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La libertá non é star sopra un albero,
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Abstract

We address the problem of generating random samples from a target
probability distribution, with density function po, using accept/reject
methods. An “accept/reject sampler” (or, simply, a “rejection sampler”) is
an algorithm that first draws a random variate from a proposal distribution
with density π (where π 6= po, in general) and then performs a test to
determine whether the variate can be accepted as a sample from the target
distribution or not. If we apply the algorithm repeatedly until we accept
N times, then we obtain a collection of N independent and identically
distributed (i.i.d.) samples from the distribution with density po.

The goal of the present work is to devise and analyze adaptive rejection
samplers that can be applied to generate i.i.d. random variates from
the broadest possible class of probability distributions. Adaptive rejection
sampling algorithms typically construct a sequence of proposal functions π0,
π1,...,πt,... such that

(a) it is easy to draw i.i.d. samples from them and

(b) they converge, in some way, to the density po of the target probability
distribution.

When surveying the literature, it is simple to identify several such methods
but virtually all of them present severe limitations in the class of target
densities, po, for which they can be applied. The “standard” adaptive
rejection sampler by Gilks and Wild, for instance, only works when po is
strictly log-concave.

Through Chapters 3, 4 and 5 we introduce a new methodology for
adaptive rejection sampling that can be used with a broad family of target
probability densities (including, e.g., multimodal functions) and subsumes
Gilks and Wild’s method as a particular case. We discuss several variations
of the main algorithm that enable, e.g., sampling from some particularly
“difficult” distributions (for instance, cases where po has log-convex tails
and infinite support) or yield “automatic” software implementations using
little analytical information about the target density po. Several numerical
examples, including comparisons with some of the most relevant techniques
in the literature, are also shown in Chapter 6.
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Resumen

En este trabajo abordamos el problema de generar muestras aleatorias
de una distribución de probabilidad objetivo, con densidad po, empleando
métodos de aceptación/rechazo. En un algoritmo de aceptación/rechazo,
primero se genera una realización aleatoria de una distribución tentativa
con densidad π (donde π 6= po, en general) y a continuación se realiza un
test para determinar si la muestra se puede aceptar como proveniente de
la distribución objetivo o no. Si se aplica el algoritmo repetidamente hasta
aceptar N veces, obtenemos una colección de N muestras independientes y
identicamente distribuidas (i.i.d.) de la distribución con densidad po.

El objetivo del trabajo es proponer y analizar nuevos métodos de
aceptación/rechazo adaptativos que pueden ser aplicados para generar
muestras i.i.d. de la clase más amplia posible de distribuciones de
probabilidad. Los algoritmos de aceptación/rechazo adaptativos suelen
construir una secuencia de funciones tentativas π0, π1,...,πt,... tales que

(a) sea fácil generar muestras i.i.d. a partir de ellas y

(b) converjan, de manera adecuada, hacia la densidad po de la distribución
objetivo.

Al revisar la literatura, es sencillo identificar varios métodos de este tipo
pero todos ellos presentan limitaciones importantes en cuanto a las clases de
densidades objetivo a las que se pueden aplicar.

El método original de Gilks y Wild, por ejemplo, sólo funciona si
po es estrictamente log-concava. En los Caṕıtulos 3, 4 y 5 presentamos
una nueva metodoloǵıa para muestreo adaptativo por aceptación/rechazo
que se puede utilizar con una amplia clase de densidades de probabilidad
objetivo (incluyendo, por ejemplo, funciones multimodales) y comprende
al método de Gilks y Wild como un caso particular. Se discuten diversas
variaciones del algoritmo principal que facilitan, por ejemplo, el muestreo
de algunas distribuciones particularmente “d́ıficiles” (e.g., casos en los que
po tiene colas log-convexas y con soporte infinito) o una implementación
software prácticamente “automática”, en el sentido de que necesitamos poca
información anaĺıtica acerca de la función po.

En el Caṕıtulo 6 mostramos varios ejemplos numéricos, incluyendo
comparaciones con algunas de las técnicas más relevantes que se pueden
encontrar en la literatura.
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Chapter 1

Introduction

“Anyone who considers arithmetic methods of producing random digits is,
of course, in a state of sin.” J. von Neumann (1940). This sentence means
that there are no true random “numbers”, just means to produce them, and
“a strict arithmetic procedure is not such a method”.

1.1 Monte Carlo: a brief history

Monte Carlo methods have been used since, at least, the eighteenth century
but only in the past few decades has the technique gained the status of a
full-fledged numerical methodology capable of addressing the most complex
applications. The name “Monte Carlo” was used as a code name of a
secret project of the U. S. Defense Department. This project was headed
by John von Neumann (1903-1957, Hungarian-American mathematician)
and Stanislas Ulam (1909-1984, Polish mathematician) at the Los Alamos
Scientific Laboratory. The project used random numbers to simulate
complicated sequences of connected events. The name comes from the city in
the Monaco principality, because of the roulette (the capital of Monaco was
a center for gambling), a simple random number generator. A gossip about
the name reports that Ulam’s uncle would borrow money from the family by
saying that “I just have to go to Monte Carlo”. The name seems to have
held on.

The systematic development of Monte Carlo methods can be dated from
about 1940. Indeed, in the 1940’s, a formal foundation for the methodology
was developed by von Neumann, who established the mathematical basis for

1



pseudo-random number generators. The work was done in collaboration with
Stanislaw Ulam, who realized the importance of the digital computer in the
implementation of the approach.

However, there is a number of isolated and undeveloped instances on
much earlier occasions. For example, in the second half of the nineteenth
century a number of people performed experiments [57] in which they threw
a needle in a haphazard manner (i.e., like “random”) onto a board ruled with
parallel straight lines and inferred the value of π ≈ 3.14 from observations of
the number of intersections between the needle and the lines. This problem
was first stated in 1777 by Georges-Louis Leclerc, comte de Buffon.

In 1899, Lord Rayleigh showed that a one-dimensional random walk
without absorbing barriers could provide an approximate solution to a
parabolic differential equation. In 1930, Fermi used sampling methods to
estimate quantities involved in controlled fission. In 1931, Kolmogorov
showed the relationship between Markov stochastic processes and certain
integro-differential equations.

But the real use of Monte Carlo methods as a research tool originates
from work on the atomic bomb during the World War II. This work
involved a direct simulation of the probabilistic problems concerned with
random neutron diffusion in fissile material. Later on, about 1948, Fermi,
Metropolis and Ulam obtained Monte Carlo estimates for the eigenvalues of
the Schrodinger equation.

Although the method had already been used for secret projects, the
“official history” of Monte Carlo methods began in 1949 with the publication
of a paper by Metropolis and Ulam [119]. A team headed by Nicolas
Metropolis (1915-1999) carried out the first actual Monte Carlo calculations
on the ENIAC computer (the world’s first electronic digital computer, built
at the University of Pennsylvania) in 1948. The Metropolis algorithm, first
described in a 1953 paper by N. Metropolis, A. Rosenbluth, M. Rosenbluth,
A. Teller and E. Teller [118], was cited in Computing in Science and
Engineering as being among the top 10 algorithms having the “greatest
influence on the development and practice of science and engineering in the
20th century”.

About 1970, the newly developing theory of computational complexity
began to provide a more precise and persuasive rationale for employing the
Monte Carlo method.

The main requirement to use the Monte Carlo method for simulation of a
physical system is that it must be possible to describe the system in terms of

2



a probability density function (or a cumulative distribution function). Once
the density function of a system is known, then the simulation begins to
generate random numbers from this density. There must be a rule available,
based on some reasonable mathematical and/or physical theory, to decide
the outcome of such a trial. Many trials are conducted and outcomes of all
of these trials are recorded. The final step in the Monte Carlo method is that
the behavior of the overall system is obtained by computing the average of
the outcomes of the trials.

The spirit of Monte Carlo can be summarized by the following example
(by von Neumann): consider a spherical core of fissile material surrounded
by a shell of tamper material. Assume some initial distribution of neutrons
in space and in velocity. The underlying idea is to follow the development of
a large number of individual neutron chains as a consequence of scattering,
absorption, fission and escape. At each stage, a sequence of “decisions”
has to be made based on statistical probabilities appropriate to the physical
and geometric factors. The various decisions are made using pseudo-random
numbers with desired properties.

Table 1.1 summarizes the most important steps in the development of
Monte Carlo approach.

Because of the great potential of this methodology, various techniques
are still being developed by researchers. Recent advances of Monte
Carlo algorithms include the cluster method, data augmentation, rejection
control [97, 99], umbrella sampling [158], density-scaling Monte Carlo [151],
multigrid Monte Carlo [52], hybrid Monte Carlo [35], simulated annealing
[81, 102], simulated tempering [103], parallel tempering [46, 143], multiple
try Metropolis [100, 97, 95], adaptive and sequential MCMC [5, 49], adaptive
importance sampling [132], sequential Monte Carlo [34, 32, 98], particle
filtering [7, 13, 39, 53, 86, 133] etc...

There is also a trend in studying and analyzing population-based methods
[19, 49, 71, 97]. The underlying idea is to generate a collection of
random variables in parallel and then incorporate an additional step of
information exchange. For instance, population-based Markov chain Monte
Carlo operates by embedding the target into a sequence of related probability
measures and simulating N parallel chains (the population). In addition, the
chains are allowed to interact via various crossover moves.

In some cases, many algorithms are related, and sometimes they are
even identical. For instance, the configuration bias Monte Carlo [137,
138] is equivalent to a sequential importance sampling combined with
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Table 1.1: Most important stages in Monte Carlo research.

1949: paper of N. Metropolis and S. Ulam [119].

1951: J. von Neumann: Rejection sampling [152].

1953: N. Metropolis: Metropolis algorithm [118].

1954: J. Harmersly, K. Morton: sequential sampling [58].

1955: A. Rosenbluth, M. Rosenbluth: sequential sampling [135].

1956: A. Marshall: Importance sampling [108].

1970: Hasting: Metropolis-Hasting algorithm [59].

1987: Rubin: Sampling importance resampling [136].

the Metropolis-Hasting algorithm with independent proposal (transition)
density. The multiple try Metropolis [100, 97, 95] is an extension of a
technique described in [41]. The exchange Monte Carlo [67] recalls the
parallel tempering [46, 143]. Sequential Monte Carlo and particle filtering
are often used a synonimus.

1.2 The need of Monte Carlo

The range of application of Monte Carlo algorithms is enormous from
statistical physics problems [135, 137, 138] (e.g. the simulation of galactic
formation [128]) to nuclear medicine applications [101] (to predict the exact
path of photons, electrons or α-particles that traverse different regions
of the body and to identify the correct activity [139]). Other examples
of applications are in finance [70], in genetics [56], state space models
(epidemiology [156] and meteorology [160]), time series analysis [9], mixture
models for inference [40], operations research [82] (traffic control, quality
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control, production optimization). Monte Carlo methods are employed in
many other areas of engineering too. For example, they have been used to
simulate the turbulent combustion of a diesel engine spray injection [129] or
to track moving targets and estimate their positions [7].

Monte Carlo techniques have been applied to all of these problems in
order to calculate complicated integrals, to simulate a complex phenomenon
or to reduce the amount of computation. The resulting algorithms are often
concurrent and well suited to implementation on parallel computers.

1.2.1 Numerical integration

The best known (and maybe the most important) applications of Monte
Carlo techniques involve the approximation of complicated integrals. Given
an m-dimensional variable x ∈ Rm, a crucial part of many scientific problems
is the computation of integrals of the form

I =

∫

D
f(x)dx, (1.1)

where D ⊆ Rm. Let us assume that we are able to generate N random
samples x(1), ...,x(N) uniformly in D. Then we can approximate the integral
I as

ÎN =
1

N

(
f(x(1)) + ...+ f(x(N))

)
. (1.2)

Furthermore, given a collection of independent random variables X1, ..., XN

with common mean µ and finite variances, the strong law of large numbers
[28, 76, 157] states that

X1 + ...+XN

N
→ µ,

when N → +∞, and based on this result we can claim that

lim
N→+∞

ÎN → I, (1.3)

with probability 1. This is the basic formulation of a Monte Carlo technique.
We can provide further theoretical ground for the methodology by invoking
the central limit theorem [28, 76, 157] that yields

√
N(ÎN − I)→ N (0, σ2)1 (1.4)

1N (0, σ2) denotes a Gaussian distribution with 0 mean and σ2 variance.
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in distribution, as N → +∞, where

σ2 = var[f(x)].

It is important to remark that this variance σ2 measures how the function
f(x) is distributed over D (if f(x) is constant in D the variance is zero, i.e.,
σ2 = 0).

Moreover, given Eq. (1.4), we can state that the Monte Carlo
approximation error (ÎN − I) → 0 decays to zero with 1/

√
N , in spite of

the dimensionality of x ∈ Rm (i.e., independently of m). This is probably the
main advantage of the Monte Carlo techniques when we compare with their
deterministic counterparts (see, e.g., [18, 91]).

To see how the Monte Carlo methodology works with multidimensional
problems, let first consider the simplest case m = 1. In this situation,
we can carry out deterministic approximation of I, such as the Riemann
approximation [91], obtaining an error rate that decays as 1/N , better than
the Monte Carlo method. Moreover, using more sophisticated deterministic
algorithms, as the Simpson’s rule or the Newton-Cote’s rule [91], we can
improve the approximation. However, these deterministic methods are
computationally expensive when the dimension m increases. For instance, for
m = 20 we need to evaluate N20 grid points in the Riemann approximation
to obtain an accuracy O(1/N). On the contrary, theoretically, drawing N
points x(1), ...,x(N) uniformly in D, the Monte Carlo scheme has an accuracy
of O(1/

√
N) regardless of the dimension of D. From this point of view, many

researches have argued that the Monte Carlo approach breaks the “curse of
dimensionality” [97, 134].

In practice, however, there are also some relevant drawbacks. For
example, it is important to remark that the errors of deterministic algorithms
(trapezoidal rule, Simpson’s rule, Newton-Cote’s rule, etc...) are themselves
deterministic whereas the Monte Carlo error is a variance bound. Moreover,
when the dimensionality increases, the “crude” Monte Carlo technique has
further problems, e.g.,

1. the variance σ2 can be very large,

2. the accuracy O
(

1/
√
N)
)

is only a probabilistic bound,

3. the regularity of the integrand f(x) is not exploited,

4. and we may not be able to draw uniformly from D.
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The second point means there is no guarantee that the expected accuracy
is achieved in a specific calculation. Moreover, the third point remarks that

the probabilistic bound O
(

1/
√
N
)

is obtained under very weak regularity

conditions (i.e., for any square-integrable integrand f(x)), but we do not
make any improvements from any additional regularity properties of f(x).

In order to overcome some of these difficulties, the concept of importance
sampling [108, 34, 32, 134] has been introduced in the literature. This
approach consists in drawing N samples x(1), ...,x(N) from a nonuniform
density function π(x) that puts more probability mass on the “important”
parts of the region D (in oder to save the computational resources). In this
case, the approximation of I is

ÎN =
1

N

(
f(x(1))

π(x(1))
+ ...+

f(x(N))

π(x(N))

)
. (1.5)

This estimator is unbiased and it has variance σ2 = varπ[f(x)/π(x)]. In a
fortunate case, if f is non-negative and I is finite, we may select π(x) ∝ f(x)
so that ÎN = I. However, in most practical problems we can only try to find
a “good” proposal density π(x) that is reasonably “close” in shape to g(x).
Therefore, the challenge is to draw random samples from a good proposal
density π.

If we know the analytic form of the proposal density π(x) only up to
a multiplicative constant (i.e., we know an unnormalized function πu(x) ∝
π(x)), we can construct a biased estimator

ÎN =
1

w(1) + ...+ w(N)

(
w(1)f(x(1)) + ...+ w(N)f(x(N))

)
, (1.6)

where w(i) = 1/πu(x
(i)), i = 1, ..., N . With this approach, we can effectively

use an unnormalized function πu(x) and, moreover, ÎN often has a smaller
mean square error than the unbiased estimator of Eq. (1.5). However, we
remark that the choice of π (or πu) is crucial to the performance of both
estimators, i.e., a good choice of the proposal can reduce drastically the
variance of the estimate.

Another class of algorithms introduced to overcome the drawbacks of
the Monte Carlo methodology are the so-called quasi-Monte Carlo methods
[124, 155]. The basic idea of a quasi-Monte Carlo technique is to replace
the random samples in a Monte Carlo method by well-chosen deterministic
points, often termed nodes. These nodes are chosen judiciously in order to
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guarantee a small error in the numerical approximation of the integral I. The
selection criterion is based on the concepts of uniformly distributed sequence
and discrepancy [124]. The discrepancy is a measure of the deviation from
the uniform distribution. For a suitable choice of N nodes, quasi-Monte
Carlo methods can obtain a deterministic error bound of O(N−1 log(N)m−1),
where m is the dimension of the space.

1.3 Random number generation

Random number generation is the core issue of Monte Carlo simulations. A
reliable random number generator is critical for the success of a Monte Carlo
method. Indeed, the success of Monte Carlo calculations depends on the
pertinence and suitability of the underlying stochastic model, but also on
how well the random numbers simulate the random variables in the model.

