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RESUMEN EXTENDIDO

En este resumen extendido se presenta una descripción de los aspectos más

relevantes de la presente Tesis doctoral. En particular, se describe el área de interés

y plantea la motivación del trabajo realizado. Posteriormente, se explicarán las

contribuciones originales más relevantes para, finalmente, establecer las conclusiones

más significativas y enumerar una serie de ĺıneas de investigación que surgen a partir

del trabajo realizado.

Motivación de la Tesis

En un área de investigación tan compleja como la visión artificial, esta Tesis se

centra en dos campos bien definidos: segmentación y reconocimiento.

La segmentación es la tarea de buscar grupos de ṕıxeles relacionados (regiones)

en una imagen y, aunque constituye uno de los problemas más antiguos y estudi-

ados en visión artificial, aún no puede considerarse cerrado. En estad́ıstica, este

problema se conoce habitualmente como clustering o agrupamiento y se trata de un

campo muy estudiado, en el que se han propuesto cientos de diferentes algoritmos

[Jain and Dubes, 1988], [Jain et al., 2004]. En esta Tesis, la tarea de segmentación

se ha abordado desde dos puntos de vista diferentes: a) segmentación no supervisada

en secuencias audiovisuales y b) segmentación supervisada con etiquetado semántico.

La segmentación no supervisada divide una imagen en un conjunto de segmentos

que son homogéneos con respecto a una o varias medidas de homogeneidad. Por

tanto, estos algoritmos se relacionan con las primeras etapas del sistema visual hu-

mano.

En la primera parte de la Tesis, se propondrán algoritmos para la segmentación

no supervisada de imágenes en secuencias audiovisuales, escenario en el cual se

dispondrá de dos tipos de información: información estática relativa a propiedades

de la imagen tales como el color o la textura, e información dinámica asociada al

movimiento existente en la escena.
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En contraposición, la segmentación con etiquetado semántico emplea información

previa y aprendida sobre los objetos a segmentar, de modo que el objetivo de dichos

algoritmos no es únicamente proporcionar un conjunto de regiones sino también

el etiquetado o categoŕıa semántica (avión, cielo, coche, carretera, etc.) a la que

pertenece cada ṕıxel de una imagen. Por lo tanto, este campo de la visión artifi-

cial está fuertemente interrelacionado con otras tareas como el reconocimiento y la

detección de objetos, siendo necesario un entrenamiento previo de los algoritmos a

partir de muestras etiquetadas.

Por otro lado, el problema de reconocimiento en imágenes supone un paso más allá

de la simple detección de instancias, pues propone la caracterización de conceptos

semánticos genéricos. Es, por tanto, necesaria una capacidad de generalización a

partir de distintas realizaciones de una misma categoŕıa (por ejemplo, diferentes

instancias del concepto coche pueden ser muy diferentes en función de aspectos tales

como la escala, el punto de vista o variaciones propias del objeto: color, forma, etc.).

En esta Tesis, el reconocimiento de imágenes se ha enfocado como un problema de

detección binario, de modo que una misma imagen puede contener varias categoŕıas

semánticas.

La segunda parte de la Tesis explorará el problema de la representación de

imágenes, el cual proporcionará un marco para abordar las tareas particulares del

reconocimiento, detección y segmentación en categoŕıas semánticas.

Todos los algoritmos desarrollados en la Tesis hacen uso de modelos prob-

abiĺısticos generativos, los cuales tratan de modelar la función de densidad de

probabilidad conjunta de los datos y sus etiquetas. Partiendo de soluciones

estad́ısticas de carácter general bien conocidas en la literatura, se han desarrollado

extensiones y modelos avanzados para el campo de la visión artificial.

Metodoloǵıa y aportaciones originales de la Tesis

Como se ha comentado, esta Tesis puede dividirse en dos partes: en la primera
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se han desarrollado algoritmos de segmentación espacio-temporal de imágenes en

secuencias audiovisuales, mientras que en la segunda, se han diseñado modelos prob-

abiĺısticos para el reconocimiento y segmentación de objetos en imágenes.

Con respecto a la segmentación espacio-temporal, el escenario de trabajo es el

siguiente: una vez que un v́ıdeo se ha dividido en varias tomas (entiéndase como

toma un grupo de planos capturados sin cortes en la grabación, y que representan

una acción continua en tiempo o espacio), varios planos consecutivos (necesarios

para la estimación de movimiento) son extráıdos en cada toma con el objetivo de

proporcionar una segmentación sobre un plano particular (considerado el plano clave

o keyframe). En este proceso se persiguen varios objetivos, los cuales constituyen

nuestras contribuciones originales:

• Partiendo de una solución probabiĺıstica bien conocida como son los Modelos

de Mezclas [Titterington et al., 1985], se ha propuesto un algoritmo que fusiona

dos fuentes de información obtenidas de las secuencias de video: espacial (color,

localización) y temporal (movimiento). La incorporación de información de

movimiento ha permitido obtener regiones con mayor significado semántico,

pues regiones “a priori” heterogéneas pueden ser combinadas si exhiben un

patrón común de movimiento.

• Para la estimación de movimiento se han empleado técnicas robustas de block-

matching que proporcionan una adaptación a diferentes tipos de movimiento:

magnitud y patrones, escenas con fondos complejos, variaciones de escala, etc.

• Se ha diseñado un algoritmo jerárquico que permite implementar una estrategia

de división (splitting) sobre las regiones. De este modo, uno de los parámetros

libres en los modelos de mezclas, como es el número de componentes, es au-

tomáticamente calculado. Además, la utilización de distribuciones “a priori”

ha permitido manejar tanto las nuevas componentes (nuevas regiones en la

segmentación) como aquellas que no han sido modificadas.
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• Por último, el proceso de división de regiones es controlado mediante un módulo

de decisión que incorpora caracteŕısticas de medio-nivel (mid-level features)

espacio-temporales. Dichas caracteŕısticas modelan propiedades encontradas

en los conceptos u objetos del mundo real tales como regularidad, adyacencia

o patrones habituales de movimiento (traslación, rotación, etc.).

Los algoritmos desarrollados en la primera parte de la Tesis han sido

evaluados en una base de datos orientada a la extracción de información

multimedia como es la base de datos de noticias de TRECVID 2006

[National Institute of Standards and Technology, 2006]. En nuestros experi-

mentos se ha demostrado cómo las diferentes contribuciones permiten obtener

segmentaciones más cercanas a ejemplos anotados por humanos, tanto desde un

punto de vista general como utilizando evaluaciones orientadas al objeto u objetos

de interés en la escena.

En la segunda parte de la Tesis se ha estudiado la aplicación de Modelos de

Tópicos Latentes a la representación de imágenes. Estos modelos se basan en un

proceso generativo que representa las imágenes como mezclas de una serie de tópicos

de valor semántico, los cuales dan lugar a caracteŕısticas visuales bien definidas. Aśı,

es de esperar que una imagen se pueda expresar como una mezcla de tópicos, por

ejemplo, avión o cielo. A su vez, cada tópico en particular dará lugar a descriptores vi-

suales en ciertas áreas de la imagen. Los dos ejemplos más caracteŕısticos encontrados

en la literatura son Probabilistic Latent Semantic Analysis o PLSA [Hofmann, 2001],

y Latent-Dirichlet Allocation o LDA [Blei et al., 2003]. Ambos métodos, concebidos

en su origen para analizar textos, se apoyan en el paradigma de Bolsa de Palabras

(Bag of Words) [Sivic and Zisserman, 2003, Csurka et al., 2004], según el cual cono-

cer el orden de las palabras dentro de un documento no es necesario para lograr una

correcta catalogación. Esta hipótesis que no es del todo cierta para documentos tex-

tuales, lo es aún menos en imágenes, donde el contenido visual se organiza siguiendo

una estructura espacial muy bien definida.
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Por lo tanto, en esta Tesis se han extendido dichos modelos para lograr una

adaptación satisfactoria al problema de representación de imágenes que nos permita

obtener información relevante tal como la aparición de los tópicos en las imágenes

(clasificación o reconocimiento) o incluso la detección del área en la que aparece cada

tópico (segmentación). En particular, se han propuesto dos modelos Region-Based

Latent Topic Model o RBLTM y Region-Based Latent Dirichlet Allocation o RBLDA,

en los que destacan las siguientes contribuciones:

• Extienden los modelos básicos PLSA y LDA para incorporar elementos que

modelen la distribución espacial de los tópicos en una imagen.

• Incorporan segmentaciones no supervisadas como las desarrolladas en la

primera parte de la Tesis y modelos cooperativos que permiten el intercam-

bio de información entre las regiones de una imagen. Este proceso permite

generar nuevas segmentaciones de valor semántico en las que tópicos o concep-

tos relacionados (por ejemplo cielo/avión) tienden a aparecer espacialmente

conectados.

• Mejoran los modelos básicos de apariencia, aquellos implementados mediante

modelos factorizables y distribuciones multinomiales, con nuevas propuestas

que permiten capturar las relaciones no lineales entre descriptores locales que

pertenecen a la misma región.

• Proponen marcos de trabajo flexibles para escenarios no supervisados, par-

cialmente y totalmente supervisados. Además, admiten dos tipos de anota-

ciones: etiquetas globales a nivel de imagen y etiquetado a nivel de región,

bien mediante la utilización de bounding-boxes, o bien mediante el empleo de

segmentaciones a nivel pixelar.

• Utilizan algoritmos de entrenamiento basados en inferencia variacional

[Jordan et al., 1999], los cuales permiten resolver modelos gráficos muy com-

plejos a través de aproximaciones más sencillas. Aśı, en cada caso un mod-
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elo variacional simplificado trata de aproximarse al original de forma que la

divergencia de Kullback-Leibler [Kullback and Leibler, 1951] entre ambos se

minimice.

De nuevo, los modelos desarrollados se han evaluado en bases de datos estándares

utilizadas en visión artificial. En particular, las bases de datos empleadas pertenecen

a las tareas de clasificación y segmentación de imágenes de la competición PASCAL

VOC 2010 [Everingham et al., 2010]. Los modelos generados han sido comparados

con varios algoritmos tomados como referencia, aśı como con otras alternativas

encontradas en la literatura de Modelos de Tópicos Latentes. Por último, cabe

destacar la inclusión de una comparativa de nuestra mejor propuesta frente a los

resultados oficiales de la competición.

Conclusiones

A lo largo de la Tesis se han propuesto un serie de modelos generativos para

solventar dos problemas que, si bien son muy conocidos, aún permanecen abiertos

en visión artificial: la segmentación y la representación de imágenes.

Como se ha mencionado, la segmentación se ha planteado desde dos puntos de

vista diferentes:

En el caso de la segmentación no supervisada se ha propuesto un algoritmo que

trabaja sobre secuencias audiovisuales, estima el movimiento, y fusiona información

temporal y espacial (color, coordenadas espaciales y vectores de movimiento) para

dar lugar a la segmentación de un plano clave o keyframe. El algoritmo propuesto se

basa en Modelos de Mezcla de Gaussianas a los que se incorporan distribuciones “a

priori” sobre los parámetros con el fin de hacerlo adaptativo. La solución adaptativa

permite, bajo un esquema jerárquico, proponer una solución iterativa de división

(splitting) mediante la cual nuevas regiones se van añadiendo en cada iteración. Aśı,

se ha logrado ajustar de modo automático el número de componentes de la mezcla,

parámetro inherentemente libre en este tipo de propuestas.
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Además, se ha desarrollado un módulo de decisión que utiliza descriptores espacio-

temporales de medio-nivel (mid-level features), el cual ha resultado clave para con-

siderar la inclusión o no de nuevas regiones en cada caso. Dado que las caracteŕısticas

de medio nivel modelan propiedades encontradas en los objetos/conceptos del mundo

real, su empleo ha permitido lograr segmentaciones más cercanas a las que haŕıa un

ser humano.

Las pruebas realizadas sobre la base de datos TRECVID 2006 han mostrado que el

algoritmo propuesto mejora los resultados de otras técnicas encontradas en el estado

del arte. Además, a tenor de los resultados, podemos atribuir una influencia notable

al módulo de decisión que emplea las caracteŕısticas de medio nivel que modelan

propiedades de los objetos y los patrones de movimiento en el mundo real. Sin

embargo, la evaluación objetiva arroja ciertas dudas, pues los resultados numéricos

no pueden considerarse concluyentes. Desde nuestro punto de vista esto es debido,

no tanto a los propios resultados del algoritmo, como al hecho de que las medidas

de calidad empleadas en la evaluación no se ajustan siempre a la percepción que los

humanos tienen de una escena.

Los algoritmos de segmentación no supervisada constituyen una de las entradas

a nuestras propuestas en la segunda parte de la Tesis, enfocadas al análisis y rep-

resentación de imágenes. En este caso, tomando como base los modelos de tópicos

latentes, se han propuesto extensiones de los mismos que permiten modelar la local-

ización de los conceptos en las imágenes. El primero de los algoritmos propuestos,

RBLTM, propone un modelo cooperativo en el que las regiones de una imagen in-

teractúan para dar lugar a una representación espacialmente coherente de la misma.

Nuestros experimentos han demostrado cómo el RBLTM mejora al algoritmo básico

sobre el que se ha implementado, PLSA.

Sin embargo, ciertas limitaciones detectadas en el RBLTM han impulsado el

diseño de otro modelo más avanzado: RBLDA. Éste, basado ahora en LDA, introduce

ciertas soluciones para las debilidades del primero, pudiendo destacar aspectos tales

como: la introducción de modelos sobre la distribución de los tópicos a nivel de un
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corpus de imágenes (en PLSA y RBLTM únicamente se incluyen modelos a nivel de

cada imagen), modelos avanzados de apariencia que permiten exploter las relaciones

entre descriptores que pertenecen a una misma región, un modelo de contexto nuevo

que ahora permite relaciones entre regiones que pertenecen a diferentes tópicos, la

posibilidad de introducir salidas de otros clasificadores, etc.

Nuestros experimentos en clasificación y segmentación de imágenes han de-

mostrado el elevado salto en rendimiento que RBLDA supone con respecto, tanto

a los modelos tomados como base, como a otras alternativas del estado del arte

(incluyendo RBLTM).

Sin embargo, en un escenario no supervisado como el de descubrimiento de con-

ceptos (topic discovery), los resultados han sido sorprendentemente diferentes. En

este caso, en el que se tratan de detectar conceptos de interés en un conjunto de

imágenes no etiquetadas, aproximaciones más simples que RBLDA obtienen mejores

resultados. En particular, nuestros experimentos han demostrado que el algoritmo

RBLTM constituiŕıa la mejor solución en esta tarea, si bien todo aquél modelo gen-

erativo que utilice distribuciones de apariencia más simples mejora los resultados de

RBLDA.

Por último, cabe destacar la comparativa ofrecida con respecto a sistemas

oficiales evaluados en PASCAL VOC 2010. Es importante destacar cómo estas

propuestas se asocian a sistemas complejos que utilizan numerosos descriptores

y varios tipos de clasificadores, con lo que resulta bastante complicado realizar

comparativas con los algoritmos propuestos (los cuales emplean un número muy

limitado de descriptores). Aún aśı, nuestros resultados son aceptables en clasificación

(en torno a la mediana de las propuestas oficiales) y muy buenos en segmentación

(por encima del 75% de las propuestas).

Ĺıneas futuras

En esta sección se comentarán las ĺıneas de investigación más prometedoras que
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surgen como continuación del trabajo realizado en la presente Tesis.

Con respecto al algoritmo de segmentación espacio-temporal, una dirección clara

de trabajo es la aplicación del mismo al tracking o seguimiento de objetos en v́ıdeo. El

mismo modelo probabiĺıstico adaptativo que se emplea para la segmentación iterativa

podŕıa adaptarse para el seguimiento de objetos a lo largo de planos consecutivos.

Además, esta aplicación requeriŕıa estudiar técnicas de detección de novedad para

manejar la entrada o salida de objetos en la escena.

Las ventajas de esta nueva alternativa en el problema de tracking seŕıan vari-

adas: la segmentación se podŕıa refinar mediante la utilización de más de un plano,

se podŕıan estudiar los patrones de movimiento de los objetos a lo largo de una toma

y aśı caracterizar conceptos mediante información espacio-temporal (para clasifi-

cación de imágenes, por ejemplo), se podŕıan utilizar los resultados obtenidos para

codificación de v́ıdeo basada en objetos, etc.

Además, como se ha comentado con anterioridad, dado que las medidas de evalu-

ación no son del todo concluyentes, seŕıa interesante aplicar y evaluar este algoritmo

a un problema más complejo de recuperación de información multimedia. Si bien el

modelo propuesto se ha utilizado en sistemas de análisis v́ıdeo como los enviados a

la iniciativa TRECVID 2009 [González-Dı́az et al., 2009b], resulta dif́ıcil evaluar su

influencia en los resultados finales al tratarse de sólo un módulo dentro de un sistema

de elevada complejidad.

Los modelos generativos para la representación de imágenes pueden mejo-

rarse de igual modo. La extensión más sencilla consistiŕıa en la utilización de

nuevos descriptores sobre el modelo, como descriptores de forma de las regiones.

Otra ĺınea más compleja consistiŕıa en la incorporación de modelos de partes

[Felzenszwalb et al., 2010b, Felzenszwalb et al., 2010a], pues han demostrado un el-

evado rendimiento en tareas de detección de objetos.

Atendiendo al modelo teórico de base, nuevos niveles de la jerarqúıa podŕıan ser

añadidos dando lugar a aproximaciones similares a los Hierarchical Dirichlet Pro-

cesses o HDP [Teh et al., 2006], los cuales explotan correlaciones entre documentos
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pertenecientes al mismo corpus.

Finalmente, cabe destacar una ĺınea de trabajo muy prometedora: la adaptación

de los modelos de tópicos latentes para el modelado espacio-temporal de conceptos

en secuencias de v́ıdeo.



ABSTRACT

This PhD. Thesis consists of two well differentiated parts, each of them focusing

on one particular field of Computer Vision. The first part of the document considers

the problem of automatically generating image segmentations in video sequences in

the absence of any kind of semantic knowledge or labeled data. To that end, a blind

spatio-temporal segmentation algorithm is proposed that fuses motion, color and

spatial information to produce robust segmentations. The approach follows an itera-

tive splitting process in which well known probabilistic techniques such as Gaussian

Mixture Models are used as a core technique. At each iteration of the segmentation

process, some regions are split into new ones, so that the number of mixture compo-

nents is automatically set depending on the image content. Furthermore, in order to

keep in memory valuable information from previous iterations, prior distributions are

applied to the mixture components so that areas of the image that remain unchanged

are fixed during the learning process.

Additionally, in order to make decisions about whether or not to split regions

at the end of one iteration, we propose the use of novel spatio-temporal mid-level

features. These features model properties that are usually found in real-world objects

so that the resulting segmentations are closer to the human perception. Examples

of spatial mid-level features are regularity or adjacency, whereas the temporal ones

relate to well known motion patterns such as translation or rotation.

The proposed algorithm has been assessed in comparison to some state-of-the-art

spatio-temporal segmentation algorithms, taking special care of showing the influence

of each of the original contributions.

The second part of the thesis studies the application of generative probabilistic

models to the image representation problem. We consider “image representation” as

a concurrent process that helps to understand the contents in an image and covers

several particular tasks in computer vision as image recognition, object detection or

image segmentation. Starting from the well-known bag-of-words paradigm we study

the application of Latent Topic Models. These models were initially proposed in
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the text retrieval field, and consider a document as generated by a mixture of latent

topics that are hopefully associated to semantic concepts. Each topic generates in

turn visual local descriptors following a specific distribution.

Due to the bag-of-words representation, Latent Topic Models exhibit an impor-

tant limitation when applied to vision problems: they do not model the distribution

of topics along the images. The benefits of this spatial modeling are twofold: first, an

improved performance of these models in tasks such as image classification or topic

discovery; and second, an enrichment of such models with the capability of generating

robust image segmentations. However, modeling the spatial location of visual words

under this framework is not longer straightforward since one must ensure that both

appearance and spatial models are jointly trained using the same learning algorithm

that infers the latent topics.

We have proposed two Latent Topic Models, Region-Based Latent Topic Model

and Region-Based Latent Dirichlet Allocation that extend basic approaches to model

the spatial distribution of topics along images. For that end, previous blind segmen-

tations provide a geometric layout of an image and are included in the model through

cooperative distributions that allow regions to influence each other. In addition, our

proposals tackle several other aspects in topic models that enhance the image repre-

sentation. It is worth to mention one contribution that explores the use of advanced

appearance models, since it has shown to notably improve the performance in several

tasks. In particular, a distribution based on the Kernel Logistic Regression has been

proposed that takes into account the nonlinear relations of visual descriptors that lie

in the same image region.

Our proposals have been evaluated in three important tasks towards the total

scene understanding: image classification, category-based image segmentation and

unsupervised topic discovery. The obtained results support our developments and

compare well with several state-of-the-art algorithms and, even more, with more

complex submissions to international challenges in the vision field.
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Chapter 1

Introduction

1.1 Computer Vision

As defined in [Marr, 1982], “Vision is a process that produces from images of the

external world a description that is useful to the viewer and not cluttered with

irrelevant information”. From this definition one question arises: what is a useful

description? As discussed by Marr, it clearly depends on the specific purpose of the

vision, which is different for each animal in our world. While some animals show

a specific purpose in their vision systems, human vision is much more general and

complex. However, the presence of several special-purpose mechanisms in our vision,

such as suddenly guiding our eyes towards an unexpected movement, endorses this

idea. Hence, we can conclude that, since each animal has a specific purpose, the

image representation obtained by its visual system should be different.

What we surely know is that, of the five senses, vision is the one that processes

most of the data we receive. As estimated in [Davies, 2005], visual information is

being captured at our eyes at a rate of about 10 Megabits per second (Mbps). Much

of this information is redundant and is compressed by various layers in the visual

cortex, so that the higher centers of the brain only interpret a small fraction of the

data. However, this amount of information is indeed at least two orders of magnitude
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greater than the information received by any other sense.

The Computer Vision is the study of methods and techniques whereby artificial

vision systems can be constructed and usefully employed in practical applications.

It consequently embraces both the science and engineering of vision. [Davies, 2005].

The requirement on the amount of data to be processed becomes a big deal for

humans in order to get machines operating as our visual system does. Furthermore,

there is an important barrier that still restricts the performance of the machine

vision systems. Our brain possesses some 1010 cells (neurons), some of which have

about 10000 contacts or synapses with other neurons. If each neuron acts as a

type of microprocessor, our brain is in fact a supercomputer with a huge number of

processors working in parallel and sharing data.

Besides the computational requirements there are other underlying factors that

make vision such a difficult task to be carried out by machines. Computer vision

systems often face challenges such as scale change, variations on lighting conditions,

viewpoint changes, partial occlusion, deformation of non rigid objects or intra-class

variation in visual concepts. The reader can find some illustrative examples in Fig.

1.1.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 1.1: Some examples of challenges in Computer Vision: a) original image,

b) scale variation, c) varying lighting conditions d) partial occlusion e) viewpoint

change, f) object deformation and g) intra-class variation.
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1.2 Topics and applications in Computer Vision

Computer Vision is an area of research and engineering that covers a wide range

of particular tasks. Next, we provide a brief list of topics that have gained much

attention by the Computer Vision community:

(a) (b) (c)

(d) (e) (f)

Figure 1.2: Some examples of relevant topics in Computer Vision

• Detection of specific concepts: some expert systems detect instances of specially

interesting concepts such as faces, humans or cars. In general, these systems
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make use of ad-hoc detectors that are specially sensitive to discriminating fea-

tures of the concept. It constitutes a very traditional topic in video-surveillance,

assisted driving, etc. An example in human detection is shown in Fig. 1.2(a).

• Concept verification: in applications where the detection and localization of the

intended object is easy, this field is in charge of verifying if a selected region of

the image represents the concept of interest. An intuitive example is shown in

Fig. 1.2(b).

• Object categorization: Although it might look similar to the previous men-

tioned detection task, object categorization sets a much more ambitious pur-

pose: following a generic approach (in contrast to ad-hoc), to develop object

detectors and classifiers. We add the term classifier since some notion of a

multi-class problem is needed in the sense that a region of the image cannot

belong to more than one object (besides occlusions or other artifacts). This

topic is represented in Fig. 1.2(c).

• Identification: this topic involves retrieving an individual instance of a sub-

ject. It differs from object categorization in the sense that identification does

not need to generalize the appearance of a concept. It is represented in Fig.

1.2(d), where an individual instance of the concept street, Gran V́ıa Street, is

identified.

• Activity recognition: this field, very common in video surveillance, is in charge

of recognizing actions or activities occurring at a scene. Although it might

be likely to require motion information (video content) it is often easier to

infer actions from static content (images and static features). This topic is

illustrated in Fig. 1.2(e)

• Scene description: this topic conceives a scene as a whole and describes its

content with a set of general categorizing labels that can be shared across

many different images. An illustrative example is provided in Fig. 1.2(f).
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• Motion analysis: this field groups several activities related to the motion analy-

sis in video sequences such as the analysis of the camera motion or ego-motion,

the tracking of particular objects, or the optical flow computation.

• Image restoration: a particular area in Computer Vision that aims to minimize

the effect of different sources of noise from an image: optical blurring, camera

shaking, sensor noise, etc.).

Some of these topics are applications by themselves whereas others become parts

of more complex systems. As described in [Szeliski, 2011], Computer Vision is being

applied to several industrial and consumer-level applications. We next list some of

them:

• Optical Character Recognition (OCR): in document scanning or automatic

number plate recognition.

• Machine inspection: in industrial environments, machines inspect the state,

quality or position of pieces.

• 3D model building: fully automated construction of 3D models from aerial

photographs.

• Medical imaging: to perform automatic processing of images of the human

body (or parts and function thereof) for clinical purposes.

• Automotive safety: assistance elements that detect known or unexpected ele-

ments in the road (traffic signs, pedestrians, etc.).

• Professional content edition: to mix computer-generated elements with real

content by estimating a 3D model of the content in the original footage and

properly introducing the virtual elements in the scene.

• Motion capture: in computer animation, these systems capture motion from

real actors using vision-based techniques.
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• Surveillance: probably one of the most active areas that use Computer Vision,

not only for human surveillance but also for traffic control.

• Biometrics: for access authentication, Computer Vision and biometrics have

jointly evolved for the last decades (fingerprint, earprint ).

• Stitching: generating stitched panoramas from overlapping single photos.

• Exposure bracketing: under challenging lighting conditions, to generate a high

quality photo by merging photos taken at different exposures.

• Morphing: using morph transitions to convert images into others.

• 3D modeling: to generate 3D models from several 2D snapshots of an object.

• Face detection: in many photo cameras, faces are detected to improve the

quality of that specific area of the scene.

7
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Figure 1.3: Structural representation of the topics involved in Computer Vision.

Topics are roughly positioned on the horizontal axis depending on whether they are

more closely related to image-based (left), geometric-based (middle) or appearance-

based (right) representations. Taken from [Szeliski, 2011]

8
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1.3 Focus of the Thesis

In this section, the specific focus of the Thesis is discussed. In order to establish

the main objectives of the Thesis it is useful to locate our contributions and areas

of work in the vast field of Computer Vision. Fig. 1.3, taken from [Szeliski, 2011],

shows a structural representation of the topics involved in Computer Vision (some

of them previously mentioned in section 1.2). Topics are roughly positioned on the

horizontal axis depending on whether they are more closely related to image-based

(left), geometric-based (middle) or appearance-based (right) representations. This

Thesis focuses on two specific topics: Segmentation (5) and Recognition (14). As

shown in the figure, both of them locate mainly on the image-based representation

and, for the particular case of recognition, on the geometry-based representation to

some extent.

