of problems solved is not revealing in domains without
dead ends, because the seven configurations solve all the problems. In this kind of
domains one must analyze the planning time, given that fragile plans imply more
replanning episodes are needed, and consequently longer planning times. On the
contrary, the number of problems solved is a reliable performance measure in do-
mains with execution dead ends.

7.8. DISCUSSION 133

 0

 5

 10

 15

 20

 25

 30

 0 150 300 450 600 750 900 1050 1200 1350 1500N
um

be
r

of
 p

ro
bl

em
s

so
lv

ed

Examples

openstacks

STRIPS
PELA - FF-eGreedy0.0

PELA - FF-eGreedy0.25
PELA - FF-eGreedy0.5

PELA - FF-eGreedy0.75
PELA - FF-eGreedy1.0

perfect model

 1

 10

 100

 1000

 10000

 100000

 0 150 300 450 600 750 900 1050 1200 1350 1500

T
im

e(
s)

Examples

Figure 7.32: Planning in the Openstacks with models learned on-line by PELA.

7.8 Discussion

This chapter described the PELA architecture for robust probabilistic planning. In
order to achieve robust plans within stochastic domains, PELA automatically up-
grades an initial STRIPS like planning model with execution knowledge of two
kinds: (1) probabilistic knowledge about the success of actions and (2) predictions
of execution dead-ends. Moreover, the upgrade of the action models performed by
PELA does not affect to the actions causality and hence, it is suitable for on-line in-
tegrations of planning and learning. The PELA architecture is based on off-the-shelf
planning and learning components and uses standard representation languages like
PDDL or PPDDL. Therefore, different planning and/or learning techniques can be
directly plugged-in without modifying the architecture sources.

The performance of the architecture has been experimentally evaluated over a

134 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

 0

 5

 10

 15

 20

 25

 30

 0 150 300 450 600 750 900 1050 1200 1350 1500N
um

be
r

of
 p

ro
bl

em
s

so
lv

ed

Examples

triangle-tireworld

STRIPS
PELA - FF-eGreedy0.0

PELA - FF-eGreedy0.25
PELA - FF-eGreedy0.5

PELA - FF-eGreedy0.75
PELA - FF-eGreedy1.0

perfect model

 1

 10

 100

 1000

 10000

 100000

 0 150 300 450 600 750 900 1050 1200 1350 1500

T
im

e(
s)

Examples

Figure 7.33: Planning in the Triangle-tireworld with models learned on-line by
PELA.

diversity of probabilistic planning domains:

• The model correctness experiments revealed that random explorations of AP
domains improve the accuracy of the learned models because they explore
the performance of actions under diverse contexts. However, pure random
explorations are unappropiate for AP domains with strong causal dependen-
cies. Random explorations do not explore actions that require the execution
of a fixed sequence of steps to be applicable. In these domains, the use of
planners with stochastic behavior (such as LPG or εgreedy strategies) can
provide diversity to the learning examples, as well as they consider causal
dependencies of actions.

• The off-line performance experiments showed that the action models learned

7.8. DISCUSSION 135

 0

 5

 10

 15

 20

 25

 30

 0 150 300 450 600 750 900 1050 1200 1350 1500N
um

be
r

of
 p

ro
bl

em
s

so
lv

ed

Examples

satellite

STRIPS
PELA - FF-eGreedy0.0

PELA - FF-eGreedy0.25
PELA - FF-eGreedy0.5

PELA - FF-eGreedy0.75
PELA - FF-eGreedy1.0

perfect model

 1

 10

 100

 1000

 10000

 100000

 0 150 300 450 600 750 900 1050 1200 1350 1500

T
im

e(
s)

Examples

Figure 7.34: Planning in the Satellite with models learned on-line by PELA.

by PELA make both, metric-based and probabilistic planners, generate more
robust plans than a classical re-planning approach. In domains with exe-
cution dead-ends planning with the models learned by PELA increases the
number of solved problems. In domains without execution dead ends plan-
ning with the models learned by PELA is beneficial when replanning is ex-
pensive. On the other hand, the action models learned by PELA increase the
size of the initial STRIPS model, meaning generally longer planning times.
Specifically, the increase in size is proportional to the number of leaf nodes
of the learned trees. One can control the size of the resulting trees by using
declarative biases as the amount of tree pruning desired. However, extensive
pruning may result in a less robust behavior as leaf nodes would be not so
fine grained.

136 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

Number of Problems Solved at the end of the online process
Strips εG0.0 εG0.25 εG0.5 εG0.75 εG1.0 Perfect model

Blocksworld (30) 30 30 30 30 30 30 30
Slippery-Gripper (30) 30 30 30 30 30 30 30
Rovers (30) 30 30 30 30 30 30 15
OpenStacks (30) 0 30 30 30 30 30 30
Triangle-tireworld (30 0 2 0 1 0 0 15
Satellite (30) 0 0 0 0 30 0 30

Figure 7.35: Summary of the number of problems solved by the off-line configu-
rations of PELA.

Planning Time in the solved problems at the end of the online process
Strips εG0.0 εG0.25 εG0.5 εG0.75 εG1.0 Perfect model

Blocksworld 2094.4 1183.8 1372.6 989.4 1137.6 1056.0 308.0
Slippery-Gripper 497.6 968.2 424.6 436.6 423.0 415.0 102.2
Rovers 5522.2 4037.4 4526.0 5003.4 4992.0 4233.8 3906.2
OpenStacks 0 13527.4 12221.4 12808.4 13399.6 12936.0 1323.4
Triangle-tireworld 0 258.0 0 50.0 0 0 1976.0
Satellite 0 0 0 0 5730.4 0 881.0

Figure 7.36: Summary of the computation time used by the four off-line configu-
rations of PELA.

• The on-line performance experiments showed that the upgrade of the action
models proposed by PELA does not affect to the actions causality and conse-
quently, it is suitable for online integrations of planning and learning. Even at
the first learning steps, in which the gathered experience is frequently scarce
and biased, the performance of PELA is not worse than a classical replanning
approach and when the gathered experience achieves enough quality, PELA

addresses probabilistic planning problems more robustly than the classical
re-planning approach.

The ROGUE (Haigh and Veloso, 1999) system was a previous integrated ar-
chitecture for the tasks of planning, execution and learning. This system learned
propositional decision trees that were used as control rules by the planner of the
PRODIGY architecture (Veloso et al., 1995). However, it was not based on using
standard languages as PDDL or PPDDL for reasoning and learning, so that differ-
ent planning and/or learning techniques can be plugged-in. And, also, very few
have learned relational representations that could be used by any planner without
modifying its sources.

As presented in the introduction the aims of PELA are very related to the aims of
Model-free relational reinforcement learning(RRL) (Dzeroski et al., 2001; Kerst-
ing et al., 2004). Unlike our approach, the knowledge learned solving a given task
with RRL techniques cannot be immediately transferred for similar tasks within

7.8. DISCUSSION 137

the same domain (though currently several RL transfer learning techniques work
on this direction). Moreover as our approach delegates the decision making to off-
the-shelf planners it allows us to solve more complex problems requiring reasoning
about time or resources.

Focusing on learning probabilistic action models for AP there are previous rel-
evant works (Benson, 1997; Pasula et al., 2007a). These works learn more expres-
sive action models than PELA because they capture diverse outcomes of actions.
However, they are more expensive to be learned and require specific planning and
learning algorithms. Instead, PELA captures uncertainty of the environment us-
ing existing standard machine learning techniques and compiles it into standard
planning models that can be directly fed into different off-the-shelf planners. As a
consequence, PELA can directly profit from the last advances in both fields with-
out modifying the source of the architecture. And even more, the off-the-shelf
spirit of the architecture allows PELA to use diverse planning paradigms or change
the learning component to acquire other useful planning information, such as the
actions duration (Lanchas et al., 2007).

138 CHAPTER 7. PLANNING, EXECUTION AND LEARNING ARCHITECTURE

Chapter 8

Learning actions durations with
PELA

This chapter illustrates how PELA is applied for learning different features of the
planning models such as action durations (Lanchas et al., 2007). This work is a
joint work with Jesus Lanchas.

8.1 Introduction

With the aim of bringing AP closer to real-world problems, AP action models are
becoming more expressive. Nowadays, PDDL includes action costs, state prefer-
ences, action durations, etc. Unfortunately, in numerous planning tasks, the specifi-
cation of these features is not feasible because the features are ’a priori’ unknown.
The following sections describe how to instantiate PELA for automatically learn-
ing duration of actions from observations of plan executions. Though this PELA

instantiation focuses on modelling action duration, the same approach is valid for
modelling any fluent defined in the domain model, like action cost, state-rewards,
etc.

8.2 Learning actions durations with PELA

This instantiation of PELA implements the learning component with a tool for the
induction of relational regression trees. Particularly, this PELA instantiation in-
duces state-dependent duration models with the regression tool and compiles them
into a new action model which contains state-dependent estimations of the exe-
cution duration. Planning with the compiled action model allows PELA to obtain
better solutions in terms of plan duration. Figure 8.1 shows an overview of the
instantiation of PELA for learning action durations from execution.

139

140 CHAPTER 8. LEARNING ACTIONS DURATIONS WITH PELA

New Domain

Plan

Observations
(si,ai,fi)

(a1,a2,...,an)

state s i+1

Domain
PDDL

PDDL
Domain

Problem
state+goals action i

New Problem

Planning Execution

Learning

a

E
nvironm

ent
N

on−D
eterm

inistic

PDDL+Durations

Figure 8.1: Overview of the action duration modelling with PELA.