Random numbers are needed in a variety of areas. We have emphasized
their applications in Monte Carlo methods, but they also play a crucial role
in simulation problems, computational statistics, VLSI testing, cryptography
and computer games.

Also many problems in bioinformatics, computational chemistry, physics,
biology, statistics, etc... require sampling from a nonuniform distribution
po(x). In these scientific applications, po(x) represents the probability density
of a complex system, where x denotes the (random) configuration of system.
For instance, in an analysis of a macromolecule, x represents the three-
dimensional coordinates of all atoms in a molecule. The target density is
defined as

po(x) = z(T ) exp{−V (x)/kT},
and corresponds to the so-called Boltzmann distribution [51, 95, 97], where k
is the Boltzmann constant, T is the system temperature, V (x) is the energy
function and z(T ) is the partition function, which is difficult to calculate in
general. In Bayesian statistical inference, x usually represents the missing
data jointly with the unknown parameter values and po(x) often denotes the
joint posterior distribution of these variables.

There is another (broad) class of applications where we come across
optimization problems [6, 102] that can be conveniently tackled by generating
random samples. Indeed, let us consider the problem minimizing a cost
function V (x). This is equivalent to maximizing another function p(x) =
exp{−V (x)/T}, with T > 0. If p(x) is integrable for all T > 0, we can define
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the density

po(x) ∝ p(x) = exp{−V (x)/T},
and if we are able to draw from po(x) when T is small enough, the generated
samples are located (with high probability) in a region close to the global
minimum of V (x).

1.3.1 Random, pseudo-random, quasi-random

There are several types of random numbers:

• “Real” random numbers are generated using a physical device as a
source of randomness. Examples found in the literature include coin
flipping, roulette wheels, white noise and count of emitted particles.

• Pseudo-random numbers: we produce a deterministic sequence that
passes tests of randomness. The standard procedures for generating
sequences of pseudo-random numbers are based on recursive methods
and yield sequences that can be periodic (with a very large period) [44,
Chapter 1], [124, Chapter 7] or chaotic [4, 16].

• Quasi-random numbers: a deterministic number sequence that presents
a low discrepancy with respect to a given distribution. Deterministic
constructions have been studied to build low-discrepancy point sets and
sequences (using, for example, digit and fractional expansions) [124,
Chapter 3].

The general requirements that are usually placed on random number
generation methods can be divided into four categories.

1. Computational requirements: they refer to the computational cost and
the resources needed to generate the random numbers.

2. Structural requirements: they include, e.g., the period length (in period
sequences of pseudo-random numbers) and the lattice structure.

3. Statistical requirements: the produced numbers are expected to pass
statistical tests related essentially to their distribution and statistical
independence properties.
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4. Complexity - theoretic requirements: some definitions of “randomness”
for a finite string of random digits have been presented in the literature
[22, 23, 83, 84, 109]. These represent a collection of conditions that a
finite sequence has to satisfy in order to be considered “random”.

In computational statistics, random variate generation is usually divided into
two steps:

(1) generating “imitations” of independent and identically distributed
(i.i.d.) random numbers having a uniform distribution and

(2) applying some transformation and/or selection techniques such that
these i.i.d. uniform samples are converted into variates from the target
probability distribution.

These two steps are essentially independent. The expression pseudo-random
number generator usually refers to an algorithm used for the first step while
the term sampling method is usually associated to an algorithm used in the
second step. In particular, a sampling technique assumes that some random
number generator with known distribution (typically uniform) is available.
Random sampling algorithms are also termed non-uniform random variate
generators.

1.3.2 Random sampling methods

Non-uniform random numbers are also referred to simply as random variates.
Non-uniform random variate generation is a field in the crossroad of
mathematics, statistics and computer science. It is often considered a subarea
of statistical computing and simulation methodology [51, 44, 64, 95, 97, 149].

The main bibliography landmark is the book by Devroye [30], nearly an
encyclopedia of random variate generation techniques. However, most books
on Monte Carlo methods include at least one chapter on random variate
generation (see, e.g., [18, 134]). Sampling techniques can be classified in
three large categories:

• Direct methods: these techniques use an adequate transformation to
convert the samples provided by an available random source into
samples with desired statistical properties [64, Chapter 2]. In general,
the generation is fast and samples are independent. However, in many
practical situations a suitable transformation is unknown.
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• Accept/reject methods: given samples from an available random source,
these algorithms accept or discard the samples by an adequate test.
The accepted samples are independent with the desired distribution.
The main drawback is that the acceptance rate can be very low and
the computational cost very high. Many adaptive schemes have been
proposed in order to improve the probability of accepting candidate
samples [50], [64, Chapter 4].

• Markov Chain Monte Carlo (MCMC): these techniques construct a
Markov chain that converges to a prescribed stationary distribution.
The major advantage of this methodology is that it can be applied
almost universally. The main problem, on the other hand, is that
MCMC algorithms produce sequences of highly correlated variates.
Hence, the estimates resulting from these samples tend to have greater
variance than those resulting from independent samples.

In Chapter 2, we describe, in detail, the first two classes. Many books
about Monte Carlo methods add another class: the importance sampling
techniques. Here, we do not include it because importance sampling is not
exactly a random variate generation method. The importance procedure
approximates a density measure with weighted samples. It is very useful
for numerical integration (it is crucial in particle filtering, for example), but
it does not generate random numbers. It produces an approximation of a
probability measure using samples from a different probability distribution.

In the literature, the terms universal, automatic and black-box are
usually associated with generators, almost equivalently. They mean that
the generator can draw samples from a large family of distributions (if it
is universal, virtually all the probability densities) and can be coded in a
computer program that only needs to evaluate the target density.

Combination of methods

Many mixed strategies have been proposed that combine methods from
different categories [17, 20, 25, 123, 97]. For instance, many authors have
tried to integrate the MCMC techniques in particle filtering [10, 51, 72].
One example is the resample-move algorithm [11], which combines sequential
importance resampling (SIR) with MCMC sampling.

Since this thesis is focused on rejection (accept/reject) sampling schemes,
a most interesting mix of different classes is provided by algorithms that
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combine rejection and importance sampling. Some examples are the so-called
weighted rejection sampling and rejection control algorithms [17, 21, 99, 97].
Other methods combine rejection sampling with sequential importance
sampling [99], as partial rejection control [97] and rejection particle filters
[12, 68, 90, 144, 145]. All these techniques are accept/reject methods that re-
incorporate (in some way) the discarded samples in the computed estimators.
For a detailed comparison of the performance of rejection and importance
sampling estimators see [20, 24, 96].

Finally, a deterministic version of rejection sampling has been investigated
in the quasi-Monte Carlo framework [155].

1.4 Goal and organization

The goal of this thesis is to devise and analyze adaptive rejection sampling
methods that can be applied to generate i.i.d. random variates from the
broadest possible class of probability distributions.

Adaptive rejection sampling algorithms typically construct a sequence of
proposal functions π0, π1,...,πt,... such that

(a) it is easy to draw i.i.d. samples from them and

(b) converge, in some way, to the density po of the target probability
distribution.

When surveying the literature, it is simple to identify several such algorithms
[50, 48, 55, 36, 61, 65, 94] but virtually all of them present severe limitations
in the class of target densities, po, for which they can be applied. The
“standard” adaptive rejection sampler, for instance, only works when po
is strictly log-concave. In this work, we try to make progress toward a
“universal” adaptive rejection sampler.

The remaining of this thesis is organized as follows. In Chapter 2,
we describe the main, and most popular, techniques to produce i.i.d.
random samples. Using both the direct and accept/reject methods. Besides
reviewing the state of art we also pinpoint some relationships among different
techniques that had not been identified in the literature.

Chapter 3 is devoted to a novel adaptive rejection sampling scheme that
can be used to draw exactly from a certain family of densities, not necessarily
log-concave and possibly multimodal. The new method is a generalization
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of the classical adaptive rejection sampling scheme of [50], and includes it as
a particular case. The proposed algorithm constructs a sequence of proposal
probability density functions (pdf’s) that converge towards the target density
and, therefore, can attain very high acceptance rates. This technique breaks
down when the target pdf has log-convex tails.

For this reason, in Chapter 4 we propose two adaptive rejection sampling
schemes that can be used to draw exactly from densities that have not-
necessarily log-concave tails. It should be noticed that many (virtually all)
strategies presented in the literature [36, 50, 55, 93] break down when the
tails of the target pdf are log-convex in an infinite domain (or T -convex, in
general).

In Chapter 5 we introduce several extensions of the basic technique
presented in Chapter 3. We also provide an interpretation of the algorithm
of Chapter 3 as a method to draw samples from a target density generated
by a transformation of scale of another distribution [74]. We discuss how it is
possible to extend the class of target densities that the methods of Chapter
3 and 4 can address and, finally, introduce an alternative “automatic”
algorithm that demands only the ability to evaluate the target density.

In Chapter 6 we present a number of examples that illustrate the range of
applicability of the adaptive rejection schemes introduced in this work. They
include mostly synthetic examples but also an application to positioning
using real data from a wireless sensor network.

Finally, some conclusions and a discussion about future research
directions are presented in Chapter 7.

13



14



Chapter 2

Background

In this chapter we present some background material needed in the rest
of this work. In particular, we describe a collection of methods used for
random sampling. All of them consider available a random source with known
distribution. Moreover, all of them are aimed to produce independent and
identically distributed (i.i.d.) samples with the exception of the adaptive
rejection Metropolis sampling (ARMS) method that provides correlated
samples. The definitions and notations are as close as possible to the original
materials but also connected to the structure and notation used in the
next chapters. We also present and analyze some relevant connections and
relationships among different algorithms that we have not found, so far, in
the literature.

The chapter is organized as follows. Section 2.1 contains a summary
of notations. Section 2.2 describes sampling techniques based on
transformations and Section 2.3 explains how to draw from a discrete mixture
of densities. The fundamental theorem of simulation is introduced in Section
2.4, while Section 2.5 is devoted to the rejection sampling techniques. The
adaptive rejection sampling algorithm and its generalizations are presented in
Section 2.6 and 2.7, respectively. Finally, we introduce the ratio of uniforms
technique in Section 2.8.

15



2.1 Notation

2.1.1 Vectors, points and intervals

Scalar magnitudes are denoted using regular face letters, e.g., x, X, while
vectors are displayed as bold-face letters, e.g., x, X. The scalar coordinates
of a vector in n-dimensional space are denoted with square brackets, e.g.,
x = [x1, ..., xn]. Often, it is more convenient to interpret x as a point in the
space. When needed, we emphasize this representation with the alternative
notation x = (x1, ..., xn).

We use a similar notation for the intervals in the real line. Specifically,
for two boundary values a ≤ b, we denote [a, b] = {x ∈ R : a ≤ x ≤ b} for a
closed interval, while

(a, b] = {x ∈ R : a < x ≤ b}, [a, b) = {x ∈ R : a ≤ x < b},

are half-open intervals and finally (a, b) = {x ∈ R : a < x < b} is an open
interval.

2.1.2 Random variables, distributions and densities

We indicate random variables (r.v.) with upper-case letters, e.g., X, X, while
we use lower-case letters to denote the corresponding realizations, e.g., x, x.
Often, when we draw a collection of samples of a r.v., we use the superscript
notation x(i), x(i) where i indicates the sample number.

We use lower-case letters, e.g., q(·), to denote the probability density
function (pdf) of a random variable or vector, e.g., q(y) is the pdf of Y .
The conditional pdf of X given Y = y is written p(x|y). The cumulative
distribution function (cdf) of a r.v. X is written as FX(·). The probability
of an event, e.g., X ≤ x, is indicated as Prob{X ≤ x}. In particular,
FX(a) = Prob{X ≤ a}.

The target pdf from which we wish to draw samples is denoted as po(x)
while p(x) is a function proportional to po(x), i.e., p(x) ∝ po(x).

The uniform distribution in an interval [a, b] is written U([a, b]). The
Gaussian distribution with mean µ and variance σ2 is denoted N (µ, σ2). The
symbol ∼ means that a r.v. X or a sample x′ have the indicated distribution,

e.g., X ∼ U([a, b]) or x′ ∼ N (µ, σ2). The expression X
d
= Z denotes that the

two r.v.’s X and Z are “equal in distribution”, i.e., they have the same cdf.
Finally, N (x;µ, σ2) represents a Gaussian pdf with mean µ and variance σ2.
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2.1.3 Sets

Sets are denoted with calligraphic upper-case letters, e.g., R. The support of
the r.v. of interest X is denoted as D ⊆ R (i.e., D is the domain of the target
pdf po(x)). In some cases, without loss of generality, we may consider D = R
for convenience. When needed, we denote with C the support of auxiliary
variables.

Finally, we write the indicator function on the set S as IS(x). It takes
value 1 if x ∈ S and 0 otherwise, i.e.,

IS(x) =

{
1 if x ∈ S
0 if x /∈ S . (2.1)

2.2 Methods based on transformations

Sampling methods assume that a random source is available that produces
samples from a known distribution which, in general, differs from the target
distribution. However, in some cases, we can find adequate transformations
that convert the samples provided by the available random source into
samples distributed according to the target pdf. For this reason, now we
recall the links between the pdf’s of two random variables related through a
known invertible transformation.

Consider two random variables Y = [Y1, Y2, ..., Ym] ∈ Rm and Z =
[Z1, Z2, ..., Zm] ∈ Rm with joint pdf’s p(y1, y2, ...ym) and q(z1, z2, ..., zm),
respectively, related through an invertible transformation Ψ = [ψ1, ...., ψm],
i.e., Y = Ψ(Z). Specifically, we can write





Y1 = ψ1(Z1, Z2, ..., Zm)

...

Ym = ψm(Z1, Z2, ..., Zm)

, (2.2)

and we can also indicate the inverse transformation as




Z1 = ψ−1
1 (Y1, Y2, ..., Ym)

...

Zm = ψ−1
m (Y1, Y2, ..., Ym)

, (2.3)
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i.e., Z = Ψ−1(Y), where Ψ−1 = [ψ−1
1 , ...., ψ−1

m ].
Hence, the two joint pdf’s, p and q, are linked by the following relationship

p(y1, y2, ...ym) = q
(
ψ−1

1 (y1, y2, ..., ym), ..., ψ−1
m (y1, y2, ..., ym)

) ∣∣det J−1
∣∣ ,
(2.4)

where J−1 is the Jacobian matrix of the inverse transformation, i.e.,

J−1 =




dψ−1
1

dy1

dψ−1
1

dy2

....
dψ−1

1

dym
.... .... .... .... ....

dψ−1
m

dy1

dψ−1
m

dy2

....
dψ−1

m

dym



. (2.5)

Clearly, if we are able to draw samples z′ = (z′1, z
′
2, ...z

′
m) from q(z1, z2, ...zm),

we can obtain samples y′ = (y′1, y
′
2, ...y

′
m) from p(y1, y2, ...ym) simply

computing y′ = Ψ(z′). Otherwise, if we are able to draw samples y′ =
(y′1, y

′
2, ...y

′
m) from p(y1, y2, ...ym) we can generate z′ = (z′1, z

′
2, ..., z

′
m) from

q(z1, z2, ...zm) using the inverse relationship z′ = Ψ−1(y′). In the next
sections, we analyze some useful transformations.

2.2.1 Inversion method

Let X be a random variable with pdf po(x). Moreover, consider the related
cdf

FX(x) = Prob{X ≤ x} =

∫ x

−∞
po(v)dv, (2.6)

which is a monotonic increasing function, and its generalized inverse function
defined as

F−1
X (y) , inf{x ∈ D : FX(x) ≥ y}. (2.7)

The following theorem provides a very useful tool to generate samples
distributed according to the target density po(x) using a uniform random
distribution U([0, 1]) as the random source.

Theorem 1 If U ∼ U([0, 1]), then the r.v. Z = F−1
X (U) has density po(x)

[30, Chapter 2].

Proof: The generalized inverse function satisfies, by definition,

{(u, x) ∈ R2 : F−1
X (u) ≤ x} = {(u, x) ∈ R2 : u ≤ FX(x)}
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Therefore, we have

FZ(z) = Prob{Z = F−1
X (U) ≤ z} = Prob{U ≤ FX(z)} = FX(z), (2.8)

so that X and Z have the same cdf, X
d
= Z, and, therefore the same density

po(x). 2

If we have an analytically expression for the inverse function F−1
X (·), then

we can first generate a sample u′ ∼ U([0, 1]), uniformly in [0, 1], transform it,
x′ = F−1

X (u′), and the resulting sample x′ is distributed according to po(x).
In general, it is straightforward to show that, given a random variable

Y with c.d.f. FY (y), the random variable defined with the monotonic
transformation

Z = F−1
X (FY (Y )) (2.9)

is distributed according to po(x), i.e., X
d
= Z.

The inverse transform method allows to easily generate i.i.d. random
numbers from a generic pdf po(x), but we need to obtain the c.d.f. FX
and its inverse F−1

X analytically. In many practical cases both steps are
intractable. In other cases, we are able to find FX(x) but it is impossible to
invert it [30, Chapters 3-7],[29, 106]. Therefore, we often have to resort to
different classes of random sampling algorithms. Related topics are addressed
in Sections 2.5.5 and 2.5.6.

2.2.2 Non-monotonic transformations

In this section we assume that the relationship between two random variables
Y and X (with density q(y) and po(x), respectively) can be expressed with
a non-monotonic transformation Y = ψ(X) [121]. Consider a generalization
of the inverse function defined as the set

ψ−1(y) = {x ∈ R : ψ(x) = y}.