Image segmentation is the task of finding groups of pixels that ‘’go together”.

In statistics, this problem is known as cluster analysis and is a widely studied area

with hundreds of different algorithms [Jain and Dubes, 1988], [Jain et al., 2004]. In

Computer Vision, image segmentation is one of the oldest and most widely studied

problems. In this Thesis, segmentation is studied from two points of views: a) blind

segmentation of images in video sequences, and b) category-based segmentation in

images.

Blind image segmentation divides an image into a set of segments that are ho-

mogeneous with respect to either one or a combination of similarity measures. It

therefore constitutes an unsupervised approach in which no prior knowledge is re-

trieved about the contents and can be related to the lower levels of the Human

Visual System (HVS). In this Thesis, this problem is analyzed on video content, so

that motion information is also available to generate the image segmentations.

In contrast, category-based image segmentation makes use of higher levels of the

HVS in the sense that some prior knowledge about the objects to be segmented

is assumed. In this case, the objective is not simply dividing images into a set

9
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of homogeneous regions, but associating a group of pixels to one among a set of

predefined semantic categories (e.g. aeroplane, sky, car, road, etc.). Hence, this topic

is closely related to object recognition and requires performing supervised training

with labeled data.

Since recognition still represents a broad topic in Computer Vision, this Thesis

particularly focuses on the more specific topic of category recognition. The generic

category recognition problem goes beyond the instance recognition problem and pro-

poses the characterization and detection of instances of the same category. Obviously,

each instance might show notable differences with others of the same category and

might have some individual properties, so that recognition algorithms must be able

to both extract features that are consistently associated to the category and learn

different instantiations of the same category.

Although the two areas involved in the Thesis might seem to be unrelated, they

are, in fact, strongly connected due to the fact that blind segmentation approaches

are then incorporated in the proposed models for image representation, category

recognition and category-based image segmentation as prior information about the

spatial layout of the image. Moreover, category-based segmentation refines these

previous blind segmentations and further associates each region to a semantic cate-

gory.

1.4 Goals, contributions and structure of the Thesis

Two are the main goals of this Thesis: 1) to develop blind image segmentation

algorithms for video sequences; and 2) to design probabilistic frameworks for image

representation and category-based segmentation. Here we briefly summarize the

main content of each chapter:

Chapter 2 aims at developing spatio-temporal segmentation algorithms for video

sequences. We first briefly discuss the state-of-the-art on spatio-temporal image seg-

mentation before presenting our contributions. In particular, our proposed solution

10
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is based on a well known probabilistic clustering technique: the Mixture of Gaus-

sians. The scenario is as follows: first, a video sequence is divided into shots; then,

for each shot, some frames are extracted that help to provide a segmentation of one

frame, called the keyframe. In particular, we pursue the following goals:

• The algorithm should fuse two sources of information: spatial (color) and tem-

poral (motion) data obtained from video sequences. The incorporation of tem-

poral information will provide semantically more meaningful segmentations in

which spatially heterogeneous regions will be merged if they show to move

coherently.

• A robust motion estimation module has to be designed that performs well

on varied video content including: varied patterns and magnitude of motion,

homogeneous and cluttered scenes, scale variations, etc.

• The probabilistic framework must provide a strategy to split regions into new

ones at each iteration. This process, carried out by means of the inclusion of

prior distributions, should keep unaltered the remaining regions (those ones

that have not been split).

• The segmentation approach will make use of novel spatio-temporal mid-level

features that model properties that are found in real-world objects and motion

patterns. This kind of features will be used to make decisions on whether add

or not new regions during the splitting process to end up with semantically

meaningful segmentations.

The obtained segmentation will become the basis for further processing such as

object detection, scene recognition or object tracking.

Chapter 3 describes our experiments on the blind segmentation algorithm. A

challenging video database has been chosen that has been specifically designed for

multimedia information retrieval rather than for image segmentation purposes. Tra-

ditional image segmentation databases are normally specially tailored for the seg-

11
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mentation task and do not contain more challenging conditions that are present in

real problems. Hence, we sincerely believe that the application of the segmenta-

tion algorithms over this database is productive and meaningful, although does not

provide so pretty results.

On Chapter 4 we explore probabilistic models for image representation. We have

carefully selected the expression “representation” since the proposed models provide

useful cues for several Computer Vision tasks such as image classification and object

recognition, unsupervised topic discovery and category-based image segmentation.

Generative probabilistic models constitute a suitable paradigm for such tasks and,

in particular, our proposals are based on well known Latent Topic Models, such as

Probabilistic Latent Semantic Analysis [Hofmann, 2001] and Latent Dirichlet Allo-

cation [Blei et al., 2003]. Latent topic models are generative techniques that explain

images relying on the Bag-of-Words (BoW) assumption, which considers documents

as sets of unordered visual descriptors. Furthermore, they consider some latent vari-

ables that are hopefully associated to the semantic concepts that are present in the

images.

In this chapter, after reviewing the literature concerning several fundamental as-

pects, two algorithms are proposed: the Region-Based Latent Topic Model (RBLTM)

and the Region-Based Latent Dirichlet Allocation (RBLDA), which:

• Extend basic Latent Topic Models in order to model the spatial distribution of

topics (concepts) in images.

• Incorporate previous blind image segmentations and provide cooperative mod-

els so that information is shared among regions in an image. This step will

provide coherent image representations so that semantically related concepts

(e.g. sky/aeroplane) tend to appear spatially connected.

• Enhance the appearance model of basic approach by handling the relations

between descriptors that lie in the same region. The original proposals used

12
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multinomial or discrete distributions and assumed independence between the

image descriptors, what leads to non optimal solutions and poor performance.

• Provide flexible frameworks that are able to manage unsupervised, partially

supervised and supervised tasks. Furthermore, two kind of labels are accepted:

image-level annotations or tags, and region-based annotations, by means of

bounding boxes or pixel-wise ground truth segmentations.

• Develop simple and closed methods for learning and inference. In many cases,

some of the expressions are too complex or even untractable; however approxi-

mate inference methods and lower bounds will be proposed that optmize model

parameters in a feasible way.

On Chapter 5 the proposed models are evaluated in several tasks, either unsu-

pervised (topic discovery) or supervised (classification, segmentation) environments.

In particular, official PASCAL VOC 2010 databases [Everingham et al., 2010] will

be used so that our results can be fairly compared to other state-of-the-art methods

and systems.

Finally, on Chapter 6 we summarize the main contributions of the Thesis, draw

our conclusions and outline future lines of research.
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Chapter 2

Spatio-temporal image segmentation

in video sequences

2.1 Introduction

Automatic video analysis and high-level concept detection systems make use of low-

level features to infer annotations of the content which bridge what is known as “the

Semantic Gap” [Smeulders et al., 2000]. Considering a keyframe as the information

unit, two kinds of features can be extracted: global features and local features. The

first ones consider the whole frame to extract a feature vector, while the second are

typically based on a segmentation step that divides the frame into spatial regions

exhibiting a certain degree of homogeneity. This second case requires robust seg-

mentation systems to produce semantically meaningful regions whose shape, color,

texture or motion help to classify or recognize multimedia concepts.

Furthermore, the segmentation of objects in images and video sequences plays

an important role in computer vision and multimedia processing, since it lies at the

base of many scene analysis approaches. In particular, the segmentation step becomes

crucial in applications like content-based image and video retrieval, video tracking

[Goldberger and Greenspan, 2006], content-based scalable video coding, perceptual
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video coding or interactive video.

Classic image segmentation algorithms, such as [Kwok and Constantinides, 1997],

usually lead to over-segmentations since the spatial features (color, texture,...) are

not sufficient to produce meaningful segmentations in the presence of varying illumi-

nation, cluttered backgrounds or complex objects composed of many heterogeneous

regions. In these cases, the task of grouping regions to produce objects/concepts is

entrusted to higher levels of inference.

In addition, when motion is present, it can be used to perform more meaningful

segmentations, which are closer to semantic concepts. Spatio-temporal segmentation

algorithms use both types of information (spatial and temporal) to produce coherent

organizations of pixels, relying on the assumption that those objects whose motion

is different than that of the camera are relevant or important. Examples of this kind

of algorithms can be found in [Greenspan et al., 2004] and [Wang et al., 2005].

This chapter describes the proposed blind spatio-temporal segmentation algo-

rithm, an iterative approach that is based on the combination of an adaptive cluster-

ing technique and a splitting stage that decides whether or not to add new regions to

the partition. Two are the main contributions of this work: 1) the adaptive cluster-

ing is performed by a mixture model that successfully handles both prior information

from the previous iteration and newly detected regions in the scene and, 2) a de-

cision stage that incorporates two kind of features, low and mid-level features, to

decide if new regions should be added to the partition or not. We will demonstrate

that mid-level features, by modeling spatial and temporal properties of real world

objects, help to produce more meaningful segmentations in which regions are closer

to semantic concepts.

The remainder of this chapter is organized as follows: firstly, section 2.2 presents

a compilation of the most representative related work in spatio-temporal image seg-

mentation. Then, a detailed description of the proposal and its constituent modules

is provided in section 2.3. The assessment of the algorithm is deferred to the next

Chapter.
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2.2 Related Work

Image segmentation, the process of dividing an image into a set of regions that are

homogeneous with respect to certain properties, has been traditionally performed fol-

lowing one of the next two approaches: a) graph based approaches and b) clustering-

based approaches.

The former represents an image as a graph in which spatially adjacent pixels are

connected. Then, manipulating this graph at several hierarchical levels allows pixels

in the lower levels to be grouped into regions at higher levels. Normally, this way

of operation leads to what are called as merging algorithms. Of course, the inverse

operation is also allowed, but less common in the literature. Good examples of these

algorithms can be found in [Kwok and Constantinides, 1997], [Moscheni et al., 1998],

and [Adamek and O’Connor., 2007].

Clustering techniques segment images by clustering the feature vectors associated

to their pixels. A variety of clustering approaches can be found in the literature: from

mixture models, which assume that data is sampled from a set of models and assign

each pixel to the most likely model [Greenspan et al., 2006], [Hou et al., 2010] , to

spectral clustering methods, based on finding the eigen vectors of affinity matrices

[Takacs and Demiris, 2008], [Shi and Malik, 2000] and [Eriksson et al., 2007]. In this

thesis we will make more emphasis on the former, since our approach is in fact a

mixture model.

With independence on the type of segmentation technique, spatio-temporal algo-

rithms fuse both spatial (static features as color or texture) and temporal (motion)

information to obtain perceptually more meaningful segmentations. Hence, a crucial

factor on their performance lies in the way they fuse both sources of data. Very

initial proposals, such as the one in [Choi et al., 1997], simply perform a weighted

linear combination of both elements giving place to a joint similarity measure. How-

ever, this combination is very simple and requires to accurately set-up the optimal

value of a parameter in the combination. In [Moscheni et al., 1998], two separate hy-
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pothesis test are performed for spatial and temporal data that are then combined to

make decisions in a region merging algorithm. This approach allows using different

hypothesis tests, a likelihood ratio test and a modified Kolmogorov-Smirnov test for

spatial and temporal information, respectively.

Other more advanced approaches, such as the ones presented in

[Tsaig and Averbuch, 2001] and [Lievin and Luthon, 2004], use generative mod-

els such as Markov Random Fields as a fusion method in which incorporating

constraints concerning spatial continuity, motion terms and temporal coherence.

Other approaches that incorporate heterogeneous sources of data into generative

models are [Greenspan et al., 2004] and [Goldberger and Greenspan, 2006], in

which a Mixture of Gaussians (MoG) models a set of feature vectors that are a

concatenation of spatial and temporal features, or [Lehmann, 2011], in which the

authors propose the use of one-dimensional hidden Markov autoregressive models

(lines and the columns) in order to reduce the computational burden.

Another interesting point of discussion lies around the features considered in

the segmentation algorithm. Traditionally, low-level features concerning both tem-

poral and spatial domains have been utilized to group pixels into regions. Repre-

sentative features in the spatial domain are color and texture descriptors, as well

as, contour information (gradients) that helps to locate the boundaries among re-

gions. In the temporal domain, the most simple features are motion vectors obtained

by techniques like optical flow [Ince and Konrad, 2008], [Hu and Li, 2010], or ro-

bust block-matching [Gonzalez-Diaz et al., 2007, Gonzalez-Diaz and de Maria, 2007,

Gonzalez-Diaz and de Maria, 2008].

An important issue arises due to the fact that these low-level features are of-

ten noisy. Situations such as non-uniform illumination cause spatial features to be

less reliable. Furthermore, motion vectors are noisy due to the suboptimal results

achieved by the state-of-the-art 2D motion estimation methods, that fail in the pres-

ence of homogeneous regions or non rigid-motion. More advanced low-level features

were proposed to overcome this problem, such as the Displaced Frame Difference
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[Choi et al., 1997], that are more robust and stable.

However, the low-level features do not correspond well with high levels of hu-

man perception and thus may not lead to perceptually meaningful segmentations.

In this context, several authors have proposed the use of mid-level features that

model geometric properties of real world objects. If a segmentation algorithm

takes advantage of this information, the resulting regions can be closer to seman-

tically meaningful objects. Previous works, such as [Bennstrom and Casas, 2004]

and [Adamek and O’Connor, 2007], have successfully introduced the so-called Syn-

tactic Visual Features, which model perceptually known geometric properties such

as homogeneity, compactness, regularity, inclusion or symmetry.

Extending this idea, well-known motion patterns are usually found in the real

world and they have resulted in several parametric motion models: translational,

rotation/scaling, affine, perspective or quadratic. These parametrizations can serve

to obtain compact motion descriptors either for objects or the camera. These de-

scriptions are also more robust against noise, a serious problem when handling local

motion vector maps. In [Aghbari et al., 1998], the authors propose a parametriza-

tion for camera and object motion that is used to perform mid-level segmentations

and posterior indexing of video sequences.
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2.3 Proposed Spatio-Temporal Segmentation Algo-

rithm

2.3.1 Algorithm overview

The algorithm, proposed in proposed [González-Dı́az et al., 2008], makes use of the

well-known Expectation Maximization (EM) algorithm for Mixtures of Gaussians

(MoG). Based on the solution proposed in [Greenspan et al., 2004], this algorithm

tries to generate more robust and coherent segmentations using motion information

as well as color and spatial features. One of the main advantages of the algorithm

is that it is non-parametric in the sense that the number of regions is automatically

inferred during its execution.

The whole system involves many other modules, as depicted in Fig. 2.1. For each

set of images, which includes a keyframe and a preceding and subsequent frame, the

Motion Estimation (ME) module computes the Local Motion Vector Map. Based

on this local motion information and the camera motion estimation performed by

the Motion Parametrization (MP) module, an initial coarse motion-based segmenta-

tion is performed by looking for outliers in the map of motion vectors. This initial

segmentation sets the number of classes for the first iteration of the clustering al-

gorithm, Kinit, but also initializes the MoG. The clustering module uses a splitting

technique that performs various iterations with different values of K (the number of

clusters), until the K-management module does not find any new regions to be added

to the segmentation. The structure and purpose of each of the modules is described

in-depth in the next sections.

2.3.2 Motion Estimation Module

The Motion Estimation Module (ME) generates the Motion Vector (MV) Map as-

sociated with the keyframe by making use of a temporal window of 3 frames (a

preceding, keyframe and next frame). Fig. 2.2 shows some examples of this set of
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Figure 2.1: Flowchart of the proposed segmentation algorithm. Three frames feed

the system to allow for the motion estimation. Then, only the keyframe is processed

by the hierarchical segmentation scheme.

frames. It is worth mentioning that, in order to obtain frames that are different

enough to robustly estimate motion, we subsample the video content to 3 frames per

second (fps).

Specifically, this module uses a Hierarchical Block-matching Algorithm that com-

putes local motion vectors following a coarse-to-fine approach. A hierarchical ap-

proach allows the ME module to obtain better estimations even in the presence of

large homogeneous regions. In particular, the algorithm involves N levels (7 in our

case) through which the Block Size (BS) decreases logarithmically, starting from a

BS of 64 (8x8) pixels (until it reaches a BS of 1). In the proposed implementation,

the search range (SR) (dimensions of a rectangle around the initial center point) is

set to SR = (2 ∗ BS) × (2 ∗ BS).
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Figure 2.2: Some examples of the frames used to compute motion by the proposed

spatio-temporal segmentation algorithm. Previous, current and next frame are shown

at left, center and right columns, respectively.

A specific cost function is proposed to strengthen more likely motion patterns.

At level l, the cost function obeys:

C(mvl) = SAD(mvl) + λ1|mvl −mvl−1| + λ2|mvl| (2.1)

where mv = (mvx, mvy) represents a potential solution for the MV, λ1 and λ2 are

regularization parameters, and SAD represents the Sum of Absolute Differences

between the block being coded I and the block taken as reference IR. This cost

function regularizes the motion vectors by means of the two last terms: the former

regularizes the MV with respect to previous estimations at higher levels, while the

latter enforces moderated magnitudes for the MVs.

To deal with occlusions, the ME incorporates a temporal window of 3 frames.

Since real sequences do not tipically exhibit stationary motion, we have preferred
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to estimate motion using the preceding frame, and use the next frame only in cases

where a potential occlusion is detected. A block i is considered a potential occlusion

and, thus, estimated using the next frame, when (1) the cost Ci of the block is

higher than an adaptive threshold Ci > αC̄, with α being an adjustable parameter

and C̄ the mean cost of the motion vectors in the frame; and (2) another block in its

neighborhood is pointing to it. In this case a ME is performed using the next frame

and, if the solution is better, i.e. Cnext
i < Cprec

i , the motion vectors are set using the

next frame.

Once the MV map has been computed, the MP module allows us to estimate and

compensate the camera motion of the sequence, thus producing the final MV map.

2.3.3 Motion Parametrization Module

This module generates Motion Parametrizations based on well-known motion pat-

terns. For simplicity, this module employs a Restricted Affine Transformation (RAT)

to model motion as described in [del Blanco et al., 2007]:

RAT =









s cos θ s sin θ tx

−s sin θ s cos θ ty

0 0 1









(2.2)

where s is the scale, θ is the angle of rotation and the vector (tx, ty) represents

the translation. The motion parameters are estimated through a robust estimation

technique based on Random Sample Consensus (RANSAC) [Stewart, 1999] and the

Least Median Squares Algorithm. This technique is very robust since it considers

the presence of outliers in the set of original points (in our case vectors that have not

been properly estimated or regions that move in a different way than the camera).

RANSAC estimates the parameters on several small sets of points with the objective

that at least one set does not contain outliers. Then, the parametrization that

produces the lowest median error in the whole dataset is selected as the final one.

The interested reader is referred to [Stewart, 1999] for details.
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The objective of this module is twofold. First, it serves to estimate and compen-

sate for the camera motion; and second, it provides region motion parametrizations

that are used in the K-management module.

2.3.4 Coarse Motion-based Segmentation

Once the local and camera motion have been estimated, this module looks for outliers

in the Restricted Affine Model, thus producing connected regions that serve as an

initialization for the first clustering iteration.

Detecting outliers using RANSAC is straightforward since it involves analytical

methods to perform this task. Then, a morphological opening serves to generate

connected regions that become a practical starting point for the clustering module.

2.3.5 Clustering Module (Adaptive MoG)

As mentioned before, the clustering module is based on a well-known probabilistic

framework: the Mixture of Gaussians model. The MoG takes a description of each

pixel based on heterogeneous information and provides a coherent spatio-temporal

segmentation of the keyframe. For this purpose, the proposed algorithm groups pixels

into different clusters (each of them showing some homogeneity) so that a global

measure is maximized. The clustering algorithm is totally unsupervised except for

the number of classes/clusters K. To avoid this limitation, we propose an iterative

approach that allows for automatically obtaining the optimal number of classes in

each case.

Feature Extraction

The selected feature space includes information coming from heterogeneous sources

such as color, spatial location and motion. Particularly, a 7D feature is defined with

the following components: (a) (L, a, b) components of the CIELab color space; (b)

spatial coordinates (x, y) of each pixel (to get spatially-coherent segmentations); and
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(c) (mvx, mvy) components of the motion vectors for every pixel in the keyframe.

After the features are extracted, the components are linearly scaled to produced

inputs with zero mean and unitary standard deviation.

Adaptive probabilistic clustering

This section describes the probabilistic model used to group the pixels into different

clusters that represent spatiotemporal coherent regions of the keyframe. To this

purpose, an extension of the Mixture of Gaussians model is used. In a MoG model

the probability density function (pdf) of the pixels x in the keyframe is represented

by a mixture of K Gaussians. Then, in our particular approach, the EM algorithm

is used to find the values of the parameters that produce the Maximum Likelihood

(ML) estimate of the given data x.

Previous developments in the area have proposed the use of priors that repre-

sent previous knowledge about the regions to be obtained in the segmentation. In

[Goldberger and Greenspan, 2006] the pdf of the pixels obeys:

p(x, θ) =

[

K
∑

k=1

αkN (x|µk, Σk)

]

p(θ|θ0) (2.3)

where αk are the mixing coefficients of the MoG, N is a Normal distribution and θ

is the parameter set θ = {αk, µk, Σk, k = 1...K}. Moreover, θ0 represents the prior

knowledge about the parameters. The inclusion of priors makes the EM algorithm

to find a Maximum A Posteriori (MAP) rather than a Maximum Likelihood (ML)

estimates of the parameters.

In this thesis we propose a new conjugate prior parameter set that uses a diagonal

matrix Mβk:

Mβk = diag(β
−1/2
1k , β

−1/2
2k , ..., β

−1/2
dk ) (2.4)

where d = 7 is the dimension of the feature space.

The objective of this matrix Mβk is to allow for controlling the balance between

prior and new models. As mentioned before, an iterative approach is proposed that
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splits regions into a new set at each iteration. Hence, at a given iteration, the MoG

should keep unchanged regions in memory so that their properties remain fixed,

whereas parameters of the new regions should get a proper degree of freedom.

The matrix approach manages this balance between models independently for

each of the components of the feature space (through βik). This model extends the

previous solution of [Goldberger and Greenspan, 2006], in which a scalar parameter

βk acted as the adaptation coefficient that controlled the balance between known and

new/unknown models for each of the classes k (see [Goldberger and Greenspan, 2006]

for details). In this thesis, due to the inclusion in the input vector of new features

coming from heterogeneous sources, the diagonal matrix Mβk provides different values

βik for each dimension i of the feature space. The benefit of this approach is twofold:

1. When performing both segmentation and tracking (which is not the case in

the experiments presented here), it is important to differentiate among the

considered input features. From one frame to another it is more plausible that a

region experiences larger changes in its position (in case of translational motion)

or shape (rotations, occlusions ...) or motion vectors (non-stationary motion)

rather than in its color-related features (only specific concepts like explosions,

dramatic occlusions or illumination changes can produce meaningful changes

in color). Furthermore, one can decide the level of freedom depending on the

type of region and previous frames information.

2. In a hierarchical framework such as the one presented here, in which several

iterations of the clustering stage are performed (in order to reach the optimal

number of classes), fixing the parameters of those regions that one wants to be

unaltered is really useful. On the other hand, those classes that are new in one

iteration of the algorithm should receive a higher degree of freedom in order

to adjust better to the intended region. Similarly, some aspects like motion

can be fixed after the first iteration in those new classes that do not belong

to moving regions, while spatial coordinates should receive more freedom to
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spread along the intended region.

The following priors are used. The mixing coefficients are jointly Dirichlet, so

that:

p(α|α0) ∝
K
∏

k=1

α
(α0k−1)
k (2.5)

The precision (inverse of the covariance matrix) is Wishart with mk degrees of free-

dom:

p(Σk|Σ0k, mk) ∝ |Σk|−
mk−d−1

2 exp

(

−1

2
Tr(Σ0kΣ

−1
k )

)

(2.6)

where Tr stands for the trace operator. Finally, the mean (conditioned by the

precision) is normal with a transformation matrix Mβk:

p(µk|µ0k, Σk, Mβk) ∝ |MβkΣkM
T
βk|

−1/2 ×

× exp

[

−1

2
(µk − µ0k)

T (MβkΣkM
T
βk)(µk − µ0k)

]

(2.7)

Since this approach has too many hyperparameters

θ′ = {α0k, mk, Σ0k, µ0k, Mβk}, one should set appropriate values to them. Thus, mod-

eling the previous knowledge about the clusters as a MoG with mixing coefficients

α′
k and normal distributions N(µ′

k, Σ
′
k), hyperparameters can be set to:

α0k = 1 +
1

d
Tr(M−1

βk M−1
βk )α′

k, mk = 1
d
Tr(M−1

βk M−1
βk ) + d

µ0k = µ′
k, Σ0k = (MβkΣ

′
kM

T
βk) (2.8)

With this modifications, the EM algorithm proceeds as follows. The Expectation

step is not affected by the priors so that the probabilities rik are computed as:

rik =
αkp(xi|µk, Σk)

∑K
j=1 αjp(xi|µj, Σj)

(2.9)

where rik is the posterior probability that the input vector xi was sampled from the

kth component of the mixture. The Maximization step applies the new parameter
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updating equations:

αk =

∑n
i=1 rik + 1

d
Tr(M−1

βk M−1
βk )α′

k
∑K

j=1
1
d
Tr(M−1

βj M−1
βj )α′

j + n
(2.10)

µk = M−1
A

(

n
∑

i=1

rikMβkxi + M−1
βk µ′

k

)

(2.11)

Σk =

∑n
i=1 rik(xi − µk)

2 + M−1
βk ((µk − µ′

k)
2 + Σ′

k)M
−1
βk

∑n
i=1 rik + 1

d
Tr(M−1

βk M−1
βk )

(2.12)

where MA =
(
∑n

i=1 rikMβk + M−1
βk

)

; for simplicity, the operator a2 represents a2 =

aaT , and n is the number of pixels in the keyframe (n = H × W dimensions of the

image).

Although equations (2.10-2.12) are complex, a fast implementation is straight-

forward owing to the diagonal nature of Mβ , and this approach requires only to set

the values of Mβk
. In practice, priors for the Gaussians in the first iteration of the

algorithm are initialized using means, covariances and mixing coefficients from the

coarse motion-based segmentation and, in next iterations, using information from

the previous iteration and the K-management module.

2.3.6 K-Management Module: Using mid-level features to de-

termine the number of regions

As mentioned before, we have proposed a hierarchical approach to automatically set

the optimal number of regions. After each iteration of the clustering stage, a novelty-

detection phase starts. In this stage, the K-management module is a binary classifier

that decides if the regions formed by pixels that have been potentially misclassified

(i.e. their likelihood is below a threshold) should be added or not. The output of this

module consists of a set of new classes (with their prior parameters) to be added in

the next iteration of the algorithm. In the case that the output contains no classes

the algorithms finishes and the last segmentation becomes the final one. A complete

description of this module is provided in the following paragraphs.
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Detecting candidate regions

In order to obtain the candidate regions to be classified, the proposed algorithm

searches for pixels that show low likelihood values. At this point, likelihood is better

than the posterior probability since the prior knowledge about previous iterations

of the algorithm is not useful to detect regions that are potentially misclassified.

In order to obtain spatially coherent regions from low-likelihood pixels, an over-

segmented version of the keyframe is obtained by a fast and simple algorithm such

as the Recursive Shortest Spanning Tree (RSST) [Kwok and Constantinides, 1997].

In practice, for every class obtained in the previous iteration of the algorithm (each

class is a component in the mixture), the system looks for sub-regions (from the

RSST) with a global likelihood value below an adaptive threshold (in our case, the

median likelihood of the class). Alternatively, if any class contains two non-connected

regions, the bigger one is considered the main region (looking then for internal sub-

regions) while the other is automatically set as the candidate.