8.2.1 Planning

The initial action model handled by the planning component is a STRIPS-like action
model A described in PDDL (Fox and Long, 2003). Given that A ignores execu-
tion duration, initially, the planning component only reasons about plans length.
However, when PELA upgrades the action model A to a new model A′ with dura-
tion knowledge, the planning component plans minimizing a metric that indicates
the execution duration of plans. Hence, the planning component requires a planner
able to handle metric minimization. The output to this component is a total ordered
plan p = (a1, a2, ..., an).

8.2.2 Execution

Like the original PELA, the execution component executes plans p = (a1, a2, ..., an)
provided by the planning component and replans when action executions fail. Nev-
ertheless, the execution component of this PELA instantiation collects a different
kind of observations. After the execution of a given action ai, this component
collects an observation of the form oi = (si, ai, fi), where:

• si is the conjunction of literals representing the facts holding before the ex-
ecution of the action ai.

• ai is the executed action.

• fi is the variation of the fluent to model caused by the execution of ai. This
variation is computed subtracting the value of the fluent in state si from the
value of the fluent in state si+1. In this work, the modeled fluent is the
execution duration but there is nothing that prevents PELA from modelling
other fluents like the action cost or the state-reward.

8.2. LEARNING ACTIONS DURATIONS WITH PELA 141

The inputs to the execution component are a total ordered plan p = (a1, a2, ..., an)
and the initial STRIPS-like action model A. The output of this component is the
set of observations O = (o1, . . . , oi, . . . , om) collected during the plan executions.

8.2.3 Learning

For every action a ∈ A, the learning component builds a relational regression tree
ta that models the execution duration of a. The test nodes of ta contain the con-
ditions under which the estimation of the duration of a is true. The leaf nodes
of ta contain situation-dependent estimations of the duration of a. Consequently,
the deeper a leaf is, the more specifically a leaf predicts. As an example, Fig-
ure 8.2 shows the tree induced for action unstack from a version of Blocksworld
in which the robot arm can get blocked causing longer execution times. The data
of the leaf nodes describe: (1) the estimation of the fluent duration, in square
brackets; (2) the number of examples covered by the leaf and (3) the error com-
mitted when estimating the duration of the examples covered by the leaf, in square
brackets too.

unstack_duration(-A,-B,-C,-D)
arm_blocked(A) ?

+--yes: [10.0] 27.0 [0.0]
+--no: [5.0] 48.0 [0.0]

Figure 8.2: Regression tree induced for the Blocksworld action unstack.

This instantiation of PELA builds the regression trees ta using the relational
learning tool TILDE (Blockeel and Raedt, 1998) with the following inputs:

• The language bias, specifying the restrictions about the instantiation of the
domain predicates. This knowledge is automatically extracted from the STRIPS-
like action model A that initially feeds the planning component. Figure 8.3
shows the language bias used for modelling the duration of action unstack
from the Blocksworld.

• The knowledge base, containing the examples of the target concept and the
associated background knowledge. In this case, the target concept is the
variation of the fluent (fi in the collected observations), and the associated
background knowledge consists of the literals holding in the state (si in the
collected observations). All literals in the knowledge base are tagged with an
identifier oi which indicates the observation they belong to. Figure 8.4 shows
two observations collected from the execution of action unstack in a 3-
blocks Blocksworld problem. Each observation contains the duration of the
execution (10 and 5 units of time respectively) and the literals representing
the state in which the action was executed.

142 CHAPTER 8. LEARNING ACTIONS DURATIONS WITH PELA

% The target concept
type(unstack_duration(example,block,block,number)).

% The domain predicates
type(holding(example, block)).
type(arm_empty(example)).
type(holding_tower(example)).
type(on_table(example, block)).
type(on(example, block, block)).
type(clear(example, block)).
type(is_heavy(example, block)).
type(arm_blocked(example)).

Figure 8.3: Example of language bias for action unstack from the Blocksworld.

% Example o1
unstack_duration(o1,b1,b2,10).

% Background knowledge
on_table(o1,b0). on(o1,b2,b0). on(o1,b1,b2).
clear(o1,b1). arm_empty(o1). arm_blocked(o1).

% Example o2
unstack_duration(o2,b2,b0,5).

% Background knowledge
on-table(o2,b0). on(o2,b2,b0). clear(o2,b2).
on-table(o2,b1). clear(o2,b1). arm_empty(o2).

Figure 8.4: Knowledge base corresponding to two executions of action unstack.

8.2.4 Exploitation of the learned knowledge

The induced regression trees are incorporated to the action model of the planning
component. Specifically, a regression tree ta induced for action a ∈ A is compiled
into a new action a′ with conditional effects where:

1. The parameters of a′ are the parameters of a.

2. The preconditions of a′ are the preconditions of a.

3. Each branch bi of the tree ta is compiled into a conditional effect cei=(when
Bi Ei) where:

(a) Bi=(and bi1, . . . , bin), where bik are the relational tests of the internal
nodes of branch bi (in the tree of Figure 8.2 there is only one test,
referring to arm-blocked(A));

(b) Ei=(and {effects(a) ∪ (increase (duration) fi)});
(c) effects(a) are the STRIPS effects of action a; and

8.3. EVALUATION 143

(d) (increase (duration) fi) is a new literal which increases the
duration metric in fi units. Where fi is the prediction value of the
branch bi

As an example, Figure 8.5 shows the PDDL conditional action resulting from
the compilation of the regression tree of Figure 8.2. Since the outcome of this
phase is standard PDDL code, it is suitable for any off-the-shelf planner able to
handle metric minimization.

(:action unstack
:parameters (?b1 ?b2 - block)
:precondition (and (not (= ?b1 ?b2)) (arm-empty) (clear ?b1)

(on ?b1 ?b2))
:effect
(and (when (arm-blocked)

(and (holding ?b1) (clear ?b2) (not (arm-empty))
(not (clear ?b1)) (not (on ?b1 ?b2))
(increase (duration) 10)))

(when (not (arm-blocked))
(and (holding ?b1) (clear ?b2) (not (arm-empty))

(not (clear ?b1)) (not (on ?b1 ?b2))
(increase (duration) 5))))

Figure 8.5: The resulting PDDL action with conditional effects.

8.3 Evaluation

To evaluate the performance of this PELA instantiation, we defined a set of exper-
iments in which PELA learns diverse duration models from observations of plans
executions. In all these experiments, PELA starts with a STRIPS-like action model
with no knowledge about the actions durations (Figure 8.6) and executes plans in
the MDPsim simulator that maintains a PPDDL domain description with the true
duration model of the actions.

(:action unstack
:parameters (?b1 ?b2 - block)
:precondition (and (not (= ?b1 ?b2))(arm-empty)(clear ?b1)

(on ?b1 ?b2))
:effect (and (holding ?b1)(clear ?b2)(not (arm-empty))

(not (clear ?b1))(not (on ?b1 ?b2))))

Figure 8.6: Example of STRIPS-like action initially considered by PELA.

144 CHAPTER 8. LEARNING ACTIONS DURATIONS WITH PELA

The test domain is a version of the Blocksworld domain in which the robot
arm can get blocked and there are blocks of different weights. In this domain, we
tested the performance of PELA in three different configurations of the execution
simulator. Each configuration covers a different kind of durations model:

1. Deterministic durations. This is the simplest configuration of the simulator,
in which action duration is a fixed constant. In this case, actions determinis-
tically increase the duration fluent. As an example, the Figure 8.7 shows
action unstack as it is defined in the simulator. According to this configu-
ration, the execution of action unstack always takes three units of time.

(:action unstack
:parameters (?b1 ?b2 - block)
:precondition (and (not (= ?b1 ?b2))(arm-empty)(clear ?b1)

(on ?b1 ?b2))
:effect (and (holding ?b1)(clear ?b2)(not (arm-empty))

(not (clear ?b1))(not (on ?b1 ?b2))
(increase (duration) 3)))

Figure 8.7: Deterministic configuration of the simulator for action unstack.

2. Situation-dependent duration. In this configuration, action duration depends
on the state of the environment. Now, the action model of the simulator in-
corporates conditional effects to increase the (duration) fluent depend-
ing on the state of the robot-arm (arm-blocked) or the type of the han-
dled blocks (is-heavy ?block). Figure 8.8 shows the definition of
action unstack in the simulator. In this definition, when the robot arm
is blocked or it is handling heavy blocks, it takes more time to complete
the execution of the actions than usual. Additionally, a probabilistic effect
has been introduced to randomly modify the state of the robot arm after the
action execution.

3. Stochastic duration. In this configuration, actions present situation-dependent
and probabilistic duration. This configuration, represents domains where ac-
tion duration depends also on circumstances of the environment that are not
captured within the domain predicates. Figure 8.9 shows the definition of ac-
tion unstack in the simulator. According to this schema, one out of three
times the execution takes less time without any observable reason.