Since ψ is not monotonic, for a generic value y the set ψ−1(y) contains more
than one solution, i.e., in general ψ−1(y) = {x1, ..., xn}, so that the inverse
function is not uniquely defined. Therefore, if we are able to draw a sample
y′ from q(y) then, in general, we have to choose adequately one solution x′

of the n elements in ψ−1(y′) such that x′ be distributed according to po(x).
For simplicity, let us consider the case n = 2, i.e., ψ−1(y) = {x1, x2} for all

possible values of y. This means that the function ψ(x) can be decomposed
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into two monotonic (and invertible) parts. Namely, for each y it is possible
to find a value xc ∈ R such that ψ1(x) , ψ(x) is a monotonic function in
the domain x ∈ (− inf, xc] and ψ2(x) , ψ(x) is another monotonic function
in the domain x ∈ [xc,+ inf). Hence, we use the notation

x1 = ψ−1
1 (y), x2 = ψ−1

2 (y) (2.10)

to indicate the two solutions of the equation y = ψ(x). Moreover, the density
q(y) of the r.v. Y = ψ(X) can be expressed as

q(y) = po(ψ
−1
1 (y))

∣∣∣∣
dψ−1

1

dy

∣∣∣∣+ po(ψ
−1
2 (y))

∣∣∣∣
dψ−1

2

dy

∣∣∣∣ , (2.11)

where po(x) is the pdf of X. Then, given a sample y′ from q(y), we can
obtain a sample x′ from po(x) taking x′1 = ψ−1

1 (y′) with probability

w1 =
po(ψ

−1
1 (y′))

∣∣∣dψ
−1
1 (y′)
dy

∣∣∣
q(y′)

=
po(ψ

−1
1 (y′))

∣∣∣dψ
−1
1 (y′)
dy

∣∣∣

po(ψ
−1
1 (y′))

∣∣∣dψ
−1
1 (y′)
dy

∣∣∣+ po(ψ
−1
2 (y′))

∣∣∣dψ
−1
2 (y′)
dy

∣∣∣
,

(2.12)

or choosing x′2 = ψ−1
2 (y′) otherwise with probability w2 = 1−w1. Moreover,

since ∣∣∣∣
dψ−1

i (y′)

dy

∣∣∣∣ =

∣∣∣∣∣
1

dψ(ψ−1
i (y′))
dx

∣∣∣∣∣ =

∣∣∣∣∣
1

dψ(x′i)
dx

∣∣∣∣∣ ,

i = 1, 2, we can rewrite the weight w1 in Eq. (2.12) (that represents the
probability of accepting x′1) as

w1 =
po(x

′
1)
∣∣∣1/dψ(x′1)

dx

∣∣∣

po(x′1)
∣∣∣1/dψ(x′1)

dx

∣∣∣+ po(x′2)
∣∣∣1/dψ(x′2)

dx

∣∣∣

=
po(x

′
1)
∣∣∣dψ(x′2)

dx

∣∣∣

po(x′1)
∣∣∣dψ(x′2)

dx

∣∣∣+ po(x′2)
∣∣∣dψ(x′1)

dx

∣∣∣
.

(2.13)

Therefore, if we have a non-monotonic transformation Y = ψ(X), and the
equation x = ψ−1(y) has n = 2 possible solutions, we can use the algorithm
suggested in [121] and summarized in Table 2.1 to draw from po(x).
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Table 2.1: Non-monotonic transformation
1. Set i = 1. Let N be the number of desired samples from po(x).

2. Draw a sample y′ from q(y) in Eq. (2.11).

3. Set x′1 = ψ−1
1 (y′) and x′2 = ψ−1

2 (y′).

4. Draw u′ from U([0, 1]).

5. If u′ ≤
po(x′1)

˛̨̨̨
dψ(x′2)

dx

˛̨̨̨
po(x′1)

˛̨̨̨
dψ(x′2)

dx

˛̨̨̨
+po(x′2)

˛̨̨̨
dψ(x′1)

dx

˛̨̨̨ then set x(i) = x′1, otherwise x(i) = x′2.

5. Update i = i+ 1. If i > N then stop, else go back to step 2.

An interesting possibly non-monotonic transformation is Y = po(X), i.e.,
the transformation ψ(x) = po(x) is exactly the pdf of X. In this case the pdf
q(y) of Y is called vertical density [87, 147, 148].

2.2.3 Transformations of many random variables

Given Z1, Z2, ..., Zm r.v.’s with joint pdf q(z1, z2, ..., zm), another possibility
to design a random sampler based on a transformation is to find a function
φ : Rm → R such that we can write

X = φ(Z1, ..., Zm), (2.14)

where X is distributed according to our target pdf po(x). Therefore, if we are
able to draw (z′1, ..., z

′
m) from q(z1, ..., zm) then the sample x′ = φ(z′1, ..., z

′
m)

is distributed according to po(x).
To analyze the relationship between q(z1, ..., zm) and po(x) we have to

study the system of equations




X = φ(Z1, ..., Zm),

Y1 = Z2,

...

Ym−1 = Zm,

(2.15)

21



where the m − 1 random variables involved in the equations Y1 =
Z2, ...., Ym−1 = Zm are arbitrarily chosen. We also assume that φ can
be inverted with respect to (w.r.t.) z1, i.e., dφ

dz1
6= 0. Hence, the inverse

transformation is 



Z1 = φ−1(X, Y1, ..., Ym−1),

Z2 = Y1,

...

Zm = Ym−1,

(2.16)

where φ−1 represents the solution of the equation x = φ(z1, z2, ..., zm) w.r.t.
the variable z1, i.e., z1 = φ−1(x, z2, ..., zm). The Jacobian matrix of the
transformation in Eq. (2.16) is

J−1 =




dφ−1

dx

dφ−1

dy1

....
dφ−1

dym−1

0 1 .... 0

.... .... .... ....

0 0 .... 1



, (2.17)

so that | det J−1| =
∣∣∣dφ−1

dx

∣∣∣. Hence, in this case Eq. (2.4) reduces to

p(x, y2, ...ym) = q
(
φ−1(x, y1, ..., ym−1), y2, ..., ym

) ∣∣∣∣
dφ−1

dx

∣∣∣∣ , (2.18)

where p(x, y2, ...ym) is the joint density of the vector [X, Y2, ...., Ym]. Finally,
we have to marginalize in order to obtain our target pdf po(x), i.e.,

po(x) =

∫

C2
...

∫

Cm−1

∫

Cm︸ ︷︷ ︸
m−1

p(x, y2, ...ym)dy2...dym

=

∫

C2
...

∫

Cm
q
(
φ−1(x, y1, ..., ym−1), y2, ..., ym

) ∣∣∣∣
dφ−1

dx

∣∣∣∣ dy2...dym.

(2.19)

One well-known example, in which this method is applied, is the Box-
Muller transformation,

X = φ(U1, U2) =
√
−2 logU1 cos(2πU2), (2.20)

that converts two uniform r.v.’s U1 and U2, Ui ∼ U([0, 1]), i = 1, 2, into a
standard Gaussian r.v. X ∼ N(0, 1). Other relevant transformations are:
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1. The sum of random variables, i.e., for m = 2

X = Z1 + Z2, (2.21)

where Z1, Z2 have joint pdf q(z1, z2) and po(x) =
∫
C q (x− y, y) dy. If Z1

are Z2 independent, this technique is also named convolution method.

2. The product or ratio of two random variables (see, for example, Sections
2.4.1 and 2.8), i.e.,

X = Z1Z2, (2.22)

or

X =
Z1

Z2

, (2.23)

where we have po(x) =
∫
C

1
|y|q(

x
y
, y)dy and po(x) =

∫
C |y|q (xy, y) dy,

respectively.

2.2.4 Deconvolution method

Let us consider two r.v.’s X, Z with known joint pdf f(x, z), where X has a
density po(x). We also know the relationship

Y = ϕ(X,Z), (2.24)

where Y is distributed according to q(y), and assume that we are able to
evaluate q(y) and to draw from it. Our goal is to generate samples from
po(x).

Assuming dϕ
dz
6= 0, Eq. (2.18) can be rewritten as

p(x, y) = f(x, ϕ−1(x, y))

∣∣∣∣
dϕ−1

dy

∣∣∣∣ , (2.25)

where we have substituted z = ϕ−1(x, y). Moreover, q(y) is a marginal
density of p(x, y), i.e., q(y) =

∫
D p(x, y)dx and, obviously, po(x) is the other

marginal pdf, i.e., po(x) =
∫
C p(x, y)dy.

Therefore, since we can rewrite the joint pdf as p(x, y) = h(x|y)q(y), we
can draw from po(x) following the procedure1:

1This method was termed “deconvolution” because it was first developed for the specific
transformation ϕ(X,Z) = X + Z. See [30].
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1. Generate y′ from q(y).

2. Draw x′ from h(x|y′), where the conditional pdf h(x|y) is

h(x|y) =
p(x, y)

q(y)
=
f(x, ϕ−1(x, y))

∣∣∣dϕ−1

dy

∣∣∣
q(y)

. (2.26)

This method is tightly connected with the class of polar algorithms [30,
Chapter 5]. Moreover, this technique is a particular case of a more general
idea described in Section 2.4.2.

2.3 Discrete mixture of densities

Let us assume that the target pdf can be expressed as

po(x) = ω1h1(x) + ω2h2(x) + ...+ ωnhn(x) =
n∑

i=1

ωihi(x), (2.27)

where ωi ≥ 0, i = 1, ..., n,
∑n

i=1 ωi = 1 and the functions hi(x), i = 1, ..., n,
x ∈ D, are densities that we assume easy to draw from. The sum in Eq.
(2.27) is termed as discrete mixture of densities.

In order to draw from po(x) we can follow these steps:

1. Draw an index j′ ∈ {1, ..., n}, according to the weights ωi, i, ..., n.
Namely, we generate a random index j′ with probability mass function
(pmf) Prob{j′ = i} = ωi.

2. Draw x′ from the pdf hj′(x).

Given a partition of the domain D = ∪ni=1Di, Di ∩ Dj = ∅ for i 6= j, if each
density hi(x) is defined in a support Di, i.e., if the pdf’s hi(x), i = 1, .., n,
have disjoint (non-overlapping) domains, the algorithm is also known as
composition method [64, Chapter 2]. This idea, jointly with the rejection
technique described later in Section 2.5.1, is used in the so-called patchwork
algorithms [77, 80, 140].

If the target density can be expressed as a series of densities, i.e.,

po(x) =
+∞∑

i=1

ωihi(x), (2.28)
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it is also possible to draw from po(x), but we need the ability to simulate the
discrete pmf Prob{i} = ωi, i = 1, ...,+∞ [44, Chapter 2], [64, Chapter 3]
(note that this is always possible by the inversion method using a sequential
search procedure).

Additionally, in some specific cases (see [30]) it is possible to assume that
the weights ωi in Eq. (2.27) be negative. However, there are no general
methods to draw from po(x) in such case.

Finally, it is also possible to define a continuous mixture of pdf’s, as shown
later in Section 2.4.2. Other related topics are tackled in Section 2.5.3.

2.4 The fundamental theorem of simulation

Many Monte Carlo techniques (inverse-of-density method, rejection
sampling, slice sampling etc....) are based on a simple result that we
enunciate below.

Theorem 2 [134, Chapter 2] Drawing samples from a unidimensional r.v.
X with density po(x) ∝ p(x) is equivalent to sample uniformly on the
bidimensional region defined by

A0 = {(x, u) ∈ R2 : 0 ≤ u ≤ p(x)}. (2.29)

Namely, if (x′, u′) is uniformly distributed on A0, then x′ is a sample from
po(x).

Proof: Let us consider a random pair (X,U) uniformly distributed on the
region A0 in Eq. (2.29), and let q(x, u) be its joint pdf, i.e.,

q(x, u) =
1

|A0|
IA0(x, u), (2.30)

where IA0(x, u) is the indicator function on A0 and |A0| is the area of the
region A0. Clearly, we can also write q(x, u) = q(u|x)q(x). The theorem is
proved if the marginal density q(x) is exactly po(x).

Since (X,U) is uniformly distributed on the set A0 defined in Eq. (2.29),
we have q(u|x) = 1/p(x) with 0 ≤ u ≤ p(x), or, in a more compact form,

q(u|x) =
1

p(x)
IA0(x, u). (2.31)
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Therefore, we can express the joint pdf as

q(x, u) = q(u|x)q(x) =
1

p(x)
IA0(x, u) · q(x). (2.32)

Taking Eqs. (2.30) and (2.32) together and solving for q(x) yields

q(x) =
1

|A0|
p(x) = po(x). 2 (2.33)

Therefore, if we are able to draw a pair (x′, u′) uniformly on the region
A0, the coordinate x′ is marginally distributed according to po(x). Many
Monte Carlo techniques simulate jointly the random variables (X,U) and
then consider only the first sample x′. The variable U plays the role of an
auxiliary variable.

Figure 2.1 depicts a target function p(x) ∝ po(x) and the green area A0

below.

Fundamental Theorem of Simulation

Draw samples from a unidimensional target density po(x) ∝ p(x) it is equivalent to
sample uniformly on the bidimensional region defined by [2]

A0 = {0 ≤ u ≤ p(x)} (1)

Therefore, if we are able to sample points (x �, u�) uniformly on A0, the coordinate
x � is distributed as p(x) (i.e., x � ∼ p(x)).

The coordinate u is an “auxiliary” variable.

Many sampling techniques use this property (slice sampling, rejection sampling....).

3 / 6
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Figure 2.1: The area A0 below the target function p(x) ∝ po(x).

The next two techniques (the inverse-of-density method and the rejection
sampling method) are clear examples of how this simple idea can be used to
design Monte Carlo sampling algorithms. For instance, since one marginal
density of q(x, u) in Eq. (2.30) is exactly po(x), the inverse-of-density
method considers the possible employment of the other marginal density
q(u) =

∫
D q(x, u)dx in order to draw from po(x).

2.4.1 Inverse-of-density method for monotonic pdf’s

We present the inverse-of-density method [30, Chapter 4], [73], also known as
Khinchine’s method [78], for monotonic densities. However, it can be easily
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extended for generic pdf’s.

Given a monotonic target pdf po(x) and the equation u = po(x), we
indicate with p−1

o (u) the corresponding inverse function of the target density.
Note that p−1

o (u) is also a normalized density since it describes the same area
A0 defined by po(x), as shown in Figure 2.2.

This technique only requires us to know the functional form of the density
po(x) of interest up to a multiplicative constant (no deep analytical study of
po(x) is necessary). But an important limitation of RS methods is the need
to analytically establish a bound for the ratio of the target and proposal
densities, since there is a lack of general procedure for the computation
of exact bounds. The rejection sampling algorithm is based on a simple
connection with the uniform distribution, as explained below.

2.2.1 The fundamental theorem of simulation

There is a simple (fundamental) idea underlies the RS method and also other
Monte Carlo techniques.

Theorem: [5, Chapter 2] Drawing samples from a unidimensional target
density po(x) ∝ p(x) is equivalent to sample uniformly on the bidimensional
region defined by

A0 = {(x, u) : 0 ≤ u ≤ p(x)}. (2.5)

Fundamental Theorem of Simulation

Draw samples from a unidimensional target density po(x) ∝ p(x) it is equivalent to
sample uniformly on the bidimensional region defined by [2]

A0 = {0 ≤ u ≤ p(x)} (1)

Therefore, if we are able to sample points (x �, u�) uniformly on A0, the coordinate
x � is distributed as p(x) (i.e., x � ∼ p(x)).

The coordinate u is an “auxiliary” variable.

Many sampling techniques use this property (slice sampling, rejection sampling....).
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Figure 2.1: The area A0 indicates in green, below the target function p(x).

Proof: The joint pdf of the random vector (X, U) is q(x, u) ∝ q(u|x)p(x),
where we use the symbol ∝ because p(x) ∝ po(x) in not necessarily
normalized. By the definition, we also have q(u|x) = 1/p(x) with 0 ≤ u ≤
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This technique only requires us to know the functional form of the density
po(x) of interest up to a multiplicative constant (no deep analytical study of
po(x) is necessary). But an important limitation of RS methods is the need
to analytically establish a bound for the ratio of the target and proposal
densities, since there is a lack of general procedure for the computation
of exact bounds. The rejection sampling algorithm is based on a simple
connection with the uniform distribution, as explained below.
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Theorem: [5, Chapter 2] Drawing samples from a unidimensional target
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region defined by

A0 = {(x, u) : 0 ≤ u ≤ p(x)}. (2.5)

Fundamental Theorem of Simulation

Draw samples from a unidimensional target density po(x) ∝ p(x) it is equivalent to
sample uniformly on the bidimensional region defined by [2]

A0 = {0 ≤ u ≤ p(x)} (1)

Therefore, if we are able to sample points (x �, u�) uniformly on A0, the coordinate
x � is distributed as p(x) (i.e., x � ∼ p(x)).

The coordinate u is an “auxiliary” variable.