Once the regions have been labeled as low/high likelihood, the algorithm extracts

the connected regions with low values, that become the candidate regions for this

class in the next stage.

Problem parametrization

For every candidate region Rij belonging to a class whose main region is denoted as

Ci, a region Dij is generated by subtracting Rij from Ci. Concerning the aforemen-

tioned three regions, a set of features are extracted to make the decision. The set

incorporates two kinds of features: low and mid-level features.

Let us introduce first the Matusita’s similarity measure [Matusita, 1955] between

two random distributions. Since, in a MoG, the distributions of the classes are Gaus-

sians (and any marginal distribution is also Gaussian), Matusita’s measure between

some distributions i and j obeys:

χ =
2

p
2 |Σi|

1
4 |Σj |

1
4

|Σi+Σj |
1
2

exp{−1
4
(µi−µj)

T (Σi+Σj)
−1(µi−µj)} (2.13)
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where µi and µj stand for the means of the distributions i and j, respectively; Σi

and Σj are the covariance matrices; and p is the dimension of the space.

The selected low-level features include:

1. Color-based similarity between Rij and Ci (χcolor): The Matusita’s measure is

employed to compute this similarity between the color marginal distributions

of the pixels belonging to Rij (ρcolor(xRij
)) and Ci (ρcolor(xCi

)).

2. Motion-based similarity between Rij and C (χmotion): the same as the previous

one, now marginalizing with respect to motion components ρmotion(xRij
) and

ρmotion(xCi
).

3. Absolute candidate region size (Sabs): The size in pixels of the region Rij is

normalized between [0, 1] with respect to the dimensions of the image.

4. Relative candidate region size (Srel): The size in pixels of the region Rij is

normalized between [0, 1] with respect to the size of the class Ci.

5. Internal/External region (BIE): as commented above, if Ci contains more than

one non-connected regions, a binary input is set to 0 if Rij is internal to the

main region and to 1 if it is external.

In parallel, some mid-level features are also extracted to provide perceptually

meaningful information about the regions, namely:

1. Adjacency (Adj): as stated in [Adamek and O’Connor, 2007], real world ob-

jects tend to be compact, thus exhibiting adjacency of their constituent parts.

Given Rij and Dij , this input provides a useful information about geometrical

relations between the regions:

Adj = 1 − lRijDij

min(lRij
, lDij

)
(2.14)

where lRijDij
is the length of the common boundary between Rij and Dij, and

lRij
and lDij

are their perimeter lengths. Values close to 0 imply that the regions

are strongly adjacent and viceversa.
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2. Regularity (Reg): this compares the complexity of the boundaries of the regions

Ci, Rij and Dij. Given the area ai of a region, its complexity xi can be measured

as the ratio between its perimeter length li and the square root of its area ai:

xi = li/
√

ai. Then, the Regularity is computed as follows:

Reg =
xCi

[

aRij
xRij

+aDij
xDij

aRij
+aDij

] (2.15)

In this case, low values of Reg imply that the complexity of the Ci is quite lower

than the resultant complexity after the splitting process, thus recommending

not to add a new region.

3. Motion Parametrization Error (MPE): this measure utilizes a parametrization

of the motion of Ci computed in the MP module. The MP module employs

the Restricted Affine Transformation (RAT) described in eq. (2.2) to generate

a motion parametrization for the region Ci. Then MPE is the global Mean

Square Error (MSE) between the estimated local vectors (from the ME module)

with respect to the values of the parametrization. For each position (x, y) in

the region Ci, the square difference between the local vector mv(x, y) and the

parametrization mvP (x, y) is computed in order to calculate the MSE. Large

values of MPE are associated to hardly recognizable motion patterns or noise.

4. Motion Model Adjustment (MMA): the MMA computes the MSE of the

points of Rij with respect the parametric model obtained for the whole region

Ci. If the level of adaptation is low, the region is moving and following a

different motion pattern, so that it should be added.

Classifier design

A Multilayer Perceptron (MLP) [Rosenblatt, 1962] with one hidden layer was used

to classify each case {ADD, DON ′TADD}. The number of neurons, 5 in our case,

was experimentally selected by means of a cross validation process.
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Chapter 3

Experimental results on

spatio-temporal image segmentation

in video sequences

3.1 Experimental Setup: database and performance

measures

This sections assesses the proposed spatio-temporal segmentation algorithm that has

been previously introduced in Chapter 2.

In order to evaluate the performance of the algorithm a ground-truth (GT)

segmentation database has been created. This database contains 120 het-

erogeneous triplets of images from the news video contents of Trecvid 2006

[National Institute of Standards and Technology, 2006]. The database is available

at http://www.tsc.uc3m.es/∼igonzalez/, and contains real images which are diffi-

cult to segment using simple features such as color. Each sample from the database

contains three images (keyframe, preceding and next frame) and a ground-truth

segmentation of the keyframe. Although the ground-truth segmentation has been
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created by humans and is therefore subjective, some principles have guided its gen-

eration: connected regions that are moving coherently are merged independently

of their color (this allows for segmenting objects as simple regions when they show

different colors, illuminations,...). On the other hand, regions that do not show mo-

tion, are segmented by color. Figure 3.1 shows five examples of the Ground Truth

database.

The use of the database is as follows: 50 triplets have been used to train the

decisor of the K-Management module, 20 to perform a cross-validation with various

initializations of the MLP described in subsection 2.3.6, and the last 50 form the

test set. To manually segment each of the classes, a scribble-driven semi-automatic

segmentation tool has been used (see [McGuinness et al., 2006] for a reference).

Furthermore, with the objective of providing numeric results an integrated image

segmentation framework has been used [McGuinness et al., 2007], which implements

three different methodologies for evaluation, namely:

1. Berkeley Evaluator [Martin et al., 2001]: this evaluation method includes two

measures: Global Consistency Error (GCE) and Local Consistency Error

(LCE). Although these measures correspond well with human perception they

are not sensitive to over and under-segmentation.

2. Huang Dom Evaluator [Huang and Dom, 1995]: this evaluator computes the

Hamming Distance (HD) between intersecting regions. However, in order to be

less sensitive to under and oversegmentation, this measure removes the largest

regions in GT and query segmentations from the computation. For convenience

1-HD is used in our experiments so that, for every measure, values close to zero

correspond to better segmentations.

3. Simple Evaluators based on counting pairs using the Rand Index (RI), the

Jaccard Index (JI) and the Fowlkes and Mallows Index (FMI).

This framework has been used to perform two different evaluations: a) a region

based evaluation, which compares segmentations using the aforementioned indexes

34



CHAPTER 3. EXPERIMENTAL RESULTS ON SPATIO-TEMPORAL IMAGE
SEGMENTATION IN VIDEO SEQUENCES

Figure 3.1: Some examples of the developed database including keyframes (top),

ground-truth segmentations (middle) and regions of interest (bottom).

and assigns the same influence to every region, and b) a region-of-interest based evalu-

ation, which distinguishes among those regions which are considered to be of-interest

and others. As proposed in [Ge et al., 2006], a mask is generated for each region of

interest and the evaluation measures are computed against a query segmentation in

which those regions that show at least the 50% of their points belonging to the region

of interest remain unaltered, whereas the rest of the regions are merged to form the

background. However, in order to penalize the oversegmentation, each foreground

class is considered separately, thus producing a multi-class segmentation, and not a

binary mask as suggested in [Ge et al., 2006]. Figure 3.1 shows some examples of

ground-truth segmentation and regions of interest in the developed database.
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3.2 Experimental Results

In order to assess the performance of the proposed spatio-temporal segmentation

algorithm, we have established a meaningful comparison against several reference

algorithms, namely:

• MDL spatio-temporal segmentation algorithm (MDL): this approach uses the

Minimum Description Length (MDL) criteria to select the optimal number of

classes in a MoG approach for segmentation (see [Greenspan et al., 2004] for

details). Except for the MDL criteria, the rest of the algorithm is exactly the

same as the proposed one.

• Low-level spatio-temporal segmentation algorithm (LLF): an implementation

of our proposal in which the mid-level features have been removed when making

decisions in the K-management module.

• A Recursive Shortest Spanning Tree (RSST) with spatial mid-level features

[Adamek and O’Connor., 2007]: this region-merging algorithm proposes a bi-

nary partition tree that uses static features of the keyframe (it does not con-

sider motion information) and incorporates spatial-mid level features to make

decisions in the merging process. This approach has been included in the ex-

periments in order to measure the influence of the temporal features at both

granularities (low and mid-level).

Table 3.1 shows average results (with standard deviations) for all the considered

algorithms in our tests. In addition, Table 3.2 includes results oriented to a region-

of-interest-based evaluation. Several interesting conclusions can be drawn from these

results:

• The MDL criteria performs poorly when compared to a classifier-based solu-

tion. The rationale behind is that classifier-based approaches are trained using

a labeled set with ground truth segmentations. Since these segmentations have
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Table 3.1: Comparative performance evaluation among the involved algorithms. Val-

ues closer to zero correspond to better segmentations. Results on the test set are

shown using mean and standard deviation (µ ± σ).

Alg. GCE LCE 1-HD RI JI FMI

MDL 0.28 ± 0.10 0.22 ± 0.07 0.38 ± 0.05 0.23 ± 0.09 0.78 ± 0.08 0.60 ± 0.09

LLF 0.26 ± 0.09 0.20 ± 0.07 0.29 ± 0.08 0.28 ± 0.11 0.62 ± 0.13 0.44 ± 0.11

RSST 0.29 ± 0.12 0.19 ± 0.09 0.28 ± 0.08 0.28 ± 0.11 0.62 ± 0.15 0.45 ± 0.14

Proposed 0.25 ± 0.10 0.19 ± 0.07 0.28 ± 0.08 0.25 ± 0.10 0.62 ± 0.14 0.43 ± 0.12

Table 3.2: Comparative of region-of-interest based performance. Values closer to

zero correspond to better segmentations. Results on the test set are shown using

mean and standard deviation (µ ± σ).

Alg. GCE LCE 1-HD RI JI FMI

MDL 0.14 ± 0.09 0.06 ± 0.04 0.13 ± 0.07 0.31 ± 0.11 0.35 ± 0.15 0.21 ± 0.11

LLF 0.04 ± 0.08 0.03 ± 0.05 0.12 ± 0.07 0.32 ± 0.14 0.34 ± 0.15 0.20 ± 0.09

RSST 0.10 ± 0.08 0.05 ± 0.04 0.12 ± 0.07 0.33 ± 0.12 0.36 ± 0.15 0.22 ± 0.10

Proposed 0.05 ± 0.07 0.03 ± 0.04 0.12 ± 0.07 0.29 ± 0.14 0.32 ± 0.15 0.19 ± 0.09

been generated following the same process as those ones in the test set, it is

expected that the classifiers approach better to the ground truth segmentation

than a general MDL criteria. However, this issue also reflects that a statis-

tical measure such as the MDL does not correspond well with human visual

perception. In practice, it is easy to notice that MDL usually generates over-

segmented versions of the images (see fourth row in Fig. 3.2 and Fig. 3.3).

• RSST only considers spatial features of the keyframe so that it cannot model

objects that, although moving coherently, are composed by spatially heteroge-
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neous regions. However, as seen in Table 3.1, it surprisingly provides results

that are more accurate than the those ones achieved by MDL (a spatio-temporal

segmentation algorithm) and very close to those ones by LLF and our proposal.

This performance decreases if we study the region of interest oriented evalua-

tion (Table 3.2). An interesting rationale for this issue can be found looking at

the visual results (sixth rwo on Fig. 3.2 and Fig. 3.3). In these images, back-

ground elements (no motion or camera motion) results are very close to our

proposal whereas foreground objects (see region-of-interest segmentations) are

normally decomposed into several homogeneous regions. Since the proportion

of non-interest regions in an image is notably high, this drawback remains hid-

den in a general evaluation and arises when focusing on the region-of-interest.

• The LLF and our proposal get more similar results; however, the use of mid

level features provides a slightly better performance as shown in both evalua-

tions. In general, the proposed solution tends to discriminate better whether

to add or not new regions to the segmentation.

With respect to the evaluation measures, it also worth discussing some observa-

tions:

• The standard deviations are very high in all cases so that the performance

is not very stable along the whole database. This is not surprising since the

database shows very challenging shots with a great variety of motion content

(slow/fast, different patterns as zoom or pan, and more than one object moving

in a scene).

• In addition, none of the measures provides very distinctive performances. Look-

ing at the averages it is difficult to get significantly different results among the

different algorithms even when segmentations seem to be very different. We

can then conclude that the measures themselves do not model properly human

perception.
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Figure 3.2: Some examples of segmentation results including, from top to bottom,

keyframes (first), ground-truth segmentations (second), region-of-interest ground

truth segmentations (third), MDL results (fourth), LLF results (fifth), RSST results

(sixth) and proposed algorithm results (last)

.
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Figure 3.3: Some examples of segmentation results including, from top to bottom,

keyframes (first), ground-truth segmentations (second), region-of-interest ground

truth segmentations (third), MDL results (fourth), LLF results (fifth), RSST results

(sixth) and proposed algorithm results (last)

.
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Furthermore, the use of a hierarchical scheme to get the optimal number of classes

provides a considerably reduction on the number of iterations of the algorithm. Our

tests have resulted in 3.12 mean iterations for the proposed algorithm in comparison

to the 15.46 needed by the clustering algorithm with the MDL criteria.

Finally, it is also noteworthy that the proposed segmentation approach has been

successfully applied in a multimedia information retrieval system in the TRECVID

project [González-Dı́az et al., 2009b]. The results achieved by our system ranked

between the median and the 25% percentile that year. However, the segmentation

module was embedded in a complex system in which the contribution of this subsys-

tem was not particularly assessed.
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3.3 Conclusions

In this chapter we have assessed the performance of the proposed spatio-temporal

segmentation algorithm by establishing a meaningful comparison with state-of-the-

art segmentation approaches and some variations of the proposed one that help to

evaluate the influence of several internal modules. Although the results are not very

conclusive in the sense that performance measures do not seem to be discriminative

enough, our proposal consistently outperforms all other considered algorithms. Two

are the main reasons of this improvement:

1. The iterative adaptive MoG approach that splits regions at each iteration and

manages the balance between prior models and new ones.

2. The use of mid-level features that successfully help to make decisions about

the splitting process.
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Chapter 4

Generative models for image

representation

4.1 Introduction

In recent years, a lot of research has been devoted to the image classification, object

class image segmentation, and topic discovery problems since they have become

necessary parts in contemporary scene understanding systems, which have emerged

as a natural extension of the classical image classification and recognition systems.

This new approach considers images as collections of semantic objects and, therefore,

it should be able to detect and label local regions using a set of semantic classes.

The remainder of this chapter is as follows: in order to properly place our proposal

in such a vast field, the next subsections describe the state-of-the-art concerning im-

age classification, object class image segmentation and topic discovery. Then, tradi-

tional approaches that serve as the basis for the proposed methods are discussed such

as the bag-of-words model and the latent topics models. Once the proper background

has been described, two novel generative models are introduced, the Region-Based

Latent Topic Model (RBLTM) and the Region-Based Latent Dirichlet Allocation

(RB-LDA), that aim to extend basic Latent Topic Models for the considered tasks.
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4.1.1 Image classification

Although, initially, the image classification task required systems to classify images

among a predefined set of categories, nowadays, these systems are required to detect

the presence of different objects/concepts in an image. This new vision of the problem

allows images to contain more than one object and thus to belong to more than one

category. It is also noteworthy that this task does not require to accurately locate

the concept in the image, but simply detect its presence.

For this particular problem, Bag-of-Words (BoW) models have shown excep-

tional performance and constitute the most prevalent approach. These models were

initially proposed for text retrieval and later used in Computer Vision, where the tra-

ditional “document” became an image and the “words” were associated with visual

words that describe the content of local patches. BoW models make a simplify-

ing assumption on the data distribution in a image, which is simply considered as

an unordered collection of visual words. Good examples of BoW models can be

found in both discriminative [Wallraven et al., 2003] [Grauman and Darrell, 2005]

and generative frameworks [Hofmann, 2001] [Blei et al., 2003]. Originally, these

models did not take into account the spatial location of the visual words, what,

obviously, limited their performance. More recently, some spatial constraints have

been proposed for BoW models to benefit from spatial discrimination to some ex-

tent. In particular, the discriminative approach called Spatial Pyramid Match-

ing ([Lazebnik et al., 2006],[Bosch et al., 2007],[Varma and Ray, 2007]) attains im-

proved classification performance by computing image histograms at different spatial

levels and a weighted kernel that sets the relative importance of each spatial scale.

4.1.2 Object class Image-segmentation

The object class image-segmentation task differs from the automatic blind image

segmentation problem that has been previously described in this thesis. Specifically,

object-class image segmentation is a technique that, not only divides the image into a
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set of coherent regions, but also labels these regions according to their category. This

new approach requires systems to be trained with labeled data in order to provide

semantically meaningful segmentations.

The approaches found in the literature for this problem are diverse. Start-

ing with generative approaches, in [Larlus et al., 2010], BoW, Dirichlet Processes

(DP), and Random Fields are combined to provide a non-parametric DP mixture

with spatial regularization for object class image segmentation. However, the ap-

pearance model is decoupled from the rest of modules and trained separately. In

[Lee and Grauman, 2010], a set of unlabeled images is segmented by generating a

set of region clusters, representing each cluster by its ensemble (thus modeling intra-

class variation), and applying a graph cut that operates on the distances among

regions and cluster ensembles.

Among the discriminative approaches, cooperative probabilistic models such as

Conditional Random Fields (CRF) are one of the most prevalent techniques. In

[Galleguillos et al., 2008], the authors propose a BoW-based appearance model and

a CRF-based spatial/context model for object categorization and image segmenta-

tion. However, as it happened in [Larlus et al., 2010], the two models (appearance

and spatial/context) are trained separately. In [Shotton et al., 2009], CRFs are used

for integrating color, texture, location and context into a unified framework. In

[Gould et al., 2009a], Gould et al. propose hierarchical models involving appear-

ance and spatial context. This model is further refined in [Gould et al., 2009b] by

considering object-detection features.

4.1.3 Topic discovery

The topic discovery task requires algorithms that unsupervisely detect topics of in-

terest (concepts) in a set of unlabeled images. Latent topic models, such as the well

known Probabilistic Latent Semantic Analysis (PLSA) [Hofmann, 2001] and Latent

Dirichlet Allocation (LDA) [Blei et al., 2003] are excellent examples of successful

unsupervised algorithms for this task. Both PLSA and LDA are generative models
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that consider documents as mixtures of latent topics that govern the occurrence of

words. The main difference between the two formulations lies in the fact that LDA

additionally learns the prior distributions of the topics.

The interested reader is referred to [Tuytelaars et al., 2010] for an interesting

survey that compares these and other methods applied to the specific problem of

topic discovery.
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4.2 Related work on image representation

In this section we provide a review of the related work concerning methods for image

representation. In order to properly introduce the proposed Latent Topic Models,

we will start with the basic bag-of-words representation, which has become the main

approach in the image classification task, mainly due to its simplicity and good

performance. Then, Latent Topic Models that make use of this representation will

be presented and two well-known approaches will be discussed in depth. Finally,

we will review some extensions of the original topic models that consider the spatial

structure of visual documents.

4.2.1 The Bag-of-Words Representation

The bag-of-words (BoW) is a very simple approach that treats images as collections

of regions that are described only by their appearance, thus ignoring their spatial

location and, in consequence, the global image structure. Those models were initially

proposed by the text analysis community and later applied in the Computer Vision

field by [Sivic and Zisserman, 2003], [Csurka et al., 2004], [Fei-Fei and Perona, 2005]

and [Sivic et al., 2005]; or [Snoek and Worring, 2009], in which the application of the

BoW to the content-based video retrieval is studied.

The objective of this section is twofold: first,to present the main steps involved

by the BoW representation; and second, to describe, for each step in the BoW, sev-

eral interesting techniques found in the literature. The rationale behind is that BoW

representation is a general methodology that does not define how to implement each

of the steps in the model, thus leaving many decisions open such as the feature detec-

tors and descriptors, the generation of the word-histograms, the kind of classifiers,

etc.

Although several slight variations may exist among different implementations of

the model, we briefly describe the main steps of the bag-of-words approach:

1. Detection and description of image patches
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2. Visual vocabulary construction

3. Generation of the BoW representation

4. Classification based on the BoW representation

Detection and description of image patches

During the last decade, local patches and their associated descriptors have received a

lot of attention from the visual computer community due to their robustness against

occlusions and cluttered background. The idea behind of the use of these descriptors

is to detect salient points in an image and describe the local regions around them.

This process involves two differentiated steps: a) detecting the salient regions; and

b) computing local descriptors.

In order to detect salient regions in an image, there are several interest-

ing measures in the literature that have given place to specific detectors. In

general, one of the desirable properties for local regions and their descriptors

is that they should be repeatable. This means that if we apply a transfor-

mation over an image, their corresponding local descriptors should be found

in the transformed image and the descriptors should be exactly the same.

This idea has lead to the design of descriptors with invariance against cer-

tain affine transformations (rotation, scale) or illumination changes. However,

it is noteworthy that, in general, the more repeatable is the region/descriptor

pair, the less discriminative it is. Well known detectors found in the litera-

ture are Harris-Affine [Harris and Stephens, 1988][Mikolajczyk and Schmid, 2002],

Hessian-Affine [Mikolajczyk and Schmid, 2002], Maximum Stable Extremal Regions

(MSER) [Matas et al., 2002], Difference of Gaussians (DoG) [Lowe, 2004], Lapla-

cian of Gaussians (LoG) [Haralick and Shapiro, 1992], etc. A good discussion

about several of these detectors can be found in [Mikolajczyk et al., 2005] and

[Tuytelaars and Mikolajczyk, 2008].

In Fig. 4.1 we show some examples of local regions detected by three detectors:
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Harris-Affine, Hessian-Affine and MSER.

In what concerns to local descriptors, they should represent local neighboring

information around the detected point. They usually describe texture or color in

the area defined by the elliptical region (as those shown in Fig. 4.1). Among the

proposed descriptors in the literature, the Scale Invariant Feature Transform (SIFT)

[Lowe, 2004] deserves a special mention due to the fact that it has shown great

discriminative power and has strengthened the use of this kind of approaches.

(a) (b) (c)

Figure 4.1: Some examples of local detectors. a) Harris-Affine; b) Hessian-Affine;

c) MSER. Each ellipse represents a detected region with its orientation and scale in

both axis.

SIFT is an algorithm to detect and describe local regions in images. The pro-

posed detector in SIFT is the Difference of Gaussians (DoG) detector, that searches

for scale-space extrema. The SIFT descriptor is invariant to image translation, scal-

ing, and rotation, partially invariant to illumination changes, and robust to local

geometric distortion. The descriptor is a histogram of spatial gradients on a local

region. The gradient at each pixel is considered a tridimensional feature vector, com-

posed by the pixel location (relative to the region center) and the orientation of the

gradient. In order to gain some spatial discrimination and model the local struc-

ture, the intended region is first divided into a grid of 4x4 cells that give place to 16

histograms of oriented gradients (with eight orientations). Then, the 16 histograms

with 8 orientations are concatenated to generate a feature vector of dimension 128.

Furthermore, the feature vector is normalized to unit length, and a spatial Gaussian
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weighting function is also considered to give more emphasis to pixels that are closer

to the center of the region. Fig. 4.2 shows the original illustration of the SIFT

descriptor by [Lowe, 2004]. For simplicity, in this figure only 2x2 cells are shown in

which histograms of oriented gradients are computed.

Figure 4.2: Example for SIFT feature construction. Each cell gives place to an 8-bin

histogram of gradients orientations. Figure taken from [Lowe, 2004]

Other descriptors of interest that can be found in the literature are SURF

(Speeded-Up Robust Features) [Bay et al., 2008], DART [Marimon et al., 2010] or

HOG (Histogram of Oriented Gradients) [Dalal and Triggs, 2005].

Visual Vocabulary construction

Since, in general, both the number of local interest regions and the dimension of the

local descriptors are high, working on this feature space becomes unfeasible for any

machine learning approach. To overcome this issue, the idea of constructing visual

vocabularies arises with the objective of assigning each vector to the most similar

one among a predefined set of potential values (vocabulary of visual words). This

approach can be seen as a vector quantization process that assigns each vector to

one of the vectors in the visual vocabulary.
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To that end, visual vocabularies are intended to contain representative feature

vectors that are repeatable along all documents in a corpus. Hence, clustering tech-

niques are suitable approaches to divide a large dataset into several representative

clusters. Most clustering algorithms are based either on iterative square error par-

titioning or on hierarchical schemes. Square-error-based partitioning algorithms at-

tempt to obtain a partition of the feature space that minimizes some error measure,

whereas hierarchical approaches represent the dataset in a hierarchical structure,

like a tree, following some heuristics. Examples of the first kind of algorithms are k-

means [Duda et al., 2001] or Self-Organizing Maps (SOM) [Kohonen, 1997], whereas

the reader is referred to [Nister and Stewenius, 2006] or [Sun et al., 2010] for repre-

sentative examples of the second. During the last few years other novel approaches

have been proposed that consider the semantic embedding on visual vocabularies,

so that the visual words are accurately selected by using semantic information from

annotations [Ji et al., 2010]. In [van Gemert et al., 2010], the interested reader can

find a comparison between several approaches for constructing visual vocabulary in

a large-scale video retrieval scenario.

Generation of the BoW representation

Once a visual vocabulary has been constructed, the next step involves assigning

each of the local descriptors in an image to the most similar word in the vocabulary

and generate the corresponding image representation. Since the number of local

descriptors in an image is variable (it depends on the detectors, the size of the

image, and its content) and many machine learning techniques require fixed-length

inputs, designing an input space that fulfills these requirements becomes a critical

issue.

Assigning each local descriptor to a visual word in the vocabulary is basically

a vector quantization process. Then, a histogram of word occurrence can be com-

puted by counting the times that a visual word appears in an image. Of course,

a normalization of the histogram by the total number of local regions is needed to
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provide comparable features for different images. This basic approach can be found

in [Csurka et al., 2004].

However, a hard assignment of each sample to just one visual word does not

take into account the similarity between visual words and, even more, does not

consider the distance between a descriptor and its closest word. This may lead to

performance loses in situations in which a descriptor is almost equally similar to two

different visual words or a descriptor is not similar to any word in the vocabulary. To

overcome this drawback some authors have proposed the use of soft-assignment in

the histogram construction. This approach, found in [Philbin et al., 2008], computes

a similarity measure with respect to all the words in the vocabulary and increments

the histogram according to these similarities. The histogram is finally normalized by

the total sum of the similarities.

Classification based on BoW representation

This section discusses different approaches for image classification based on the BoW

representation. First of all, it is noteworthy how this problem can be seen as a

binary or a multiclass categorization problem. Real world images hardly repre-

sent a unitary semantic concept but represent multiple objects and elements in a

scene. Even when the concepts to be detected are very abstract or scene-oriented

(such as indoor, outdoor, natural landscape, cityscape, ...) an image might be as-

sociated to more than one concept. For that reason, most challenges and stan-

dard evaluation approaches reformulate the image classification problem as a bi-

nary detection problem, thus involving the generation of several detectors (one

for each concept) that label the images according to the presence or absence of

a particular concept. This approach is followed by challenges like Pascal VOC

[Everingham et al., 2009] or TRECVID Semantic Indexing task (formerly known as

High Level Feature Extraction)[Smeaton et al., 2009]. On the the other hand, a

good example of a benchmark that still considers image recognition as a multiclass

problem is Caltech 256 [Griffin et al., 2007].
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For image categorization, machine learning techniques are the most common ap-

proach, going from a simple Naive Bayes classifier [Lewis, 1998] to more advanced

algorithms such as the Support Vector Machines (SVM) [Schölkopf and Smola, 2002],

[Wallraven et al., 2003] [Grauman and Darrell, 2005]. In addition, generative frame-

works [Hofmann, 2001] [Blei et al., 2003] also can make use of the BoW paradigm.
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Figure 4.3: Graphical model representation of PLSA. Following the standard graph-

ical model formalism, nodes represent random variables, while the edges show the

dependencies among variables. Shaded circles denote observed variables and un-

shaded ones denote latent variables to be inferred. Boxes refer to different instances

of the same variable.