8.3.1 Correctness of the duration models

Next, there is an analysis of the duration models obtained by PELA for the three
configurations of the simulator. These models are induced from the observations
collected solving fifty random five-blocks problems with the LPG planner (Gerevini
et al., 2003):

8.3. EVALUATION 145

(:action unstack
:parameters (?b1 ?b2 - block)
:precondition (and (not (= ?b1 ?b2))(arm-empty)(clear ?b1)

(on ?b1 ?b2))
:effect
(and (holding ?b1)(clear ?b2)(not (arm-empty))

(not (clear ?b1))(not (on ?b1 ?b2))
(when (and (not (is-heavy ?b1))(not (arm-blocked)))

(increase (duration) 3))
(when (and (not (arm-blocked))(is-heavy ?b1))

(increase (duration) 20))
(when (and (not (is-heavy ?b1))(arm-blocked))

(increase (duration) 8))
(when (and (is-heavy ?b1)(arm-blocked))

(increase (duration) 30))
(probabilistic

1/2 (arm-blocked)
1/2 (not (arm-blocked)))))

Figure 8.8: Situation-dependent configuration of the simulator.

1. In the deterministic configuration, our models exactly capture the execution
duration of each action. As shown in Figure 8.10 for action unstack, the
induced trees consist of a single leaf node with the exact value (the relative
error is 0.0) for the duration fluent.

2. In the situation-dependent configuration, our models exactly captured the
conditions of the action durations so the relative error of leaf nodes is 0.0
too. Figure 8.11 shows the relational regression tree induced for action
unstack. The first query tests if the arm is blocked. The following query
checks whether the block to unstack is heavy or not.

3. In the stochastic configuration, our models also successfully captured the
conditions of action durations. However, the relative error of leaf nodes is
not 0.0 because in this configuration of the simulator actions do not have
deterministic duration. In this case, leaf nodes do not indicate an exact du-
ration but an average of the durations observed in the examples covered by
the leaf node. Figure 8.12 shows the logical decision tree induced for action
unstack in this configuration.

8.3.2 Performance of the duration models

We compared four planning configurations to evaluate the performance of the in-
duced duration models:

1. LPG without experience. LPG (Gerevini et al., 2003) is run with the STRIPS-
like action model. This configuration ignores actions duration and serves as

146 CHAPTER 8. LEARNING ACTIONS DURATIONS WITH PELA

(:action unstack
:parameters (?b1 ?b2 - block)
:precondition (and (not (= ?b1 ?b2))(arm-empty)(clear ?b1)

(on ?b1 ?b2))
:effect
(and (holding ?b1)(clear ?b2)(not (arm-empty))

(not (clear ?b1))(not (on ?b1 ?b2))
(when (and (not (is-heavy ?b1))(not (arm-blocked)))

(probabilistic
2/3 (increase (duration) 3)
1/3 (increase (duration) 2)))

(when (and (not (arm-blocked))(is-heavy ?b1))
(probabilistic

2/3 (increase (duration) 20)
1/3 (increase (duration) 14)))

(when (and (not (is-heavy ?b1))(arm-blocked))
(probabilistic

2/3 (increase (duration) 8)
1/3 (increase (duration) 5)))

(when (and (is-heavy ?b1)(arm-blocked))
(probabilistic

2/3 (increase (duration) 30)
1/3 (increase (duration) 20)))

(probabilistic
1/2 (arm-blocked)
1/2 (not (arm-blocked)))))

Figure 8.9: Stochastic configuration of the simulator for action unstack.

a baseline for comparison.

2. LPG with experience. In this configuration, LPG is run with the upgraded
action model (which considers action durations), the optimization option to
minimize the metric (duration) and a limit for planning of ’3 solutions’.

3. Metric-FF without experience. The planner Metric-FF (Hoffmann, 2003) is
run with the STRIPS-like action model. This configuration also serves as a
baseline.

4. Metric-FF with experience. Metric-FF is run with the upgraded action model
and the optimization option to minimize the metric (duration).

unstack_duration(-A,-B,-C,-D)
[3.0] 2280.0 [0.0]

Figure 8.10: Duration model for the deterministic configuration of the simulator.

8.3. EVALUATION 147

unstack_duration(-A,-B,-C,-D)
arm-blocked(A) ?
+--yes: is-heavy(A,-C) ?
| +--yes: [30] 152.0 [0.0]
| +--no: [8.0] 9.0 [0.0]
+--no: is-heavy(A,-E) ?

+--yes: [20.0] 183.0 [0.0]
+--no: [3.0] 20.0 [0.0]

Figure 8.11: Duration model for the situation-dependent configuration of the sim-
ulator.

unstack_duration(-A,-B,-C,-D)
arm-blocked(A) ?
+--yes: is-heavy(A,-C) ?
| +--yes: [27.2174] 115.0 [0.4197]
| +--no: [7.1645] 79.0 [0.1523]
+--no: is-heavy(A,-E) ?

+--yes:[18.0714] 168.0 [0.2168]
+--no: [2.5882] 102.0 [0.0489]

Figure 8.12: Duration model for the stochastic configuration of the simulator.

Figure 8.13 shows the performance of the four planning configurations in the
different configurations of the simulator: deterministic, situation-dependent and
stochastic. Each planning configuration is tested in a test set of thirty problems of
increasing difficulty. The performance of a planning configuration is measured in
terms of the duration metric. The graphs show the average value of this metric
after solving fifteen times each problem from the test set.

Regarding the obtained experimental results, planning with the learned dura-
tion models (LPG with experience and Metric-FF with experience configurations)
achieves plans with less execution time. In the case of LPG, results obtained by
LPG with experience are overall better. However, this effect it is not universally
true (note problems 3, 25 and 29 of the deterministic configuration) because of the
stochastic behavior of this planner. In the case of Metric-FF, results obtained with
the induced models are also overall better. Nevertheless, in problems 1, 16 and
33 of the stochastic configuration, the induced model adds such complexity to the
domain theory that Metric-FF optimizing the duration metric does not find a
solution in the time limit.

148 CHAPTER 8. LEARNING ACTIONS DURATIONS WITH PELA

8.4 Discussion

This chapter presented and evaluated an instantiation of PELA for modelling the
duration of AP actions. This instantiation generates accurate duration models of
action executions when duration is deterministic, situation-dependent or stochastic.
The generated models are represented in standard PDDL so they are suitable for
off-the-self planners. Though this PELA instantiation focused on learning duration
models, the same approach can be directly applied to learn models for any fluent of
the domain theory. In general, this approach is useful for AP tasks in which goals
are achievable by different plans, the quality of these plans matters but the quality
of actions is ’a priori’ unknown.

In some domains, duration of action execution is a function over others fluents.
In this case, the estimations of the tree node leaves should not be a numeric value
but a mathematical formula. Additionally, our approach assumes full observability
of the environment so observations of action executions are always perfect. Further
work has to be done to acquire more complex fluent models and to model fluents
in environments where observations may be wrong or incomplete.

Relational regression trees has not been previously applied to AP action mod-
elling. Nevertheless, classical versions of both regression and decision trees have
being used for action modelling in autonomous robots: the robot ROGUE (Haigh
and Veloso, 1999) used decision tree learning to acquire rules that prioritize its
activities according to the values of its sensors. (Balac et al., 2000) learned re-
gression trees that proposed the next action for a mobile robot according to the
sensed state of the environment. Since the learning techniques used in both works
are propositional, the internal nodes of the learned trees consist only of tests over
numerical values. Consequently, these works were not able to predict according
to relational representations of the state, like the ones used in AP. Otherwise, re-
lational regression trees have been used to generalize the q-function of a reactive
agent (Dzeroski et al., 1998). In this case predictions depend on conditions of the
state described relationally. However, the target of the learning process is not an
action model but a goal-oriented policy. Hence, every time different goals have to
be achieved, new relational trees have to be learnt from scratch, even if dynamics
of the environment do not change.

8.4. DISCUSSION 149

Figure 8.13: Execution duration of plans for the 3 configurations of the simulator.

150 CHAPTER 8. LEARNING ACTIONS DURATIONS WITH PELA

Part III

Conclusions and Future Work

151

Chapter 9

Conclusions

This chapter presents the conclusions from the research carried out in the thesis
work.

9.1 Summary

In the last years AP has experimented important advances. On the one hand, the
planning-graph (Blum and Furst, 1995) provided a framework to significantly
reduce the AP search space. On the other hand, domain independent heuristics
(Bonet and Geffner, 2001; Hoffmann and Nebel, 2001; Helmert and Geffner, 2008)
became a reliable guide for the AP search algorithms. Nowadays, automated plan-
ners are able to synthesize plans of hundreds of actions in a variety of domains and
the scope of AP is being extended from toy problems to real-world applications.
Nevertheless, real-world applications demand action models more expressive than
traditional STRIPS-like ones. They need to support execution cost, duration, prob-
ability of success, etc. Specifying action models supporting all these features is
complex because frequently these features are ’a priori’ unknown.

In this thesis I argue that ML can help to overcome this bottleneck. As a matter
of fact, RL has already been successfully applied to real-world tasks with unknown
action models. However, the kind of solutions found by RL does not generalize.
RL requires transfer learning or learning from scratch every time the task is modi-
fied, even if the environment is the same. Alternatively, cognitive architectures are
able to learn general knowledge that can be directly applied to different tasks within
the same environment. However, very few of these architectures have focused on
solving AP problems in environments with uncertainty.