Many sampling techniques use this property (slice sampling, rejection sampling....).
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Proof: The joint pdf of the random vector (X, U) is q(x, u) ∝ q(u|x)p(x),
where we use the symbol ∝ because p(x) ∝ po(x) in not necessarily
normalized. By the definition, we also have q(u|x) = 1/p(x) with 0 ≤ u ≤
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Figure 2.2: Two ways to draw a random point (x′, u′) uniformly in the area
A0. (a) We can first draw x′ from po(x) and then u′ ∼ U([0, po(x

′)]). (b)
Otherwise, we can first draw u′ from p−1

o (u) and then x′ ∼ U([0, p−1
o (u′)]).

Therefore, we can write

A0 = {(x, u) ∈ R2 : 0 ≤ u ≤ po(x)}

or

A0 = {(u, x) ∈ R2 : 0 ≤ x ≤ p−1
o (u)}.

Therefore, to generate samples (x′, u′) uniformly in A0 we can proceed in two
alternative ways:

1. Draw x′ from po(x) and then u′ uniformly in the interval [0, po(x
′)], i.e,

u′ ∼ U([0, po(x
′)]) (see Figure 2.2(a)),

2. Draw u′ from p−1
o (u) and x′ uniformly in the interval [0, p−1

o (u′)], i.e.,
x′ ∼ U([0, p−1

o (u′)]) (see Figure 2.2(b)).
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Both procedures generate points (x′, u′) uniformly distributed on the region
A0. Moreover, from the fundamental theorem of simulation, the first
coordinate x′ is distributed according to the target pdf po(x), while the second
coordinate u′ is distributed according to the inverse pdf p−1

o (u). Hence, if we
are able to draw samples u′ from p−1

o (u), we can use the second procedure to
generate samples x′ from po(x).

Note that generating a sample x′ uniformly in the interval [0, a], i.e.
x′ ∼ U([0, a]), is equivalent to drawing a sample z′ uniformly in [0, 1] and
then multiply it by a, i.e. x′ = z′a. In the same way given a known
value u′, to draw a sample x′ uniformly in the interval [0, p−1

o (u′)], i.e.
x′ ∼ U([0, p−1

o (u′)]), is equivalent to generate a sample z′ uniformly in [0, 1]
and then take x′ = z′p−1

o (u′). The algorithm described in Table 2.2 uses
exactly the latter procedure. Obviously, to use this technique we need the
ability to draw from the inverse pdf p−1

o (u).

Table 2.2: Inverse-of-density algorithm (Version 1).
1. Set i = 1. Let N be the number of desired samples from po(x).

2. Draw a sample u′ from p−1
o (u).

3. Draw z′ uniformly in [0, 1], i.e., z′ ∼ U([0, 1]).

4. Then set x(i) = z′p−1
o (u′) and i = i+ 1.

5. If i > N then stop, else go back to step 2.

The inverse-of-density method can be summarized by the following
relationship

X = Zp−1
o (U), (2.34)

where X has density po(x), Z ∼ U([0, 1]) and U is distributed according to
p−1
o (u). In the literature, it is possible to find this method in an alternative

form. This second version considers the transformed variable W = p−1
o (U)

where U has the pdf p−1
o (u). As a consequence, the density of W is

q(w) = p−1
o (po(w))

∣∣∣∣
dpo
dw

∣∣∣∣ = w

∣∣∣∣
dpo
dw

∣∣∣∣. (2.35)
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The function in Eq. (2.35) is the vertical density associated to the inverse
pdf p−1

o (u) [73, 147, 148].
Using the r.v. W , we can express the Eq. (2.34) as

X = ZW,

where Z ∼ U([0, 1]) and W is distributed according to q(w) in Eq. (2.35).
Table 2.3 outlines this alternative form of the inverse-of-density method.

Table 2.3: Inverse-of-density algorithm (Version 2).
1. Set i = 1. Let N be the number of desired samples from po(x).

2. Draw a sample w′ from q(w) in Eq. (2.35).

3. Draw z′ uniformly in [0, 1], i.e., z′ ∼ U([0, 1]).

4. Set x(i) = z′w′ and i = i+ 1.

5. If i > N then stop, else go back to step 2.

Finally, it is important to notice that this technique coincides with the
vertical density representation (VDR) type 2 introduced in [38].

2.4.2 Continuous mixtures

The fundamental theorem of simulation represents the target density as a
marginal density of a joint pdf, which is uniform on the region A0 in Eq.
(2.29). From a general point of view, we can consider a joint pdf p(x, y) such
that

po(x) =

∫

C
p(x, y)dy, (2.36)

where C is the support of the variable y. This equation can be considered
as an integral representation of the density po(x). Moreover, since we can
express the joint pdf as p(x, y) = h(x|y)q(y), for some adequate conditional
density h, we can also write

po(x) =

∫

C
h(x|y)q(y)dy. (2.37)
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Therefore, if we are able to draw a sample y′ from the marginal pdf q(y) and
then x′ from h(x|y′), the sample x′ has density po(x). The variable y plays
the role of an auxiliary variable.

This method is also known as continuous mixture of densities [30, Chapter
1]. Indeed, we can consider the marginal pdf q(y) as a weight function and
h(x|y) as an uncountable collection of densities in the continuous mixture.
Specifically, the weight q(y∗) is associated to the density h(x|y∗).

The methods in Sections 2.2.3 and 2.2.4 are specific examples of this idea.

2.5 Rejection sampling

The accept/reject method, also known as rejection sampling (RS), was
suggested by John von Neumann in 1951 [152]. It is a classical Monte
Carlo technique for “universal sampling”. It can be used to generate samples
from any target density po(x) by drawing from a possibly simpler proposal
density π(x) [30, Chapter 2]. The sample is either accepted or rejected by
an adequate test of the ratio of the two pdf’s, and it can be proved that
accepted samples are actually distributed according to the target density.
Specifically, the RS algorithm can be viewed as choosing a subsequence of
i.i.d. realizations from the proposal density π(x) in such a way the elements
of the subsequence have density po(x).

This technique requires the ability to evaluate the density po(x) of
interest up to a multiplicative constant (which is often the case in practical
applications). However, an important limitation of RS methods is the need
to analytically establish a bound for the ratio of the target and proposal
densities, since there is a lack of general procedures for the computation of
such tight bounds.

In the rest of this section, we review the basic RS algorithm as well as
some variations.

2.5.1 Rejection sampling algorithm

Consider a function p(x) ∝ po(x) and a proposal density π(x) easy
to simulate. Additionally, choose a constant L such that Lπ(x) is an
overbounding function for p(x), i.e.,

Lπ(x) ≥ p(x), (2.38)
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for all x ∈ D. The constant L obviously is an upper bound for the ratio
p(x)/π(x), i.e.,

L ≥ p(x)

π(x)
∀x ∈ D. (2.39)

In the standard rejection sampling algorithm, we first draw a sample from
the proposal pdf, x′ ∼ π(x), and then accept it with probability

pA(x′) =
p(x′)

Lπ(x′)
≤ 1. (2.40)

Otherwise, the proposed sample x′ is discarded. In Figure 2.3, we can see
a graphical representation of the rejection sampling technique. The RS
procedure can also be outlined as:

1. Draw x′ from π(x).

2. Generate v′ uniformly in the interval [0, Lπ(x′)], i.e., v′ ∼
U([0, Lπ(x′)]).

3. If the point (x′, v′) belongs to the area A0 (see Eq. (2.29)) below the
target function p(x), the sample x′ is accepted.

4. Otherwise, when the point (x′, v′) falls into the region between the
functions Lπ(x) and p(x), the sample x′ is rejected.

We can also summarize this procedure in an equivalent way: first draw a
sample x′ from π(x) and u′ ∼ U([0, 1]). If u′Lπ(x′) ≤ p(x′), we accept x′.
Table 2.4 describes how we can generate N samples from the target pdf
po(x) ∝ p(x) according to the standard rejection sampling algorithm.

The RS technique is based on the following theorem.

Theorem 3 Let the r.v.’s X1 and X2 have pdf’s π(x) and po(x) ∝ p(x),
respectively, and let U have a uniform distribution U([0, 1]). If there exists a
bound L ≥ p(x)/π(x) ∀x ∈ D, then

Prob

{
X1 ≤ y

∣∣∣∣∣U ≤
p(X1)

Lπ(X1)

}
= Prob

{
X2 ≤ y

}
. (2.41)
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Table 2.1: Rejection Sampling Algorithm.
1. Set i = 1. Let N be the number of desired samples from po(x).

2. Draw samples x� from π(x) ∝ exp{−W (x)} and u� from U(0, 1),
where U(0, 1) is the uniform pdf in [0, 1].

3. f u� ≤ p(x�)
Lπ(x�) = p(x�)

exp{−W (x�)}
�
then x(i) = x� and set i = i + 1,

else discard x� and go back to step 2.

5. If i > N then stop, else go back to step 2.

bounded, it is necessary for π(x) to have tails ticker than those of p(x).
The RS technique is based in the following theorem:

Theorem: Given X1 ∼ π(x), U ∼ U([0, 1]), X2 ∼ po(x) = p(x)
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the following relationship

P

�
X1 ≤ x

�����U ≤
p(x)

Lπ(x)

�
= P

�
X2 ≤ x

�
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is verified.
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Consider a function p(x) ∝ po(x) and a proposal density π(t) easily to
simulate. Moreover, let Lπ(x) � exp{−W (x)} be an overbounding function
for p(x), i.e.,
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It means that the constant L is a upper bound for the ratio p(x)/π(x), i.e.,
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π(x)
. (2.4)

In the standard rejection sampling algorithm, we first draw a sample from
the proposal pdf, x� ∼ π(x), and then accept it with probability

pA =
p(x)

Lπ(x)
≤ 1. (2.5)

Otherwise, the proposed sample x� is discarded. In Figure ??, we can se....

Figure 2.2: a ver...

The Table 2.1 below summarize how we can generate N samples from
the target pdf po(x) ∝ p(x) according to the standard rejection sampling
algorithm:

Note that in cases where p(x) = po(x), i.e., p(x), the constant L is
necessarily larger than 1. Moreover, for the ratio p(x)/π(x) to remain
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Table 2.1: Rejection Sampling Algorithm.
1. Set i = 1. Let N be the number of desired samples from po(x).

2. Draw samples x� from π(x) ∝ exp{−W (x)} and u� from U(0, 1),
where U(0, 1) is the uniform pdf in [0, 1].

3. f u� ≤ p(x�)
Lπ(x�) = p(x�)

exp{−W (x�)} then x(i) = x� and set i = i + 1,

else discard x� and go back to step 2.

5. If i > N then stop, else go back to step 2.
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The fundamental figure of merit of a rejection sampler is the mean
acceptance rate, i.e., the expected number of accepted samples over the total
number of proposed candidates. In practice, finding a tight overbounding
function is crucial for the performance of a rejection sampling algorithm.
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The fundamental figure of merit of a rejection sampler is the mean
acceptance rate, i.e., the expected number of accepted samples over the total
number of proposed candidates. In practice, finding a tight overbounding
function is crucial for the performance of a rejection sampling algorithm.

Figure 2.3: Graphical description of the RS procedure. The green
region corresponds to the area A0 defined in Eq. (2.29), with p(x) =
exp(−x2/2)(sin(6x)2 + 1). The red region indicates the area between the
functions Lπ(x) and p(x). First, a sample x′ is generated from the proposal
pdf π(x) and another coordinate v′ ∼ U([0, Lπ(x′)]). If the point (x′, v′)
belongs to the area A0 (green region) the sample x′ is accepted. Otherwise,
it is discarded.

Proof: Assuming D = R (without lack of generality) and recalling that
U ∼ U([0, 1]) and X1 is distributed according to π(x), we can easily write

Prob

{
X1 ≤ y

∣∣∣∣∣U ≤
p(X1)

Lπ(X1)

}
=

Prob

{
X1 ≤ y, U ≤ p(X1)

Lπ(X1)

}

Prob

{
U ≤ p(X1)

Lπ(X1)

}

=

∫ y
−∞
∫ p(x)
Lπ(x)

0 π(x)dudx

∫ +∞
−∞

∫ p(x)
Lπ(x)

0 π(x)dudx

.

Then, integrating first w.r.t. u and after some trivial calculations, we arrive
at the expression

Prob

{
X1 ≤ y

∣∣∣∣∣U ≤
p(X1)

Lπ(X1)

}
=

∫ y
−∞ p(x)dx
∫ +∞
−∞ p(x)dx

.
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Furthermore, since po(x) ∝ p(x), i.e., p(x) = cpo(x) where c is a
normalization constant, we can rewrite the expression above as

Prob

{
X1 ≤ y

∣∣∣∣∣U ≤
p(X1)

Lπ(X1)

}
=

∫ y
−∞ p(x)dx
∫ +∞
−∞ p(x)dx

=

∫ y
−∞ cpo(x)dx
∫ +∞
−∞ cpo(x)dx

=

=

∫ y

−∞
po(x)dx.

Finally, since the r.v. X2 has density po(x), we can write

Prob

{
X1 ≤ y

∣∣∣∣∣U ≤
p(X1)

Lπ(X1)

}
=

∫ y

−∞
po(x)dx = P

{
X2 ≤ y

}
, (2.42)

so that the expression in Eq. (2.41) is verified. 2

Table 2.4: Rejection sampling algorithm.
1. Set i = 1. Let N be the number of desired samples from po(x).

2. Draw a sample x′ from π(x) and u′ from U([0, 1]).

3. If u′ ≤ p(x′)
Lπ(x′) then x(i) = x′ and set i = i+ 1.

4. Else if u′ > p(x′)
Lπ(x′) then discard x′ and go back to step 2.

5. If i > N then stop, else go back to step 2.

Let us assume, for a moment, that p(x) = po(x). It is interesting to
note that, if the inequality Lπ(x) ≥ po(x) is not guaranteed, the samples
generated by a RS procedure are distributed according to min{po(x), Lπ(x)}.
Indeed given x′ drawn from π(x), if we have Lπ(x′) < po(x

′), the sample x′

is accepted with probability 1. Hence, the samples that belong to the region
where Lπ(x) < po(x) are distributed according to π(x). Otherwise when
we have Lπ(x′) ≥ po(x

′), the rejection sampler accepts x′ if it is exactly
distributed according to po(x).

The most favorable scenario to use the RS algorithm occurs when p(x) is
bounded with bounded domain. Indeed, in this case, the proposal pdf π(x)
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can be chosen as a uniform density (the easiest possible proposal). Moreover,
the calculation of the bound L for the ratio p(x)/π(x) is converted into the
problem of finding an upper bound for the target function p(x) (in general,
it is an easier issue). Otherwise when p(x) is unbounded or its domain is
infinite, the proposal π(x) cannot be a uniform density. Sections 2.5.6-2.8
are devoted to describe methods that transform p(x) by embedding it in a
finite region. Figure 2.4 illustrates these three possible cases2.

2.1.2 Rejection Sampling (RS) Algorithm

Consider a function p(x) ∝ po(x) and a proposal density π(t) easily to
simulate. Moreover, let Lπ(x) � exp{−W (x)} be an overbounding function
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π(x)
. (2.4)

In the standard rejection sampling algorithm, we first draw a sample from
the proposal pdf, x� ∼ π(x), and then accept it with probability

pA =
p(x)

Lπ(x)
≤ 1. (2.5)

Otherwise, the proposed sample x� is discarded. In Figure ??, we can se....
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The Table 2.1 below summarize how we can generate N samples from
the target pdf po(x) ∝ p(x) according to the standard rejection sampling
algorithm:

Note that in cases where p(x) = po(x), i.e., p(x), the constant L is
necessarily larger than 1. Moreover, for the ratio p(x)/π(x) to remain
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The Table 2.1 below summarize how we can generate N samples from
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Note that in cases where p(x) = po(x), i.e., p(x), the constant L is
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Figure 2.4: Three possible cases of density po(x) ∝ p(x) with three possible
overbounding functions Lπ(x): (a) bounded with infinite domain, (b)
unbounded in a finite domain and (c) bounded with a finite domain. Only
in the last case it is possible to use a uniform distribution as a proposal pdf
π(x).

The fundamental figure of merit of a rejection sampler is the mean
acceptance rate, i.e., the expected number of accepted samples over the total
number of proposed candidates. In practice, finding a tight upper bound
L and, in general, a “good” overbounding function, i.e., Lπ(x) ≥ p(x), is
crucial for the performance of a rejection sampling algorithm. We define the
acceptance rate as

Prob

{
U ≤ p(X)

Lπ(X)

}
=

∫

D

p(x)

Lπ(x)
π(x)dx =

∫
D p(x)dx

L
=
c

L
(2.43)

where 1/c is the normalization constant of p(x). Note that in cases where
p(x) = po(x), c = 1 and the constant L is necessarily larger than 1. Moreover,

2There exists a fourth possible scenario, when the function p(x) is unbounded with
infinite support. However, we can consider it as a combination of the cases in Figure
2.4(a) and Figure 2.4(b).

34



for the ratio p(x)/π(x) to remain bounded, it is necessary that π(x) has tails
that decay to zero slower than those of p(x).