4.2.2 Latent Topic Models

This section focuses on Latent Topic Models (LTMs). Though discriminative ap-

proaches currently show superior performance in some of the considered tasks, the

potential of generative models can not be ignored since they provide underlying in-

formation that is not available in the discriminative framework. Furthermore, Latent

Topic Models offer a fundamental advantage: they can be used in either unsupervised

or supervised way.

The most common Latent Topic Models are the Probabilistic Latent Se-

mantic Analysis (PLSA) [Hofmann, 2001] and Latent Dirichlet Allocation (LDA)

[Blei et al., 2003]. Though both original PLSA and LDA are unsupervised algo-

rithms, their formulation may be extended to handle different kinds of supervision

(the interested reader is referred to [Blei and Mcauliffe, 2007] for a good example of

supervised topic models), even partial supervision, where some labels are provided

but others are missing [Ano, 2008]. Next subsections provide a brief review of these

two fundamental LTMs to provide a proper background on which describing the

original contributions of this work.
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Probabilistic Latent Semantic Analysis

PLSA works on the classical image representation provided by the bag-of-words

model. For each image, some potentially stable keypoints are detected and their

corresponding descriptors are extracted from local patches around these keypoints.

This kind of representation is no longer feasible when the task deals with a large

number of images and a variable number of keypoints per image. In order to attain

a more compact representation, the local patch descriptors are clustered around what

are called visual words, to end up with an image represented as a bag-of-visual-words

(see section 4.2.1). In the following, we will indistinctly refer to documents and

images. Additionally, words and visual words will also be equivalent.

Fig. 4.3 illustrates the graphical model representation of PLSA. It relies on three

variables: d represents the documents, w are the visual words that describe the

appearance of the local patches, and z stand for the hidden topics hopefully related

to semantic concepts, which explain the content of the images. From these variables,

the underlying generative process modeled by PLSA represents the documents d as a

mixture of latent topics z, which are supposed to be able to explain the occurrences

of the visual words w in the documents.

Given a training corpus X consisting of D documents, and considering an M-

word vocabulary and K latent topics, the corpus is summarized by means of an

DxM co-occurrence table, denoted as N , where n(di, wj), with i = 1, 2, ..., D and

j = 1, 2, ..., M , represents the number of occurrences of the word wj in the document

di. The joint probability of documents and words can be obtained by marginalizing

over the topics zk with k = 1...K, as follows:

P (di, wj) = P (di)

K
∑

k=1

P (wj|zk)P (zk|di) (4.1)

where P (di) is the probability that a word occurrence will be observed in a particular

document di, P (wj|zk) is the conditional probability of the word wj given a particular

topic zk, and P (zk|di) is the conditional probability of the topic zk given the document

di.
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In the training phase, the model parameters θ = {P (wj|zk), P (zk|di)} are deter-

mined by maximizing the likelihood of generating the training corpus. The likelihood

function accumulated over the training set obeys:

L = P (X|θ) =
D
∏

i=1

M
∏

j=1

P (di, wj)
n(di,wj) (4.2)

where P (di, wj) is given by eq. (4.1). The Expectation-Maximization (EM) algorithm

is used to obtain the optimal model parameters θML by maximizing the log likelihood,

i.e.:

θML = arg max
θ

log P (X|θ) (4.3)

In the E-step, the posterior probabilities for the latent variables are computed

from the current estimates of the parameters:

P (zk|di, wj) =
P (zk|di)P (wj|zk)

K
∑

k=1

P (zk|di)P (wj|zk)

, (4.4)

and in the M-step, the re-estimation equations are used to update the parameter

estimates:

P (zk|di) =

M
∑

j=1

n(di, wj)P (zk|di, wj)

n(di)
(4.5)

P (wj|zk) =

D
∑

i=1

n(di, wj)P (zk|di, wj)

M
∑

j=1

D
∑

i=1

n(di, wj)P (zk|di, wj)

(4.6)

where n(di) =
∑

j n(di, wj).

The interested reader is referred to [Hofmann, 2001] for a comprehensive expla-

nation of the model and a complete derivation of the previous equations.
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Figure 4.4: Graphical model representation of LDA. Following the standard graph-

ical model formalism, nodes represent random variables, while the edges show the

dependencies among variables. Shaded circles denote observed variables and un-

shaded ones denote latent variables to be inferred. Boxes refer to different instances

of the same variable.

Latent Dirichlet Allocation

The graphical model of LDA is shown in Figure 4.4. It is noteworthy that LDA

uses a different notation than the PLSA. In order to properly explain the generative

process defined by LDA, we first describe the observable variables involved in the

model. Given a collection D of images (corpus), each image d ∈ D is described by

means of a set of Nd local patches n ∈ Nd, each of them being indexed by a visual

descriptor wn that describes its appearance.

Intuitively, the whole corpus is modeled by a parameter α that sets the global

distribution of the topics in the corpus (topic proportions). Then, for each document

d, a new variable θd stores the particular distribution of topics in the document. This

new variable is used to choose the topic zn associated to each local patch n in the

image so that, depending on that topic, the appearance (visual descriptor) associated

to the local patch wn is assigned. Since each topic tends to generate particular visual

descriptors, the final content of a document depends on the topics it contains and

their proportions.

From this explanation, it is easy to notice that the main difference between LDA

and PLSA lies in the fact that former additionally learns the prior distributions of
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the topics in the corpus α so that it can make use of this information when the model

is used on new sets of unlabeled images (thus avoiding overfitting). Consequently,

the generative process of LDA is as follows:

1. For each document d, sample a Dirichlet random variable θ|α ∼ Dir(α) that

provides a probability distribution over the K latent topics.

2. For each local patch n, n ∈ N :

(a) Sample a topic zn|θ ∼ Mult(θ).

(b) Draw its appearance as wn|zn, β ∼ Mult(βzn
)

where Mult(·) stands for a multinomial distribution.

For the sake of compactness, we omit the subindex d in those variables that are

document-dependent unless a sum over the documents is performed. Considering a

particular document d in the corpus, several parameters are involved in its generative

process:

• α is a K-dimensional vector that contains the parameters αk > 0 of the Dirich-

let distribution. This parameter is shared by all the documents in the corpus.

• β is a collection of K V -dimensional vectors βk = [βk1 . . . βkV ] containing the

probabilities of the visual words given the latent topics.

For each document in the corpus, the resulting joint distribution on visual words,

spatial locations, and hidden variables is given by:

p(w, θ, z|α, β) = p(θ|α)

Nd
∏

n=1

p(zn|θ)p(wn|zn, β) (4.7)

The key inferential problem of LDA is that of computing the posterior distribution

of the hidden variables given a document:

p(θ, z|w, α, β) =
p(w, θ, z|α, β)

p(w|α, β)
(4.8)
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Figure 4.5: Graphical model of the variational distribution used to approximate the

posterior in LDA. Following the standard graphical model formalism, nodes represent

random variables, while the edges show the dependencies among variables. Shaded

circles denote observed variables and unshaded ones denote latent variables to be

inferred. Boxes refer to different instances of the same variable.

Unfortunately, this distribution is intractable due to the coupling between α and

β. Thus, the authors [Blei et al., 2003] propose the use of mean-field variational

methods for approximate inference [Jordan et al., 1999]. The basic idea of the pro-

posed method is to make use of Jensen’s inequality to obtain an adjustable lower

bound on the log likelihood that is indexed by several variational parameters. Then

the values of the variational parameters are optimized as an attempt to find the

tightest possible lower bound.

In particular, the authors proposed to use a simplified graphical model in which

some of the nodes and edges were removed. Figure 4.5 shows the selected variational

model for LDA, which gives place to a variational distribution q that follows:

q(θ, z|γ, φ) = q(θ|γ)

Nd
∏

n=1

q(zn|φn) (4.9)

where the Dirichlet parameter γ and the multinomial parameters (φ1, ..., φNd
) are

the free variational parameters. This variational distribution shows independence
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between the variables, what makes it tractable. Finally, as described in the original

paper [Blei et al., 2003], providing the tightest lower bound of the posterior translates

to the following optimization problem:

(γ∗, φ∗) = arg min
(γ,φ)

D(q(θ, z)|p(θ, z|w, α, β)) (4.10)

where D stands for the KL divergence. Hence, the inference process requires to

minimize the Kullback-Leibler (KL) divergence between the true posterior and a

variational distribution, which represents a simplified but convenient version of the

original model.

Modeling the spatial distribution of visual words in LTMs

Undoubtedly, the most important limitation of PLSA and LDA in Computer Vision

is that they do not take into account the spatial distribution of visual words in the

images. The benefits of this spatial modeling are twofold: first, an improved perfor-

mance of Latent Topic Models in tasks such as image classification or topic discovery;

and second, an enrichment of such models with the capability of generating robust

image segmentations. However, modeling the spatial location of visual words under

this framework is not longer straightforward since one must ensure that both appear-

ance and spatial models are jointly trained using the same learning algorithm that

infers the latent topics. One of the first approaches considering some geometric mod-

eling was [Sivic et al., 2005], where the use of doublets of visual words over PLSA

added simple geometric considerations and achieved notable improvements in object

localization. In [Fergus et al., 2005] the authors modeled the joint distribution of vi-

sual features and their locations using a translation and scale invariant approach for

unsupervised category discovering. This proposal assumes that the objects tend to

consistently appear at a predefined set of spatial positions and scales or, at least, the

objects are large enough to “fit” in those locations. In [Liu and Chen, 2006], Gaus-

sian and uniform spatial distributions are used to model foreground and background

topics, respectively, thus providing simple shape and scale estimates of the objects
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to be discovered and classified. However, a Gaussian distribution still represents a

coarse approximation of the object shape; thus, although the model improves the

object localization, it is not able to produce high-quality segmentations. A similar

idea is explored in [Wang and Grimson, 2007], where LDA is extended so that the

documents are no longer images, but points in images; then, a new latent variable

associates visual words with documents and the spatial location is modeled as a

Gaussian centered at the document. In [Bosch et al., 2008] PLSA is extended by

including a Spatial Pyramid to come up with what they call the SP-PLSA (Spatial

Pyramid-Probabilistic Latent Semantic Analysis). Other kind of approaches encode

geometry information using what is known as a part model, in which the objects are

composed of parts that, in turn, are shared among different categories. The work in

[Sudderth et al., 2007] represents a good example of a hierarchical part-based model

using latent topics.

Other proposals take a step forward and incorporate previous blind segmenta-

tions of images into the Latent Topic Models. In [Zhang and Zhang, 2004], a version

of PLSA that considers topics at region level (from a previous segmentation) is pro-

posed for image retrieval. In [Russell et al., 2006], a novel approach to deal with

under- and over-segmentations is proposed. Multilevel segmentations are generated,

then PLSA is used to unsupervisely detect categories, and finally the best segmen-

tation level is chosen according to the distance between the proposed regions and

the detected categories. In [Cao and Fei-Fei, 2007], an extension of LDA is proposed

that considers topics at an intermediate level (regions). These topics produce two

kinds of visual words, one related to the color of the whole region, and the other as-

sociated with texture descriptors from the local patches within the region. Thus, the

algorithm starts from an over-segmented version of the image to end up with a more

realistic segmentation, where regions are (hopefully) associated with semantic con-

cepts. Similar approaches have been successfully applied to image classification and

annotation [Wang et al., 2009], as well as to scene understanding [Li et al., 2009],

where concurrent image annotation and segmentation as well as scene classification
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are achieved within an integrated framework. In these approaches, the method for

image annotation follows the model proposed in [Blei and Jordan, 2003]. In particu-

lar, annotations can be seen as image captions that have been generated by specific

latent topics. Obviously, these image captions may help to classify the concept rep-

resented by the whole scene; however, since they do not point at any specific region,

the association of captions with regions is made through latent variables that need

to be inferred during the training phase. In all the reviewed models, however, re-

gions are considered as independent entities that do not interact with each other.

One method that goes beyond and, by allowing interactions among regions, imposes

certain spatial coherence has been proposed in [Zhao et al., 2010]. In this work, a

Markov Random Field (MRF) enforces that spatially connected regions belong to

the same topics.

The experimental results in all these previous works support the idea of modeling

the spatial distribution of visual words as a promising way to improve current latent

topic model performance.
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4.3 Region-Based Latent Topic Model

The Region-Based Latent Topic Model (RBLTM), proposed in

[González-Dı́az et al., 2009a], aims to incorporate the spatial location of visual

words into a latent topic model. In particular, RBLTM extends the PLSA model

and considers a document as a set of inter-related regions that influence to each

other according to their closeness. Two are the main contributions of this model

with respect to the state-of-the-art in Latent Topic Models: 1) RBLTM considers

regions as active entities, which can interact with each other rather than simply

representing concepts by their appearance; and 2) it provides a formal framework

for supervised training. Two kinds of annotations may be considered for supervised

training: image-based weak annotations, such as image captions, and (semi)strong

region-based annotations. The latter allows us to enhance the classification

performance when bounding-box or pixel-wise ground truth segmentations are

available. Both contributions come up from the manner in which RBLTM models

the spatial distribution of topics over the document, which is novel with respect

to previous related works [Wang et al., 2009][Blei and Jordan, 2003][Li et al., 2009].

Furthermore, strong and weak levels of supervision can coexist in our model, as

it will be shown in our experiments, that demonstrate that RBLTM successfully

addresses three tasks of interest in Computer Vision: image classification, object

class image segmentation and unsupervised topic discovery.

As previously mentioned, the original PLSA does not take into account any spatial

information. As a result of this lack of constraints on the spatial position of the

words, the distribution of topics over the visual words often turns out inaccurate.

Consequently, the topic detection process does not work properly, and the modeling

of semantic concepts becomes infeasible. In contrast, the goal of RBLTM is to exploit

both the local descriptors, which have been shown to be highly discriminative, and

the image segmentation, which depicts the spatial structure.

In this Section, the preprocessing stage devoted to set up the bag-of-words model
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on top of which RBLTM is built is described first. Next, the unsupervised version of

RBLTM is explained, introducing the basic formulation of the model. Subsequently,

the supervised version of the model, which allows for improved operation when an-

notated datasets are available, is presented. Finally, a brief discussion about the

computational complexity of RBLTM is provided.

4.3.1 Preprocessing: setting up the bag-of-words model

Since the proposed scheme makes use of both local properties and global

segmentation-based information, the images have to be preprocessed in order to

extract and properly organize the required information for the subsequent model

learning process. Fig. 4.6 illustrates the image representation used in the proposed

scheme. Each image i is partitioned into Ri regions, and a matrix Λi is defined, as

described below, to model the inter-region influences. Then, keypoints are detected

and the corresponding Wi local patches are described through both their appearance

(color and texture) wj and their spatial location si
l, which links each keypoint to the

specific region to which it belongs.

The preprocessing module involves several stages, namely: generation of the im-

age segmentation, computation of the inter-region influence matrix, extraction of

local features, and generation of the visual vocabulary. Each of these stages is briefly

described in the next paragraphs.

a) Image segmentation : The segmentation stage uses a fast algorithm that is

particularly configured to produce about 30-60 regions (i.e., an over-segmentation).

This configuration ensures that the regions usually contain pixels from only one

semantic object. Specifically, an efficient graph-based image segmentation method

[Felzenszwalb and Huttenlocher, 2004] is employed to generate color-based segmen-

tations for each image. We have employed this method because our experiments,

presented in chapter 5, use a still-image database rather than a video database.

In the second case, our blind segmentation proposal described in chapter 2 would

provide even better results.
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Figure 4.6: Image representation used in the RBLTM. Each image i is partitioned

into Ri regions that are organized in a graph whose nodes represent regions and

whose links stand for influences among regions. This graph representation sets the

basis to compute a matrix of inter-region influences. On the other hand, keypoints

are detected and the corresponding Wi local patches (dashed boxes) are described

through both their local appearance (color wc and texture (SIFT) ws visual words)

and their spatial location (sl, with l the region that contains the patch).

b) Inter-region influence matrix : The proposed generative model uses a

matrix Λi :=
(

λi
pl

)

RiRi
that holds information about the relations among regions

that come from the segmentation stage. The relations among regions are modeled

through a simple influence model. Specifically, given an image i partitioned into a

set of Ri regions, the influence λi
pr of a region p on a region r is measured as follows:

λi
pr =

lpr

lr
(4.11)

where lpr is the length of the common boundary between the regions p and r, and

lr represents the perimeter length of the region r. Values close to 1 mean that the

influence of p on r is strong and vice versa. It is worth noting that the matrix Λi

is not, in general, symmetric, i.e., λi
pr 6= λi

rp. Then, the influence of larger regions

on smaller ones is higher than in the opposite way, what, from the authors’ point of

view, is desirable in order to avoid that small regions with just a few visual words

(thus, with low confidence on their class) present a strong influence over large regions
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with many visual words. Furthermore, as one can expect, the influence of a region

on itself is λi
pp = 1.

c) Local feature extraction : Local features are extracted from each local patch

in every image. The keypoints and their corresponding local patches are obtained

using a dense grid. In particular, two scales have been used, yielding overlapped

circular patches with radius 8, and 16, organized in a regular 6 pixel spaced grid.

Hence,for each selected location in the image, two independent local patches are

generated, one associated to each of the scales. From each local patch, two kinds of

appearance features are extracted. The first one, wc, is related to color and consists

of a 96-dimensional vector formed by the concatenation of 4 spatial histograms (2x2

grid)of 24 color components in the CIELab space; and the second one, ws, consists of

an 128-dimensional SIFT descriptor [Lowe, 2004] that models texture information.

d) Visual Vocabulary : Once the local features have been extracted, a bag-

of-words model is computed. The k-means clustering algorithm has been used to

compute the M codewords that best represent the local features of the reference

image set. In our case, given a complete set of 1M descriptors, the k-means algorithm

provided vocabularies of size Ms = 4000 for SIFT features and Mc = 1000 for color

features. Moreover, the influence of each type of features is adjusted by means of

regularizing priors. The relative weight of color features was set to 0.5 by cross-

validation, and regularization is used according to this weight. For simplicity, in the

remainder of this section, although we use two kinds of visual words, we will refer to a

general visual word w. The extension of the formulation to more than one visual word

is straightforward, since their distributions are conditionally independent. Hence,

they can be factorized and the corresponding equations adopt the same form.

4.3.2 Unsupervised RBLTM

The graphical model representation of RBLTM is shown in Fig. 4.7. A new variable s

has been introduced to indicate the spatial location to which a local descriptor refers;

this new variable becomes the most significant difference with respect to PLSA, which
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Figure 4.7: Graphical model representation of unsupervised RBLTM. Following the

standard graphical model formalism, nodes represent random variables, while the

edges show the dependencies among variables. Shaded circles denote observed vari-

ables and unshaded ones denote latent variables to be inferred. Boxes refer to dif-

ferent instances of the same variable.

does not take into consideration the spatial layout of the image. The objective of

the spatial modeling is to improve the decisions concerning those regions that cannot

be consistently characterized by their appearance, by taking also into consideration

some information from their neighborhood. In particular, the spatial location of a

visual descriptor is given by the region to which the local patch belongs (see Figure

4.6). Consequently, for each image i there are as many potential locations as regions

Ri have been generated in the segmentation stage.

The other new variable in the graph, α, will be defined later on when the basic

model formulation has been introduced.

As illustrated in the graph, the generative process modeled by RBLTM is as

follows. Each document di is represented as a mixture of latent topics zk, k =
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1, 2, ..., K that are supposed to explain the occurrences of visual words wj, j =

1, 2, ..., M at a predetermined set of spatial locations si
l, l = 1, 2, ..., Ri, which are

document-dependent. The visual words wj describe the local appearance of the local

patches (texture and color), while the spatial locations si
l denote to which Ri region

the local patch belongs. Since this notation is used in the rest of the section, it

should be noted that, for any collection of random variables, the subscripts denote

the working index of a variable itself, while the superscripts denote the indices along

the collection.

In RBLTM, each document in the corpus is described by a co-occurrence MxRi

table N i with ni(wj , s
i
l), whose dimensions differ from one image to another; conse-

quently, a global co-occurrence table makes no sense in this case. Following the same

steps developed for PLSA, the joint distribution of documents, topics, and words can

be written as follows by marginalizing over the topics:

P (di, wj, s
i
l) = P (di)

K
∑

k=1

P (zk|di)P (wj|zk)P (si
l|zk, di, α) (4.12)

In this case, the likelihood function to optimize becomes:

L = P (X|θ) =
D
∏

i=1

M
∏

j=1

Ri
∏

l=1

P (di, wj, s
i
l)

ni(wj ,si
l
)

(4.13)

and the optimal model parameters θML are again found by maximizing the accumu-

lated log likelihood, i.e.:

θML = arg max
θ

log P (X|θ) (4.14)

by means of the EM algorithm.

In order to perform the log likelihood optimization, the conditional probability

P (si
l|zk, di, α) has been modeled as a parametric distribution of the form:

P (si
l|zk, di, α) =

Ri
∑

p=1

αik
p λi

pl (4.15)
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where α is a collection of KxD unknown parameters αik = [αik
1 . . . αik

Ri
] that has to

inferred during the learning phase. Each element of the vector is called the impor-

tance αik
p of a region p given a topic k. The dependence of the distribution on zk

and di is trivial since they basically point to the corresponding element αik in the

collection. The term λi
pl was already defined in eq. (4.11) as the influence of the

region si
p on the region si

l – the influences are computed “a priori” for each image

in the dataset as described in subsection 4.3.1. The role of the influences is to in-

duce the topics to spread over contiguous regions; consequently producing spatially

coherent and compact topics. In other words, when the likelihood of topic is high

given a region, this region will shift its spatially neighboring regions towards that

topic. An example of the spatial distribution for a particular image is presented in

Figure 4.8. This example shows the empirical spatial distributions for topics rep-

resenting the classes “dog” and “sheep” at several iterations of the algorithm. The

figure demonstrates how the algorithm converges to very close representations of the

objects (it is noteworthy that this spatial distribution does not explicitly take into

account the appearance of the objects). Furthermore, last column shows the results

of the RBLTM when there is no cooperation among regions: in this case, there are

several regions that are not in agreement with their spatial neighborhood, issue that

is successfully handled by the cooperative model. Hence, we can conclude that this

modeling is simple, allows us to obtain a closed solution that enables a joint opti-

mization of the appearance and spatial models, and provides excellent results as it

will be shown in chapter 5.

Concerning the maximization of the log-likelihood, in the E-step of the EM algo-

rithm the posterior probabilities for the concepts P (zk|di, wj, s
i
l) are computed from

the current estimates of the parameters as follows:

P (zk|di, wj, s
i
l) =

P (zk|di)P (wj|zk)P (si
l|zk, di, α)

K
∑

m=1

P (zm|di)P (wj|zm)P (si
l|zm, di, α)

(4.16)

(The derivations of this formula and those that follows are given in the Appendix
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Figure 4.8: An example of the spatial distribution for classes “dog” (top row) and

“sheep” (bottom row) in a image of the database: First column: original images;

Second column: Iteration 1; Third column: Iteration 10; Fourth column: Iteration

30; Fifth column: Iteration 30 without cooperation (a region just influences itself).

Lighter colors represent higher probabilities.

B.1.)

In the M-step, P (zk|di) and P (wj|zk) are re-estimated as:

P (zk|di) =

M
∑

j=1

Ri
∑

l=1

ni(wj, s
i
l)P (zk|di, wj, s

i
l)

M
∑

j=1

Ri
∑

l=1

ni(wj, s
i
l)

(4.17)

P (wj|zk) =

D
∑

i=1

Ri
∑

l=1

ni(wj, s
i
l)P (zk|di, wj, s

i
l)

D
∑

i=1

Ri
∑

l=1

ni(wj, s
i
l)

(4.18)

Additionally, P (si
l|zk, di, α) is re-estimated following eq. (4.15) and using updated

estimates of the importances, which are computed as follows:

αik
p =

M
∑

j=1

Ri
∑

l=1

ni(wj, s
i
l)P (zk|di, wj, s

i
l)r

ik
pl

χi
p ·

M
∑

j=1

Ri
∑

l=1

ni(wj, s
i
l)P (zk|di, wj, s

i
l)

(4.19)
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where the vector χi =
[

χi
1 . . . χi

Ri

]

contains the weighting factors χi
p that accumulate

the total influence of a particular region over the rest (see Appendix B.1.3):

χi
p =

Ri
∑

l=1

λi
pl, (4.20)

and rik
pl is a normalized factor (it satisfies

∑Ri

l=1 rik
pl = 1) that considers the whole

(importance plus influence) inter-region relations given a topic, and it is defined as

follows (see Appendix B.1.2):

rik
pl =

αik
p λi

pl

Ri
∑

m=1

αik
mλi

ml

. (4.21)

The computation of rik
pl is performed in the E-step of the algorithm, once the updated

estimates of the importances are available.

The EM algorithm to perform the complete inference process in the unsupervised

RBLTM is summarized in Alg. 1.

4.3.3 Supervised RBLTM

RBLTM can be modified to work in a supervised framework, in which a set of anno-

tated images is available for the training phase. Furthermore, the proposed super-

vised extension considers two possibilities for the annotations concerning the spatial

structure of a document: image-based and region-based annotations. A graphical

model of the supervised version of RBLTM is shown in Fig. 4.9. As it can be seen

in the figure, the graph shows two new parameters β and γ that depend on the

image LIMG and region LREG based annotations, respectively. Given a document

i, βi is a K-dimensional multinomial variable that contains the proportions of the

topics, whereas γi is a collection of K Ri-dimensional multinomial variables γik that

define the spatial location of a topic in the document. In practice, βi and γik are

the parameters of two Dirichlet distributions that become the priors of p(zk|di) and

the importances αik, respectively.
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Figure 4.9: Graphical model representation of supervised RBLTM with strong and

weak annotations. Following the standard graphical model formalism, nodes rep-

resent random variables, while the edges show the dependencies among variables.

Shaded circles denote observed variables and unshaded ones denote latent variables

to be inferred. Boxes refer to different instances of the same variable.

In general, the inclusion of prior distributions leads to a Maximum a Posteriori

(MAP) optimization over the parameters θMAP :

θMAP = arg max
θ

{log P (X|θ) + log g(θ)} (4.22)

where g(θ) stands for the prior density of the parameters. This prior density function

g(θ) can be factorized as g(θ) = gimg(θ)·greg(θ), which are related to the image-based

and the region-based annotations, respectively. In both cases conjugate priors repre-

sent good candidates for Bayesian inference, which leads to the use of Dirichlet priors

for the multinomial distributions. Hence, our proposal in the supervised scenario uses

soft-labeling in the sense that topics are still latent. In practice, a document or region

labels do not impose that every local patch in the image/region has to be assigned

to the topic associated to the label (e.g. if the appearance of the topic does not fit

the learned distribution it may be assigned to other topic).
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In the next two subsections the equations that differs with respect to those of the

unsupervised case are given for both image- and region-based annotations, respec-

tively. The complete derivation of these equations is provided in the Appendix B.2.

The rest of the equations are the same as the corresponding ones in the unsupervised

version of the model.