This thesis presents PELA, an architecture proposal for integrating planning,
execution and learning in environments with uncertainty. PELA starts solving plan-
ning tasks with a STRIPS-like model of the environment and automatically up-
grades it as more experience is available. In this way, PELA reduces the uncertainty
of the environment and improves the quality of the subsequent solutions. Partic-
ularly, the learning component of PELA upgrades the initial STRIPS-like model

153

154 CHAPTER 9. CONCLUSIONS

with: (1) probabilistic knowledge about the success of actions and (2) prediction
of execution dead-ends. Moreover, given that PELA is based on off-the-shelf plan-
ning and learning components it can profit from the last advances in both fields
without modifying the architecture.

Our integration of planning, execution and learning has been experimentally
evaluated. Experimental results show that PELA addresses AP tasks under un-
certainty more robustly than the classical re-planning approach. Besides, since
the action model upgrade proposed by PELA does not affect to actions causality,
our integration is also suitable for on-line learning. Finally, we have shown how
to extend our architecture proposal for capturing other interesting features of the
planning action models such as the execution duration of actions.

9.2 Contributions

The main contribution of the thesis is the definition of a general architecture for
integrating processes of planning, execution and learning in domains with uncer-
tainty. This architecture is based on off-the-shelf components and automatically
captures knowledge from the execution of the plans. The architecture can capture,
the robustness of instances (Jiménez et al., 2005), situation dependent probabili-
ties (Jiménez and Cussens, 2006; Jiménez et al., 2006b; Jiménez, 2007; Jiménez
et al., 2008) or actions duration (Lanchas et al., 2007) and this knowledge capture
can be off-line and on-line. Additionally, the thesis work resulted in the following
set of contributions:

1. An in-depth review of the state of the art in learning for classical planning
(Jiménez and de la Rosa, 2008; Fernández et al., 2009). Chapter 3 of the
thesis describes the main works in learning for classical planning from a
unifying approach. The diverse techniques are revised according to the target
of the learning process (search control or action model). For each technique
this review analyses the scope of the technique, benefits, drawbacks and the
main implementations. In addition, this review motivated a study about the
use of relational decision trees to learn search control for heuristic planning
(de la Rosa et al., 2008).

2. An in-depth review of the state of the art in PUU from a general problem
solving approach. Chapter 4 of the thesis revises the diverse PUU paradigms
according to two dimensions: determinism of the action effects and observ-
ability of the environment. For each PUU paradigm, the review analyses
the main advances structured by representation languages, algorithms and
implementations of the paradigm.

3. A mechanism for defining probabilistically interesting domains from classi-
cal AP domains. As shown at IPC-2004 and IPC-2006 in which FF-REPLAN

outperformed the rest of participants planners, probabilistic planning is only

9.2. CONTRIBUTIONS 155

better than classical replanning in probabilistic interesting problems. The
evaluation section of Chapter 7 of the thesis describes three techniques for
building probabilistic interesting domains from classical domains. These
techniques have been used in the thesis to generate probababilistic interest-
ing versions of the classical domains: openstacks, rovers and satellite.

4. The definition of the fragility concept (Jiménez et al., 2006a). This concept
allows one to introduce probabilistic knowledge within the classical planners
representing it as cost models and to solve probabilistic planning problems
compiling them into classical planning problems.

5. A review of the state of the art in learning for PUU. Traditionally, learning for
PUU has been studied within the MDP framework. Chapter 5 of the thesis
revises the art in learning for PUU from a symbolic planning approach, in
the same way that is done with learning for classical planning. I.e., analysing
the main works in learning for PUU according to the target of their learning
process: search control or action model.

6. The analysis of domain exploration strategies in standard AP domains. Un-
like traditional RL domains, random strategies do not guarantee good explo-
ration for traditional AP domains. This is because, in AP domains, certain
actions are only applicable under very specific circumstances. The evalu-
ation section of Chapter 7 of the thesis compares the behavior of different
exploration strategies for AP domains.

7. An online integration for the proccess of planning, execution and learning.
PELA is able to acquire and upgrade action models in the middle of a prob-
lem solving proccess.

156 CHAPTER 9. CONCLUSIONS

Chapter 10

Future Work

The architecture developed in this thesis is a suitable framework for studying dif-
ferent open issues in PUU:

1. Real-time planning: Given that AP is time consuming, it is desirable to pro-
vide PELA with reactive behavior for guaranteeing quick responses in the
presence of time constraints. In this sense, we can follow two different ap-
proaches to define reactive behavior in PELA:

(a) Planning with a real-time search algorithm. We can replace the search
algorithm of the planner used in the planning component by a real-time
search algorithm (Korf, 1990; Bulitko and Lee, 2006; Hernández and
Meseguer, 2007). These search algorithms fast provide steps towards a
goal state though the complete solution is not constructed. These steps
will eventually converge to a solution when enough time is available.

(b) Simplifying the planning task. We can simplify the planning task to
quickly obtain rough solutions. For example, we can consider the re-
laxed planning task in which deletes of actions are ignored. In this case,
the solution to this simplification of the planning task, i.e., the relaxed
plan, is computed in polinomial time (Hoffmann and Nebel, 2001).
Besides, the planning task can be simplified by reducing the number of
goals (Sapena and Onandı́a, 2008) or the number of considered objects
(Edelkamp, 2002) in the planning process.

2. Specific action execution: We can enrich the execution component of PELA

with specific execution controllers for actions that frequently appear in the
planning domains. For example, a navigation module for controlling the
generic action move(origin, destiny).

3. Resource and time execution monitorization. PELA only monitors the ac-
tions causality ignoring resource and duration constraints of plans. We can
improve the execution component of PELA with a CSP solver that checks

157

158 CHAPTER 10. FUTURE WORK

the feasibility of the pending plan in the current state of the environment re-
garding the current resources allocation and the current execution duration
of actions (Rodrı́guez-Moreno et al., 2004; Bresina et al., 2005; Coles et al.,
2009).

4. Plan repairing and plan reuse. We can provide the execution component of
PELA with repairing techniques for domains in which planning from scratch
is expensive. In this sense, we can use previous plans to seed the search
(Gerevini and Serina, 2000), to avoid node evaluation (de la Rosa et al.,
2007) or to generate lookahead states (Vidal, 2004).

5. Learning full action models. We can improve the learning component of
PELA with deeper action modelling capabilities. For instance, algorithms
for learning action preconditions or diverse action outcomes (Pasula et al.,
2007a) or algorithms for learning action models in environments with partial
observability (Yang et al., 2007; Amir, 2006).

6. Model-Lite planning. Current off-the-shelf planners assume that the ac-
tion model is complete and correct. Recently, Kambhampati introduced the
concept of model-lite planning (Kambhampati, 2007) for encouraging the
development of AP techniques able to relax this assumption. Particularly,
model-lite planners should search for a solution plan but for the most plau-
sible solution plan that respects the current domain model. The PELA ar-
chitecture is suitable framework for the development and evaluation of these
ambitious techniques.

7. Concurrent integration of components. The information flow of PELA is
sequential. A concurrent integration of the architecture components (Sim-
mons, 1990) would reduce the impact of the computation time of each com-
ponent.

Bibliography

Aha, D. W., Molineaux, M., and Ponsen, M. J. V. (2005). Learning to win: Case-
based plan selection in a real-time strategy game. In International Conference
on Case-Based Reasoning, ICCBR, pages 5–20.

Alami, R., Chatila, R., Fleury, S., Ghallab, M., and Ingrand, F. (1998). An archi-
tecture for autonomy. International Journal of Robotics Research, 17:315–337.

Albore, A., Palacios, H., and Geffner, H. (2007). Fast and informed action selection
for planning with sensing. In Conference of the Spanish Association for Artificial
Intelligence (CAEPIA-07).

Aler, R., Borrajo, D., and Isasi, P. (2002). Using genetic programming to learn and
improve control knowledge. Artificial Intelligence, 141(1-2):29–56.

Amir, E. (2006). Learning partially observable action schemas. In National Con-
ference on Artificial Intelligence (AAAI’06).

Amir, E. and Chang, A. (2008). Learning partially observable deterministic action
models. Journal of Artificial Intelligence Research, 33:349–402.

Bacchus, F. and Kabanza, F. (2000). Using temporal logics to express search con-
trol knowledge for planning. Artificial Intelligence, 116(1-2):123–191.

Balac, N., Gaines, D. M., and Fisher, D. (2000). Using regression trees to learn
action models. In IEEE Systems, Man and Cybernetics Conference, Nashville.
USA.

Barto, A. and Duff, M. (1994). Monte carlo matrix inversion and reinforcement
learning. In Advances in Neural Information Processing Systems 6, pages 687–
694.

Beetz, M. (1999). Structured reactive controllers: controlling robots that perform
everyday activity. In AGENTS ’99: Proceedings of the third annual conference
on Autonomous Agents.

Bellman, R. (1957). Dynamic Programming. Princeton University Press, Prince-
ton, NJ.

159

160 BIBLIOGRAPHY

Benson, S. S. (1997). Learning Action Models for Reactive Autonomous Agents.
PhD thesis, Stanford University.

Bergmann, R. and Wilke, W. (1996). Paris: Flexible plan adaptation by abstraction
and refinement. In Workshop on Adaptation in Case-Based Reasoning. ECAI-96.

Bertoli, P., Cimatti, A., Roveri, M., and Traverso, P. (2006). Strong planning under
partial observability. Artificial Intelligence, 170(4):337–384.