It is important to remark that the RS method has a structural limitation.
Indeed, even if we are able to find the optimal bound L∗ = sup p(x)/π(x)
the acceptance rate can be far from 1, depending on the difference in shape
between p(x) and π(x). Specifically, the efficiency of the RS algorithm is
a function of how the shape of π(x) approaches the shape of p(x). This
is an important criticism because, in general, the accept-reject algorithms
generate many “useless” samples when rejecting. For this reason, in many
cases an importance sampling approach [97, Chapter 2] is used to bypass
this problem. In [20, 24, 96] we can find a comparison of the performances
obtained by rejection and importance sampling. Moreover, the rejection
control algorithm [17, 21, 99, 97] mixes these two approaches.

In order to overcome this drawback, many adaptive accept-reject schemes
(see Sections 2.6 and 2.7) have been designed. The basic idea is to build
“good” proposal densities π(x) close to the target density po(x) and, as a
consequence, improve the acceptance rate.

2.5.2 Squeeze principle

If we observe carefully the RS algorithm described in Table 2.4, it is obvious
that testing the acceptance condition is a fundamental and, in some cases,
expensive step. Therefore, in order to speed up the RS technique, we can
find a function ϕ(x) easy to evaluate, often called also squeeze function, such
that

ϕ(x) ≤ p(x). (2.44)

The basic idea of the squeeze principle is to add a previous test involving the
squeeze function ϕ(x) in order to avoid the evaluation of p(x). The method
can be summarize in this way:

1. Draw x′ from π(x) and u′ ∼ U([0, 1]).

2. If u′Lπ(x′) ≤ ϕ(x′) then accept x′ without evaluating the target
function p(x).

3. Otherwise, if u′Lπ(x′) ≤ p(x′) then accept x′, else reject x′.

Figure 2.5 illustrates the squeeze principle. If the point
(
x′, u′Lπ(x′)

)
belongs

to the area below ϕ(x) (darker green area), the sample x′ is already accepted.
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Otherwise, we check whether the point stays in the lighter green area and
in this case we also accept x′. The sample x′ is discarded if the point(
x′, u′Lπ(x′)

)
falls within the red region.

Table 2.1: Rejection Sampling Algorithm.
1. Set i = 1. Let N be the number of desired samples from po(x).

2. Draw samples x� from π(x) ∝ exp{−W (x)} and u� from U(0, 1),
where U(0, 1) is the uniform pdf in [0, 1].

3. f u� ≤ p(x�)
Lπ(x�) = p(x�)

exp{−W (x�)}
�
then x(i) = x� and set i = i + 1,

else discard x� and go back to step 2.

5. If i > N then stop, else go back to step 2.
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The fundamental figure of merit of a rejection sampler is the mean
acceptance rate, i.e., the expected number of accepted samples over the total
number of proposed candidates. In practice, finding a tight overbounding
function is crucial for the performance of a rejection sampling algorithm.

Table 2.1: Rejection Sampling Algorithm.
1. Set i = 1. Let N be the number of desired samples from po(x).

2. Draw samples x� from π(x) ∝ exp{−W (x)} and u� from U(0, 1),
where U(0, 1) is the uniform pdf in [0, 1].

3. f u� ≤ p(x�)
Lπ(x�) = p(x�)

exp{−W (x�)} then x(i) = x� and set i = i + 1,

else discard x� and go back to step 2.

5. If i > N then stop, else go back to step 2.
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The fundamental figure of merit of a rejection sampler is the mean
acceptance rate, i.e., the expected number of accepted samples over the total
number of proposed candidates. In practice, finding a tight overbounding
function is crucial for the performance of a rejection sampling algorithm.

2.1.2 Rejection Sampling (RS) Algorithm

Consider a function p(x) ∝ po(x) and a proposal density π(t) easily to
simulate. Moreover, let Lπ(x) � exp{−W (x)} be an overbounding function
for p(x), i.e.,

Lπ(x) = exp{−W (x)} ≥ p(x). (2.3)

It means that the constant L is a upper bound for the ratio p(x)/π(x), i.e.,

L ≥ p(x)

π(x)
. (2.4)

In the standard rejection sampling algorithm, we first draw a sample from
the proposal pdf, x� ∼ π(x), and then accept it with probability

pA =
p(x)

Lπ(x)
≤ 1. (2.5)

Otherwise, the proposed sample x� is discarded. In Figure ??, we can se....

Figure 2.2: a ver...

The Table 2.1 below summarize how we can generate N samples from
the target pdf po(x) ∝ p(x) according to the standard rejection sampling
algorithm:

Note that in cases where p(x) = po(x), i.e., p(x), the constant L is
necessarily larger than 1. Moreover, for the ratio p(x)/π(x) to remain
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The squeeze principle can be summarize in this way: we generate x� from π(x)
and u� ∼ U([0, 1]). Then, we first check if the point (x�, u�Lπ(x�)) is below
the squeeze function ϕ(x) and, in this case, we accept x� without evaluating
the target function p(x). Table 2.2 contains all details.

Table 2.2: Rejection with Squeeze Algorithm.
1. Set i = 1. Let N be the number of desired samples from po(x).

2. Draw samples x� from π(x) and u� from U(0, 1), where U(0, 1)
is the uniform pdf in [0, 1].

3. if u� ≤ ϕ(x�)
Lπ(x�) then x(i) = x� and set i = i + 1 and go back to step 6.

4. if u� ≤ p(x�)
Lπ(x�) then x(i) = x� and set i = i + 1.

5. if u� > p(x�)
Lπ(x�) discard x� and go back to step 2.

6. If i > N then stop, else go back to step 2.

Figure ?? illustrates the squeeze principle. ϕ(x), ϕ(x�)

2.2.4 Acceptance-Complement Method

2.2.5 Exact-approximation-invertion Method

To solve the problem of the infinite domain... we use a transformation
G(x) = D → [0, 1]....

Esto lo digo yo: (lo que hace el RoU!!! realmente up−(u2)...) To solve the
problem of the p(x) unbounded we can choose a transformation we derivative
of the inverse zero in the point of the asintota!

2.3 Adaptive Rejection Sampling

The standard adaptive rejection sampling (ARS) [3] algorithm enables the
construction of a sequence of proposal densities, {πt(x)}t∈N, tailored to the
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construction of a sequence of proposal densities, {πt(x)}t∈N, tailored to the

Figure 2.5: Squeeze principle: we first check whether the point
(
x′, u′Lπ(x′)

)

falls within the darker green region, hence the sample x′ is already accepted.
Note that to check it we do not need to evaluate the function p(x) but only
the squeeze function ϕ(x) ≤ p(x).

A detailed step-by-step description is given in Table 2.5.

2.5.3 Acceptance-complement method

If we impose additional assumptions on the target po(x) then we can construct
variations of the rejection sampling algorithm that turn out more efficient for
some problems. One example is the acceptance-complement method [88].

Let us assume that we are able to decompose our target pdf in two terms,

po(x) = g1(x) + g2(x), (2.45)

where ω1 =
∫
D g1(x)dx, ω2 =

∫
D g2(x)dx and, obviously, ω1 + ω2 = 1.

Therefore, we can rewrite Eq. (2.45) as the discrete mixture

po(x) = ω1h1(x) + ω2h2(x), (2.46)

where h1(x) , g1(x)/ω1 and h2(x) , g2(x)/ω2 are proper pdf’s. Hence, if we
are able to draw from h1(x) and h2(x), we can use the procedure described
in Section 2.3.
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Table 2.5: Rejection with Squeeze Algorithm.
1. Set i = 1. Let N be the number of desired samples from po(x).

2. Draw samples x′ from π(x) and u′ from U([0, 1]), where U([0, 1])
is the uniform pdf in [0, 1].

3. If u′ ≤ ϕ(x′)
Lπ(x′) then x(i) = x′, set i = i+ 1 and go to step 6.

4. Else if u′ ≤ p(x′)
Lπ(x′) then x(i) = x′, set i = i+ 1 and go to step 6.

5. Otherwise u′ > p(x′)
Lπ(x′) , discard x′ and go back to step 2.

6. If i > N then stop, else go back to step 2.

Let us consider the case in which we are able to draw directly from h2(x)
but not from h1(x). However, we assume to know a pdf π(x) such that

π(x) ≥ g1(x) = ω1h1(x), (2.47)

and, therefore, enables us to use rejection sampling. Note that π(x) can be
a proper density, different to h1(x), because

∫
D g1(x)dx = ω1 < 1. In this

scenario, the standard procedure to generate a sample x′ from po(x), as seen
in Section 2.3, is:

1. Draw an index j′ ∈ {1, 2} according to the weights ω1, ω2.

2. If j′ = 2 then generate x′ from h2(x).

3. If j′ = 1, then

(a) Draw x′ from π(x) and u′ from U([0, 1]).

(b) If u′ ≤ g1(x′)
π(x′) then return x′.

(c) Otherwise, if u′ > g1(x′)
π(x′) , repeat from step (a).

An interesting variant of this approach, that avoids rejection steps, is the
so-called acceptance-complement method [88, 89]. In order to draw a sample
x′ from po(x), the acceptance-complement algorithm performs the following
steps.
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1. Draw x′ from π(x) and u′ from U([0, 1]).

2. If u′ ≤ g1(x′)
π(x′) then accept x′.

3. Otherwise, if u′ > g1(x′)
π(x′) , then draw x′′ from h2(x) and accept it.

Clearly, since we avoid any rejection, this approach is computationally more
“economic” and faster than the original procedure. Table 2.6 provides the
algorithm, with more detail.

Table 2.6: Acceptance-complement algorithm.
1. Set i = 1. Let N be the number of desired samples from po(x).

2. Find a suitable decomposition of the form of Eq. (2.46), i.e.,
po(x) = ω1h1(x) + ω2h2(x).

3. Draw samples x′ from π(x) and u′ from U([0, 1]).

3. If u′ ≤ ω1h1(x′)
π(x′) then accept x(i) = x′ and set i = i+ 1.

4. If u′ > ω1h1(x′)
π(x′) generate x′′ from h2(x) and set x(i) = x′′.

5. If i > N then stop, else go back to step 2.

The acceptance-complement technique is based on the following theorem.

Theorem 4 If

• X1 has pdf π(x),

• X2 has pdf h2(x),

• X3 has density po(x) ∝ p(x),

• U ∼ U([0, 1]),

• and π(x) ≥ g1(x) = ω1h1(x) ∀x ∈ D where D ≡ R,
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then

Prob

{
X1 ≤ y

∣∣∣U ≤ ω1h1(X1)

π(X1)

}
+Prob

{
X2 ≤ y

∣∣∣U >
ω1h1(X1)

π(X1)

}
=

= Prob
{
X3 ≤ y

}
.

(2.48)

Proof: From Theorem 3, we can write

Prob

{
X1 ≤ y

∣∣∣U ≤ ω1h1(X1)

π(X1)

}
= ω1

∫ y

−∞
h1(x)dx. (2.49)

Moreover, the second term in (2.48) can be expressed as

Prob

{
X2 ≤ y

∣∣∣U >
ω1h1(X1)

π(X1)

}
= Prob {X2 ≤ y}Prob

{
U >

ω1h1(X1)

π(X1)

}

(2.50)

=

(∫ y

−∞
h2(x)dx

)(
1− Prob

{
U ≤ ω1h1(X1)

π(X1)

})

=

(∫ y

−∞
h2(x)dx

)(
1−

∫ +∞

−∞

ω1h1(x)

π(x)
π(x)dx

)
(2.51)

=

(∫ y

−∞
h2(x)dx

)(
1− ω1

∫ +∞

−∞
h1(x)dx

)

=

(∫ y

−∞
h2(x)dx

)
(1− ω1) ,

where the equality (2.50) follows from the independence of X1, X2 and U ,
while Eq. (2.51) results from Prob{U ≤ Y } = E[Y ] with Y ≤ 1, since
U ∼ U([0, 1]).

Furthermore, since ω2 = 1− ω1, we have

Prob

{
X2 ≤ y

∣∣∣∣∣U >
ω1h1(X1)

π(X1)

}
= ω2

∫ y

−∞
h2(x)dx. (2.52)
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Therefore, given Eqs. (2.49) and (2.52) we can write

Prob

{
X1 ≤ y

∣∣∣∣∣U ≤
ω1h1(X1)

π(X1)

}
+ Prob

{
X2 ≤ y

∣∣∣∣∣U >
ω1h1(X1)

π(X1)

}
=

= ω1

∫ y

−∞
h1(x)dx+ ω2

∫ y

−∞
h2(x)dx

=

∫ y

−∞
po(x)dx = Prob

{
X3 ≤ y

}
,

(2.53)

since po(x) = ω1h1(x) + ω2h2(x). 2

Note that if we use the acceptance-complement procedure of Table 2.6
with a proposal π(x) such that

Lπ(x) ≥ g1(x) = ω1h1(x),

where L 6= 1, then the generated samples x′ are distributed according to the
density

q(x) =
ω1

L
h1(x) +

(
1− ω1

L

)
h2(x), (2.54)

that is different from our target pdf po(x). In fact, if L → +∞ then
q(x)→ h2(x), since we always discard the sample x′ from π(x) and generate
x′′ from h2(x) at each step.

2.5.4 Strip methods

The goal of this class of algorithms is to make the sampling method as
simple and fast as possible [64, Chapter 5]. Indeed, the central idea is very
straightforward: cover the area A0 in Eq. (2.29) below the target pdf po(x)
by a union of rectangles forming an overbounding region for A0, as depicted
in Figure 2.6. Clearly when the number of rectangles increases, this “strip”
approximation of A0 becomes tighter and tighter.

The resulting algorithms are quite simple and fast but, in the basic
formulation, they only work with bounded pdf’s with finite support (however,
there exist some variations in the literature [125], [149, Chapter 4] that may
extend the applicability of this technique). Moreover, it is necessary to know
the stationary points of the target pdf po(x), i.e., to know where po(x) is
increasing or decreasing. For this reason and to simplify the treatment, we
consider a monotonic decreasing target pdf po(x) ∝ p(x).
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(a) (b)

Figure 2.6: Examples of construction of a region R formed by 5 rectangles
that covers the area A0 (A0 ⊆ R) below p(x). The bounded function
p(x) ∝ po(x) is defined in a bounded domain. (a) The region R is composed
by vertical bars. (b) The region R is composed by horizontal bars.

A strip method relies on building a stepwise overbounding function

g(x) ≥ p(x).

There are two possibilities to construct it:

1. The first approach uses vertical strips (see Figure 2.6(a)) and is also
named Ahrens method in honor of J. Ahrens [1, 2, 62].

2. The second way, that uses horizontal strips (see Figure 2.6(b)), is also
called ziggurat method [107].

In the sequel, we focus our attention on the first approach (the development
with horizontal strips is equivalent). Consider, for a moment, a bounded pdf
po(x) with bounded domain D = [a, b]. We choose a set of support points

S = {s1 = a, s2, ..., sn−1, sn+1 = b} (2.55)

where si ∈ D, ∀i, and sort them in ascending order, s1 < s2 < .... < sn+1.
We can define the intervals Di = [si, si+1], i = 1, ..., n, that form a partition
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D = ∪ni=1Di. Moreover, since we assume that the function p(x) ∝ po(x) is
decreasing, i.e., p(si) ≥ p(si+1), i = 1, ..., n, the rectangular set

Ri , [si, si+1]× [0, p(si)], (2.56)

embeds the area below p(x) for all x ∈ Di. Hence, the region composed by
rectangular pieces R = ∪ni=1Ri covers the area below p(x), for x ∈ D = [a, b].
Furthermore, the stepwise function

g(x) ,





p(s1), if x ∈ D1,

...

p(sn), if x ∈ Dn.
(2.57)

yields an upper bound for p(x), i.e., p(x) ≤ g(x) ∀x. Therefore, we can easily
define a proposal density π(x) ∝ g(x) as a mixture of uniform pdf’s

π(x) ,
n∑

i=1

ωiIDi(x), (2.58)

where IDi(x) is the indicator function for the set Di (that yields 1 if x ∈ Di
and 0 if x /∈ Di), and the weights are defined as

ωi =
|Ri|∑n
i=1 |Ri|

, (2.59)

for i = 1, ..., n. Hence, if we first draw an index j′ with Prob{j = j′} = ωj′
and a uniform sample x′ from U([sj′ , sj′+1]), then x′ is distributed as the
proposal pdf π(x) in Eq. (2.58) (this is explained in Section 2.3). Therefore,
recalling also the overbounding function g(x) ∝ π(x) in Eq. (2.57), the
algorithm to draw a sample x′ can be summarized as follows.

1. Draw x′ from π(x) in Eq. (2.58) and u′ from U([0, 1]).

2. If u′ ≤ p(x′)
g(x′) then accept x′ otherwise discard it.

Table 2.7 provides a detailed description of the vertical strip algorithm.
Recall that g(x) = p(si) ∀x ∈ Di.

Different strategies have been studied to choose the positions of the
support points in order to improve the acceptance rate of the rejection
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Table 2.7: Vertical strip algorithm for a decreasing pdf po(x).
1. Set i = 1. Let N be the number of desired samples from po(x).

2. Draw an index j′ with Prob{j = j′} = ωj′ , j
′ = {1, ..., n},

as defined in Eq. (2.59).