Image-based annotations

An image is labeled as a positive example when it contains an object of interest. In

this case, a Dirichlet prior over the distribution of the topics given the document is

considered. Specifically, the prior density function obeys:

gimg(θ) =

D
∏

i=1

1

G(βi)

K
∏

k=1

P (zk|di)
(βi

k
−1) (4.23)

where βi
k represent the hyperparameters of the Dirichlet densities, and the normal-

izing constant G follows:

G(βi) =

∏K
k=1 Γ(βi

k)

Γ
(

∑K
k=1 βi

k

) (4.24)

Then, as a result of a Lagrangian optimization subject to
∑

k P (zk|di) = 1, the

formula to update the MAP estimates of the P (zk|di) in the M-step of the EM

algorithm turns out to be as follows:

P (zk|di) =

∑

j,l

ni(wj, s
i
l)P (zk|di, wj, s

i
l) + (βi

k − 1)

∑

j,l

ni(wj , s
i
l) +

∑

m

(βi
m − 1)

(4.25)

where j = 1, 2, ..., M , l = 1, 2, ..., Ri and m = 1, 2, ..., K. The complete derivation of

this formula is worked out in the Appendix B.2.2.

Furthermore, the hyperparameters can be modeled as βi
k = ǫi

IMGP̃ (zk|di) + 1,

where ǫi
IMG is shared by all the topics of a document, and P̃ (zk|di) stands for the

prior probability of the topic k given the image i. These prior probabilities can be
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easily determined using the image-based labels, henceforth LIMG. Hence, the eq.

(4.25) can be rewritten as follows:

P (zk|di) =

∑

j,l

ni(wj, s
i
l)P (zk|di, wj, s

i
l) + ǫi

IMGP̃ (zk|di)

∑

j,l

ni(wj , s
i
l) + ǫi

IMG

(4.26)

where j = 1, 2, ..., M and l = 1, 2, ..., Ri. As it can be easily inferred from the update

expression, the term ǫi
IMG manages the balance between the contributions of the

unknown and known terms of the distribution.

Region-based annotations

The proposed model also considers a simple and effective way to use region-based

labels during the training phase. The region-based annotations, henceforth LREG, re-

fer to either pixel-wise image segmentations, when every pixel is labeled as belonging

to a specific class (object), or bounding-box-based annotations, when a rectangular

frame is given that contains the object of interest. In the second case, although only

partial information is available (just a rectangular area) and not all the pixels are

correctly labeled, a mask associated to each of the objects happening in the image

can be generated.

In this case, a conjugate prior is set over the importance αik
p of each region given

the topic. The importance vector αik could be considered as a multinomial variable,

except for the normalizing factors χi
p. Thus, considering the Hadamard product

(

αik · χi
)

as a multinomial variable, a Dirichlet prior can be written as follows:

greg(θ) =
D
∏

i=1

K
∏

k=1

1

G(γik)

Ri
∏

p=1

(αik
p χi

p)
(γik

p −1)
(4.27)

where γik
p are the hyperparameters of the distribution, and the normalizing constant

G follows:

G(γik) =

∏R
p=1 Γ(γik

p )

Γ
(

∑R
p=1 γik

p

) (4.28)
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Furthermore, we have designed the prior distribution by introducing some im-

portance priors α̃ik
p as follows: once the masks for the different objects have been

computed (either from pixel-wise segmentations or from bounding boxes), a map-

ping between them and the segmentation described in Subsection 4.3.1 is performed.

Such a correspondence is not previously available since, in general, the segmenta-

tion of the preprocessing stage provides many more regions than the ground truth

solutions (ground truth models semantic concepts, which are usually compound by

more than one homogeneous regions). In this work, a straightforward method has

been designed to establish that mapping between each mask of a class c and a region

p of the partition {Ri}. The underlying idea is to compute the ratio between the

number of pixels of the region that belongs to a specific class and the total num-

ber of pixels of that region. Let li(x, y) denote the class label of the pixel (x, y)

in an image i, N i
p = {(x, y) ∈ p} the total number of pixels of the region p, and

N i
pc = {(x, y) ∈ p|(l(x, y) = c)} the number of pixels of the region p that belongs to

the class c. Hence, the importance priors obey α̃ik
p =

|N i
pc|

|N i
p|

, with k = c.

Then, as in the previous cases, the Lagrangian optimization (worked out in the

Appendix B.2.3) yields the following update equation for the importances:

αik
p =

∑

j,l

ni(wj, s
i
l)P (zk|di, wj, s

i
l)r

ik
pl + ǫik

REGα̃ik
p

χi
p

[

∑

j,l

ni(wj, s
i
l)P (zk|di, wj, s

i
l) + ǫik

REGΓ̃ik

] (4.29)

It should be noted that, once more, the hyperparameter γik
p has been modeled as

γik
p = ǫik

REGα̃ik
p +1, where α̃ik

p are the priors of the importances. Again, the parameter

ǫik
REG manages the balance between the contributions of the unknown and known

elements of the distribution. The term Γ̃ik represents a scaling factor that ensures

that the spatial distribution is multinomial, and is defined as:

Γ̃ik =
∑

p

α̃ik
p (4.30)

It is worth noting that this kind of annotation is not possible in PLSA, since it

is not able to model the spatial distribution of topics in an image.
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The Alg. 2 summarizes the complete inference process for the supervised RBLTM,

including both the image- and the region-based labels.

4.3.4 A comment on the RBLTM complexity

RBLTM improves the image representation by PLSA through the modeling of the

spatial location of latent topics and providing a natural framework for inter-region

relations. However, this improvement is achieved in exchange for an increase of the

computational complexity of the EM algorithm. In order to get some insight on

this issue, let us contemplate a simplified model that considers K topics in a corpus

of D documents, each of them containing the same number of local patches W and

regions R. In this case, the computation of the terms related to the spatial location of

topics requires O(DKR2) operations, that differs from the maximal complexity of the

terms that are also present in the PLSA (those ones that do not include any spatial

information), which is O(DWK). Though the quadratic dependence on R might

potentially cause some problems for high values of R, in practice, the complexity

is limited by the model of the inter-region influences. In particular λi
pl is equal to

zero for any pair of non-adjoining regions (see equation (4.11)); in other words, each

region affects only to a few regions in its spatial neighborhood, what leads to an

actual complexity of O(DKnR) operations, with n ≈ 5 in our experiments.
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Algorithm 1 EM algorithm to perform the complete inference process in the unsu-

pervised RBLTM

randomly initialize all the variables

repeat

E-Step

for all documents di, i ∈ D, visual words wj, j ∈ M , and spatial locations

si
l, l ∈ Ri do

compute P (zk|di, wj, s
i
l), in eq. (4.16).

for all regions p ∈ Ri do

compute rik
pl , in eq. (4.21).

end for

end for

M-Step

for all documents di, i ∈ D, visual words wj, j ∈ M , spatial locations si
l, l ∈ Ri,

and regions p ∈ Ri do

compute P (zk|di), in eq. (4.17).

compute P (wj|zk), in eq. (4.18).

compute αik
p , in eq. (4.19).

compute P (si
l|zk, di, α), in eq. (4.15)

end for

until convergence
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Algorithm 2 EM algorithm to perform the complete inference process in the super-

vised RBLTM

initialize P̃ (zk|di) from the image-based labels LIMG.

initialize α̃ik
p from the region-based labels LREG.

randomly initialize the rest of the variables

repeat

E-Step

for all documents di, i ∈ D, visual words wj , j ∈ M , and spatial locations

si
l, l ∈ Ri do

compute P (zk|di, wj, s
i
l), in eq. (4.16).

for all regions p ∈ Ri do

compute rik
pl , in eq. (4.21).

end for

end for

M-Step

for all documents di, i ∈ D , visual words wj, j ∈ M , and spatial locations

si
l, l ∈ Ri and p ∈ Ri do

compute P (zk|di), in eq. (4.26).

compute P (wj|zk), in eq. (4.18).

compute αik
p , in eq. (4.29).

compute P (si
l|zk, di, α), in eq. (4.15).

end for

until convergence
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4.4 Region Based Latent Dirichlet Allocation

Region-Based LDA (RBLDA) constitutes an advanced latent topic model that uses

successful insights from RBLTM as well as other novel extensions and is developed

under the LDA paradigm. As mentioned above, LDA learns corpus-level priors over

the topic distribution that are not considered in PLSA. This enhancement motivates

the task of adapting the original RBLTM to this more Bayesian framework. Fur-

thermore, RBLDA has been conceived to overcome several particular drawbacks of

the RBLTM, namely:

• RBLTM considers the appearance probabilities p(w|z) as conditionally inde-

pendent given the topic. Hence, it does not explore the nonlinear relations

among words that belong to the same region.

• RBLTM considers simple intra-topic inter-region influences. This approach is

somewhat constraining since it cannot model the influence between neighboring

regions that belong to correlated topics (sky/aeroplane, road/car).

• The local distribution of topics that do not actually appear in an image remains

uncontrolled. In the absence of information, a topic has to be located in some

area of the image, with independence of the fact that it is present or not.

• RBLTM does not include useful information from global classifiers, like SVMs

working on the bag-of-words, that may help to provide better segmentations.

RBLDA has been proposed in [González-Dı́az and de Maŕıa, 2011]. This section

provides a complete description of this generative model, describing each of its con-

stituting elements. Since the preprocessing step of RBLDA is the same as for the

RBLTM the reader is referred to section 4.3.1 for a complete description.
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Figure 4.10: Graphical model of the Region-Based LDA. Following the standard

graphical model formalism, nodes represent random variables, while the edges show

the dependencies among variables. Shaded circles denote observed variables and un-

shaded ones denote latent variables to be inferred. Boxes refer to different instances

of the same variable.

4.4.1 Description of the Generative Model of RBLDA

In this subsection we describe the structure of the generative model used in RBLDA.

This model is represented in Fig. 4.10. The main contribution of this model is

twofold: first, RBLDA uses an enhanced version of the location model of the RBLTM,

which now considers two elements: a topic-dependent location and a context model

that incorporates the influences among regions; and second, a new appearance model

that successfully handles inter-word relations inside a region.

It is worth mentioning that, since this model relies on a previous blind segmen-

tation of the image and the appearance model is associated with an entire region,

the information unit is the region rather than the local patch. This constitutes a key

difference between this approach and RBLTM.

We next summarize the main contributions of the proposed model with respect

80



CHAPTER 4. GENERATIVE MODELS FOR IMAGE REPRESENTATION

to LDA, on top of which is built, and RBLTM:

• In contrast to original LDA and RBLTM, there is not any variable associated

with visual words, but a new appearance variable h that is region dependent.

This new variable represents a normalized histogram of visual words within a

region so that it does not depend on the number of visual words. For each

region, the histogram vector has fixed length (M , the size of the vocabulary)

and becomes the input of a novel distribution for the appearance.

• The variable l refers to the spatial location of a topic in an image. It basically

points to the region in which the topic is located and involves two independent

terms: a topic-based term and a spatial context-based term.

– The topic-based spatial location term is computed by simply dividing an

image into a fixed grid of cells and storing the probability of a topic occur-

ring at each cell. As an example, this variable causes a topic representing

’sky’ to occur more likely at the top of an image. This distribution was

not included in RBLTM.

– The context-based spatial location is image-specific and takes into account

the relation between a region and its neighborhood. It provides more

coherent representations so that semantically related topics tend to appear

together. This variable will be later explained in section 4.4.2 and extends

the prior distribution proposed for RBLTM. As an example, this variable

enforces the topic ‘airplanes’ to occur surrounded by a semantically related

topic such as ‘sky’.

• In supervised environments, the model also incorporates an image-specific vari-

able g that stores the outputs of other image-level classifiers (such as image-

level bag-of-words classifiers).

Consequently, the generative process of the proposed model works as follows (let

us note that, since the notation of LDA differs from that of PLSA, the same happens
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with RBLDA with respect to RBLTM):

1. For each document d, sample a Dirichlet random variable θ|α ∼ Dir(α) that

provides a probability distribution over the K latent topics.

2. For each region index r:

(a) Sample a topic zr|θ ∼ Mult(θ).

(b) Draw its appearance as hr|zr, a using a novel distribution to be defined in

section 4.4.3.

(c) Sample its location lr|zr, β, c, δ, λ by computing:

i. A topic dependent spatial location lr|zr, β ∼ Mult(βzr
).

ii. A context-based spatial location (from the blind image segmenta-

tion) based on context information lr|zr, c, δ, λ, following a coopera-

tive context distribution (described in Section 4.4.2).

(d) Just in a supervised environment: Sample a global variable g that depends

on the outputs of a global classifier as g|µ, Σ ∼ N (µ, Σ).

For the sake of compactness, we omit the subindex d in those variables that are

document-dependent unless a sum over the documents is performed. Considering a

particular document d in the corpus, several parameters are involved in its generative

process:

• α is a K-dimensional vector that contains the parameters αk of the Dirichlet

distribution (with αk > 0,∀k). This parameter α is shared by all the documents

in the corpus.

• β is a collection of K Ng-dimensional vectors containing the probabilities of the

topic k occurring at the Ng different cells of the grid. Since a blind segmentation

method does not produce regular regions, a matching between the segmentation

blobs and the cells in the image is performed by computing the proportion of

the region that lies in each cell.
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The rest of the model parameters will be later explained in the following subsec-

tions.

(a) (b)

(c) (d)

Figure 4.11: Some empirical distributions of the location model in RBLDA for various

semantic concepts. a) Aeroplane b) Bicycle c) Dining Table d) Person

4.4.2 The location model

The location model of the RBLDA aims to estimate the spatial location of topics

in an image. To achieve this purpose, it relies on two conditionally independent

distributions:

1. The topic-dependent location lr|zr, β ∼ Mult(βzr
), which estimates the usual

location of topics in a corpus. Hence, this distribution is common for all doc-

uments in the corpus and, partitioning each image into a fixed grid of cells, it

stores the probability βkg of a topic k occurring at a particular cell g. Hence,
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Figure 4.12: Values of the variable c in the context model of RBLDA for the PASCAL

VOC 2010 database [Everingham et al., 2010]. c estimates the spatial co-ocurrence

of topics in a corpus. Elements in the diagonal have been set to zero to improve the

visualization.

β stands for a collection of K Ng-dimensional multinomial variables where Ng

is the number of cells of the grid. Figure 4.11 shows some empirical examples

of this distribution for various semantic concepts.

2. The context-based spatial location works on a previous segmentation of an

image and studies the relationships between a region and its neighborhood.

The basic idea is to locate topics in regions that are in agreement with their

neighborhood (context). We consider two regions to be in agreement not only

if they belong to same topic but also if they belong to correlated topics (e.g.

aeroplane-sky, car-road, etc.).
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The context model incorporates these relations to the generative process while

keeping it simple enough to allow for closed expressions in the inference process.

As mentioned before, the objective of this model is to set the basis for inter-region

inter-topic cooperation. This means that regions belonging to a particular topic A

may push other regions towards belonging to other topic B when both topics tend

to appear together in the corpus. To this purpose, three variables are defined:

• λ stores the influences λpr between any two regions p and r in an image.

Following the approach described in section 4.3.1, λpr is computed as the ratio

between the common boundary of the two regions lpr and the length of the

region r and further normalized to obey
∑Rd

r=1 λpr = 1. This vector is pre-

computed and remains fixed.

• δ is a document-dependent collection of K Rd-dimensional unknown parame-

ters δk = [δk1 . . . δkRd
], with

∑Rd

p=1 δkp = 1. Each element of the vector is called

the importance δkp of a region p given a topic k, and must be inferred during

the inference process.

• c stands for a collection of K K-dimensional multinomial parameters ct such

as
∑K

t=1 ctk = 1. The objective of this variable, shared across all the docu-

ments in the corpus, is to capture the spatial correlation among topics. In

other words, ctk estimates the probability of co-occurrence of topics t and k

in spatially adjoining regions in the corpus. Figure 4.12 shows an example

for topics associated with the twenty categories in the PASCAL VOC 2010

database [Everingham et al., 2010].

Hence, the context model in our system is:

p(lr|zr, δ, c, λ) =

K
∑

t=1

∑

p 6=lr

ctzr
δtpλplr (4.31)

It is noteworthy how, given a spatial location lr, the context model considers in-

fluences from every region p in the image except for lr. This approach avoids that the
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distribution ck concentrates around the element k, what, in fact, would technically

lead to an intra-topic cooperation model (the one of RBLTM). Since we still need

to ensure that
∑

s p(lr|zr, δ, c, λ) = 1, this context model can be better explained as

follows: given a topic k, the generative model looks for the best spatial location to

draw the topic depending on the context of the regions (their neighborhood).

Adding a non-image region

The modeling of the context of a topic fails when it is not present in the image; in this

case, in order that
∑Rd

r=1 p(lr = r|zr, δ, λ) = 1, the contribution of the context term

of a topic that is not in the image is unpredictable. This fact might lead to situations

where topics that do not appear in the image are as much or even more likely than

others that actually appear (specially, if the latter are uniformly distributed across

the whole scene). To overcome this weakness, for each image d in the corpus, a new

region is added, so the effective number of regions becomes Reff
d = Rd + 1. The

new region, called non-image region r∗, is considered to point outside the image.

Consequently, it neither contains any local patch nor produces any influence on the

remaining regions.

In order to locate potentially problematic topics in that non-image region we

introduce some prior Dirichlet parameters η over the region importances δ, so that,

in the absence of other information (appearance information), the topics tend to

locate in the non-image region. In particular, the set-up of RBLDA with a non-

image region requires to follow these steps:

1. For each image d in the corpus, the non-image region is added, so that the

effective number of regions becomes Reff
d = Rd + 1.

2. Proper values for the elements of the Reff
d -dimensional η parameter should be

provided: although the η parameter is document-dependent in the sense that

each document has a particular number of regions Rd, this process is similar

for all the images; in practice, ηr is low for r 6= r∗ and higher for r∗.
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3. The model is trained using the EM algorithm.

In supervised environments, in which labels are provided at region level, the

variable η is also used as region label. Once an object representing the topic k

appears in an image, ηkr stores the proportion of the whole object that lies in the

region r. In other case, if a topic is not present, the whole object lies in the non-image

region.

The main consequence of this extended context model with non-image region is

the inclusion of a new variational parameter χ, as shown in Fig. 4.13.

4.4.3 Improving the appearance model using a Kernel Logistic

Regressor

In traditional topic models, the appearance model follows a multinomial distribution

over each visual word. Although assigning topics at visual word level might seem

appealing due to its simplicity, many authors work at the region level in order to

provide additional descriptors that turn out to be more stable than the individual

visual words (see [Shotton et al., 2009] and [Zhang and Zhang, 2004] for example).

In the LDA formulation, this region-based granularity level has been traditionally

handled by considering the appearance of a region as the product of the probabilities

(multiplicative model) of the visual words that lie within that region. The interested

reader is referred to [Cao and Fei-Fei, 2007] and [Wang et al., 2009] for more infor-

mation. However, the multiplicative model may become too sensitive to a particular

visual word when estimating the global probability of a region. Furthermore, this

appearance model considers local patches as individual entities so that, given the

topic of the region, their appearances are conditionally independent.

Our proposal is different from these approaches in the sense that a descriptor for

the whole region is computed and used in the appearance model. Furthermore the

appearance of a region is now modeled as a Kernel Logistic Regressor (KLR), so that

this appearance model takes into account the nonlinear relations among visual words
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within a region. Hence, before describing in detail our proposal, we first introduce

the Kernel Logistic Regressor.

Kernel Logistic Regression

The Kernel Logistic Regression is a well studied problem [Wahba et al., 1993]

[Green and Yandell, 1985] [Hastie and Tibshirani, 1987]. Following the notation of

the logistic regression, we consider a set of N data indexed by i so that a binary vari-

able yi ∈ {0, 1} represents the label of the data. We aim to minimize the Negative

Log Likelihood (NLL):

H = −
N
∑

i=1

[yif(xi) − log(1 + exp(f(xi)))] +
λ

2
‖f‖2

Hk
(4.32)

where λ is a constant that weights the influence of the L2 regularization term and HK

stands for the Reproducing Kernel Hilbert Space (RKHS) generated by the kernel

K. Using the representer theorem, the optimal f has the form:

f(x) = b +
N
∑

i=1

aiK(x, xi) (4.33)

where ai are the model parameters associated to each data in the dataset and b is

a bias term. Some of the ai can be zero and, even more, many of them can be set

to zero without much loss of performance. Based on this fact, we can reduce the

complexity of the KLR by selecting only those data that have strong influence over

the final result:

f ′(x) = b +
∑

xi∈S

aiK(x, xi) (4.34)

where S is a subset of the training data {x1, x2, ..., xN}.

The appearance model

As shown in the previous subsection, this approach is equivalent to the dual form

of nonlinear support vector machines (SVMs) and takes advantage of the great dis-
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criminative power of SVMs. As shown in [Zhu and Hastie, 2001], the negative log-

likelihood of eq. (4.32) has a similar shape to that of the SVM except for the

well-classified samples (that still influence the KLR but no the SVM). Furthermore

a KLR also provides a natural estimate of the discriminating probability p(zr|hr),

being hr the region descriptor.

However, we use the KLR in a generative model, what induces a novel and dif-

ferent approach. In particular, for a given region r and topic zr, we have proposed

the use of the following distribution:

p(hr|zr, a) =
nzr

1 + e−fzr (hr)
(4.35)

with:

fzr
(hr) =

S
∑

s=1

azrsK(r, s) (4.36)

where hr represents the normalized histogram of the region r; nzr
is a normalization

term that ensures that p(hr|zr, a) is a probability density function over the potential

values of hr; the index s points to a support point in the whole set S; K(r, s) stands

for the Kernel function between a region r and a support point s; and the elements

azr
represent the weights of the KLR associated with the different support points.

For simplicity, the bias term has been omitted. It is easy to note that, in eq. (4.36),

S does not depend on zr so that the same set of support points is used for every

different KLR (every topic in the model). Hereafter, we will indistinctly use fzr
(hr)

and frzr
.

The normalization factor nzr
in eq. (4.35) deserves some additional words. Since

the combination of different words in a region leads to an infinite number of potential

values for hr, getting a proper normalization becomes unfeasible. Therefore, we have

made one assumption to make this problem tractable: if our training database is

large enough and contains N distinct samples, a valid normalization is achieved by

simply ensuring that
∑N

n=1 p(hn|z, a) = 1 for each topic z. Hence, this normalization

considers that no other possible combination of words can occur in the corpus, what
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requires that, in test, we have to assign each sample to its nearest neighbor in the

training set so that unseen samples do not break the normalization.

Taking into account the negative samples

Because of the graphical model, eq. (4.35) will be evaluated for a particular region

r only when the specific topic has been chosen as the one that generates the region

(since zr is an indicator variable). In a supervised framework, this issue becomes

critical since the regressor in the appearance model would be trained using just

those samples that are positives for the topic (being its output unknown for the

negative samples). This fact would lead to situations in which a training sample

that belongs to a specific topic might produce higher probabilities for other topics

due to the appearance distribution.

To overcome this issue we propose the following appearance distribution to be

used when training the models:

p(hr|zr, a) = nzr

(

1

1 + e−frzr

)zr
(

1

1 + efrzr

)z̄r

(4.37)

where z̄r represents the complementary variable of zr, such that p(z̄r) = 1 − p(zr).

Handling unbalanced datasets

In many cases the datasets are strongly unbalanced, i.e., the number of negatives is

much higher than the number of positives for a given topic. Although the normaliza-

tion term nzr
may help to handle this issue, it may be useful to weight the influence

of positive and negative samples separately. Of course, this idea is employed only

in supervised frameworks in which the number of positive and negative samples is

known a priori. This approach has its equivalent in SVMs when assigning different

costs to positive and negative errors.

Our proposal is as follows: for each topic z, we compute the proportion of positive

samples Npos and generate the weight for the negative ones wzr
as:

wn
zr

= wzr
=

Npos

N
(4.38)
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Furthermore, in order to ensure that the global weight is equal for all the topics, we

define the positive weight as wp
zr

= 1 − wzr
. Then, we use the following appearance

distribution (just in training):

p(hr|zr, a) = nzr

(

1
1+e−frzr

)w
p
zr zr
(

1
1+efrzr

)wzr z̄r

(4.39)

Obviously, in test the appearance models remain unchanged and eq. (4.35) is used.

Set of reference points

The selection of those samples that will be taken as support points in each KLR

plays an important role in terms of both quality and efficiency. The first option is

to use the whole training dataset, so that every region in every document is taken

as reference. However, this simple approach is not computationally feasible and

may lead to severe over-fitting. Hence, the main objective is to achieve an sparse

representation that requires less computations and minimizes the overfitting. Var-

ious authors have investigated how to build up the set of reference points for the

KLR. Several approaches use data statistics but not the label information to se-

lect the reference points ([Smola and Schökopf, 2000], [Williams and Seeger, 2001]).

Others, such as [Zhu and Hastie, 2001] and [Lafferty et al., 2004], incorporate label

information through greedy strategies and measure the gain coming from including

a reference point.

In our proposal, we select an initial set S0 of reference points and, at each iter-

ation, add a new set of support points whose appearance is not well modeled yet.

Additionally, in order to minimize the memory requirements, the same set of support

points is shared across the whole set of topics. In particular, given the training data

and a starting support set S0, the process to select the initial set of support points

is as follows (let as consider |S| as the size of a set S):

1. For each topic k, consider a particular set Sk of size |Sk| = ⌊|S|/K⌋, such that

K · |Sk| ≤ |S|, where ⌊·⌋ represents an integer floor operator.
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Figure 4.13: Graphical model of the variational distribution used to approximate

the posterior in RBLDA. Following the standard graphical model formalism, nodes

represent random variables, while the edges show the dependencies among variables.

Shaded circles denote observed variables and unshaded ones denote latent variables

to be inferred. Boxes refer to different instances of the same variable.

2. For each topic k, divide the positive samples into |Sk| clusters and represent

each cluster with the sample that is closest to the center.

3. Randomly select the remaining initial reference points lr = |S| − K · |Sk|.

4. At the k − th iteration of the inference algorithm, a new set Snew
k is added

to the actual set Sk−1 by selecting the |Snew
k | samples that show the lowest

log-likelihood.

This approach is optimal when |Snew
k | = 1. In other case, some of the samples

may correspond to similar cases and thus be highly correlated. However, since the

appearance model is just a module in the whole generative framework, the value of

this parameter can be selected as a trade-off between performance and computational

complexity.

4.4.4 Inference

This Section describes the inference process. As in the original LDA, exact inference

is not possible since the posterior becomes insoluble, due to coupling between the
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variables θ and z. Therefore, we propose to use a simplified variational distribution q

(that is tractable) and mean-field variational inference so that the Kullback-Leibler

divergence between the variational distribution and the true posterior is minimized

(see eq. (4.10)). The new variational distribution q is represented in Fig. 4.13 and

obeys:

q(θ, z, δ|Θv) = q(θ|γ)

Rd
∏

r=1

q(zr|φn)
K
∏

k=1

q(δk|χk) (4.40)

where Θv = {γ, φ, χ} are the variational parameters, q(θ|γ), q(δ|χ) are Dirichlet

distributions, and q(z|φ) is a multinomial distribution.

Considering our parameter set Θp = {a, c, α, δ, λ, µ, Σ, β}, the new posterior can

be then lower bounded as:

log p(h,v, g|Θp) ≥ Eq[log p(θ|α)] +

Rd
∑

r=1

(

Eq[log p(zr|θ)]

+ Eq[log p(hr|zr, a)] + Eq[log p(lr|zr, δ, λ)] + Eq[log p(lr|zr, β)] (4.41)

+ Eq[log p(gr|zr, µ, Σ)]

)

+

K
∑

k=1

Eq[log p(δk|ηk)] + H(q)

where Eq[·] denotes the expectation over the variational distribution q, and H(·)
stands for the entropy of a distribution. An in-depth development of these and the

upcoming updating formulas for the RBLDA is provided in Appendix C.