Bertsekas, D. P. (1995). Dynamic Programming and Optimal Control. Athena
Scientific.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming (Opti-
mization and Neural Computation Series, 3). Athena Scientific.

Besag, J. (1975). Statistical analysis of non-lattice data. The Statistician,
24(3):179–195.

Blockeel, H. and Raedt, L. D. (1998). Top-down induction of first-order logical
decision trees. Artificial Intelligence, 101(1-2):285–297.

Blum, A. and Furst, M. (1995). Fast planning through planning graph analysis. In
International Joint Conference on Artificial Intelligence, IJCAI-95.

Blum, A. and Langford, J. (1999). Probabilistic planning in the graphplan frame-
work. In European Conference on Planning, pages 319–332.

Bonet, B. and Geffner, H. (2001). Planning as heuristic search. Artificial Intelli-
gence, 129(1-2):5–33.

Bonet, B. and Geffner, H. (2004). mgpt: A probabilistic planner based on heuristic
search. Journal of Artificial Intelligence Research, 24:933–944.

Bonet, B. and Geffner, H. (2006). Learning depth-first search: A unified approach
to heuristic search in deterministic and non-deterministic settings, and its ap-
plication to MDPs. In International Conference on Automated Planning and
Scheduling, ICAPS06.

Borrajo, D. and Veloso, M. (1997). Lazy incremental learning of control knowl-
edge for efficiently obtaining quality plans. AI Review Journal. Special Issue on
Lazy Learning, 11(1-5):371–405.

Botea, A., Enzenberger, M., Müller, M., and Schaeffer, J. (2005). Macro-ff: Im-
proving ai planning with automatically learned macro-operators. Journal of Ar-
tificial Intelligence Research, 24:581–621.

Boutilier, C., Reiter, R., and Price, B. (2001). Symbolic dynamic programming for
first-order MDPs. In International Joint Conference on Artificial Intelligence.

BIBLIOGRAPHY 161

Brachman, R. J. and Levesque, H. J. (1984). The tractability of subsumption in
frame-based description languages. In National Conference on Artificial Intelli-
gence, AAAI84.

Brafman, R. and Hoffmann, J. (2004). Conformant planning via heuristic forward
search: A new approach. In Koenig, S., Zilberstein, S., and Koehler, J., editors,
International Conference on Automated Planning and Scheduling (ICAPS-04).

Bresina, J. L., Jónsson, A. K., Morris, P. H., and Rajan, K. (2005). Mixed-initiative
activity planning for mars rovers. In IJCAI, pages 1709–1710.

Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35:677–691.

Bryce, D. (2006). The partially-observable and non-deterministic planner. In Inter-
national Planning Competition. International Conference on Automated Plan-
ning and Scheduling.

Buffet, O. and Aberdeen, D. (2006). The factored policy gradient planner. In Inter-
national Planning Competition. International Conference on Automated Plan-
ning and Scheduling.

Bui, H. H. and Venkatesh, S. (2002). Policy recognition in the abstract hidden
markov model. Journal of Artificial Intelligence Research, 17:2002.

Bulitko, V. and Lee, G. (2006). Learning in real-time search: A unifying frame-
work. Journal of Artificial Intelligence Research, 25:119–157.

Bylander, T. (1991). Complexity results for planning. In International Joint Con-
ference on Artificial Intelligence. IJCAI-91, Sydney, Australia.

Bylander, T. (1994). The computational complexity of propositional STRIPS plan-
ning. Artificial Intelligence, 69(1-2):165–204.

Carrick, C., Yang, Q., Abi-Zeid, I., and Lamontagne, L. (1999). Activating CBR
systems through autonomous information gathering. Lecture Notes in Computer
Science, 1650.

Castillo, L., Armengol, E., Onaindı́a, E., Sebastiá, L., Boticario, J., Rodrı́guez, A.,
Fernández, S., Arias, J., and Borrajo, D. (2008). Samap. a user-oriented adaptive
system for planning tourist visits. International Journal of Expert Systems With
Applications, 34.

Castillo, L., Fdez.-Olivares, J., Garcı́a-Pérez, O., and Palao, F. (2006). Bringing
users and planning technology together. experiences in SIADEX. In Interna-
tional Conference on Automated Planning and Scheduling (ICAPS 2006).

162 BIBLIOGRAPHY

Cimatti, A., Clarke, E., Giunchiglia, F., and Roveri, M. (1999). NUSMV: a
new Symbolic Model Verifier. In Conference on Computer-Aided Verification
(CAV’99).

Cimatti, A., Giunchiglia, F., Giunchiglia, E., and Traverso, P. (1997). Planning
via model checking: A decision procedure for AR. In European Conference on
Planning.

Cimatti, A. and Roveri, M. (2000). Conformant planning via symbolic model
checking. Journal of Artificial Intelligence Research, 13.

Cohen, W. W. (1990). Learning approximate control rules of high utility. In Inter-
national Conference on Machine Learning.

Coles, A. and Smith, A. (2007). Marvin: A heuristic search planner with online
macro-action learning. Journal of Artificial Intelligence Research, 28:119–156.

Coles, A. I., Fox, M., Halsey, K., Long, D., and Smith, A. J. (2009). Managing
concurrency in temporal planning using planner-scheduler interaction. Artificial
Intelligence, 173(1):1–44. Avaliable online August 2008.

Culberson, J. and Schaeffer, J. (1998). Pattern databases. Computational Intelli-
gence, 14:318–334.

Cussens, J. (2001). Parameter estimation in stochastic logic programs. Machine
Learning, 44(3):245–271.

Dawson, C. and Silklossly, L. (1977). The role of preprocessing in problem solving
system. In International Joint Conference on Artificial Intelligence, IJCAI-77,
pages 465–471.

de la Rosa, T., Garcı́a-Olaya, A., and Borrajo, D. (2007). Using cases utility for
heuristic planning improvement. In International Conference on Case-Based
Reasoning.

de la Rosa, T., Jiménez, S., and Borrajo, D. (2008). Learning relational decision
trees for guiding heuristic planning. In International Conference on Automated
Planning and Scheduling (ICAPS 08).

De Raedt, L. and Dehaspe, L. (1997). Clausal discovery. Machine Learning, 26(2-
3):99–146.

Donini, F. M., Lenzerini, M., Nardi, D., and Nutt, W. (1995). The complexity of
concept languages. Technical Report RR-95-07, Deutsches Forschungszentrum
für Künstliche Intelligenz GmbH. Erwin-Schrödinger Strasse. Kaiserslautern.
Germany.

Driessens, K. and Ramon, J. (2003). Relational instance based regression for rela-
tional reinforcement learning. International Conference on Machine Learning.

BIBLIOGRAPHY 163

Dzeroski, S., Raedt, L. D., and Blockeel, H. (1998). Relational reinforcement
learning. In International Workshop on Inductive Logic Programming.

Dzeroski, S., Raedt, L. D., and Driessens, K. (2001). Relational reinforcement
learning. Machine Learning, 43:7–52.

Edelkamp, S. (2002). Symbolic pattern databases in heuristic search planning. In
International Conference on AI Planning and Scheduling (AIPS).

Ernst, G. W. and Newell, A. (1969). GPS: A Case Study in Generality and Problem
Solving. ACM Monograph Series. Academic Press, New York, NY.

Etzioni, O. (1993). Acquiring search-control knowledge via static analysis. Artifi-
cial Intelligence, 62(2):255–301.

Felner, A., Korf, R. E., and Hanan, S. (2004). Additive pattern database heuristics.
Journal of Artificial Intelligence Research, 22:279–318.

Fern, A., Yoon, S., and Givan, R. (2004). Learning domain-specific control knowl-
edge from random walks. In International Conference on Automated Planning
and Scheduling., pages 191–199.

Fern, A., Yoon, S. W., and Givan, R. (2006). Approximate policy iteration with a
policy language bias: Solving relational markov decision processes. Journal of
Artificial Intelligence Research, 25:75–118.

Fernández, S., Jiménez, S., and de la Rosa, T. (2009). Handbook of Research
on Machine Learning Applications and Trends, chapter Improving Automated
Planning with Machine Learning. Information Science Reference.

Fikes, R., Hart, P., and Nilsson, N. J. (1972). Learning and executing generalized
robot plans. Artificial Intelligence, 3:251–288.

Fikes, R. and Nilsson, N. J. (1971). Strips: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2:189–208.

Fox, M., Gerevini, A., Long, D., and Serina, I. (2006a). Plan stability: Replan-
ning versus plan repair. International Conference on Automated Planning and
Scheduling (ICAPS’06).

Fox, M., Ghallab, M., Infantes, G., and Long, D. (2006b). Robot introspection
using learned hidden markov models. Artificial Intelligence, 170(2):59–113.

Fox, M. and Long, D. (2003). PDDL2.1: An extension to PDDL for expressing
temporal planning domains. Journal of Artificial Intelligence Research, pages
61–124.

Friedman, N., Getoor, L., Koller, D., and Pfeffer, A. (1999). Learning probabilis-
tic relational models. In Sixteenth International Joint Conference on Artificial
Intelligence, IJCAI, pages 1300–1309.

164 BIBLIOGRAPHY

Fuentetaja, R. and Borrajo, D. (2006). Improving control-knowledge acquisition
for planning by active learning. In European Conference on Learning, pages
138–149.