3. Generate a point (x′, u′2) uniformly in the rectangle Rj′ , i.e.,
x′ ∼ U([sj′ , sj′+1]) and u′2 ∼ U([0, p(sj′)]).

4. If u′2 ≤ p(x′) then accept x(i) = x′ and set i = i+ 1.

5. Otherwise, if u′2 > p(x′), discard x′ and go back to step 2.

6. If i > N then stop, else go back to step 2.

sampler [64, Chapter 5], [94]. Specifically, the equal area approach (i.e.,
rectangles with equal areas, so that ωi = 1/n, i = 1, ..., n) has been considered
in [2] and [30, Chapter 8], and advocated because of its simplicity. In this
case, the technique is called grid method, as well.

The next technique, called inversion-rejection method, can be seen an
extension of the strip methods to deal with unbounded pdf’s or densities
with unbounded domain.

2.5.5 Inversion-rejection method

In many cases, we are able to calculate analytically the cdf FX(x) but it is not
possible to invert it. Therefore, the inversion method in Section 2.2.1 cannot
be applied. To overcome this problem, numerical inversion methods have
been proposed in the literature [64, Chapter 7]. However, this approach can
be only considered approximate, since the generated samples are not exactly
drawn from po(x). Furthermore, it can be computationally demanding.

Other approaches that start from the inversion principle and guarantee
exact sampling have been studied. An example is the inversion-rejection
method [29, 30], which is a combination of the inversion and rejection
algorithms for the case that the cdf FX(x) is computable but not invertible.

For simplicity, we describe this technique for a bounded and decreasing
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target pdf po(x) with infinite support D = [a,+∞). However, the algorithm
can easily be extended to more general pdf’s. Consider an infinite sequence
of support points

S = {s1 = a, s2, ...., si, si+1....},
si ∈ D, i = 1, ...,+∞, sorted in ascending order. The sequence is fixed but
needs not be stored: for instance, we can compute si from i or the previous
point si−1. Moreover, we assume that the cdf FX(x) can be evaluated and a
global upper bound M is also available, i.e.,

M ≥ p(x), (2.60)

where p(x) ∝ po(x). The algorithm consists in the following steps.

1. Generate v′ from U([0, 1]).

2. Find the index j′ such that

FX(s′j) ≤ v′ ≤ FX(sj′+1), (2.61)

thus the interval Dj′ = [sj′ , sj′+1] ⊂ D is chosen with probability
Prob{j = j′} = FX(sj′+1) − FX(sj′) by an inversion method. This
is always possible since we can use, e.g., a sequential search to find sj′ .

3. Draw a sample x′ uniformly from Dj′ = [sj′ , sj′+1], i.e., x′ ∼
U([sj′ , sj′+1]).

4. Generate u′ from U([0, 1]).

5. If Mu′ ≤ p(x′) then accept x′.

6. Otherwise, if Mu′ > p(x′), then discard x′.

Hence, we first select an interval Di = [si, si+1] with probability FX(si+1) −
FX(si) by inversion. Since the interval Di is closed and po(x) is bounded,
we can use a uniform proposal pdf in Di as proposal density and draw a
sample x′ from po(x) by rejection. Since we have assumed p(x) to be a
decreasing function, this procedure can be easily improved if we define a
stepwise overbounding function

g(x) ,





p(s1) ∀x ∈ D1,

...

p(si) ∀x ∈ Di,
...

(2.62)
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such that g(x) ≥ p(x), for all x ∈ D to be used in the rejection sampler. The
improved version of the algorithm is described in Table 2.8.

Table 2.8: Inversion-rejection algorithm for a decreasing pdf po(x).
1. Set i = 1. Let N be the number of desired samples from po(x).

2. Draw a index j′ with Prob{j = i} = FX(si+1)− FX(si), i = 1, ...,+∞,
by inversion.

3. Generate a pair x′ ∼ U([sj′ , sj′+1]) and u′ ∼ U([0, g(x′)]), where
g(x) = p(sj′) for all x ∈ [sj′ , sj′+1].

3. If u′ ≤ p(x′) then accept x(i) = x′ and set i = i+ 1.

4. Otherwise, if u′ > p(x′), discard x′ and go back to step 2.

5. If i > N then stop, else go back to step 2.

Obviously, the algorithm in Table 2.8 is also a strip technique. However,
unlike the strip algorithms in Section 2.5.4, this technique can be applied to
unbounded pdf’s and densities with infinite support. Hence, in this sense the
inversion-rejection algorithm can be considered as an extension of the strip
methods (when the cdf FX(x) can be evaluated). It can also be viewed as a
numerical inversion method with the addition of a rejection step.

The next technique is also related to the inversion algorithm. It tries
to replace a non-invertible cdf FX(x) with another invertible transformation
h(x) (as close as possible to FX(x)).

2.5.6 Transformed rejection method

The transformed rejection method due to [63, 154] is also called almost exact
inversion method in [30, Chapters 3] and exact-approximation method in [106].

This technique consists in transforming a bounded target pdf po(x) with
an unbounded domain into another bounded pdf with bounded domain.
Indeed, as we have already explained, the simplest scenario to use the RS
algorithm occurs when the target density is bounded with bounded support.
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In this case, it is possible to use a uniform pdf as proposal function, as
suggested in [63].

In this section, we study how it is possible to find a transformation in
order to modify a pdf of the type displayed in Figure 2.4(a) to obtain a pdf
of type depicted in Figure 2.4(c) (bounded with bounded support).

Let po(x) be a bounded density with unbounded support D. We assume
D ≡ R without loss of generality. Moreover, let us consider a monotonic
continuous transformation

h(x) : R→ [0, 1].

If X is a random variable with pdf po(x), then the transformed random
variable Y = h(X) has density

q(y) = po
(
h−1(y)

)
∣∣∣∣∣
dh−1

dy

∣∣∣∣∣, for 0 ≤ y ≤ 1, (2.63)

where h−1(y) is the inverse function of h(x). Clearly, to draw from po(x) we
can generate a sample y′ from q(y) and then take x′ = h−1(y′). The idea
in [154] is to use a RS algorithm to draw from q(y). Choosing an adequate
transformation h(x) such that q(y) is also bounded, the advantage of this
strategy is that the proposal pdf π(x) can be an uniform density (see Figure
2.4 (c)).

Obviously, the domain of q(y) is C = [0, 1], bounded. However, in
general, the density q(y) can be unbounded (it may have vertical asymptotes)
depending on the choice of the transformation h(x). Indeed, q(y) =

po
(
h−1(y)

) ∣∣∣dh−1

dy

∣∣∣ and, although the first term po
(
h−1(y)

)
is bounded (since

po(x) is assumed bounded), the second term
∣∣∣dh−1

dy

∣∣∣ is, in general, unbounded,

i.e.,

lim
y→0

∣∣∣∣
dh−1

dy

∣∣∣∣ = lim
y→1

∣∣∣∣
dh−1

dy

∣∣∣∣ =∞.

Figures 2.7 (b) and (c) illustrate some examples of the transformations
h(x) and h−1(y).

It is clear from Eq. (2.63) that the density q(y) resulting from the
transformation h(x) remains bounded when the tails of po(x) decay to zero

quickly enough, namely, faster than the derivative dh−1

dy
=
(
dh
dx

)−1
diverges

when y → 0, 1 or, equivalently, x→ ±∞.
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po(x)

This technique only requires us to know the functional form of the density
po(x) of interest up to a multiplicative constant (no deep analytical study of
po(x) is necessary). But an important limitation of RS methods is the need
to analytically establish a bound for the ratio of the target and proposal
densities, since there is a lack of general procedure for the computation
of exact bounds. The rejection sampling algorithm is based on a simple
connection with the uniform distribution, as explained below.

2.2.1 The fundamental theorem of simulation

There is a simple (fundamental) idea underlies the RS method and also other
Monte Carlo techniques.

Theorem: [5, Chapter 2] Drawing samples from a unidimensional target
density po(x) ∝ p(x) is equivalent to sample uniformly on the bidimensional
region defined by

A0 = {(x, u) : 0 ≤ u ≤ p(x)}. (2.5)

Fundamental Theorem of Simulation

Draw samples from a unidimensional target density po(x) ∝ p(x) it is equivalent to
sample uniformly on the bidimensional region defined by [2]

A0 = {0 ≤ u ≤ p(x)} (1)

Therefore, if we are able to sample points (x �, u�) uniformly on A0, the coordinate
x � is distributed as p(x) (i.e., x � ∼ p(x)).

The coordinate u is an “auxiliary” variable.

Many sampling techniques use this property (slice sampling, rejection sampling....).
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Figure 2.1: The area A0 indicates in green, below the target function p(x).

Proof: The joint pdf of the random vector (X, U) is q(x, u) ∝ q(u|x)p(x),
where we use the symbol ∝ because p(x) ∝ po(x) in not necessarily
normalized. By the definition, we also have q(u|x) = 1/p(x) with 0 ≤ u ≤
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Figure 2.7: (a) A bounded target pdf po(x) with an unbounded domain. (b)
Two possible examples (solid and dashed line) of transformation h(x). (c)
The corresponding inverse transformations h−1(y).

It is also important to realize that better acceptance rates can be obtained
by a suitable choice of the transformation function h(x). Indeed, when h(x)
is “similar” to the cdf FX(x), the pdf q(y) becomes flatter and “similar” to
a uniform density, so that the acceptance rate is improved. In fact, if h(x) is
exactly the cdf of X, i.e., h(x) = FX(x), then q(y) is the uniform density in
[0, 1] (for this reason, this technique is also termed “almost exact inversion
method” in [30]).

Table 2.9 summarizes the algorithm.

Table 2.9: Transformed rejection sampling algorithm.
1. Set i = 1. Let N be the number of desired samples from po(x).

2. Find a suitable monotonic transformation h(x) : D → [0, 1].

3. Draw samples y′ from π(y) and u′ from U([0, 1]).

3. If u′ ≤ q(y′)
Lπ(y′) then x(i) = h−1(y′) and set i = i+ 1.

4. If u′ > q(y′)
Lπ(y′) discard h−1(y′) and go back to step 2.

5. If i > N then stop, else go back to step 2.
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Transformed rejection method for unbounded pdf’s

A similar methodology can also be applied when the target pdf po(x) is
unbounded, but has a bounded support D = (a, b].

Indeed, we can transform po(x) into a bounded density with bounded
domain C = [h(a), h(b)], where h is a suitable differentiable and
monotonically increasing transformation in D (so that h(a) < h(b) < +∞).
For clarity of exposition, let us assume that po(x) has only one asymptote
at3 x∗ = a, i.e,

lim
x→a

po(x) = +∞, (2.64)

as shown, e.g., in Fig. 2.4(b) (where x∗ = 0). Moreover, let us consider the
r.v.’s X with pdf po(x) and Y = h(X). We know that Y has density

q(y) = po
(
h−1(y)

)
∣∣∣∣∣
dh−1

dy

∣∣∣∣∣,

and, since h(x) is increasing, h−1(y) is also increasing, hence

q(y) = po
(
h−1(y)

)dh−1

dy
. (2.65)

In general, q(y) is unbounded. Indeed,

lim
y→h(a)

q(y) = lim
y→h(a)

po
(
h−1(y)

)dh−1

dy
= +∞× lim

y→h(a)

dh−1

dy
, (2.66)

and setting L = limy→h(a)
dh−1

dy
, we have

lim
y→h(a)

q(y) = +∞ · L =

{
+∞ if L 6= 0

undetermined if L = 0
. (2.67)

Therefore, in order to guarantee the applicability of the method it is necessary
that we choose h(x) such that L = 0. However, this is not sufficient. If we
want to ensure that limy→h(a) q(y) = c for some constant c (i.e., q(y) remains

bounded) we have to design h in such a way that dh−1

dy
vanishes quickly

3In many cases, the asymptote is located at one of the extreme points of the support
D = (a, b] (as often in the case of inverse density p−1

o (y)). For this reason, we choose
exactly x∗ = a.
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enough as y → h(a). Since dh−1

dy
= dx

dh
, this is equivalent to guarantee that

the derivative dx
dh

grows more slowly than po(x) when x → a. In particular,
it is sufficient to impose the condition that, ∀ε > 0, there exists a constant k
such that

po(x) ≥ k

∣∣∣∣
dh

dx

∣∣∣∣ , (2.68)

whenever |x − a| ≤ ε. When L = 0 and the condition (2.68) holds, q(y) is
bounded on the bounded domain [h(a), h(b)] and we can apply the procedure
of Table 2.9.

Another technique that transforms the unbounded region A0 below the
target pdf po(x) into a bounded region A is the so-called ratio of uniforms
method, described in Section 2.8. In Section 2.8.2 we explore the relationship
between the transformed rejection technique and the ratio of uniforms
method.

2.6 Adaptive rejection sampling

The main limitation of RS methods is that it is in general very hard to
find a proposal function π(x) and a bound L ≥ p(x)/π(x), such that the
overbounding function Lπ(x) ≥ p(x) be actually “close” enough to the target
density, as needed to attain good acceptance rates. One way to tackle this
difficulty is to construct π(x) adaptively.

The standard adaptive rejection sampling (ARS) [50], [30, Chapter 7]
algorithm enables the construction of a sequence of proposal densities,
{πt(x)}t∈N, tailored to the target density po(x) ∝ p(x). Its most appealing
feature is that each time we draw a sample from a proposal πt and it is
rejected, we can use this sample to build an improved proposal, πt+1, with a
higher mean acceptance rate.

Unfortunately, the ARS method can only be applied with target pdf’s
which are log-concave (hence, unimodal), which is a stringent limitation for
many practical applications.

Assume that we want to draw from the pdf po(x) ∝ p(x) ≥ 0 with support
in D ⊆ R. The standard ARS procedure can be applied when log[p(x)] is
concave, i.e., when the potential function

V (x) , − log[p(x)], x ∈ D ⊆ R, (2.69)

is convex.
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The basic idea is to partition the domain D into several intervals and
construct the overbounding function locally on each of these pieces. Let

St , {s1, s2, . . . , smt} ⊂ D (2.70)

be a set of support points, sorted in ascending order s1 < . . . < smt . The
number of points mt can grow with the iteration index t. From St we build
a piecewise-linear lower hull of V (x), denoted Wt(x), formed by segments of
linear functions tangent to V (x) at the support points sk in St. If we denote
as wk(x) the linear function tangent to V (x) at sk, then we can define

Wt(x) , max{w1(x), . . . , wmt(x)} ≤ V (x) ∀x ∈ D. (2.71)

Figure 2.8 illustrates the construction of Wt(x) with three support points for
the convex potential function V (x) = x2. It is apparent that Wt(x) ≤ V (x)
by construction, therefore exp{−Wt(x)} is an overbounding function for p(x),
i.e.,

exp{−Wt(x)} ≥ p(x) = exp{−V (x)}. (2.72)

Once Wt(x) is built, we can use it to obtain a piecewise-exponential
proposal density

πt(x) = ct exp[−Wt(x)], (2.73)

where ct is the proportionality constant. We can draw from π(x) easily.
First, we calculate the area ωk, k = 0, ...,mt, below each piece and obtain
the normalized weights

ω̄k =
ωk∑mt
k=0 ωk

. (2.74)

Note that the ωk’s can be calculated exactly, as we only need to integrate
functions of the form exp{−λx} (for a constant λ) in finite intervals.

In order to draw a sample from πt(x), we randomly choose a piece
according to the probability masses ω̄k, k = 0, ...,mt, and then we generate a
sample x′ from the corresponding truncated exponential pdf using the inverse
transform method (see Section 2.2.1). Since Eq. (2.72) can be rewritten as
1
ct
πt(x) ≥ p(x), we can readily apply the rejection sampling principle.

When a sample x′ from πt(x) is rejected we incorporate it into the
set of support points, i.e., St+1 = St ∪ {x′} and mt+1 = mt + 1. Then,
we compute a refined lower hull, Wt+1(x), and a new proposal density
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This technique only requires us to know the functional form of the density
po(x) of interest up to a multiplicative constant (no deep analytical study of
po(x) is necessary). But an important limitation of RS methods is the need
to analytically establish a bound for the ratio of the target and proposal
densities, since there is a lack of general procedure for the computation
of exact bounds. The rejection sampling algorithm is based on a simple
connection with the uniform distribution, as explained below.

2.2.1 The fundamental theorem of simulation

There is a simple (fundamental) idea underlies the RS method and also other
Monte Carlo techniques.

Theorem: [5, Chapter 2] Drawing samples from a unidimensional target
density po(x) ∝ p(x) is equivalent to sample uniformly on the bidimensional
region defined by

A0 = {(x, u) : 0 ≤ u ≤ p(x)}. (2.5)

Fundamental Theorem of Simulation

Draw samples from a unidimensional target density po(x) ∝ p(x) it is equivalent to
sample uniformly on the bidimensional region defined by [2]

A0 = {0 ≤ u ≤ p(x)} (1)

Therefore, if we are able to sample points (x �, u�) uniformly on A0, the coordinate
x � is distributed as p(x) (i.e., x � ∼ p(x)).

The coordinate u is an “auxiliary” variable.

Many sampling techniques use this property (slice sampling, rejection sampling....).

3 / 6

! 

x

! 

u

! 

p(x)

! 

p(x')

! 

x'

! 

0

! 

}
! 

u'

Figure 2.1: The area A0 indicates in green, below the target function p(x).