Obtaining a lower bound of the context term

The term of the log-likelihood that is associated to a region context requires comput-

ing a lower bound in order to be tractable. Hence, if we introduce a new variational

parameter rtkpr/
∑K

t=1

∑Rd

p=1 rtkpr = 1, we can apply the Jensen’s inequality and get

the lower bound:

Eq[log p(lr|zr, δ, λ)] ≥
K
∑

k=1

K
∑

t=1

Rd
∑

p=1

φrkrtkpr

[

log
ctkλpr

rtkpr
+ Ψ(χtp) − Ψ

(

Rd
∑

m=1

χtm

)

]

(4.42)
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where we have additionally introduced the variational parameters χ. The term

rtkpr captures the whole (importance plus influence) normalized relation between

two regions p and r, given that the regions p and r belong to the topics t and k,

respectively.

Reducing the complexity of the appearance term

In order to reduce the complexity of the appearance term, the logistic function can

be symmetrized following the approach in [Jaakkola and Jordan, 2000]:

log f(x) = −log(1 + e−x) =
x

2
− log(ex/2 + e−x/2) (4.43)

Hence, working on (4.39) gives:

Eq[log p(hr|zr, a)] =

Rd
∑

r=1

{

Eq[log nk]+ (4.44)

Eq

[

(wp
zr

zr − wzr
z̄r)

frk

2

]

− Eq

[

(wp
zr

zr − wzr
z̄r) log (gkr)

]

}

where gkr = e
1

2
frk + e−

1

2
frk. Since gkr is convex over the variable f 2

k , the last term

can be lower bounded using a first-order Taylor expansion. This process involves a

new variational parameter ξ and leads to the following expression:

Eq[log p(hr|zr, a)] ≥
Rd
∑

r=1

K
∑

k=1

{

φnk log nk + (φrk − wk)
frk

2
+

[

φrk(1 − 2wk) + wk

]

·

·
[

− ξ

2
− log(1 + e−ξrk) − A(ξrk)

(

f 2
k (hr) − ξ2

rk

)

]}

(4.45)

with A(ξrk) = 1
4ξrk

tanh
(

ξrk

2

)

. Note that this lower bound is exact when ξ2 = f 2
k (hr).

Moreover, the regression function f is now outside the logarithm, thus providing a

much simpler optimization.

To update the regression function, an L2-norm regularized function has to be

maximized in the training phase, namely:

Lfk
=

Rd
∑

r=1

K
∑

k=1

C
(1)
rk frk − C

(2)
rk f 2

k (hr) −
µ

2
‖f‖2

Hk
(4.46)
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where HK stands for the Reproducing Kernel Hilbert Space (RKHS) generateed by

the kernel K, and the parameters C1, C2 are:

C
(1)
rk =

1

2
(φrk − wk) (4.47)

C
(2)
rk = [φrk(1 − 2wk) + wk]

1

4ξrk
tanh

(

ξrk

2

)

(4.48)

Thus, in order to obtain the optimal parameters of the regressors ak, we can use

an iterative Newton-Raphson method so that, at iteration t:

a
(t+1)
k = a

(t)
k − H−1

k ∇k (4.49)

The values of the gradient ∇k and the Hessian Hk obey:

∇k = KT
k C(1) − 2KT

k (C(2) · fk) −
µ

2
K ′

kak (4.50)

Hk = −2KT
k diag(C(2))Kk −

µ

2
K ′

k (4.51)

where K and K ′ stand for the data Kernel matrix and the regularization matrix,

respectively, and (·) represents the Hadamard product (element wise) between two

matrices or vectors.

Parameter updating equations

To learn the values of the model parameters, we use a variational EM approach. The

development of the complete formulation is provided in Appendix C. The updating

equations that govern the variational parameters in the E-step of the proposed model
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are:

ξrk = ±frk (4.52)

rtkpr ∝ ctkλpr exp
(

Ψ(χkp)
)

(4.53)

χkp = ηp +
∑

r 6=p

K
∑

t=1

φrkrtkpr (4.54)

φrk ∝ exp

{

Ψ(γk) + log nk −
1

2
log |Σ|

− 1

2
(gk − µk)Σ

−1(gk − µk)+ (4.55)

+ wkξrk + (2wk − 1) log(1 + exp(−ξrk))+

+

K
∑

t=1

∑

p 6=r

rtkpr

[

log
ctkλpr

rtkpr
+ Ψ(χtp) − Ψ

( Rd
∑

m=1

χtm

)]}

γk = αk +

Rd
∑

r=1

φrk (4.56)

In the M-step, the optimal values of the model parameters are computed. We omit

the update equations for the α parameter, since they do not change from the orig-

inal LDA and can be found in [Blei et al., 2003]. Thus, the optimal values of the

parameters to be computed in the M-step are:

ctk ∝
D
∑

d=1

Rd
∑

r=1

Rd
∑

p=1

φdrkrtkpr (4.57)

n−1
k =

D
∑

d=1

Rd
∑

r=1

1

1 + e−fk(hdr)
(4.58)

ak, as in eq. (4.49).

µk =

∑D
d=1

∑Rd

r=1 φdrkgdr
∑D

d=1

∑Rd

r=1 φdrk

(4.59)

Σk =

D
∑

d=1

Rd
∑

r=1

φdrk(gdr − µk)(gdr − µk)
T

D
∑

d=1

Rd
∑

r=1

φdrk

(4.60)
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The inference algorithm used to train the RBLDA is shown in Alg. 3.
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Algorithm 3 Variational EM algorithm to perform the complete inference process

in RBLDA

randomly initialize all the variables

Initialize the set of reference vectors S0

repeat

Variational E-Step

for all documents d = 1i ∈ D do

for all regions r ∈ Rd and topics k ∈ K do

compute ξrk, in eq. (4.52)

repeat

for all regions r, p ∈ Rd and topics k, t ∈ K do

compute rtkpr, in eq. (4.53)

compute φrk, in eq. (4.55)

compute γk, in eq. (4.56)

compute χkp, in eq.(4.54)

end for

until convergence of variational procedure

end for

end for

M-Step

for all documents d = 1i ∈ D, regions r, p ∈ Rd and topics k, t ∈ K do

compute ctk, in eq. (4.57).

compute µk, in eq. (4.59).

compute Σk, in eq. (4.60).

add new reference points Snew for the KLR as described in sec. 4.4.3.

compute ak, in eq. (4.49).

compute nk, in eq. (4.58).

compute α, as described in [Blei et al., 2003].

end for

until convergence

98



Chapter 5

Experiments on generative models for

image representation

5.1 Experimental Setup: tasks, databases, algorithms

and performance measures

The performance of the proposed algorithms has been assessed in three different

tasks: (i) object class segmentation: pixel-wise segmentations are generated that

associate regions with object classes; (ii) image classification: a set of images is used

to train the model according to a specific taxonomy and an unseen test set is then

classified using the trained model; and (iii) topic discovery: semantically meaningful

topics are unsupervisely discovered in a set of images.

The classification and segmentation tests have been made using the PASCAL

VOC 2010 database [Everingham et al., 2010]. It contains 19,740 images and has

been split into 50% for training/validation and 50% for testing. For classification

purposes, every image in the database has an annotation file that provides a bounding

box and an object class label for each of the objects. Additionally, a subset of images

has been annotated pixel-wise in order that the segmentation experiments could be
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supported. In order to carry out the validation of several model parameters, the

training set has been also divided into a train and validation sets. Hence, most of

the experiments were made using the train and validation sets, whereas the final

results were given on the test set, as required to establish a meaningful comparison

with the official PASCAL VOC 2010 submissions. Twenty object-oriented classes

were considered in the experiments (see Figure 5.4(a) for a complete list). This

means that several objects from multiple classes may appear in the same image;

therefore, an image may be classified as belonging to more than one category.

For the unsupervised topic discovery task evaluation, the same dataset as in the

segmentation problem was used but, in this case, labels were not used so that the

inference process was completely unsupervised.

In order to provide a meaningful evaluation of the proposed generative methods,

we have compared their performance against several generative and discriminative

approaches; in particular:

1. Dense Spatial Pyramid of Bag-of-Words model (D-BoW): It generates a dense

representation of an image by computing local SIFT and color descriptors over

the same dense grid as in the generative models. Then, normalized histograms

are computed for both features at several spatial granularities in order to gen-

erate a spatial pyramid of histograms that is finally classified by a SVM with

histogram intersection [Chang and Lin, 2001]. In particular, vertical (1,3), hor-

izontal (3,1) and square (3,3) spatial grids have been included in our Spatial

Pyramid, so that the histograms for each cell in the grid are concatenated

to end up with the final input vector for the SVM. This approach has been

considered only in the classification task.

2. PLSA: the fundamental algorithm on top of which RBLTM was built. Since

PLSA does not model the distribution of topics along images, in the supervised

environment it only uses image-based labels.

3. Spatial-LTM [Cao and Fei-Fei, 2007]: SP-LTM is a good example of supervised
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region-based Latent Topic Model. It associates topics with regions rather than

local patches (a region is then represented by the local patches falling into it)

and uses image-level labels as priors of the document-specific topic distribution

(no region-labels accepted). Our implementation differs from the original one

since mean field variational methods are used for inference, rather than varia-

tional message passing, which was the learning paradigm used by the authors

[Cao and Fei-Fei, 2007]

4. LDA+MRF [Zhao et al., 2010]: An extension of SP-LTM in which the authors

propose the use of a Markov Random Field (MRF) to enforce spatial coherency

among regions. This approach provides inter-region intra-topic cooperations.

5. Multinomial RBLDA (Mult): In order to evaluate the contribution of the ad-

vanced appearance model, this approach is similar to RBLDA but the KLR-

based appearance model has been substituted by a multinomial distribution.

6. Multiclass-SVM: This approach, only used in the segmentation task, uses a mul-

ticlass SVM working on region-level histograms of words. Therefore it employs

the same inputs as RBLDA and implements the multiclass classifier by means

of several 1-vs-1 binary SVMs and a voting strategy [Chang and Lin, 2001].

For simplicity, LDA has been omitted in our experiments since, as stated in

[Sivic et al., 2005] and confirmed in our experiments, it achieves similar results as

those of PLSA in the image classification task. It is also worth noting that two

of the generative models, PLSA and RBLTM, produce topics at local patch level,

whereas the rest locate topics at regions that contain local patches. This difference

is important for two reasons: on the one hand, locating topics at patch level is

more flexible since two local patches belonging to the same region might be drawn

by different topics, so the algorithms would be able to overcome deficient previous

segmentations. On the other, working at region level is faster and should be more

robust if proper descriptors are obtained since the model can take into account the

relations between descriptors inside a region.
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Table 5.1: Optimal Number of BG Topics (NoBT) for each generative model included

in the classification experiments.

Generative Model Optimal NoBT

PLSA 25

SP-LTM 5

LDA+MRF 5

Mult 5

RBLTM 20

RBLDA 4

The segmentation accuracy for a given class was assessed using the intersec-

tion/union metric, defined as the number of correctly labeled pixels of that class

divided by the number of pixels labeled with that class in either the ground truth

labeling or the inferred labeling.

On the other hand, the classification and topic discovery performance has been

evaluated using the Average Precision (AP), a measure that has been extensively used

to evaluate information retrieval systems. The AP requires a set of ranked images as

system output and combines both recall- and precision-related factors in a single mea-

sure (between 0 and 1), which is also sensitive to the complete ranking. For a detailed

definition of the AP measure the reader is referred to [Everingham et al., 2009].

5.2 Validating the number of BG topics

Before assessing the proposed algorithms we have previously selected a parameter of

the models using the validation set: the number of topics assigned to the BG. It is

noteworthy that this parameter affects to every evaluated Latent Topic Model.

The number of BG topics deserves a few words since it plays a significant role

in the representation of complex scenes with heterogeneous and normally cluttered
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backgrounds. On the one hand, few BG topics may lead to models that are not

expressive enough to properly represent the background regions, some of which would

be associated with FG topics instead. On the other hand, many BG topics may

produce an unnecessary overhead in the model and, in the worst case, overfitting.

Hence, in the absence of additional information, the number of BG topics was chosen

by means of a cross-validation process.

Regarding the training of BG topics, it should also be noted that region-based

annotations were available just for FG topics; thus, BG topics were learned from the

spatial regions not labeled as FG. As a result, all the BG topics have the same prior

distributions over the importances. According to this fact, it could happen that all

the BG topics would be related to the same appearance vectors; however, this actually

does not occur in practice if proper values for the region hyperparameters (ǫi
REG in

RBLTM and ηrk in RBLDA) are selected. In particular, these parameters were chosen

to be high for those FG topics that actually appear in an image, thus giving more

weight to the known prior component during inference; whereas they were chosen

to be low for the rest of the FG topics as well as the BG topics, thus allowing the

models to behave similarly as in the unsupervised case. Hence, this configuration

provides hard labels when pixel-wise segmentations of topics are available and soft

labels in the absence of information.

Optimal values for the number of BG topics for each generative model were ob-

tained and are provided in Table 5.1. It is worth noting that these results correspond

to the classification task. In segmentation, although the values are slightly higher

for every algorithm, similar conclusions can be drawn.

PLSA and RBLTM need many more BG topics than the rest of the models for

optimal performance. We find the rationale for these results in the level with which

the topics are associated. It seems that more BG topics are required when topics

are assigned to regions than when they are assigned to local patches. Furthermore,

the context model that stores inter-topic influences in RBLDA performs better when

the number of topics is not very high so that the collection of variables c is not too
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sparse. That is the reason why RBLDA obtains the lowest value.

Additionally, we can find two specific reasons for this fact when comparing SP-

LTM, Mult, and LDA+MRF with RBLDA. For the first three models, appearance

probabilities of visual words are factorized in order to compute the region-level ap-

pearance probability. Working with more topics leads to more sparse multinomial

appearance distributions (topics are more specific), so the factorization becomes more

unstable. In comparison to RBLDA, it is worth mentioning that multinomial ap-

pearance distributions are much less expressive than our KLR-based approach, so the

algorithms need more BG topics to properly model the BG of the images; whereas in

RBLDA, more expressive topics are simply achieved by adding new reference vectors

to the KLR, thus keeping a lower number of BG topics.
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(a)

(b)

Figure 5.1: Segmentation results in terms of Average Precision (AP) achieved by all

the compared algorithms for the 20 categories considered in PASCAL VOC 2010 val

dataset. (a) Detailed per-category results (b) Average results.

5.3 Image Segmentation

The objective of the image segmentation task is to provide pixel-wise segmentations,

i.e., an index indicative of its class is assigned to each pixel. The designed algorithms

are specially appropriate for this task, due to the fact that it makes use the complete

image representation that is provided by the latent topic models.

Since each generative algorithm represents images in a particular way, next, we

provide some details of how to generate segmentations:
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• In RBLTM, one can compute the probability P (zk|ri
p) of a topic zk given a

region ri
p using an equation similar to (4.17), but including in this case only

those visual words belonging to the region ri
p. As a result, the topic associated

with each region of the partition, and consequently the image segmentation,

could be obtained as follows:

zri
p

= arg max
zk

P (zk|ri
p) (5.1)

• PLSA does not use segmentations. Nevertheless, since the topic is assigned at

local patch level, we can provide a similar final step to that one proposed for

RBLTM.

• RBLDA, SP-LTM, LDA+MRF and Mult assign topics to regions so that pro-

viding segmentations is straightforward.

Since D-BoW does not produce segmentations, it has been removed from this

experiment. Instead, we have used a multiclass SVM (SVM) with histogram inter-

section kernel that works at region level. This supervised approach uses the same

input features as the RBLDA. As mentioned before, our particular implementation

of the multiclass classifier bases on one-vs-one binary classifiers and a voting strategy

to select the most probable category.

Figures 5.1(a) and 5.1(b) show respectively the detailed and average segmen-

tation results in terms of segmentation accuracy across the twenty classes and the

background class. From the figures, some interesting conclusions can be drawn:

• RBLTM obtains better segmentations than its baseline algorithm, PLSA. This

is a nice consequence of using the influence model and the region-based labels

that are not included in PLSA. In fact, looking at the background results in Fig.

5.1(a), one can notice that the accuracy for PLSA is notably lower than for the

rest of the algorithms. This is a direct consequence of using just image-labels,

which leads to results in which the same topic tends to be applied to whole

images, rather than dividing them into different topics. To be more precise,
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the appearance vector P (wj|zk) of a FG class in RBLTM, which in this case

models only regions that belong to that FG object, becomes more accurate

than for PLSA.

• As one could expect, in this experiment the influence of the global probabilities

g provided by D-BoW is not very strong (when compared with the classifica-

tion task). Therefore, algorithms that do not use global probabilities, such

as SP-LTM or LDA+MRF, achieve results that are close to those ones of the

Mult, which already incorporates this information. Obviously, the influence of

an image-level probability, although might help to improve the results, is not

enough to make region-level decisions.

• The performance of RBLDA is clearly above those of the rest of the approaches,

including Mult. This notable improvement resides in the novel KLR-based ap-

pearance distribution, which does not consider independence of visual words

inside a region, as PLSA, RBLTM, SP-LTM, LDA+MRF, and Mult do. This

fact provides much more expressivity and, therefore, more enhanced discrimi-

nation capabilities to the model.

• The only other method that considers relations among words inside a region is

the multiclass SVM, which follows a similar approach to classify regions than

the appearance model in RBLDA. Even more, the SVM has other advantages:

a) it considers different sets of support vectors for each binary problem, which

is not feasible in RBLDA due to its computational cost; and b) it is the only

approach that is strictly multi-class, as the generative models consider con-

ditionally independent distributions given the topic. However, looking at the

results, it is noticeable that these advantages do not counteract the influence

of other elements in RBLDA, such as the various background topics or the

location and context terms. Furthermore, SVM results are specially worse for

those categories with lower accuracies (let us say ‘difficult categories’).
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• Despite the results, we can state that the most important limitation of genera-

tive models for this kind of data-driven segmentation lies in the fact that they

do not conceive the segmentation problem as a pure multi-class problem in the

sense that all the distributions are conditionally independent given the topic.

In PLSA or RBLTM, this may lead to results in which the prior distributions

of categories in the corpus are not taken into account, thus causing malfunction

when the corpus is not equally distributed. Although in SP-LTM and RBLDA

this issue is partially alleviated by including the corpus-based prior distribu-

tions using the hyperparameters α, our experiments showed that fitting the

number of BG topics had a strong influence on the final results and helped to

manage the balance between recall and precision.

We finally include several illustrative examples of the segmentation results for

RBLTM and RBLDA in Figures 5.2 and 5.3.
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Figure 5.2: Some examples of segmentation results for categories 1-10. For each

example, five images are shown. From left to right: original image, ground truth

segmentation, RBLTM segmentation, and RBLDA segmentation. Each color repre-

sents a specific category; black pixels are associated with background.
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Figure 5.3: Some examples of segmentation results for categories 11-20. For each

example, five images are shown. From left to right: original image, ground truth seg-

mentation, RBLTM segmentation, and RBLDA segmentation. Each color represents

a specific category; black pixels are associated with background.
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5.4 Results on Image classification

Image classification has been traditionally posed as a supervised problem in which

discriminative solutions and, in particular, bag-of-words approaches, have become

the prevalent technique. In such a field, generative models traditionally have not

competed in terms of classification performance. However, since they provide much

richer information than the presence or not of a category in an image, we have

experimented with their application to this problem in order to evaluate whether

they can complement discriminative models and enhance their performance.

For each image in the training set, a mask was generated from the bounding box to

compute the region labels that have been used either by RBLTM and RBLDA. Then,

supervised versions of the algorithms were used to optimize the model parameters,

using for this purpose the corresponding foreground topic for each class (FG topic)

and several background topics (BG topics).

In order to evaluate the performance of the models, the resulting generative

probabilities at document level (P (zk|di) for RBLTM and PLSA, and γd for RBLDA

or SP-LTM) for those topics associated with FG classes are used as estimates of the

probability of a class occurring in an image. Furthermore, in order to establish a

fair comparison among the algorithms, the global input vectors g have been removed

from RBLDA and SP-LTM. This modification allows us to compare the D-BoW and

the generative model, and helps us to evaluate the influence of the new elements

in RBLDA. Furthermore, another RBLDA version (RBLDA+D-BoW) includes the

global variable from D-BoW and shows the performance of the combination of both

generative and discriminative approaches.

Figure 5.4 shows the AP classification results for all the algorithms included in

the experiments. From the figure, interesting conclusions can be drawn:

• RBLTM slightly outperforms PLSA, the basic algorithm on top of which was

built. Again, this result is supported by two reasons. First, the region-based

annotation used by RBLTM provides relevant clues for image classification.
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(a)

(b)

Figure 5.4: Classification results in terms of Average Precision (AP) achieved by all

the compared algorithms for the 20 categories considered in PASCAL VOC 2010.

(a) Detailed per-category results (b) Average results.

Second, RBLTM also incorporates an active model for region interaction that

enhances its performance when dealing with regions that cannot be longer

classified from their appearance; in those cases, the surrounding regions push

the considered region toward spatially coherent topics.

• On the other hand, the use of region-based labels in RBLTM may also turn out

to be counterproductive for image classification: since appearance vectors in

PLSA integrate both FG and BG regions (PLSA does not use region-based la-

bels), this algorithm captures the relations between highly correlated categories
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and backgrounds (aeroplane/sky, car/road, horse/grass, etc.), what does not

happen in RBLTM. Hence, since the intra-topic inter-region cooperative model

in RBLTM does not takes into account relations among topics, it becomes a

clear disadvantage of RBLTM. However, overall, RBLTM still outperforms

PLSA.

• SP-LTM achieves very poor results. One of the reasons was already discussed

for the previous case: the lack of region annotations in the training phase. A

second reason lies in the appearance distributions, which dramatically degrade

the performance when a non-likely local descriptor appears in a region. Fur-

thermore, given a region, all the visual words that lie inside are considered

to provide the same influence over the final result, so that the multinomial

appearance distributions do not fit the data properly.

• LDA+MRF, although improves the results of SP-LTM by means of the inclu-

sion of a MRF that imposes some kind of spatial coherence, still suffers from

the aforementioned drawbacks (absence of region annotations and multinomial

model). Moreover, the better results obtained by Mult are caused by the inclu-

sion of region annotations in the training phase, since Mult also employs the

same multinomial distribution of SP-LTM and LDA+MRF.

• RBLDA achieves much better results than the rest of the generative models.

The reasons are several and rely on the new elements that this model incor-

porates: the KLR-based appearance model is much more expressive and dis-

criminative than the multinomial models and takes into account the relations

among visual words inside a region; the context model allows for inter-topic

inter-region relations, thus overcoming the mentioned issue for region-labeled

approaches (lack of relation between foreground objects and their background),

etc.

• None of the generative models obtains better results than the discriminative
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approach included for comparison. Hence, our results agree with the fact, al-

ready pointed out by other authors (see [Lazebnik et al., 2006] for an image

classification example), that discriminative solutions working with whole his-

tograms generally outperforms basic generative models in classification tasks.

Thus, considering global histograms that incorporate all the information in the

image normally outperforms any in-depth spatial analysis of the image. Never-

theless, the generative approaches provide much richer information concerning

the underlying structure and the semantic of an image.

• The last idea is supported by the fact that the version of RBLDA that includes

the outputs of the D-BoW shows the best performance in our experiments,

what means that the information provided by RBLDA actually complements

BoW models.

Finally, Figure 5.5 shows illustrative examples of classification results achieved

by the proposed method.
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Figure 5.5: Some examples of classification results achieved by the RBLDA+D-BoW

approach. Each row shows retrieved images for two categories. The number in the

lower right corner indicates the place of the retrieved image in the ranking; the color

of the number tells if the result is correct (green) or incorrect (red). The first three

images of each row are the top 3 retrieved images, while the fourth shows the first

error outside the top 3 results.
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5.5 Topic Discovery

The topic discovery experiment evaluates the ability of Latent Topic Models to un-

supervisely detect semantic concepts in images. To that end, unsupervised versions

of the algorithms have been run over a dataset containing 964 images (the segmenta-

tion val dataset) showing twenty object-oriented categories. Since, on the one hand,

each image may contain more than one category and, on the other, show many other

elements that are not considered as a category, the number of latent topics K is

usually higher than the number of categories C. In particular, it has been set to 50

in our experiments.

Following a similar approach as in the classification task, a vector of topic proba-

bilities is obtained for each document in the dataset. Then, each category is assigned

to the most likely topic. The way we do this alignment is as follows:

• For each pair of category c and topic k, we compute the Average Precision

AP (c, k). This step produces an AP matrix of size CxK.

• We select the indexes {c, k} associated to the maximum value of the AP matrix,

and assign this AP value with the selected category c.

• We set to zero all the values in the row c and the column k.

• We proceed in the same way until all the categories are assigned to one topic.

The rest of the topics are therefore assigned to background elements in images.

• We compute the average AP using the values obtained for each of the FG

categories.

As shown in Table 5.2, this experiment draws surprising results that do not agree

with what we have seen so far. For this specific task, simple appearance models

turn out to work better. Furthermore, we do not appreciate meaningful differences

between RBLTM (the best option), PLSA, and SP-LTM. However, the performance

of RBLDA is very poor when compared to the rest of the algorithms. The rationale
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Table 5.2: Topic Discovery Results in AP for the considered Latent Topic Models

Latent Topic Model AP (%)

PLSA 24.96

SP-LTM 24.02

LDA+MRF 21.94

Mult 23.23

RBLTM 25.15

RBLDA 19.31

behind this fact is that the KLR-based appearance model of RBLDA is probably

too complex and does not fit well with usual clustering assumptions. In particular,

we perceive that similar inputs are not well clustered into the same topic due to

the fact that kernel measures decrease dramatically when two vectors are not very

close in the feature space. This situation, although provides great precision in a

(semi)supervised framework, becomes a clear limitation in an unsupervised one.

Additionally, it should be noted that RBLTM slightly outperforms PLSA, mainly

due to the cooperative model that yields more realistic representations of images as

mixture of topics (as already mentioned, PLSA tends to assign just one topic to each

image). SP-LTM, due to the factorization of appearance probabilities, performs a

bit worse than the other two. Furthermore, applying terms enforcing spatial coher-

ence does not produce good results in unsupervised environments, as the results of

LDA+MRF or Mult demonstrate.
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5.6 Where we are: a comparison against official PAS-

CAL VOC 2010 submissions

In this section we will compare our best performing proposal, RBLDA, against official

PASCAL VOC 2010 submissions. As mentioned before, PASCAL VOC is probably

the main challenge for several topics in Computer Vision: image classification, ob-

ject detection, category-based segmentation, etc. It is worth noting that many of

the proposals are not just algorithms, but complex systems with many features and

classifiers. As an example, the winning group in the PASCAL VOC 2010 classi-

fication task [Chen et al., 2010] employs a large set of low-level features at several

granularities: SIFT, LBP [Ojala et al., 1996], HoG [Dalal and Triggs, 2005], GIST

[Oliva and Torralba, 2001], etc. This means that, in general, these systems outper-

form individual algorithms such as the ones presented in this thesis, that simply

employ SIFT and color descriptors. Anyway, we think that establishing this com-

parison may help to place our developments into the state-of-the-art in Computer

Vision.

Figure 5.6 shows a comparison of RBLDA and several statistics in PASCAL VOC

2010 segmentation task. Results demonstrate that our algorithm achieves a great

performance in segmentation, ranking above the 75% percentile of the submissions.