Garcia-Martinez, R. and Borrajo, D. (2000). An integrated approach of learning,
planning, and execution. Journal of Intelligent and Robotics Systems, 29:47–78.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, USA.

Gartner, T., Driessens, K., and Ramon, J. (2003a). Graph kernels and gaussian
processes for relational reinforcement learning. In International Conference on
Inductive Logic Programming, ILP 2003.

Gartner, T., Flach, P., and Wrobel, S. (2003b). On graph kernels: Hardness results
and efficient alternatives. In Computational Learning Theory.

Geffner, H. (1999). Functional strips: a more general language for planning and
problem solving. In Presented at the Logic-based AI Workshop.

Geffner, H. (2001). Functional strips: a more flexible language for planning and
problem solving. Logic-based Artificial Intelligence, pages 188–209.

Gerevini, A., Saetti, A., and Serina, I. (2003). Planning through stochastic local
search and temporal action graphs in LPG. Journal of Artificial Intelligence
Research, 20:239–290.

Gerevini, A. and Serina, I. (2000). Fast plan adaptation through planning graphs:
Local and systematic search techniques. In International Conference on Artifi-
cial Intelligence Planning Systems.

Gil, Y. (1992). Acquiring Domain Knowledge for Planning by Experimentation.
PhD thesis, School of Computer Science, Carnegie Mellon University, Pitts-
burgh.

Gretton, C. and Thiébaux, S. (2004). Exploiting first-order regression in inductive
policy selection. In Conference on Uncertainty in Artificial Intelligence.

Groote, F. and Tveretina, O. (2003). Binary decision diagrams for first-order pred-
icate logic. Journal of Logic and Algebraic Programming, 57(1-2):1–22.

Guestrin, C., Koller, D., Parr, R., and Venktaraman, S. (2002). Efficient solution
methods for factored MDPs. Journal of Artificial Intelligence Research, 19:399–
468.

Haigh, K. Z. and Veloso, M. M. (1999). Learning situation-dependent rules. In
AAAI Spring Symposium on Search Techniques for Problem Solving under Un-
certainty and Incomplete Information.

BIBLIOGRAPHY 165

Hammond, K. J. (1990). Explaining and repairing plans that fail. Artificial Intelli-
gence, 45:173–228.

Hansen, E. A. and Zhou, R. (2007). Anytime heuristic search. Journal of Artificial
Intelligence Research, 28:267–297.

Hansen, E. A. and Zilberstein, S. (2001). LAO * : A heuristic search algorithm
that finds solutions with loops. Artificial Intelligence, 129(1-2):35–62.

Haslum, P., Botea, A., Helmert, M., Bonet, B., and Koenig, S. (2007). Domain-
independent construction of pattern database heuristics for cost-optimal plan-
ning. In National Conference on Artificial Intelligence (AAAI 2007).

Haussler, D. (1999). Convolution kernels on discrete structures. Technical Report
UCS-CRL-99-10, UC Santa Cruz.

Helmert, M. and Geffner, H. (2008). Unifying the causal graph and additive
heuristics. In International Conference on Automated Planning and Schedul-
ing (ICAPS-2008).

Hernández, C. and Meseguer, P. (2007). Improving LRTA*(k). In International
Joint Conference on Artificial Intelligence, IJCAI-07, pages 2312–2317.

Hertzberg, J., Jaeger, H., and Zimmer, U. R. (1998). A framework for plan execu-
tion in behaviour-based robots. In IEEE International Symposium on Intelligent
Control.

Hoffmann, J. (2003). The metric-FF planning system: Translating ignoring delete
lists to numerical state variables. Journal of Artificial Intelligence Research, 20.

Hoffmann, J. and Brafman, R. (2005). Contingent planning via heuristic forward
search with implicit belief states. In International Conference on Automated
Planning and Scheduling (ICAPS-05).

Hoffmann, J. and Nebel, B. (2001). The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–
302.

Hogg, C., Munoz-Avila, H., and Kuter, U. (2008). HTN-MAKER: Learning HTNs
with minimal additional knowledge engineering required. In National Confer-
ence on Artificial Intelligence (AAAI’2008).

Huang, J. (2006). Complan: A conformant probabilistic planner. In International
Planning Competition. International Conference on Automated Planning and
Scheduling.

Hyafil, N. and Bacchus, F. (2003). Conformant probabilistic planning via CSPs. In
International Conference on Automated Planning and Scheduling.

166 BIBLIOGRAPHY

Ilghami, O., Nau, D. S., and Muñoz-Avila, H. (2006). Learning to do HTN
planning. In International Conference on Automated Planning and Scheduling,
ICAPS 2006.

Ilghami, O., Nau, D. S., Muñoz-avila, H., and Aha, D. W. (2005). Learning pre-
conditions for planning from plan traces and HTN structure. Computational
Intelligence, 21:413.

Jaeger, M. (1997). Relational bayesian networks. In Conference on Uncertainty in
Artificial Intelligence.

Jiménez, S. (2007). Learning actions success patterns from execution. In Doctoral
Consoritum ICAPS’07.

Jiménez, S., Coles, A., and Smith, A. (2006a). Planning in probabilistic domains
using a deterministic numeric planner. In PLANSIG-06 Nottingham, UK.

Jiménez, S. and Cussens, J. (2006). Combining ILP and parameter estimation to
plan robustly in probabilistic domains. In International Conference on Inductive
Logic Programming. Santiago de Compostela. Spain.

Jiménez, S., Fernández, F., and Borrajo, D. (2005). Machine learning of plan ro-
bustness knowledge about instances. In 16th European Conference on Machine
Learning.

Jiménez, S., Fernández, F., and Borrajo, D. (2006b). Inducing non-deterministic
actions behaviour to plan robustly in probabilistic domains. In Workshop on
Planning under Uncertainty and Execution Control for Autonomous Systems.
ICAPS’06.

Jiménez, S., Fernández, F., and Borrajo, D. (2008). The PELA architecture: inte-
grating planning and learning to improve execution. In National Conference on
Artificial Intelligence (AAAI’2008).

Jiménez, S. and de la Rosa, T. (2008). Encyclopedia of Artificial Intelligence,
chapter Learning based planning. Information Science Reference.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang (1990). Sym-
bolic Model Checking: 1020 States and Beyond. In IEEE Symposium on Logic
in Computer Science.

Kaelbling, L. P., Littman, M. L., and Moore, A. P. (1996). Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4:237–285.

Kalyanam, R. and Givan, R. (2008). Ldfs with deterministic plan based subgoals.
In International Planning Competition. International Conference on Automated
Planning and Scheduling.

BIBLIOGRAPHY 167

Kambhampati, S. (2007). Model-lite planning for the web age masses: The chal-
lenges of planning with incomplete and evolving domain models. In Senior
Member track of the AAAI, Seattle, Washington, USA. AAAI Press/MIT Press.

Kambhampati, S. and Hendler, J. A. (1992). A validation structure-based theory
of plan modification and reuse. Artificial Intelligence Journal, 55:193–258.

Kaminka, G. A., Pynadath, D. V., and Tambe, M. (2002). Monitoring teams by
overhearing: A multi-agent plan recognition approach. Journal of Artificial In-
telligence Research, 17:83–135.

Karalic, A. (1992). Employing linear regression in regression tree leaves. In Euro-
pean Conference on Artificial Intelligence, ECAI-92, pages 440–441.

Kautz, H. A. and Selman, B. (1992a). Planning as satisfiability. In European
Conference on Artificial Intelligence (ECAI’92), pages 359–363.

Kautz, H. A. and Selman, B. (1992b). Planning as satisfiability. In European
Conference on Artificial Intelligence (ECAI’92), pages 359–363.

Keller, R. (1987). The Role of Explicit Contextual Knowledge in Learning Con-
cepts to Improve Performance. PhD thesis, Rutgers University.

Kelly, J. P., Botea, A., and Koenig, S. (2008). Offline planning with hierarchical
task networks in video games. In Proceedings of the Fourth Artificial Intelli-
gence and Interactive Digital Entertainment Conferenc.

Kersting, K., Otterlo, M. V., and Raedt, L. D. (2004). Bellman goes relational. In
International Conference on Machine Learning, ICML-04.

Kersting, K. and Raedt, L. D. (2001). Towards combining inductive logic program-
ming with Bayesian networks. In International Conference on Inductive Logic
Programming, pages 118–131.

Keyder, E. and Geffner, H. (2008). The hmdp planner for planning with prob-
abilities. In International Planning Competition. International Conference on
Automated Planning and Scheduling.

Khardon, R. (1999). Learning action strategies for planning domains. Artificial
Intelligence, 113:125–148.

Knoblock, C. (1990). Learning abstraction hierarchies for problem solving. In
International Workshop on Machine Learning.

Koenig, S., Furcy, D., and Bauer, C. (2002). Heuristic search-based replanning.
In International Conference on Artificial Intelligence Planning and Scheduling
(AIPS), pages 310–317.

168 BIBLIOGRAPHY

Kok, S. and Domingos, P. (2005). Learning the structure of markov logic networks.
In International Conference on Machine Learning (ICML-05).

Korf, R. E. (1985). Macro-operators: A weak method for learning. Artificial
Intelligence, 1985, 26:35–77.

Korf, R. E. (1990). Real-time heuristic search. Artificial Intelligence, 42(2-3):189–
211.