Proof: The joint pdf of the random vector (X, U) is q(x, u) ∝ q(u|x)p(x),
where we use the symbol ∝ because p(x) ∝ po(x) in not necessarily
normalized. By the definition, we also have q(u|x) = 1/p(x) with 0 ≤ u ≤

(b)

Figure 2.8: (a) Example of construction of the piecewise linear function
Wt(x) with three support points St = {s1, s2, smt=3}, as carried out by the
original ARS technique. The function Wt(x) , max[w1(x), w2(x), w3(x)] is
formed by segments of linear functions tangent to the potential V (x) = x2

at the support points in St. (b) The corresponding overbounding function
exp{−Wt(x)} and the target function p(x) = exp{−V (x)}.

πt+1(x) = ct+1 exp{−Wt+1(x)} that is closer to the target pdf. Table 2.10
summarizes the ARS algorithm.

If the target density is computationally expensive to evaluate, it is also
possible to construct a squeeze function

exp{−Ŵt(x)} ≤ p(x) = exp{−V (x)},

for all x ∈ D (see Section 2.5.2). In order to construct Ŵt(x) in such a way
that it is also piecewise linear, we can use the secant lines passing through
the points (sk, V (sk)) and (sk+1, V (sk+1)) where sk, sk+1 ∈ St are support
points. Obviously, as illustrated in Figure 2.9, this construction is possible
only in the finite domain [min(St),max(St)], hence, we set Ŵt(x) → +∞
for any x /∈ [min(St),max(St)]. It is straightforward to see that with this
construction

exp{−Wt(x)} ≥ exp{−V (x)} ≥ exp{−Ŵt(x)}, (2.75)

so that we can also apply the squeeze technique.
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Table 2.10: Adaptive Rejection Sampling Algorithm.
1. Start with i = 1, t = 0, m0 = 2, S0 = {s1, s2} where s1 < s2, and

the derivatives of V (x) in s1, s2 ∈ D have different signs.
Let N be the number of desired samples from po(x).

2. Build the piecewise-linear function Wt(x) as shown in Figure 2.8,
using the tangent lines to V (x) at the support points in St.

3. Draw x′ from πt(x) ∝ exp{−Wt(x)}, and u′ from U([0, 1]).

4. If u′ ≤ p(x′)
exp{−Wt(x′)} , then accept x(i) = x′, set St+1 = St, mt+1 = mt

and i = i+ 1.

5. Otherwise, if u′ > p(x′)
exp{−Wt(x′)} , then reject x′, set St+1 = St ∪ {x′} and

update mt+1 = mt + 1.

6. Sort St+1 in ascending order and increment t = t+ 1.
If i > N then stop, else go back to step 2.

2.6.1 Derivative-free ARS

A variation of the standard ARS algorithm that avoids the need to compute
derivatives of V (x) and lends itself to a simpler automatic implementation
has been proposed in [47].

Given the set of support points St = {s1, ..., smt}, we denote with wk(x)
the secant line passing through the points (sk, V (sk)) and (sk+1, V (sk+1)),
for k = 1, ...,mt − 1. Whereas for k ∈ {−1, 0,mt,mt+1} we set

wk(x)→ −∞, (2.76)

as infinite constant values. The piecewise linear function Wt(x) is constructed
as

Wt(x) , max[wk−1(x), wk+1(x)] for x ∈ [sk, sk+1], k = 0, ...,mt. (2.77)

Figure 2.10 illustrates the construction of Wt(x) using the derivative-free
ARS algorithm with 4 and 5 support points.
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Figure 2.9: (a) Example of construction of the squeeze function
exp{−Ŵt(x)} with three support points St = {s1, s2, smt=3}. (b)
The corresponding overbounding and squeeze functions exp{−Wt(x)},
exp{−Ŵt(x)}, together with the target function p(x) = exp{−V (x)}

2.7 Generalizations of the ARS algorithm

The condition of log[p(x)] being concave rules out many target pdf’s of
interest. Indeed, in many practical applications the target is non-log-
concave or, in general, multimodal and the standard (or derivative-free)
ARS techniques cannot be applied. In order to deal with these densities
many generalizations of the standard ARS method have been proposed in
the literature.

2.7.1 Adaptive rejection Metropolis sampling

This method, introduced in [48, 146], is a generalization of the standard ARS
algorithm that includes a Metropolis-Hastings step and can be applied to any
target pdf. Unfortunately, because of the incorporation of MCMC steps, the
produced samples are correlated, i.e., they are not statistically independent.

The main idea is relatively simple. We first construct a function
exp{−Wt(x)} following the procedure of Section 2.6.1 (derivative-free). Note
that, since V (x) is not convex, there is no guarantee that exp{−Wt(x)} ≥
exp{−V (x)}. Therefore, when a sample drawn from π(x) ∝ exp{−Wt(x)} is
accepted by the rejection sampler, a Metropolis-Hastings control test is added
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Figure 2.10: Example of construction of the piecewise linear function
Wt(x), as carried out by the derivative-free ARS technique. The function
Wt(x) is composed by pieces of secant lines passing through (sk, V (sk)) and
(sk+1, V (sk+1)), k = 1, ...,mt − 1, as described in Eqs. (2.76) and (2.77).
(a) Construction with four support points St = {s1, s2, s3, smt=4}. (b)
Construction with five support points St = {s1, s2, s3, s4, smt=5}.

to ensure that the sampling is exact. Otherwise, when a sample drawn from
π(x) ∝ exp{−Wt(x)} is rejected, the MCMC step is avoided and the sample
is discarded. Table 2.11 summarizes the algorithm.

Note that the Metropolis-Hastings step is strictly necessary for exact
sampling. Since it cannot be guaranteed that exp{−Wt(x)} ≥ p(x),
the rejection sampler generates samples with density proportional to
min[p(x), exp{−Wt(x)}].

In [120] it is suggested to use functions Wt(x) formed by polynomials of
degree 2 (parabolic pieces), instead of linear functions (polynomial of degree
1) in order to make a better approximation of the real potential V (x) and
improve the acceptance rate.

2.7.2 Concave-convex ARS

The concave-convex ARS method [55, 60] is another generalization of the
standard ARS algorithm where the potential V (x) can be decomposed into
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Table 2.11: Adaptive Rejection Metropolis Sampling Algorithm (ARMS).
The generated samples are correlated.

1. Start with i = 1, t = 0, m0 = 2, S0 = {s1, s2} where s1 < s2, and
Let N be the number of desired samples from po(x).
Choose an arbitrary abscissae xc.

2. Build the piecewise-linear function Wt(x) as explained in Section 2.6.1.

3. Draw x′ from πt(x) ∝ exp{−Wt(x)}, and u′ from U([0, 1]).

4. If u′ > p(x′)
exp{−Wt(x′)} , then reject x′, set St+1 = St ∪ {x′} and update

mt+1 = mt + 1. Jump to the step 8.

5. Otherwise, if u′ ≤ p(x′)
exp{−Wt(x′)} , draw v′ from U([0, 1]).

6. If v′ ≤ min
[
p(x′) min[p(xc),exp{−Wt(xc)}]
p(xc) min[p(x′),exp{−Wt(x′)}]

]
then accept x(i) = x′, set xc = x′

and St+1 = St, mt+1 = mt and i = i+ 1.

7. If v′ > min
[
p(x′) min[p(xc),exp{−Wt(xc)}]
p(xc) min[p(x′),exp{−Wt(x′)}]

]
then reject x′, set x(i) = xc, and

St+1 = St, mt+1 = mt, i = i+ 1.

8. Sort St+1 in ascending order and increment t = t+ 1.
If i > N then stop, else go back to step 2.

a sum of convex, V1(x), and concave, V2(x), functions, i.e.,

V (x) = V1(x) + V2(x). (2.78)

The two parts can be analyzed separately in order to obtain two different
piecewise linear functions, Wt,1(x) and Wt,2(x), such that

Wt,i(x) ≤ Vi(x)

with i = 1, 2. Clearly, the overbounding function in this case is
exp{−Wt,1(x) − Wt,2(x)} ≥ exp{−V (x)}. Figure 2.11 illustrates the
procedures to handle the potentials V1 and V2 with different concavity.
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Figure 2.11: Application of the concave-convex ARS method. Example
of construction with three support points St = {s1, s2, smt=3} of the two
piecewise linear functions Wt,i(x), i = 1, 2, such that Wt,i(x) ≤ Vi(x). (a)
Since V1(x) is convex, we can use pieces of tangent lines to V1(x) at the
support points. (b) Since V1(x) is concave, the function Wt(x) is composed
by pieces of secant lines passing through (sk, V (sk)) and (sk+1, V (sk+1)),
k = 1, 2, to fulfill the inequality Wt,2(x) ≤ V2(x).

Given a set of support points St , {s1, s2, . . . , smt} ⊂ D, sorted in
ascending order, we already know that we can use pieces of tangent lines at
the support points to build a lowerbounding function Wt,1(x) for the concave
potential V1(x) as in the standard ARS technique.

For the concave potential V2(x), we can use the secant lines passing
through (sk, V (sk)) and (sk+1, V (sk+1)), k = 1, ...,mt−1 to obtain a piecewise
linear function Wt,2(x) such that Wt,2(x) ≤ V2(x). It should be noticed that
this procedure is possible only in a finite domain, precisely in the interval
[min(St),max(St)]. Therefore, we can apply this technique to a target pdf
with unbounded domain only if the tails of the entire potential V (x) are
convex. Indeed, in this situation we can handle the tails separately using
tangent lines in order to build a lowerbounding function, as in the standard
ARS method.
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2.7.3 Transformed density rejection

In [61, 65, 94] it is suggested to replace the log(ϑ) function with another
monotonically increasing transformation T (ϑ) : R+ → R such that T [p(x)]
(with po(x) ∝ p(x)) is concave or, equivalently, the corresponding potential
function

VT (x) , −T [p(x)], (2.79)

is convex. It is important to notice that this method extends the standard
ARS algorithm in [50] but it can be applied to unimodal target densities only,
since T is a monotonic function. Eq. (2.79) above implies that the target
pdf can be expressed as

po(x) ∝ p(x) = T−1[−VT (x)]. (2.80)

Obviously, we can go back to the standard ARS method by choosing
T (ϑ) = log(ϑ).

Given a set of support points St , {s1, s2, . . . , smt} ⊂ D, the idea is,
again, to replace the convex potential VT (x) with a piecewise-linear function
Wt(x), such that Wt(x) ≤ VT (x) and formed by segments of linear functions
tangent to VT (x) at the support points sk ∈ St. If we let wk(x) be the linear
function tangent to VT (x) at sk, then the piecewise linear function Wt(x) is
defined as Wt(x) , max{w1(x), . . . , wmt(x)}, exactly as in the standard ARS
method. Hence, the proposal pdf has the form

πt(x) ∝ T−1[−Wt(x)]. (2.81)

For this procedure, the key is the identification of an adequate
transformation T (ϑ). To be useful, T has to satisfy the following conditions:

1. It has to be monotonically increasing.

2. Given the inverse transformation T−1, the integral
∫ ϑ
−∞ T

−1(t)dt must
be bounded for all fixed values of ϑ in the image of T . Moreover, it
must be possible to calculate analytically the integral

∫ b

a

T−1(t)dt. (2.82)

3. The composition (T ◦ p)(x) = T [p(x)] has to be concave, i.e.,

d2

dx2
T [p(x)] =

[
d2T

dϑ2

]

p(x)

(
dp

dx

)2

+

[
dT

dϑ

]

p(x)

d2p

dx2
≤ 0.
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The satisfaction of the first condition guarantees that the inverse
transformation T−1 : R+ → R exists and is monotonically increasing as
well. The second condition is required to ensure that the integral of the
overbounding function T−1[−Wt(x)] in a bounded domain is finite, i.e.,

∫ b

a

T−1[−Wt(x)]dx ≤ +∞,

and we are able to calculate it analytically (recall that Wt(x) is a piecewise
linear function). If the transformation T fulfills this condition, we can use the
inverse method to draw independent samples from πt(x). The third condition
is necessary to allow the construction of Wt(x) using tangent lines such that
Wt(x) ≤ VT (x) and, correspondingly, T−1[−Wt(x)] ≥ p(x).

An example of a class of transformations with these properties, different
from the logarithm, is the the family of power functions Tc(ϑ) = sign(c)ϑc.
The most used transformation of this class is T−1/2(ϑ) = −1/

√
ϑ.

Table 2.12 summarizes the technique.

Table 2.12: Transformed Density Rejection (TDR) Algorithm.
1. Start with i = 1, t = 0, m0 = 2, S0 = {s1, s2} where s1 < s2.

Let N be the number of desired samples from po(x).

2. Build the piecewise-linear function Wt(x) using the lines tangent
to VT (x) = −T [p(x)] at the support points in St.

3. Draw x′ from πt(x) ∝ T−1[−Wt(x)], and u′ from U([0, 1]).

4. If u′ ≤ p(x′)
T−1[−Wt(x′)]

, then accept x(i) = x′, set St+1 = St, mt+1 = mt

and i = i+ 1.

5. Otherwise, if u′ > p(x′)
T−1[−Wt(x′)]

, then reject x′, set St+1 = St ∪ {x′} and

update mt+1 = mt + 1.

6. Sort St+1 in ascending order and increment t = t+ 1.
If i > N then stop, else go back to step 2.

We remark that, since T (ϑ) has to be a monotonic function and T [p(x)]
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has to be concave, this procedure can be applied only to unimodal target
pdf’s. Let us also mention that, despite the similarity in the names,
the transformation in the “Transformed rejection method” of Section 2.5.6
is applied to the random variable X, with pdf po(x), while here the
transformation is applied directly to the density po(x).

Extensions

The TDR method is not necessarily restricted to the case in which T
is monotonically increasing and VT is convex, although it was originally
proposed [61] in this setup.

Indeed, we can consider combinations of increasing and decreasing
functions T with concave or convex potentials VT . The procedure to construct
the piecewise linear function Wt(x), however, is different depending on the
type of T and VT at hand. This is briefly analyzed in this section.

Let us recall Eq. (2.80), po(x) ∝ p(x) = T−1[−VT (x)]. So far, we have
considered the combination of

1) a monotonically increasing function ϑ = T−1(z),

2) with a concave function z = −VT (x).

In this case, a piecewise linear function z = −Wt(x) formed by straight lines
tangent to z = −VT (x) can be used to construct an overbounding function
T−1[−Wt(x)] such that

T−1[−Wt(x)] ≥ T−1[−VT (x)].

The other cases of interest, depending on to the choice of T and the concavity
of VT , are listed below and summarized in Table 2.13.

• If ϑ = T−1(z) is increasing and z = −VT (x) is convex, a suitable
function z = −Wt(x) can be constructed using secant lines. However,
the construction is possible only in a bounded domain (see Figures
2.12(a) and 2.12(c)).

• If ϑ = T−1(z) is decreasing and z = −VT (x) is concave, an adequate
function z = −Wt(x) has to be formed by secant lines. Also in this
case, the construction is possible only in a bounded domain (see Figures
2.12(d) and 2.12(e)).
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Figure 2.12: Example of construction of an adequate piecewise linear function
z = −Wt(x), with three support points St = {s1, s2, s3}, for different cases.
Figures (a)-(b)-(c) consider an increasing function ϑ = T−1(z), hence,
Wt(x) is built to ensure −Wt(x) ≥ −VT (x). Figures (d)-(e)-(f) depict a
decreasing function ϑ = T−1(z), hence we need to build Wt(x) to ensure
that −Wt(x) ≤ −VT (x). Given an arbitrary x′, it is possible to see that the
value T−1[−Wt(x

′)] (green point) is always greater than T−1[−VT (x′)] (red
point), i.e., T−1[−Wt(x

′)] ≥ T−1[−VT (x′)]. Note that the axes associated to
the independent variable z in Figures (a)-(d) are vertical.

• If ϑ = T−1(z) is decreasing and z = −VT (x) is convex, the straight lines
tangent to z = −VT (x) can also be used to build z = −Wt(x). The
construction is also possible in an infinite domain (see Figures 2.12(d)
and 2.12(f)).

Potential functions with known inflection points

Consider a target density po(x) that can be written as

po(x) ∝ p(x) = T−1[−VT (x)],
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Table 2.13: Possible combinations.
ϑ = T−1(z) z = −VT (x) z = −Wt(x) Domain Figure 2.12
increasing concave tangent lines unbounded (a),(b)
increasing convex secant lines bounded (a),(c)
decreasing convex tangent lines unbounded (d),(f)
decreasing concave secant lines bounded (d),(e)

where the potential VT (x) can be non-convex (it may present several minima)
but we assume that the positions of all its inflection points are known. In
this case, we can extend the TDR procedure.

Indeed, we can find a partition of the support D = ∪ni=1Di, Di ∩ Dj = ∅,
i 6= j, where in each Di the function VT (x) has a second derivative with
constant sign. Therefore, in each interval Di where VT (x) is convex, we use
tangent lines to build Wt(x). Alternatively, if VT (x) is concave in Di, the
function Wt(x) is composed by secant lines.

Clearly, this procedure can be applied to non-convex potentials VT (x)
and multimodal target pdf’s. In general, however, for complicated target
densities it is not straightforward to study analytically the second derivative
of the potential VT (x). Furthermore, even if the inflection points are known,
we need that the tails of the potential be convex, as in Section 2.7.2, in order
to build a proper proposal.

Recently, another approach has been studied [14] that requires only
knowledge of an interval where an inflection point is located, but not exactly
the position of the inflection point. To apply this method the potential has
to be three-times differentiable, though, and it can be used only with target
pdf’s with bounded domain.