Furthermore, Figure 5.7 shows a similar comparison in PASCAL VOC 2010 clas-

sification task. As shown in the figure, our proposal results are similar to the median

of the submissions, what validates our approach.
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(a)

(b)

Figure 5.6: A comparison of RBLDA against PASCAL VOC 2010 official segmenta-

tion submissions. a) Detailed per-category results. b) Average results. Best group

can be found in [Boix et al., 2010].
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(a)

(b)

Figure 5.7: A comparison of RBLDA against PASCAL VOC 2010 official classifica-

tion submissions. a) Detailed per-category results. b) Average results. Best group

is [Chen et al., 2010].
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5.7 Summary

In this chapter of the thesis we have assessed the performance of our two proposals in

comparison to other generative and discriminative approaches. Three tasks of special

interest in Computer Vision have been addressed in the evaluation: category-based

image segmentation, image classification, and topic discovery.

In general, we can conclude that RBLDA works very well in supervised environ-

ments due to several extensions that are not modeled by the rest of the algorithms

and, in particular, the KLR-based appearance model. Furthermore, we have demon-

strated that generative models complement discriminative approaches and that the

combination of both obtains the best performance.

However, in unsupervised environments, simple appearance models such as the

ones in RBLTM or PLSA achieve better results and turn to be more suitable for

clustering problems.

Finally, we have also assessed our developments in comparison to the official

submissions of the PASCAL VOC 2010 challenge, obtaining excellent results for

image segmentation and good results in image classification.
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Chapter 6

Conclusions and future lines of

research

6.1 Conclusions

In this thesis we have proposed a set of generative models to address two well-known

but yet unsolved problems in Computer Vision: image and video segmentation and

image representation.

There are two approaches to image segmentation: a) blind unsupervised tech-

niques that generate image partitions using available information such as texture,

color, or motion; and b) supervised category-based image segmentation approaches

that not only generate the partitions, but also assign each pixel in the image to a

particular semantic concept.

In Chapter 2, we have proposed an algorithm for blind segmentation that takes

an input video sequence and produces image segmentations of the keyframes. The

algorithm exploits spatio-temporal information of the video in terms of color, spatial,

and motion features to generate coherent segmentations in which regions are closer

to semantic objects. The algorithm relies on the Mixture of Gaussians (MoG), a well-

known clustering technique, in which several prior distributions have been introduced

123



6.1. CONCLUSIONS

to end up with an iterative adaptive clustering algorithm that produces new regions

at each iteration until convergence. Our prior distributions are based on a diagonal

matrix of hyperparameters, so that the balance of known (from previous iterations)

and unknown distributions is individually managed for each feature. The individual

balance is interesting since some features, like color, require less adaptation once a

region has been marked to be added. In contrast, if other features like the spatial

location receive a higher degree of freedom, they will enhance the adaptation of the

component to the region boundaries.

Furthermore, a so-called K-management module was designed to decide whether

or not to add new classes at each iteration of the algorithm. This module takes

advantage of several novel spatio-temporal mid-level features that model geometric

properties of real world objects and motion patterns.

In Chapter 3 the proposed algorithm has been assessed in a very challenging

database built from clips of the TRECVID 2006 database. This database is not

specific for segmentation but for multimedia information retrieval, a field that is more

general and for which our algorithms are intended. The experiments shown that our

proposal outperforms other approaches in the literature and specially emphasized the

performance increase due to the spatio-temporal features, at both low and mid-level.

However, the objective evaluation measures turned out to be very little discriminative

when comparing visually different segmentations, thus providing not very meaningful

comparisons among the involved algorithms.

Blind segmentation algorithms become one of the inputs for the generative mod-

els proposed in Chapter 4. In this chapter, after providing an in-depth review of

well known techniques for image recognition, object discovery, and category-based

segmentation, we have proposed two Latent Topic Models for image representation.

The first one, named RBLTM, extends PLSA to model the spatial location of topics

in images. This objective has been fulfilled by incorporating a cooperative distri-

bution that not only assigns semantic concepts to specific regions in the image, but

also exchanges information among regions so that topics are successfully arranged in
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the image. Furthermore, we have also provided a formal framework for supervised

training that is able to manage both image-level labels and pixel-wise segmentations.

The second approach, known as RBLDA, has been conceived to overcome sev-

eral particular drawbacks of RBLTM. First of all, RBLDA has been adapted to the

LDA formulation, which turns to be a more Bayesian approach that learns corpus-

level topic distributions that are not modeled in PLSA. Second, RBLDA models the

nonlinear relations between visual words that lie in the same region by computing

new descriptors at region level. Specifically, a novel KLR-based appearance model

is able to exploit the potential of the region descriptors, thus becoming much more

discriminative. Third, RBLDA provides an extension of the spatial location model

in which two conditionally independent distributions arise: a topic-dependent lo-

cation model that stores image locations in which a topic tends to appear, and a

context model that now allows for inter-region inter-topic cooperation (in contrast

with the inter-region intra-topic model of the RBLTM). Finally, RBLDA also allows

us to use image-level topic probabilities built from other global classifiers (such as

discriminative Bag-of-Words approaches).

In Chapter 5 we have compared the proposed algorithms to some basic Latent

Topic Models approaches and other state-of-the-art alternatives. Using a very chal-

lenging up-to-date database such as the PASCAL VOC 2010 database, our proposals

were tested in three different tasks: image classification, category-based image seg-

mentation and object discovery. For both image classification and category-based

segmentation, RBLDA turned to be the most powerful approach, mainly due to the

advanced appearance distribution as well as the inter-region inter-topic cooperation

model. RBLTM, however, although outperforms its reference approach (PLSA), does

not achieve comparable results to RBLDA.

Furthermore, even though state-of-the-art discriminative approaches still over-

come generative models for image classification, we have proved that how the com-

bination of both reaches the best performance. This result allows us to draw an

interesting conclusion: generative and discriminative models provide complemen-
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tary information and, consequently, they can be successfully combined. In RBLDA,

this combination is natural due to the aforementioned global image-level variable

provided by the model which simply plugs the discriminative information into the

generative approach. For image segmentation RBLDA outperforms SVM-based dis-

criminative approaches, notwithstanding, owing to the remainder elements in the

model (context, location, etc.).

On the other hand, the experiments for unsupervised object discovery led to

different results. In this case, the models should detect latent topics that explain

the generation of documents and where the complex models used in RBLDA do not

work properly. In fact, for this task RBLTM yielded the best performance, whereas

RBLDA achieved the worst results.

Hence, we can conclude that each algorithm is specifically well-suited for a par-

ticular situation, mainly defined by the available information and the degree of su-

pervision.

Finally, we also have compared our best performing method for image classifi-

cation and category-based image segmentation (RBLDA) to the official PASCAL

VOC 2010 submissions, where it achieves notable results in image classification and

excellent in segmentation.

6.2 Future lines

Here we sketch some of the most promising lines of research that arise from this

thesis.

Regarding the spatio-temporal segmentation algorithm, the most evident direc-

tion of the research involves adapting the algorithm for object tracking in video

sequences. Hence, the same adaptive probabilistic framework that supports the

splitting process can be used to track the partition in subsequent frames. At the

same time, novelty detection techniques should be studied to discover new objects

appearing in the scene. Furthermore, the use of mid-level features can also be ex-
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tended to support plausible transformations of the regions from one frame to the

next.

The advantages of this novel approach for the object tracking task are diverse:

refinement of the segmentation using information from several frames, estimation of

the motion patterns of the objects in a scene, spatio-temporal characterization of

objects for classification or video object segmentation for coding purposes.

Furthermore, it will be also nice to provide an evaluation on a multimedia infor-

mation retrieval task to check whether the proposed solution can be helpful in tasks

like semantic concept detection in video. This approach, although has been followed

in our submission for TRECVID 2009 [González-Dı́az et al., 2009b], was embedded

in a complex system in which the contribution of this subsystem was not assessed.

There is also room for improving the proposed generative models for image rep-

resentation. The simplest extension entails the addition of new features such as

region shape features. More advanced developments may incorporate new elements

such as part-based models, which have demonstrated to be very discriminative (see

[Felzenszwalb et al., 2010b, Felzenszwalb et al., 2010a] for two good examples).

Looking at the theoretical framework, new levels in the hierarchy can be added

to end up with very interesting generative models such as the Hierarchical Dirichlet

Processes (HDP) [Teh et al., 2006], which exploit correlations among different corpus

of data.

Finally, one very promising line of research is the adaptation of the latent topic

models to dynamic scenarios involving video sequences. The main objective of this

approach is to model the spatio-temporal properties of the semantic video concepts

and therefore enhance the detection and segmentation performance.
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Appendix A

Derivation of the formulas for the

adaptive probabilistic clustering

A.1 Expansion of the Maximum a Posteriori (MAP)

In this appendix, we derive the final equations of the adaptive Mixture of Gaussians

(MoG) used in the spatio-temporal segmentation algorithm. Along this section, for

the sake of compactness, the actual index ranges are just given here and omitted

later on: i = 1, 2, ...., N , j, k = 1, 2..., K,.

As mentioned in section 2.3.5, the posterior follows the next expression:

p(x, θ) =

[

∑

k

αkN(x|µk, Σk)

]

p(θ|θ0) (A.1)

where αk are the mixing coefficients of the MoG, N is the normal distribution and

θ is the parameter set θ = {αk, µk, Σk, k = 1...K}. Moreover, θ0 represents the prior

knowledge about the parameters. The inclusion of priors leads the EM algorithm

to find a Maximum A Posteriori (MAP) rather than the Maximum Likelihood (ML)
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values of the parameters. Taking logarithms and extending this equation gives:

log p(x, θ) =
∑

i log (
∑

k αkN(x|µk, Σk)) + log p(α|α0)

+
∑

k log p(Σk|Σ0k, mk) +
∑

k log p(µk|µ0k, Σk, Mβk) (A.2)

which can be solved using the EM algorithm.

A.2 Expectation Step

The first term in eq. (A.2) corresponds to the classical MoG paradigm, which can

be solved introducing a new term rik and computing a lower bound of the form:

∑

i

log

(

∑

k

αkN(x|µk, Σk)

)

≥
∑

i,k

rik log

(

αkN(x|µk, Σk)

rik

)

∝
∑

i,k

rik

[

log αk −
1

2
log(2π|Σk|) −

1

2
(xi − µk)

T Σ−1
k (xi − µk)

]

(A.3)

The new term rik stands for the posterior probability of a data xi being sampled

from the kth component of the mixture. Computing the derivative of this term with

respect to rik and adding a Lagrange multiplier that ensures that
∑

k rik = 1 provides

the following update equation:

rik =
αkp(xi|µk, Σk)

∑K
j=1 αjp(xi|µj, Σj)

(A.4)

A.3 Maximization Step

In this section, we derivate the expressions of the model parameters {α, µ, Σ} making

use of the prior distributions proposed in eq. (2.5), (2.7) and (2.6), respectively.

A.3.1 Mixing proportions

If we make use of the expansion provided in eq. (A.3) as well as the definition of

the Dirichlet prior in eq. (2.5), and add a Lagrangian multiplier λ that ensures
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∑

k αk = 1, we can then write the terms of the log-posterior that contain α:

log pα ≥
∑

i,k

rik log αk +
∑

k

(α0k − 1) log αk − λ
∑

k

(αk − 1) (A.5)

The derivative of this expression obeys:

∂ log pα

∂αk
=
∑

i

rik
1

αk
+ (α0k − 1)

1

αk
− λ (A.6)

Setting this derivative to zero and computing the value of the multiplier we gives

update expression for the mixing proportions:

αk =

∑

i rik + (α0k − 1)

n +
∑

j(α0j − 1)
(A.7)

where n represents the total number of pixels in the image.

Finally, if we substitute the hyperparameters for those expressions previously

proposed in eq. (2.8) we get the final equation that updates the mixing proportions:

αk =

∑n
i=1 rik + 1

d
Tr(M−1

βk M−1
βk )α′

k
∑K

j=1
1
d
Tr(M−1

βj M−1
βj )α′

j + n
(A.8)

where d stands for the dimension of the feature space.

A.3.2 Gaussian Means

As already mentioned, the mean is normal with a transformation matrix Mβk (see

eq. (2.7)). The terms of the log-posterior that include the Gaussian mean are shown

in the following equation:

log pµ = −1
2

∑

i,k rik(xi − µk)
T Σ−1

k (xi − µk)

−1
2
(µk − µ0k)

T
(

MβkΣkM
T
βk

)−1
(µk − µ0k) (A.9)

Again, computing the derivative gives:

∂ log pµ

∂µk
= −

∑

i

rikΣ
−1
k (xi − µk) + M−1

βk Σ−1
k M−1

βk (µk − µ0k) (A.10)
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which gives place to the following update equation when set to zero:

µk = M−1
A

(

∑

i

rikMβkxi + M−1
βk µ0k

)

(A.11)

where MA =
(
∑n

i=1 rikMβk + M−1
βk

)

.

The final update equation comes from substituting the hyperparameter µ0k as

mentioned in eq. (2.8):

µk = M−1
A

(

n
∑

i=1

rikMβkxi + M−1
βk µ′

k

)

(A.12)

As it can be noticed, the mean is conditioned on the covariance matrix, so that

the latter should be computed before during the inference.

A.3.3 Gaussian Covariances

The inverse of the covariance matrix (precision)is Wishart with mk degrees of freedom

as defined in eq. (2.6). We therefore expand the terms of the log-posterior that

depend on Σk:

log pΣ = −1
2

∑

i,k rik(xi − µk)
TΣ−1

k (xi − µk) − mk−d−2
2

log |Σk|
−1

2
Tr
(

Σ0kΣ
−1
k

)

− 1
2
(µk − µ0k)

T
(

MβkΣkM
T
βk

)−1
(µk − µ0k) (A.13)

We compute the derivative as:

∂ log pΣ

∂Σk
= −1

2

∑

i

rik

[

Σ−1
k + Σ−1

k (xi − µk)(xi − µk)
T Σ−1

k

]

−mk − d − 2

2
Σ−1

k +
1

2
Σ−1

k Σ0kΣ
−1
k +

1

2
Σ−1

k M−1
βk (xi − µk)(xi − µk)

T M−1
βk Σ−1

k (A.14)

Again, we set this derivative to zero and get the update expression:

Σk =

∑

i rik(xi − µk)(xi − µk)
T + M−1

βk (xi − µk)(xi − µk)
T M−1

βk + Σ0k
∑

i rik + mk − d
(A.15)
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Again, substituting the hyperparameter Σ0k by the proposed value in eq. (2.8) gives:

Σk =

∑n
i=1 rik(xi − µk)

2 + M−1
βk ((µk − µ′

k)
2 + Σ′

k)M
−1
βk

∑n
i=1 rik + 1

d
Tr(M−1

βk M−1
βk )

(A.16)
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Appendix B

Derivation of the formulas for the

RBLTM

B.1 Derivation of the formulas for the unsupervised

RBLTM

In this appendix, we derive the equations of RBLTM that differ from those of PLSA.

Along this section, for the sake of compactness, the actual index ranges are just

given here and omitted later on: i = 1, 2, ...., D, j = 1, 2..., M , l, p = 1, 2, ..., Ri, and

k = 1, 2, ...., K.

B.1.1 Computation of a lower bound of the log-likelihood to ob-

tain the posterior probabilities of the latent variables

We start from the likelihood function given in (4.13):

L = P (X|θ) =
D
∏

i=1

M
∏

j=1

Ri
∏

l=1

P (di, wj, s
i
l)

ni(wj ,si
l
)
, (B.1)
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take logarithm and expand terms to obtain:

log L =
∑

i,j,l

ni(wj, s
i
l)

[

log P (di) + log
∑

k

P (zk|di)P (wj|zk)P (si
l|zk, di, α)

]

(B.2)

Now, rewriting the previous equation by introducing P (zk|di, wj, s
i
l) (which obeys

∑K
k=1 P (zk|di, wj, s

i
l) = 1) and applying the Jensen’s inequality, the following lower

bound of the log-likelihood is obtained:

log L ≥
∑

i,j,l

ni(wj, s
i
l)

[

log P (di) +
∑

k

P (zk|di, wj, s
i
l) log

P (zk|di)P (wj|zk)P (si
l|zk, di, α)

P (zk|di, wj, s
i
l)

]

(B.3)

Computing the derivative of the log-likelihood with respect to P (zk|di, wj, s
i
l)

yields the equation (4.16):

P (zk|di, wj, s
i
l) =

P (zk|di)P (wj|zk)P (si
l|zk, di, α)

∑

m

P (zm|di)P (wj|zm)P (si
l|zm, di, α)

(B.4)

B.1.2 Deriving the formula for updating the normalized inter-

region relations rik
pl

Removing those terms that do not depend on si
l from the equation (eq. B.3), and

expanding P (si
l|zk, di, α) following equation (4.15), we obtain:

log Lspt ≥
∑

i,j,l,k

ni(wj, s
i
l)P (zk|di, wj, s

i
l) log

∑

p

αik
p λi

pl (B.5)

In order to apply again the Jensen’s inequality, a normalize inter-region relation

rik
pl that satisfy

∑Ri

l=1 rik
pl = 1 is defined, leading to this new expression for the lower

bound of the Lspt log-likelihood:

log Lspt ≥
∑

i,j,l,k,p

ni(wj, s
i
l)P (zk|di, wj, s

i
l)r

ik
pl log

αik
p λi

pl

rik
pl

(B.6)
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Now, the maximization of this log-likelihood respect to rik
pl and subject to

∑Ri

l=1 rik
pl = 1 can be solved by using Langrange multipliers µik

p as follows:

log Lrik
pl

= log Lspt +
∑

i,k,p

µik
p (
∑

l

rik
pl − 1) (B.7)

Taking derivatives with respect to rik
pl , we obtain:

∂ log Lrik
pl

∂rik
pl

=
∑

j ni(wj, s
i
l)P (zk|di, wj, s

i
l)
[

log
αik

p λi
pl

rik
pl

− 1
]

− µik
p (B.8)

and setting the derivative to zero yields the updating equation for rik
pl (cf. eq.

4.21):

rik
pl =

αik
p λi

pl

Ri
∑

m=1

αik
mλi

ml

(B.9)

B.1.3 Deriving the formula for updating the importances αik

The update of the importances also requires a constrained maximization process, as

stated in the next expression:

log Lαik
p

= log Lspt +
∑

i,k

µik

(

∑

l

P (si
l|zk, di, α) − 1

)

(B.10)

Using the expression in (4.15) and taking derivatives with respect to αik
p gives:

∂ log Lαik
p

∂αik
p

=
∑

j,l

ni(wj, s
i
l)P (zk|di, wj, s

i
l)r

ik
pl

1

αik
p

− µikχ
i
p (B.11)

with χi
p as defined in eq. (4.20). Again, we obtain the updating equation for αik

p by

setting this derivative to zero (cf. eq. 4.19):

αik
p =

∑

j,l

ni(wj, s
i
l)P (zk|di, wj, s

i
l)r

ik
pl

χi
p ·
∑

j,l

ni(wj, s
i
l)P (zk|di, wj, s

i
l)

(B.12)
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B.2 Derivation of the formulas for the supervised

RBLTM

This appendix provides the derivation of the updating equations of the inference

process for the supervised version of RBLTM. Again, the index ranges are given

here and omitted later on: i = 1, 2, ...., D, j = 1, 2, ..., M , l, p = 1, 2, ..., Ri, and

k, m = 1, 2, ...., K.

B.2.1 Computation of a lower bound of the log-likelihood

As described in section 4.3.3, the logarithm of the posterior distribution f(θ) can be

defined as follows :

log f(θ) = log L + log gimg(θ) + log greg(θ) (B.13)

where log L has been defined in eq. (B.2), and gimg and greg stand for the prior dis-

tributions of the image- and region-level parameters, respectively. The lower bound

for log L can be obtained following the same procedure as in Appendix B.1.1.

B.2.2 Computation of the posterior probabilities of the latent

variables for image-based annotations

In this section, we derive the extension of the unsupervised RBLTM to deal with

image-level annotations. In order to obtain the update equation for the distribution

of the topics given the document, we consider the terms of the posterior that depend

on P (zk|di). In particular, using the prior distribution given in (4.23) and the lower

bound of the log-likelihood given in (B.3), we obtain a lower bound of the distribution

fimg:

log fimg ≥
∑

i,j,l,k

ni(wj, s
i
l)P (zk|di, wj, s

i
l) log P (zk|di)

+
∑

i,k

(βi
k − 1)P (zk|di) +

∑

i

µi

(

∑

k

P (zk|di) − 1

)

(B.14)
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where µi is a Lagrange multiplier resulting from the constrained optimization process.

The derivative of this bound with respect to P (zk|di) gives:

∂ log fimg

∂P (zk|di)
=

∑

j,l

ni(wj, s
i
l)P (zk|di, wj, s

i
l)

1

P (zk|di)
+ (βi

k − 1) + µi (B.15)

Setting the derivative to zero and modeling the parameter βi
k = ǫi

IMGP̃ (zk|di) + 1

provides the update formula (cf. eq. 4.26):

P (zk|di) =

∑

j,l

ni(wj, s
i
l)P (zk|di, wj, s

i
l) + ǫi

IMGP̃ (zk|di)

∑

j,l

ni(wj, s
i
l) + ǫi

IMG

(B.16)

B.2.3 Deriving the formula for updating the importances αik for

region-based annotations

In this section, we derive the update equations of αik when prior distributions are

given at region-level. Again, a lower bound of the distribution freg is obtained by

solving a constrained optimization problem:

log freg ≥ log Lspt +
∑

k,p

(γik
p − 1) log (αik

p χi
p) +

∑

i,k

µik

(

∑

l

P (si
l|zk, di, α) − 1

)

(B.17)

where we have made use of eq. (4.27). Computing the derivative with respect to αik
p

gives:

∂ log freg

∂αik
p

=
∑

j,l

ni(wj, s
i
l)P (zk|di, wj, s

i
l)r

ik
pl

1

αik
p

+ (γik
p − 1)

1

αik
p

− µikχ
i
p(B.18)

Setting the derivative to zero and modeling the parameter γik
p = ǫik

REGα̃ik
p + 1
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provides the update formula of the importances (cf. eq. 4.29):

αik
p =

∑

j,l

ni(wj, s
i
l)P (zk|di, wj, s

i
l)r

ik
pl + ǫik

REGα̃ik
p

χi
p

[

∑

j,l

ni(wj, s
i
l)P (zk|di, wj, s

i
l) + ǫik

REGΓ̃ik

] (B.19)

with Γ̃ik as defined in (4.30).
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Appendix C

Derivation of the formulas for the

RBLDA

C.1 Expansion of the lower bound

In this appendix we derive the equations of the RBLDA (see section 4.4).

As already mentioned in the document, a lower-bound was proposed over the

posterior probability by introducing a variational distribution q:

log p(h,v, g|Θp) ≥ Eq[log p(θ|α)] +

Rd
∑

r=1

(

Eq[log p(zr|θ)]

+ Eq[log p(hr|zr, a)] + Eq[log p(lr|zr, δ, λ)] + Eq[log p(lr|zr, β)] (C.1)

+ Eq[log p(gr|zr, µ, Σ)]

)

+
K
∑

k=1

Eq[log p(δk|ηk)] + H(q)

where Eq[·] denotes the expectation over the variational distribution q, and H(·)
stands for the entropy of a distribution and obeys:

H(q) = −Eq[q(θ|γ)] −
Rd
∑

r=1

Eq[log q(zr|φr)] −
K
∑

k=1

Eq[log q(δk|χk)] (C.2)

We next provide the expressions of each of them terms involved in the optimiza-

tion:
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Eq[log p(θ|α)] = log Γ(
∑

j

αj) −
K
∑

k=1

log Γ(αk)

+
K
∑

k=1

(αk − 1)

(

Ψ(γk) − Ψ
(

∑

j

γj

)

)

(C.3)

Eq[log p(zr|θ)]) =
K
∑

k=1

φrk

(

Ψ(γk) − Ψ
(

∑

j

γj

)

)

(C.4)

Eq[log p(hr|zr, a)], to be derived in section C.3

Eq[log p(lr|zr, δ, λ)], to be derived in section C.2

Eq[log p(lr|zr, β)] =

K,Ns
∑

k,s

φrkp{lr, s}βks (C.5)

Eq[log p(gr|zr, µ, Σ)] =
K
∑

k=1

φrk

[

− K

2
log 2π − 1

2
log |Σk|

−1

2
(gr − µk)

T Σ−1
k (gr − µk)

]

(C.6)

Eq[log p(δk|ηk)] = log Γ
(

∑

j

ηj

)

−
Rd
∑

p=1

log Γ(ηp)

+
∑

p

(ηp − 1)

(

Ψ(χkp) − Ψ(
∑

j

χkj)

)

(C.7)

Eq[q(θ|γ)] = log Γ
(

∑

j

γj

)

−
K
∑

k=1

log Γ(γk)

+

K
∑

k=1

(γk − 1)

(

Ψ(γk) − Ψ
(

∑

j

γj

)

)

(C.8)

Eq[log q(zr|φr)] =

K
∑

k=1

φrk log φrk (C.9)

Eq[log q(δk|χk)] = log Γ
(

∑

j

χkj

)

−
Rd
∑

p=1

log Γ(χkp)

+

Rd
∑

p=1

(χkp − 1)

(

Ψ(χkp) − Ψ(
∑

j

χkj)

)

(C.10)
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where Ψ is the first derivative of the log Γ(·) function and p{lr, s} represents the

proportion of the region r that lies on the cell s of the grid (Ns cells).

C.2 Obtaining a lower bound of the context term

The term of the log-likelihood that is associated to a region context requires comput-

ing a lower bound in order to be tractable. Hence, if we introduce a new variational

parameter rtkpr/
∑K

t=1

∑Rd

p=1 rtkpr = 1, we can apply the Jensen’s inequality and get

the lower bound:

Eq[log p(lr|zr, δ, λ)] = Eq

[

log

( K
∑

t=1

∑

p 6=lr

ctzr
δtpλplr

)]

≥ Eq

[ K
∑

t,p 6=r

rtkpr log
ctzr

δtpλplr

rtkpr

]

=

K,K
∑

k,t,p 6=r

φrkrtkpr

[

log
ctkλpr

rtkpr
+ Ψ(χtp) − Ψ

(

Rd
∑

m=1

χtm

)

]

(C.11)

C.3 Reducing the complexity of the appearance

model

In this section, we reduce the complexity of the appearance model by computing

a simplified lower bound of the term Eq[log p(hr|zr, a)]. We follow the approach in

[Jaakkola and Jordan, 2000], where the logistic function is symmetrized as:

log f(x) = −log(1 + e−x) =
x

2
− log(ex/2 + e−x/2) (C.12)

This gives the next expression:

Eq[log p(hr|zr, a)] =
∑Rd

r=1

{

Eq[log nk] + Eq

[

(1 − wzr
)zr

fk(hr)
2

]

−

−Eq

[

(1 − wzr
)zr

fk(hr)
2

]

− Eq [(1 − wzr
zr) log (gkr)] − Eq [wzr

z̄r log (gkr)]

}

(C.13)

where gkr = e
1

2
fk(hr) + e−

1

2
fk(hr). Since g(x) = − log(ex/2 + e−x/2) is convex in the

variable x2, we can consider a tangent as a tight local lower bound of the function.

This tangent is defined by the first order Taylor expansion in the variable x2:
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g(x) ≥ g(ξ) +
∂g(ξ)

∂ξ2
(x2 − ξ2) = −ξ

2
+ log f(ξ) − 1

4ξ
tanh(ξ/2)(x2 − ξ2) (C.14)

This lower bound is exact when ξ2 = x2. Thus, the appearance term in the

posterior now obeys:

Eq[log p(hr|zr, a)] ≥
Rd
∑

r=1

K
∑

k=1

{

φrk log nk + (φrk − wk)
fk(hr)

2
+

[

φrk(1 − 2wk) + wk

]

·

·
[

− ξ

2
− log(1 + exp(−ξrk)) −

1

4ξrk
tanh

(

ξrk

2

)

(

f 2
k (hr) − ξ2

rk

)

]}

(C.15)

where we have substituted the log function on frk by a quadratic function that yields

a much simpler optimization. Furthermore, this approach requires the inclusion of a

new variational parameter ξ.