Kramer, S. (1996). Structural regression trees. National Conference on Artificial
Intelligence (AAAI-96).

Kushmerick, N., Hanks, S., and Weld, D. S. (1995). An algorithm for probabilistic
planning. Artificial Intelligence, 76(1-2):239–286.

Lanchas, J., Jiménez, S., Fernández, F., and Borrajo, D. (2007). Learning action du-
rations from executions. In Workshop on AI Planning and Learning. ICAPS’07.

Langley, P. and Choi, D. (2006). A unified cognitive architecture for physical
agents. In Proceedings, The Twenty-First AAAI Conference on Artificial Intelli-
gence, July 16-20, 2006, Boston, Massachusetts, USA.

Lavalle, S. M. (2000). Rapidly-exploring random trees: Progress and prospects. In
Algorithmic and Computational Robotics: New Directions, pages 293–308.

Leckie, C. and Zukerman, I. (1991). Learning search control rules for planning:
An inductive approach. In International Workshop on Machine Learning, pages
422–426, Evanston, IL. Morgan Kaufmann.

Lemai, S. and Ingrand, F. (2004). Interleaving temporal planning and execution in
robotics domains. In Nineteenth National Conference on Artificial Intelligence
AAAI, pages 617–622.

Lenser, S., Bruce, J., and Veloso, M. (2002). A modular hierarchical behavior-
based architecture. In Birk, A., Coradeschi, S., and Tadokoro, S., editors,
RoboCup-2001: The Fifth RoboCup Competitions and Conferences. Springer
Verlag, Berlin.

Levine, G. and DeJong, G. (2006). Explanation-based acquisition of planning
operators. In International Conference on Automated Planning and Scheduling
(ICAPS ’06).

Little, I. and Thiébaux, S. (2006). Concurrent probabilistic planner in the Graph-
Plan framework. In International Conference on Automated Planning and
Scheduling (ICAPS ’06), The English Lake District, Cumbria, UK.

Little, I. and Thiébaux, S. (2007). Probabilistic planning vs replanning. In Work-
shop on International Planning Competition: Past, Present and Future. ICAPS
2007, Providence, Rhode Island, USA.

BIBLIOGRAPHY 169

Littman, M. L. (1997). Probabilistic propositional planning: Representations and
complexity. In National Conference on Artificial Intelligence (AAAI-97).

Lotem, A. and Nau, D. S. (2000). New advances in GraphHTN: Identifying inde-
pendent subproblems in large HTN domains. In AIPS, pages 206–215.

Lovejoy, W. S. (1991). Computationally feasible bounds for partially observed
markov decision processes. Operational Research, 39(1):162–175.

Majercik, S. M. and Littman, M. L. (1998). MAXPLAN: A new approach to
probabilistic planning. In Artificial Intelligence Planning Systems, pages 86–93.

Martin, M. and Geffner, H. (2000). Learning generalized policies in planning us-
ing concept languages. In International Conference on Artificial Intelligence
Planning Systems, AIPS00.

Mcallester, D. and Rosenblitt, D. (1991). Systematic nonlinear planning. In Na-
tional Conference on Artificial Intelligence, AAAI91, pages 634–639.

McCarthy, J. and Hayes, P. J. (1969). Some philosophical problems from the stand-
point of artificial intelligence. In Webber, B. L. and Nilsson, N. J., editors, Read-
ings in Artificial Intelligence, pages 431–450. Kaufmann, Los Altos, CA.

McDermott, D. V. and Doyle, J. (1980). Non-monotonic logic. Artificial Intelli-
gence, 13:41–72.

McGann, C., Py, F., Rajan, K., Ryan, J., and Henthorn, R. (2008). Adaptive con-
trol for autonomous underwater vehicles. In National Conference on Artificial
Intelligence (AAAI’2008).

Mihalkova, L. and Mooney, R. J. (2007). Bottom-up learning of markov logic net-
work structure. In ICML ’07: Proceedings of the 24th international conference
on Machine learning.

Minton, S. (1988). Learning Effective Search Control Knowledge: An Explanation-
Based Approach. Kluwer Academic Publishers, Boston, MA.

Mitchell, T., Utgoff, T., and Banerji, R. (1982). Machine Learning: An Artificial
Intelligence Approach, chapter Learning problem solving heuristics by experi-
mentation. Morgan Kaufmann.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York.

Muggleton, S. (1995a). Inverse entailment and Progol. New Generation Comput-
ing, Special issue on Inductive Logic Programming, 13(3-4):245–286.

Muggleton, S. (1995b). Stochastic logic programs. In International Workshop on
Inductive Logic Programming.

170 BIBLIOGRAPHY

Muggleton, S. and Feng, C. (1990). Efficient induction of logic programs. In
Proceedings of the 1st Conference on Algorithmic Learning Theory, pages 368–
381. Ohmsma, Tokyo, Japan.

Muggleton, S., Luc, and Raedt, D. (1994). Inductive logic programming: Theory
and methods. Journal of Logic Programming, 19:629–679.

Muñoz-Avila, Aha, H., Breslow, D., and Nau, L. (1999). Hicap: An interactive
case based planning architecture and its application to noncombatant evacuation
operations. In Conference on Innovative Applications of Artificial Intelligence.
IAAI-99.

Nau, D., Au, T., Ilghami, O., Kuter, U., Murdock, W., Wu, D., and F.Yaman.
(2003). Shop: An HTN planning system. Journal of Artificial Intelligence
Research, 20.

Nau, D., Muñoz-avila, H., Cao, Y., Lotem, A., and Mitchell, S. (2001). Total-order
planning with partially ordered subtasks. In International Joint Conference on
Artificial Intelligence, pages 425–430.

Nayak, P., Kurien, J., Dorais, G., Millar, W., Rajan, K., and Kanefsky, R. (1999).
Validating the ds-1 remote agent experiment. In Artificial Intelligence, Robotics
and Automation in Space.

Newton, M. A. H., Levine, J., Fox, M., and Long, D. (2007). Learning macro-
actions for arbitrary planners and domains. In International Conference on Au-
tomated Planning and Scheduling.

Ngo, L. and Haddawy, P. (1997). Answering queries from context-sensitive prob-
abilistic knowledge bases. Theoretical Computer Science, 171:147–177.

Nilsson, N. J. (1984). Shakey the robot. Technical Report 323, AI Center, SRI
International, Menlo Park, CA.

Oates, T. and Cohen, P. R. (1996). Searching for planning operators with context-
dependent and probabilistic effects. In National Conference on Artificial Intelli-
gence.

Onder, N. and Pollack, M. E. (1999). Conditional, probabilistic planning: A unify-
ing algorithm and effective search control mechanisms. In National Conference
on Artificial Intelligence (AAAI’99).

Onder, N., Whelan, G. C., and Li, L. (2004). Probapop: Probabilistic partial-order
planning. In International Planning Competition. International Conference on
Automated Planning and Scheduling.

Palacios, H. and Geffner, H. (2006). Compiling uncertainty away: Solving con-
formant planning problems using a classical planner (sometimes). In National
Conference on Artificial Intelligence (AAAI-06).

BIBLIOGRAPHY 171

Palacios, H. and Geffner, H. (2007). From conformant into classical planning:
Efficient translations that may be complete too. In International Conference on
Automated Planning and Scheduling (ICAPS 2007).

Pasula, H. M., Zettlemoyer, L. S., and Kaelbling, L. P. (2007a). Learning sym-
bolic models of stochastic domains. Journal of Artificial Intelligence Research,
29:309–352.

Pasula, H. M., Zettlemoyer, L. S., and Kaelbling, L. P. (2007b). Learning symbolic
models of stochastic domains. Journal of Artificial Intelligence Research, 29.

Pednault, E. P. D. (1994). ADL and the state-transition model of action. Journal
of Logic and Computation, 4(5):467–512.

Penberthy, J. and Weld, D. (1992). UCPOP: A sound, complete, partial order
planner for ADL. In Conference on Principles of Knowledge Representation
and Reasoning. KR-92.

Peot, M. and Smith, D. (1992). Conditional nonlinear planning. In International
Conference on AI Planning Systems, AIPS-92.

Poole, D. (1993). Probabilistic horn abduction and bayesian networks. Artificial
Intelligence, 64:81–129.

Pryor, L. and Collins, G. (1996). Planning for contingencies: A decision-based
approach. Journal of Artificial Intelligence Research, 4:287–339.

Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1:81–106.

Quinlan, J. and Cameron-Jones, R. (1995). Introduction of logic programs: FOIL
and related systems. New Generation Computing, Special issue on Inductive
Logic Programming.

Ramon, J. and Bruynooghe, M. (2001). A polynomial time computable metric
between point sets. Acta Informatica, 37(10):765–780.

Reddy, R. and Tadepalli, P. (1997). Learning goal-decomposition rules using exer-
cises. In International Conference on Machine Learning.

Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13:81–132.

Richardson, M. and Domingos, P. (2006). Markov logic networks. Machine Learn-
ing, 62:107–136.

Rintanen, J. (2003). Expressive equivalence of formalisms for planning with
sensing. In International Conference on Planning and Scheduling Systems.
ICAPS03.

Rivest, R. L. (1987). Learning decision lists. Machine Learning, 2(3):229–246.