C.4 Derivation of the formulas for the variational pa-

rameters

In this section, we provide the complete derivation of the update equations for the

variational parameters to be computed in the E-step of the algorithm.

We start with those terms of the lower bound (LB) that depend on the appearance

variational parameter ξ:

LBξ =
∑

r,k

[

− ξ

2
− log(1 + exp(−ξrk)) −

1

4ξrk
tanh

(

ξrk

2

)

(

f 2
k (hr) − ξ2

rk

)

]

(C.16)

and computing the correspondent derivative gives:

∂LBξ

∂ξrk
= −λ(ξrk)(f

2
k (hr) − ξ2

rk) (C.17)

where λ(ξrk) = 1
4ξrk

tanh
(

ξrk

2

)

. Hence setting this derivative to zero provides the

update equation:

ξ = ±fk(hr) (C.18)
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APPENDIX C. DERIVATION OF THE FORMULAS FOR THE RBLDA

Next we consider the terms of the lower-bound that depend on the normalized

relations rkpr and use some Lagrange multipliers µkr that ensure
∑

tp rtkpr = 1:

LB
r

=

K,K,Rd
∑

t,k,r,p 6=r

φrkrtkpr

[

log
ctkλpr

rtkpr

+ Ψ(χtp) − Ψ
(

∑

m

χtm

)

]

−
K,Rd
∑

k,r

µkr

(K,Rd
∑

t,p

rtkpr − 1

)

(C.19)

We now compute the derivative of this expression with respect to r and add a

Lagrange multiplier that ensures what gives:

∂LBr

∂rtkpr

= φrk

(

log
ctkλpr

rtkpr

+ Ψ(χtp) − Ψ
(

∑

m

χtm

)

− 1

)

− µkr (C.20)

And setting its derivative to zero gives the final update equation for the normalized

relationships:

rtkpr ∝ ctkλpr exp
(

Ψ(χkp)
)

(C.21)

We now work on the expression that depends on the parameter χ:

LBχ =

K,Rd
∑

k,p

(

Ψ(χkp) − Ψ
(

∑

m

χkm

)

)[

ηp − χkp +
K
∑

t,r 6=p

φrkrtkpr

]

−
K
∑

k=1

log Γ
(

Rd
∑

m=1

χkm

)

+

K,Rd
∑

k,p

log Γ(χkp) (C.22)

Computing the derivative with respect to χkp gives:

∂LBχ

∂χkp
=Ψ′(χkp)

[

ηp − χkp +
K
∑

t,r 6=p

φrkrtkpr

]

− Ψ′

(

∑

m

χkm

)[ Rd
∑

m=1

(

ηm − χkm +
K
∑

t,r 6=m

φrkrtkmr

)]

(C.23)

Thus, if we set this derivative to zero for every value of m we get the update

equation for the new variational parameter as:

χkp = ηp +

K
∑

t,r 6=p

φrkrtkpr (C.24)
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Finally, we consider the lower bound that depends on the variational multinomial

φ and add a Lagrange parameter τ so that
∑

k φrk = 1:

LBφ =

K,Rd
∑

k,r

φrk

{

Ψ(γk) − Ψ
(

∑

j

γj

)

+ log nk − wkξrk + (2wk − 1) log(1 + exp(−ξrk))

+

K
∑

t,p 6=r

rtkpr

[

log
ctkλpr

rtkpr
+ Ψ(χtp) − Ψ

(

Rd
∑

m=1

χtm

)

]

+

Ns
∑

s

p{lr, s}βks −
K

2
log 2π

− 1

2
log |Σk| −

1

2
(gr − µk)

T Σ−1(gr − µk) − log φrk

}

−
Rd
∑

r=1

τr

( K
∑

k=1

φrk − 1

)

(C.25)

The derivative with respect to φrk is:

∂LBφ

∂φrk
= Ψ(γk) − Ψ

(

∑

j

γj

)

+ log nk − wkξrk + (2wk − 1) log(1 + exp(−ξrk))

+

K
∑

t,p 6=r

rtkpr

[

log
ctkλpr

rtkpr
+ Ψ(χtp) − Ψ

(

Rd
∑

m=1

χtm

)

]

+

Ns
∑

s

p{lr, s}βks −
K

2
log 2π

− 1

2
log |Σk| −

1

2
(gr − µk)

T Σ−1(gr − µk) − log φrk − 1 − τr (C.26)

And setting this derivative to zero gives the update expression of the multinomial:

φrk ∝ exp

{

Ψ(γk) + log nk −
1

2
log |Σ| − 1

2
(gk − µk)Σ

−1(gk − µk) + wkξrk (C.27)

+ (2wk − 1) log(1 + exp(−ξrk)) +
K
∑

t=1

∑

p 6=r

[

log
ctkλpr

rtkpr

+ Ψ(χtp) − Ψ

( Rd
∑

m=1

χtm

)]}

It is noteworthy that wk has a value in a supervised training environment in or-

der to learn the negative samples whereas it is set to zero in test and unsupervised

environments. Additionally, equations for the variational Dirichlet γ and the Dirich-

let parameters α are not included since they do not differ from the original LDA

proposal (see [Blei et al., 2003]).
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C.5 Derivation of the formulas for the model param-

eters

In this section we provide complete derivations of the update equations of the model

parameters that are computed in the M-step of the inference algorithm. Since some

of the parameters are corpus-dependent, a new index d points to each document in

the corpus.

We start by computing the derivative of the eq. (C.18) with respect to ctk and

add a Lagrange multiplier that ensures
∑

t ctk = 1 and obtain:

∂LBc

∂ctk
=

D,Rd
∑

d,r,p 6=r

φdrkrtkpr
1

ctk
− µk (C.28)

Note the dependence on the document index d, since c is a corpus-based variable.

We finish with the update equation for c:

ctk ∝
D,Rd
∑

d,r,p 6=r

φdnkrtkpr (C.29)

Now, we consider terms of the Lower Bound that depend on the Kernel Logis-

tic Regressor (eq. (C.14)) and introduce a L2 regularization element the following

expression needs to be maximized:

LBfk
=

Rd
∑

r=1

K
∑

k=1

C
(1)
rk frk − C

(2)
rk f 2

k (hr) −
µ

2
‖f‖2

Hk
(C.30)

where H stands for the Reproducing Kernel Hilbert Space (RKHS), and the param-

eters C(1), C(2) are:

C
(1)
rk =

1

2
(φrk − wk) (C.31)

C
(2)
rk = [φrk(1 − 2wk) + wk]

1

4ξrk
tanh

(

ξrk

2

)

(C.32)

Thus, in order to obtain the optimal parameters of the regressors ak, we can use

an iterative Newton-Raphson method so that, at iteration t:

a
(t+1)
k = a

(t)
k − H−1

k ∇k (C.33)
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Using the dual form proposed in eq. (4.36), the values of the gradient ∇k and the

Hessian Hk obey:

∇k = KT
k C(1) − 2KT

k (C(2) · fk) −
µ

2
K ′

kak (C.34)

Hk = −2KT
k diag(C(2))Kk −

µ

2
K ′

k (C.35)

where K and K ′ stand for the data Kernel matrix and the regularization matrix,

respectively, and · represents the Hadamard product (element wise) between two

matrices.

Furthermore, we next show the terms of the log-likelihood that depend on the

normalization factor nk and add a Lagrange parameter that ensures that the appear-

ance distribution is a probability density function along the potential values of the

histogram (following the aforementioned approximation in which the normalization

is provided over the training set):

LBnk
=
∑

rk

φrk log nk −
K
∑

k=1

µk

(

Rd
∑

p=1

nk

1 + e−fkp
− 1

)

(C.36)

Computing the derivative of this expression with respect to nk gives:

∂LBn

∂nk
=
∑

r

φrk − µk

Rd
∑

p=1

nk

1 + e−fkp
(C.37)

Finally, setting this derivative to zero gives the final expression for the normalization

term:

n−1
k =

Rd
∑

r=1

1

1 + exp(−fk(hr))
(C.38)

We finish with the means and covariances of the Gaussian estimates on the global

probabilities. The terms of the LB that incorporate both terms are:

LB{µk ,Σk} =

D,Rd,K
∑

d,r,k

φdrk

[

− K

2
log 2π − 1

2
log |Σk| −

1

2
(gdr − µk)

T Σ−1
k (gdr − µk)

]

(C.39)
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Computing the derivative with respect to µk gives:

∂LB{µk ,Σk}

∂µk

=

D,Rd
∑

d,r

φdrk

[

Σ−1
k (gdr − µk)

]

(C.40)

So that the update equations obeys:

µk =

∑D,Rd

d,r φdrkgdr
∑D,Rd

d,r φdrk

(C.41)

Now, the derivative with respect to the covariance matrix Σk is:

∂LB{µk ,Σk}

∂Σk
= −

D,Rd
∑

d,r

1

2
φdrk

[

Σ−1
k + Σ−1

k (gdr − µk)(gdr − µk)
T Σ−1

k

]

(C.42)

which gives the final update for the covariance:

Σk =

D,Rd
∑

d,r

φdrk(gdr − µk)(gdr − µk)
T

D,Rd
∑

d,r

φdrk

(C.43)
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O’Connor, N., and de Maŕıa, F. D. (2008). Incorporating spatio-temporal mid-

level features in a region segmentation algorithm for video sequences. In IEEE

International Conference on Image Processing, 2008. (ICIP’08). 20

[Gould et al., 2009a] Gould, S., Fulton, R., and Koller, D. (2009a). Decomposing a

scene into geometric and semantically consistent regions. In IEEE 12th Interna-

tional Conference on Computer Vision, 2009, pages 1–8. 45

[Gould et al., 2009b] Gould, S., Gao, T., and Koller, D. (2009b). Region-based seg-

mentation and object detection. In Bengio, Y., Schuurmans, D., Lafferty, J.,

Williams, C. K. I., and Culotta, A., editors, Advances in Neural Information Pro-

cessing Systems 22, pages 655–663. 45

[Grauman and Darrell, 2005] Grauman, K. and Darrell, T. (2005). The pyramid

match kernel: discriminative classification with sets of image features. In IEEE

International Conference on Computer Vision, volume 2, pages 1458–1465 Vol. 2.

44, 53

158



BIBLIOGRAPHY

[Green and Yandell, 1985] Green, P. and Yandell, B. (1985). Semi-parametric gen-

eralized linear models. Technical Report 2847, University of Wisconsin-Madison.

88

[Greenspan et al., 2004] Greenspan, H., Goldberger, J., and Mayer, A. (Mar 2004).

Probabilistic space-time video modeling via piecewise GMM. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 26(3):384–396. 16, 18, 20, 36

[Greenspan et al., 2006] Greenspan, H., Ruf, A., and Goldberger, J. (2006). Con-

strained gaussian mixture model framework for automatic segmentation of mr

brain images. IEEE Transactions on Medical Imaging, 25(9):1233–1245. 17

[Griffin et al., 2007] Griffin, G., Holub, A., and Perona, P. (2007). Caltech-256 object

category dataset. Technical Report 7694, California Institute of Technology. 52

[Haralick and Shapiro, 1992] Haralick, R. and Shapiro, L. (1992). Computer and

Robot Vision, Volume 1. Addison Wesley. 48

[Harris and Stephens, 1988] Harris, C. and Stephens, M. (1988). A combined corner

and edge detector. In Proceedings of the 4th Alvey Vision Conference, pages 147–

151. 48

[Hastie and Tibshirani, 1987] Hastie, T. and Tibshirani, R. (1987). Generalized ad-

ditive models: Some applications. Journal of the American Statistical Association,

82:371–386. 88

[Hofmann, 2001] Hofmann, T. (2001). Unsupervised learning by Probabilistic Latent

Semantic Analysis. Machine Learning, 42(1/2):177–196. viii, 12, 44, 45, 53, 54, 56

[Hou et al., 2010] Hou, Y., Sun, X., Lun, X., and Lan, J. (2010). Gaussian mixture

model segmentation algorithm for remote sensing image. In 2010 International

Conference on Machine Vision and Human-Machine Interface (MVHI), pages

275—-278. 17

159



BIBLIOGRAPHY

[Hu and Li, 2010] Hu, X. and Li, W. (2010). Multi-scale optical flow estimation of

the video based on gradient optimization. In 3rd International Congress on Image

and Signal Processing (CISP), 2010, volume 1, pages 335–339. 18

[Huang and Dom, 1995] Huang, Q. and Dom, B. (1995). Quantitative methods of

evaluating image segmentation. In Proceedings of International Conference on

Image Processing, 1995, volume 3, pages 53–56 vol.3. 34

[Ince and Konrad, 2008] Ince, S. and Konrad, J. (2008). Occlusion-aware optical

flow estimation. IEEE Transactions on Image Processing, 17(8):1443–1451. 18

[Jaakkola and Jordan, 2000] Jaakkola, T. S. and Jordan, M. I. (2000). Bayesian

parameter estimation via variational methods. Statistics and Computing, 10:25–

37. 94, 145

[Jain and Dubes, 1988] Jain, A. and Dubes, R. (1988). Algorithms for Clustering

Data. Prentice Hall. v, 9

[Jain et al., 2004] Jain, A., Topchy, A., Law, M., and Buhmann, J. (2004). Land-

scape of clustering algorithms. In Proceedings of the 17th International Conference

on Pattern Recognition, 2004. ICPR 2004., volume 1, pages 260–263 Vol.1. v, 9

[Ji et al., 2010] Ji, R., Yao, H., Sun, X., Zhong, B., and Gao, W. (2010). Towards se-

mantic embedding in visual vocabulary. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 918–925. 51

[Jordan et al., 1999] Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L.

(1999). An introduction to variational methods for graphical models. Machine

Learning, 37:183–233. ix, 59

[Kohonen, 1997] Kohonen, T., editor (1997). Self-organizing maps. Springer-Verlag

New York, Inc., Secaucus, NJ, USA. 51

160



BIBLIOGRAPHY

[Kullback and Leibler, 1951] Kullback, S. and Leibler, R. A. (1951). On information

and sufficiency. Annals of Mathematical Statistics, 22:49–86. x

[Kwok and Constantinides, 1997] Kwok, S. and Constantinides, A. (Feb 1997). A

fast recursive shortest spanning tree for image segmentation and edge detection.

IEEE Transactions on Image Processing, 6(2):328–332. 16, 17, 29

[Lafferty et al., 2004] Lafferty, J., Zhu, X., and Liu, Y. (2004). Kernel conditional

random fields: representation and clique selection. In Proceedings of the twenty-

first international conference on Machine learning, ICML ’04, pages 64–, New

York, NY, USA. ACM. 91

[Larlus et al., 2010] Larlus, D., Verbeek, J., and Jurie, F. (2010). Category level

object segmentation by combining bag-of-words models with dirichlet processes

and random fields. International Journal of Computer Vision, 88(2):238–253. 45

[Lazebnik et al., 2006] Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond bags

of features: Spatial pyramid matching for recognizing natural scene categories.

In 2006 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, volume 2, pages 2169–2178. 44, 114

[Lee and Grauman, 2010] Lee, Y. and Grauman, K. (2010). Collect-cut: Segmenta-

tion with top-down cues discovered in multi-object images. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). 45

[Lehmann, 2011] Lehmann, F. (2011). Turbo segmentation of textured images. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on, 33(1):16–29. 18

[Lewis, 1998] Lewis, D. D. (1998). Naive (bayes) at forty: The independence assump-

tion in information retrieval. In Proceedings of the 10th European Conference on

Machine Learning, pages 4–15, London, UK. Springer-Verlag. 53

[Li et al., 2009] Li, L.-J., Socher, R., and Fei-Fei, L. (2009). Towards total scene

understanding:classification, annotation and segmentation in an automatic frame-

161



BIBLIOGRAPHY

work. In IEEE Computer Society Conference on Computer Vision and Pattern

Recognition. 61, 63

[Lievin and Luthon, 2004] Lievin, M. and Luthon, F. (2004). Nonlinear color space

and spatiotemporal mrf for hierarchical segmentation of face features in video.

IEEE Transactions on Image Processing, 13(1):63–71. 18

[Liu and Chen, 2006] Liu, D. and Chen, T. (2006). Semantic-shift for unsupervised

object detection. In Proceedings of the 2006 Conference on Computer Vision and

Pattern Recognition Workshop, page 16, Washington, DC, USA. IEEE Computer

Society. 60

[Lowe, 2004] Lowe, D. G. (2004). Distinctive image features from scale-invariant

keypoints. International Journal of Computer Vision, 60:91–110. 48, 49, 50, 66

[Marimon et al., 2010] Marimon, D., Bonnin, A., Adamek, T., and Gimeno, R.

(2010). Darts: Efficient scale-space extraction of daisy keypoints. In IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), 2010, pages 2416–

2423. 50

[Marr, 1982] Marr, D. (1982). Vision: a computational investigation into the hu-

man representation and processing of visual information. W. H. Freeman, San

Francisco. 1

[Martin et al., 2001] Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001). A

database of human segmented natural images and its application to evaluating

segmentation algorithms and measuring ecological statistics. In Proc. 8th Int’l

Conf. Computer Vision, volume 2, pages 416–423. 34

[Matas et al., 2002] Matas, J., Chum, O., Urban, M., and Pajdla, T. (2002). Robust

wide baseline stereo from maximally stable extremal. In In British Machine Vision

Conference, pages 384–393. 48

162



BIBLIOGRAPHY

[Matusita, 1955] Matusita, K. (1955). Decision rules, based on the distance, for

problems of fit, two samples, and estimation. Annals of Mathematical Statisticals,

26(4):631–640. 29

[McGuinness et al., 2006] McGuinness, K., Keenan, G., Adamek, T., and O’Connor,

N. (2006). A framework for integrating and evaluating automatic region-based

segmentation algorithms. In SAMT 2006 - Poster and Demo Proceedings of The

First International Conference on Semantics And Digital Media Technology, pages

41–42. 34

[McGuinness et al., 2007] McGuinness, K., Keenan, G., Adamek, T., and O’Connor,

N. (2007). Image segmentation evaluation using an integrated framework. In VIE

2007 - Proceedings of the IET 4th International Conference on Visual Information

Engineering 2007. 34

[Mikolajczyk and Schmid, 2002] Mikolajczyk, K. and Schmid, C. (2002). An affine

invariant interest point detector. In Proceedings of the 7th European Conference on

Computer Vision-Part I, ECCV ’02, pages 128–142, London, UK, UK. Springer-

Verlag. 48

[Mikolajczyk et al., 2005] Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman,

A., Matas, J., Schaffalitzky, F., Kadir, T., and Van Gool, L. (2005). A comparison

of affine region detectors. International Journal of Computer Vision, 65(1/2):43–

72. 48

[Moscheni et al., 1998] Moscheni, F., Bhattacharjee, S., and Kunt, M. (1998). Spa-

tiotemporal segmentation based on region merging. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 20:897–915. 17

[National Institute of Standards and Technology, 2006] National Institute of Stan-

dards and Technology, N. (2006). Guidelines for the trecvid 2006 evaluation.

Published online: http://www-nlpir.nist.gov/projects/tv2006/tv2006.html. viii,

33

163



BIBLIOGRAPHY

[Nister and Stewenius, 2006] Nister, D. and Stewenius, H. (2006). Scalable recogni-

tion with a vocabulary tree. In IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2006, volume 2, pages 2161–2168. 51

[Ojala et al., 1996] Ojala, T., Pietikainen, M., and Harwood, D. (1996). A compar-

ative study of texture measures with classification based on feature distributions.

29(1):51–59. 118

[Oliva and Torralba, 2001] Oliva, A. and Torralba, A. (2001). Modeling the shape of

the scene: A holistic representation of the spatial envelope. International Journal

of Computer Vision, 42:145–175. 118

[Philbin et al., 2008] Philbin, J., Chum, O., Isard, M., Sivic, J., and Zisserman, A.

(2008). Lost in quantization: Improving particular object retrieval in large scale

image databases. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition. 52

[Rosenblatt, 1962] Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons

and the Theory of Brain Mechanisms. Spartan Books. 31

[Russell et al., 2006] Russell, B., Freeman, W., Efros, A., Sivic, J., and Zisserman,

A. (2006). Using multiple segmentations to discover objects and their extent in

image collections. volume 2, pages 1605–1614. 61

[Schölkopf and Smola, 2002] Schölkopf, B. and Smola, A. J. (2002). Learning with

Kernels. The MIT Press, Cambridge, MA. 53

[Shi and Malik, 2000] Shi, J. and Malik, J. (2000). Normalized cuts and image seg-

mentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

22(8):888–905. 17

[Shotton et al., 2009] Shotton, J., Winn, J., Rother, C., and Criminisi, A. (2009).

Textonboost for image understanding: Multi-class object recognition and segmen-

164



BIBLIOGRAPHY

tation by jointly modeling texture, layout, and context. Int. J. Comput. Vision,

81(1):2–23. 45, 87

[Sivic et al., 2005] Sivic, J., Russell, B. C., Efros, A. A., Zisserman, A., and Free-

man, W. T. (2005). Discovering objects and their location in images. In IEEE

International Conference on Computer Vision, volume 1, pages 370–377. 47, 60,

101

[Sivic and Zisserman, 2003] Sivic, J. and Zisserman, A. (2003). Video Google: A text

retrieval approach to object matching in videos. In Proceedings of the International

Conference on Computer Vision, volume 2, pages 1470–1477. viii, 47

[Smeaton et al., 2009] Smeaton, A. F., Over, P., and Kraaij, W. (2009). High-Level

Feature Detection from Video in TRECVid: a 5-Year Retrospective of Achieve-

ments. In Divakaran, A., editor, Multimedia Content Analysis, Theory and Appli-

cations, pages 151–174. Springer Verlag, Berlin. 52

[Smeulders et al., 2000] Smeulders, A. W. M., Worring, M., Santini, S., Gupta, A.,

and Jain, R. (2000). Content-based image retrieval at the end of the early years.

IEEE Trans. Pattern Anal. Mach. Intell., 22:1349–1380. 15

[Smola and Schökopf, 2000] Smola, A. J. and Schökopf, B. (2000). Sparse greedy

matrix approximation for machine learning. In Proceedings of the Seventeenth

International Conference on Machine Learning, ICML ’00, pages 911–918, San

Francisco, CA,greenspan USA. Morgan Kaufmann Publishers Inc. 91

[Snoek and Worring, 2009] Snoek, C. G. M. and Worring, M. (2009). Concept-based

video retrieval. Foundations and Trends in Information Retrieval, 4(2):215–322.

47

[Stewart, 1999] Stewart, C. V. (1999). Robust parameter estimation in computer

vision. SIAM Rev., 41:513–537. 23

165



BIBLIOGRAPHY

[Sudderth et al., 2007] Sudderth, E. B., Torralba, A., Freeman, W. T., and Will-

sky, A. S. (2007). Describing visual scenes using transformed objects and parts.

International Journal of Computer Vision. 61

[Sun et al., 2010] Sun, T., Jiang, X., Fu, G., Li, R., Feng, B., Wang, S., Sun, T.,

and Jiang, X. (2010). Image semantic recognition scheme with semantic-binding

hierarchical visual vocabulary model. In Image and Signal Processing (CISP),

2010 3rd International Congress on, volume 4, pages 1576–1581. 51

[Szeliski, 2011] Szeliski, R. (2011). Computer Vision: Algorithms and Applications.

Springer. 6, 8, 9

[Takacs and Demiris, 2008] Takacs, B. and Demiris, Y. (2008). Balancing spectral

clustering for segmenting spatio-temporal observations of multi-agent systems. In

Eighth IEEE International Conference on Data Mining, 2008. ICDM ’08., pages

580–587. 17

[Teh et al., 2006] Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006).

Hierarchical Dirichlet processes. Journal of the American Statistical Association,

101(476):1566–1581. xiii, 127

[Titterington et al., 1985] Titterington, D., Smith, A., and Makov, U. (1985). Sta-

tistical Analysis of Finite Mixture Distributions. John Wiley & Sons. vii

[Tsaig and Averbuch, 2001] Tsaig, Y. and Averbuch, A. (2001). A region-based mrf

model for unsupervised segmentation of moving objects in image sequences. In

Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 2001. CVPR 2001., volume 1, pages I–889–I–896 vol.1.

18

[Tuytelaars et al., 2010] Tuytelaars, T., Lampert, C., Blaschko, M., and Buntine,

W. (2010). Unsupervised object discovery: A comparison. International Journal

of Computer Vision, 88:284–302. 46

166



BIBLIOGRAPHY

[Tuytelaars and Mikolajczyk, 2008] Tuytelaars, T. and Mikolajczyk, K. (2008). Lo-

cal invariant feature detectors: a survey. Found. Trends. Comput. Graph. Vis.,

3:177–280. 48

[van Gemert et al., 2010] van Gemert, J. C., Snoek, C. G. M., Veenman, C. J.,

Smeulders, A. W. M., and Geusebroek, J. M. (2010). Comparing compact code-

books for visual categorization. Computer Vision and Image Understanding,

114(4):450–462. 51

[Varma and Ray, 2007] Varma, M. and Ray, D. (2007). Learning the discriminative

power-invariance trade-off. pages 1–8. 44

[Wahba et al., 1993] Wahba, G., Gu, C., and Wang, Y. (1993). Soft classification,

a.k.a. risk estimation, via penalized log likelihood and smoothing spline analysis

of variance. In The Mathematics of Generalization. Addison-Wesley. 88

[Wallraven et al., 2003] Wallraven, C., Caputo, B., and Graf, A. (2003). Recogni-

tion with local features: the kernel recipe. In IEEE International Conference on

Computer Vision, pages 257–264 vol.1. 44, 53

[Wang et al., 2009] Wang, C., Blei, D., and Fei-Fei, L. (2009). Simultaneous image

classification and annotation. In IEEE Computer Society Conference on Computer

Vision and Pattern Recognition. 61, 63, 87

[Wang and Grimson, 2007] Wang, X. and Grimson, E. (2007). Spatial latent dirich-

let allocation. In Advances in Neural Information Processing Systems, volume 20.

61

[Wang et al., 2005] Wang, Y., Loe, K., Tan, T., and Wu, J. (July 2005). Spatiotem-

poral video segmentation based on graphical models. IEEE Transactions on Image

Processing, 14(7):937–947. 16

167



BIBLIOGRAPHY

[Williams and Seeger, 2001] Williams, C. and Seeger, M. (2001). Using the nyström

method to speed up kernel machines. In Advances in Neural Information Process-

ing Systems 13, pages 682–688. MIT Press. 91

[Zhang and Zhang, 2004] Zhang, R. and Zhang, Z. M. (2004). Hidden semantic con-

cept discovery in region based image retrieval. In IEEE Conference on Computer

Vision and Pattern Recognition, 2004. CVPR 2004. 61, 87

[Zhao et al., 2010] Zhao, B., Fei-Fei, L., and Xing, E. P. (2010). Image segmenta-

tion with topic random field. In Proceedings of the 11th European conference on

Computer vision: Part V, ECCV’10, pages 785–798, Berlin, Heidelberg. Springer-

Verlag. 62, 101

[Zhu and Hastie, 2001] Zhu, J. and Hastie, T. (2001). Kernel logistic regression and

the import vector machine. In Journal of Computational and Graphical Statistics,

pages 1081–1088. MIT Press. 89, 91

168