172 BIBLIOGRAPHY

Rodrı́guez-Moreno, M. D., Borrajo, D., Oddi, A., Cesta, A., and Meziat, D. (2004).
Ipss: A problem solver that integrates planning and schedulin g. Third Italian
Workshop on Planning and Scheduling.

Rosenbloom, P. S., Newell, A., and Laird, J. E. (1993). Towards the knowledge
level in Soar: the role of the architecture in the use of knowledge. MIT Press,
Cambridge, MA, USA.

Russell, S. J. and Norvig, P. (1995). Artificial Intelligence: A Modern Approach,
chapter 3, pages 59–94. Prentice Hall, NJ.

Samuel, A. L. (1959). Some studies in machine learning using the game of check-
ers. IBM Journal of Research and Development, 3(3):211–229.

Sanner, S. and Boutilier, C. (2006). Probabilistic planning via linear value-
approximation of first-order MDPs. In International Planning Competition. In-
ternational Conference on Automated Planning and Scheduling.

Sapena, O. and Onandı́a, E. (2008). Planning in highly dynamic environments:
an anytime approach for planning under time constraints. Applied Intelligence,
29:90–109.

Sato, T. and Kameya, Y. (2001). Parameter learning of logic programs for symbol-
icstatistical modeling. Journal of Artificial Intelligence Research, pages 391–
454.

Sebag, M. (1997). Distance induction in first order logic. In Džeroski, S. and
Lavrač, N., editors, International Workshop on Inductive Logic Programming,
volume 1297, pages 264–272. Springer-Verlag.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press,
Princeton, New Jersey.

Shen, W. and Simon (1989). Rule creation and rule learning through environmental
exploration. In International Joint Conference on Artificial Intelligence, IJCAI-
89, pages 675–680.

Shortliffe, E. H. (1976). Computer Based Medical Consultations: MYCIN. Else-
vier, New York, USA.

Simmons, R. (1990). Concurrent planning and execution for a walking robot. Tech-
nical Report CMU-RI-TR-90-16, Robotics Institute, Pittsburgh, PA.

Simmons, R. (1994). Structured control for autonomous robots. IEEE Transactions
on Robotics and Automation, 10(1).

Smith, D. E. and Weld, D. S. (1998). Conformant graphplan. In National confer-
ence on Artificial intelligence, AAAI-98.

BIBLIOGRAPHY 173

Stentz, A. (1994). Optimal and efficient path planning for partially-known envi-
ronments. In IEEE International Conference on Robotics and Automation.

Sussman, G. J. (1975). A Computer Model of Skill Acquisition. Elsevier Science
Inc., New York, NY, USA.

Teichteil-Konigsbuch, F., Infantes, G., and Kuter, U. (2008). Rff: A robust, ff-
based mdp planning algorithm for generating policies with low probability of
failure. In International Planning Competition. International Conference on
Automated Planning and Scheduling.

Tran, D.-V., Nguyen, H.-K., Pontelli, E., and Son, T. C. (2008). Cpa(c)/(h): Two
approximation-based conformant planners. In International Planning Competi-
tion. Fourteenth International Conference on Automated Planning and Schedul-
ing.

van Beek, P. and Chen, X. (1999). CPlan: A constraint programming approach
to planning. In National Conference on Artificial Intelligence, AAAI99, pages
585–590.

van Lent, M. and Laird, J. (2001). Learning procedural knowledge through obser-
vation. In International conference on Knowledge capture.

Veloso, M., Carbonell, J., Pérez, A., Borrajo, D., Fink, E., and Blythe, J. (1995).
Integrating planning and learning: The PRODIGY architecture. JETAI, 7(1):81–
120.

Veloso, M. M. and Carbonell, J. G. (1993). Derivational analogy in prodigy: Au-
tomating case acquisition, storage, and utilization. Machine Learning, 10:249–
278.

Vidal, V. (2004). A lookahead strategy for heuristic search planning. In Interna-
tional Conference on Automated Planning and Scheduling (ICAPS 2004).

Wang, C., Joshi, S., and Khardon, R. (2007). First order decision diagrams for
relational mdps. In International Joint Conference on Artificial Intelligence,
IJCAI-07.

Wang, X. (1994). Learning planning operators by observation and practice. In
International Conference on AI Planning Systems, AIPS-94.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, King’s
College, Oxford.

Weld, D. S., Anderson, C. R., and Smith, D. E. (1998). Extending graphplan to
handle uncertainty and sensing actions. In National Conference on Artificial
Intelligence, AAAI-98.

174 BIBLIOGRAPHY

Wellman, M. P., Breese, J. S., and Goldman, R. P. (1992). From knowledge bases
to decision models. The Knowledge Engineering Review, 7(1):35–53.

Winner, E. and Veloso, M. (2003). Distill: Towards learning domain-specific plan-
ners by example. In International Conference on Machine Learning, ICML’03.

Wu, J.-H., Kalyanam, R., and Givan, R. (2008). Stochastic enforced hill-climbing.
In International Conference on Automated Planning and Scheduling, ICAPS
2008, Sydney, Australia.

Xu, Y., Fern, A., and Yoon, S. W. (2007). Discriminative learning of beam-search
heuristics for planning. In International Joint Conference on Artificial Intelli-
gence.

Yang, Q., Wu, K., and Jiang, Y. (2007). Learning action models from plan traces
using weighted max-sat. Artificial Intelligence Journal, 171:107–143.

Yoon, S., Benton, J., and Kambhampati, S. (2008). An online learning method
for improving over-subscription planning. In International Conference on Auto-
mated Planning and Scheduling (ICAPS-2008).

Yoon, S., Fern, A., and Givan, B. (2007a). Ff-replan: A baseline for probabilistic
planning. In International Conference on Automated Planning and Scheduling
(ICAPS ’07).

Yoon, S., Fern, A., and Givan, R. (2002). Inductive policy selection for first-order
MDPs. In Conference on Uncertainty in Artificial Intelligence, UAI02.

Yoon, S., Fern, A., and Givan, R. (2006). Learning heuristic functions from re-
laxed plans. In International Conference on Automated Planning and Schedul-
ing (ICAPS-2006).

Yoon, S., Fern, A., and Givan, R. (2007b). Using learned policies in heuristic-
search planning. In International Joint Conference on Artificial Intelligence.

Younes, H., Littman, M. L., Weissman, D., and Asmuth, J. (2005). The first prob-
abilistic track of the international planning competition. Journal of Artificial
Intelligence Research, 24:851–887.

Zelle, J. and Mooney, R. (1993). Combining FOIL and EBG to speed-up logic
programs. In International Joint Conference on Artificial Intelligence. IJCAI-
93.

Zimmerman, H. (1990). Fuzzy sets, decision making, and expert systems. Kluwer
Academic Publishers, Boston, USA.

Zimmerman, T. and Kambhampati, S. (2003). Learning-assisted automated plan-
ning: looking back, taking stock, going forward. AI Magazine, 24:73 – 96.

	Acknowledgements
	Resumen
	Abstract
	Introduction
	Overview
	Objectives
	Reader's guide to the thesis

	I State of the art
	Classical planning
	Introduction
	The classical planning task
	The conceptual model
	The representation languages
	The algorithms
	The implementations
	Discussion

	Learning for classical planning
	Introduction
	Learning techniques
	Inductive Logic Programming
	Explanation Based Learning
	Case Based Reasoning

	Learning planning search control
	Learning macro-actions
	Learning planning cases
	Learning control rules
	Learning generalized policies
	Learning hierarchical knowledge
	Learning heuristic functions

	Learning planning domain models
	Discussion

	Planning under uncertainty
	Introduction
	The conformant planning task
	The conceptual model
	The representation language
	The algorithms
	The implementations

	The contingent planning task
	The conceptual model
	The representation languages
	The algorithms
	The implementations

	The probabilistic planning task
	The conceptual model
	The representation languages
	The algorithms
	The implementations

	The conformant probabilistic planning task
	The conceptual model
	The representation language
	The algorithms
	The implementations

	The contingent probabilistic planning task
	The conceptual model
	The representation language
	The algorithms
	The implementations

	Interleaving planning and execution
	Planning
	Execution
	Planning and execution in autonomous systems

	Discussion

	Learning for planning under uncertainty
	Introduction
	Learning techniques
	Learning Stochastic Logic Programs
	Learning Bayesian Logic Programs
	Learning Markov Logic Networks
	Reinforcement Learning

	Learning planning search control
	Learning planning domain models
	Discussion

	II Integrating planning, execution and learning for planning under uncertainty
	Learning instances success for robust planning
	Introduction
	Planning
	Execution
	Learning
	Exploitation of the learned knowledge
	Evaluation
	Discussion

	pela: Planning, Execution and Learning Architecture
	Introduction
	The Planning, Execution and Learning architecture
	Planning
	Execution
	Preliminary approach
	Current approach

	Learning
	Preliminary Approach
	Current Approach

	Exploitation of the learned knowledge
	Compilation to a Metric Representation
	Compilation to a probabilistic representation

	Evaluation
	The domains
	Correctness of the pela models
	pela off-line performance
	pela on-line performance

	Discussion

	Learning actions durations with pela
	Introduction
	Learning actions durations with pela
	Planning
	Execution
	Learning
	Exploitation of the learned knowledge

	Evaluation
	Correctness of the duration models
	Performance of the duration models

	Discussion

	III Conclusions and Future Work
	Conclusions
	Summary
	Contributions

	Future Work
	Bibliography