2.8 Ratio of uniforms method

The standard ratio of uniforms (RoU) method [79, 122] is a sampling
technique that relies on the following result.

Theorem 5 Let p(x) ≥ 0 be a pdf known only up to a proportionality
constant (p(x) ∝ po(x)). If (v, u) is a sample drawn from the uniform
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distribution on the set

A =
{

(v, u) : 0 ≤ u ≤
√
p(v/u)

}
, (2.83)

then x = v
u

is a sample from po(x).

Proof: Given the transformation (v, u)→ (x, y)



x =

v

u
y = u

−→
{
v = xy

u = y
, (2.84)

and a pair of r.v.’s (V, U) uniformly distributed on A, we can write the joint
pdf q(x, y) of the transformed r.v.’s (X, Y ) as

q(x, y) =
1

|A||J
−1| for all 0 ≤ y ≤

√
p(x), (2.85)

where we have indicated with |A| the area of A, and J−1 is the Jacobian of
the inverse transformation, i.e.,

J−1 = det

[
y x
0 1

]
= y. (2.86)

Substituting (2.86) into (2.85) yields

q(x, y) =





1

|A|y, 0 ≤ y ≤
√
p(x),

0, otherwise.

(2.87)

Then, the marginal density of the r.v. X obtained by integrating the pdf
q(x, y) coincides with po(x). Indeed,

∫ +∞

−∞
q(x, y)dy =

∫ √p(x)

0

y

|A|dy =

=
1

|A|

[
y2

2

]√p(x)

0

=
1

2|A|p(x) = po(x),

(2.88)

where the first equality follows from Eq. (2.87) and the rest of the calculations
are straightforward. 2
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Furthermore, from Eq. (2.88) we can see that 1
2|A| is the normalization

constant of p(x). Therefore, if we denote c =
∫
D p(x)dx, we have 1

2|A| = 1
c

and we can obtain the measure of the region A as

|A| = c

2
=

∫
D p(x)dx

2
. (2.89)

In the case that p(x) = po(x), then c = 1 and the area of A is |A| = 1/2.
This theorem provides the means to draw from po(x). Indeed, if we are

able to draw uniformly a point (v′, u′) from A, then the sample x′ = v′/u′ is
distributed according to po(x). Therefore, the efficiency of the RoU method
depends on the ease with which we can generate points uniformly within the
region A.

The cases of practical interest are those in which the region A is bounded.
The set A is bounded if, and only if, both

√
p(x) and x

√
p(x) are bounded.

Furthermore, the function
√
p(x) is bounded if, and only if, the target density

po(x) ∝ p(x) is bounded and, the function x
√
p(x) is bounded if, and only

if, the tails of p(x) decay as 1/x2 or faster. However, some generalizations
[26, 153] defining different type of regions A can be used for heavier tails (see
Section 2.8.1).

Figure 2.13 (a) depicts a bounded two-dimensional set A. Note that,
for every angle α ∈ (−π/2,+π/2) rad, we can draw a straight line that
passes through the origin (0, 0) and contains points (vi, ui) ∈ A such that
x = vi

ui
= tan(α), i.e., every point (vi, ui) in the straight line with angle α

yields the same value of x. From the definition of A, it follows that ui ≤ p(x)
and vi = xui ≤ x

√
p(x), hence, if we choose the point (v2, u2) that lies on

the boundary of A, we obtain that u2 =
√
p(x) and v2 = x

√
p(x). If the

suprema of
√
p(x) and x

√
p(x), as well as the infima of x

√
p(x), can be

found, the we can embed the set A in the rectangular region

R =
{

(v, u) : 0 ≤ u ≤ sup
x

√
p(x), inf

x
x
√
p(x) ≤ v ≤ sup

x
x
√
p(x)

}
, (2.90)

as depicted in Fig. 2.13(b).
Once the rectangle R is constructed, it is straightforward to draw

uniformly from A by rejection sampling: simply draw uniformly from R
and then check whether the candidate point belongs to A. Note that in
this rejection procedure we do not need to know the analytical expression of
the boundary of the region A. Indeed, Eq. (2.83) provides a way to check
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Figure 2.4: (a) A bounded region A and the straight line v = xu
corresponding to the sample x = tan(α). Every point in the intersection
of the line v = xu and the set A yields the same sample x. The point on
the boundary, (v2, u2), has coordinates v2 = x

�
p(x) and u2 =
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p(x). (b)

If the two functions
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p(x) and x
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p(x) are bounded, the set A is bounded
and embedded in the rectangle R.

Figure 2.5 (b)-(d) provides two examples of region A corresponding to
the standard Gaussian and Cauchy densities (shown in Figure 2.5 (a)-(c),
respectively). The pictures also illustrate different lines corresponding to x
constant (dotted line), u constant (dashed line), v constant (solid line) in the
domain x− u and in the transformed domain v − u.

In some cases the equation u =
�

p(v/u) can be solved analytically and

the boundary A can be found explicitly. In particular, when po(x) ∝ λ2

(αx+β)2

with x ∈ [a, b], the region A is a triangle, as depicted in Fig. 2.6 (a), with
one vertex at the origin, v1 = (0, 0), and the opposite side, v2 − v3, with
equation αv + βu = λ.

Figure 2.6 (b) illustrates the particular case with α = 0, when po(x)
becomes a uniform distribution and we obtain a triangular region with the
side v2 − v3 parallel to the axis v. Moreover, if β = 0 the pdf po(x) ∝ 1

x2

is called reciprocal uniform density (because we can obtain it by taking the
reciprocal of a uniform random variable U , i.e., 1/U) and the corresponding
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Figure 2.13: (a) A bounded region A and the straight line v = xu
corresponding to the sample x = tan(α). Every point in the intersection
of the line v = xu and the set A yields the same sample x. The point on
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If the two functions
√
p(x) and x

√
p(x) are bounded, the set A is bounded

and embedded in the rectangle R.

whether a point (v, u) falls inside A or not. Table 2.14 summarizes this
simple accept/reject scheme.

Figures 2.14 (b) and (d) provide two examples in which the region A
corresponds to standard Gaussian and Cauchy densities (shown in Figures
2.14 (a) and (c), respectively). The pictures also illustrate different lines
corresponding to x constant (dotted line), u constant (dashed line), v
constant (solid line) in the domain x − u and in the transformed domain
v − u.

In some cases the equation u =
√
p(v/u) can be solved analytically

and the boundary A can be found explicitly. If we assume a monotonic
function p(x), and indicate with p−1 its inverse function, the boundary can
be expressed with the equation

v = up−1(u2). (2.91)

In particular, when

po(x) ∝ λ2

(δx+ β)2
(2.92)
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Table 2.14: Rejection via RoU method.
1. Start with j = 1.

2. Construct the rectangle R ⊇ A.

3. Draw a point (v′, u′) uniformly from the rectangular region R.

4. If u′ ≤
√
p(v′/u′), then accept the sample x(j) = x′ = v′

u′ and
set j = j + 1.

5. Otherwise, if u′ >
√
p(v′/u′), then reject the sample x′ = v′

u′ ,

6. If j > N then stop, else go back to step 2.

with λ, δ, β, and a compact support, x ∈ [a, b], the region A is a triangle, as
depicted in Fig. 2.15(a), with one vertex at the origin, v1 = (0, 0), and the
opposite side, v2 − v3, given by the equation δv + βu = λ. Figure 2.15(b)
illustrates the particular case with δ = 0, when po(x) becomes a uniform
distribution and we obtain a triangular region with the side v2 − v3 parallel
to the axis v. Moreover, if β = 0 the pdf po(x) ∝ 1

x2 , x ∈ [a, b], is called
reciprocal uniform density (because we can obtain it by taking the reciprocal
of a uniform random variable U , i.e., 1/U) and the corresponding region A
is triangular with v1 = (0, 0) and the side v2 − v3 parallel to the axis u, as
shown in Figure 2.15(c).

Another example, for which A has a closed form occurs for the so-called
table mountain density [44, 64]. In particular, if A = [b−, b+] × [0, a] is a
rectangular region in the v − u domain, then the associated pdf is

q(x) ∝





(b−)2/x2 for x ∈ (−∞, b−/a]

a2 for x ∈ [b−/a, b+/a],

(b+)2/x2 for x ∈ [b+/a,+∞)

(2.93)

plotted in Fig. 2.16(a) (up to a proportionally constant). If we divide
the rectangular region R in three non-overlapping triangular parts, R =
T1 ∪ T2 ∪ T3 as illustrated in Figure 2.16(b), then we can see that each part
of q(x) is related to each triangular part Ti, i = 1, 2, 3, by comparing Figures
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This technique only requires us to know the functional form of the density
po(x) of interest up to a multiplicative constant (no deep analytical study of
po(x) is necessary). But an important limitation of RS methods is the need
to analytically establish a bound for the ratio of the target and proposal
densities, since there is a lack of general procedure for the computation
of exact bounds. The rejection sampling algorithm is based on a simple
connection with the uniform distribution, as explained below.

2.2.1 The fundamental theorem of simulation

There is a simple (fundamental) idea underlies the RS method and also other
Monte Carlo techniques.

Theorem: [5, Chapter 2] Drawing samples from a unidimensional target
density po(x) ∝ p(x) is equivalent to sample uniformly on the bidimensional
region defined by

A0 = {(x, u) : 0 ≤ u ≤ p(x)}. (2.5)

Fundamental Theorem of Simulation

Draw samples from a unidimensional target density po(x) ∝ p(x) it is equivalent to
sample uniformly on the bidimensional region defined by [2]

A0 = {0 ≤ u ≤ p(x)} (1)

Therefore, if we are able to sample points (x �, u�) uniformly on A0, the coordinate
x � is distributed as p(x) (i.e., x � ∼ p(x)).

The coordinate u is an “auxiliary” variable.

Many sampling techniques use this property (slice sampling, rejection sampling....).
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Figure 2.1: The area A0 indicates in green, below the target function p(x).

Proof: The joint pdf of the random vector (X, U) is q(x, u) ∝ q(u|x)p(x),
where we use the symbol ∝ because p(x) ∝ po(x) in not necessarily
normalized. By the definition, we also have q(u|x) = 1/p(x) with 0 ≤ u ≤

€ 

x€ 

u

(a)

Table 2.2: Adaptive Rejection Sampling Algorithm.
1. Start with i = 1, t = 0, m0 = 2 S0 = {s1, s2} where s1 < s2, and

the derivatives of V (x) in s1, s2 ∈ D have different signs.
Let N be the number of desired samples from po(x).

2. Build the piecewise-linear function Wt(x) as shown in Figure 2.3,
using the tangent lines to V (x) at the support points in St.

3. Sample x� from πt(x) ∝ exp{−Wt(x)}, and u� from U([0, 1]).

4. If u� ≤ p(x�)
exp{−Wt(x�)} , then accept x(i) = x�, set St+1 = St, mt+1 = mt

and i = i + 1.

5. Otherwise, if u� > p(x�)
exp{−Wt(x�)} , then reject x�, set St+1 = St ∪ {x�} and

update mt+1 = mt + 1.

6. Sort St+1 in ascending order and increment t = t + 1.
If i > N then stop, else go back to step 2.

of concave V1(x) and convex V2(x) functions.

2.5 Ratio of Uniforms method

The standard ratio of uniforms (RoU) method [4] is a sampling technique
that relies on the following result.

Theorem: Let p(x) ≥ 0 be a pdf known only up to a proportionality
constant (p(x) ∝ po(x)). If (u, v) is a sample drawn from the uniform
distribution on the set

A =
�

(v, u) : 0 ≤ u ≤
�

p(v/u)
�

, (2.17)

then x = v
u

is a sample form po(x).
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This technique only requires us to know the functional form of the density
po(x) of interest up to a multiplicative constant (no deep analytical study of
po(x) is necessary). But an important limitation of RS methods is the need
to analytically establish a bound for the ratio of the target and proposal
densities, since there is a lack of general procedure for the computation
of exact bounds. The rejection sampling algorithm is based on a simple
connection with the uniform distribution, as explained below.

2.2.1 The fundamental theorem of simulation

There is a simple (fundamental) idea underlies the RS method and also other
Monte Carlo techniques.

Theorem: [5, Chapter 2] Drawing samples from a unidimensional target
density po(x) ∝ p(x) is equivalent to sample uniformly on the bidimensional
region defined by

A0 = {(x, u) : 0 ≤ u ≤ p(x)}. (2.5)

Fundamental Theorem of Simulation

Draw samples from a unidimensional target density po(x) ∝ p(x) it is equivalent to
sample uniformly on the bidimensional region defined by [2]

A0 = {0 ≤ u ≤ p(x)} (1)

Therefore, if we are able to sample points (x �, u�) uniformly on A0, the coordinate
x � is distributed as p(x) (i.e., x � ∼ p(x)).

The coordinate u is an “auxiliary” variable.

Many sampling techniques use this property (slice sampling, rejection sampling....).
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Figure 2.1: The area A0 indicates in green, below the target function p(x).

Proof: The joint pdf of the random vector (X, U) is q(x, u) ∝ q(u|x)p(x),
where we use the symbol ∝ because p(x) ∝ po(x) in not necessarily
normalized. By the definition, we also have q(u|x) = 1/p(x) with 0 ≤ u ≤
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x€ 

u
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Table 2.2: Adaptive Rejection Sampling Algorithm.
1. Start with i = 1, t = 0, m0 = 2 S0 = {s1, s2} where s1 < s2, and

the derivatives of V (x) in s1, s2 ∈ D have different signs.
Let N be the number of desired samples from po(x).

2. Build the piecewise-linear function Wt(x) as shown in Figure 2.3,
using the tangent lines to V (x) at the support points in St.

3. Sample x� from πt(x) ∝ exp{−Wt(x)}, and u� from U([0, 1]).

4. If u� ≤ p(x�)
exp{−Wt(x�)} , then accept x(i) = x�, set St+1 = St, mt+1 = mt

and i = i + 1.

5. Otherwise, if u� > p(x�)
exp{−Wt(x�)} , then reject x�, set St+1 = St ∪ {x�} and

update mt+1 = mt + 1.

6. Sort St+1 in ascending order and increment t = t + 1.
If i > N then stop, else go back to step 2.

of concave V1(x) and convex V2(x) functions.

2.5 Ratio of Uniforms method

The standard ratio of uniforms (RoU) method [4] is a sampling technique
that relies on the following result.

Theorem: Let p(x) ≥ 0 be a pdf known only up to a proportionality
constant (p(x) ∝ po(x)). If (u, v) is a sample drawn from the uniform
distribution on the set

A =
�

(v, u) : 0 ≤ u ≤
�

p(v/u)
�

, (2.17)

then x = v
u

is a sample form po(x).
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Figure 2.14: Examples of the regions A obtained applying the RoU
transformation to standard Gaussian and Cauchy pdf’s. Each figure shows
lines corresponding to x constant (dotted line), u constant (dashed line) and v
constant (solid line). (a) A standard Gaussian density po(x) ∝ exp{−x2/2}.
(b) The region A corresponding to a standard Gaussian pdf. (c) A standard
Cauchy density po(x) ∝ 1/(1 + x2). (d) The region A corresponding to a
standard Cauchy pdf. It is a semi-circle with radius 1 and center in (0, 0).

2.16(a) and 2.16(b).

2.8.1 Generalized ratio of uniforms method

A more general version of the standard RoU method can be established with
the following theorem [153].

Theorem 6 Let g(u) be a strictly increasing differentiable function on R+

such that g(0) = 0 and let p(x) ≥ 0 be a pdf known only up to a proportionality
constant. Assume that (u, v) is a sample drawn from the uniform distribution
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(a) (b) (c)

Figure 2.15: (a) A triangular region A with a vertex at the origin v1 = (0, 0)
and where the side v2 − v3 has a generic slope. It corresponds to a density
of the form po(x) ∝ 1/(δx + β)2 transformed via the RoU method. (b)
A triangular region A obtained by transforming a uniform pdf by the RoU
method. The side v2−v3 is parallel to the axis v. (c) A triangular region A
obtained transforming a reciprocal uniform pdf po(x) ∝ 1/x2, x ∈ [a, b], by
the RoU method. The side v2 − v3 is parallel to the axis u.

on the set

Ag =

{
(v, u) : 0 ≤ u ≤ g−1

[
c p

(
v

ġ(u)

)]}
, (2.94)

where c > 0 is a positive constant and ġ = dg
du

. Then x = v
ġ(u)

is a sample

from po(x).

Proof: The argument is the same used for the standard RoU method (see
[79, 153]). Given the transformation (v, u)→ (x, z)




x =

v

ġ(u)

z = u
−→

{
v = xġ(z)

u = z
, (2.95)

and a pair of r.v.’s (V, U) uniformly distributed on Ag, we can write the joint
pdf q(x, y) of the transformed r.v.’s (X,Z) as

q(x, z) =
1

|Ag|
|J−1| for all 0 ≤ z ≤ g−1[cp(x)], (2.96)
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where si = [vi, ui] are point in the v−u space, the enveloping polygon Pt can
be built using the tangent lines at si to the boundary of the convex region
A. Figure ?? shows an example of enveloping polygon Pt..... s1, s1 , s2 , s3

, s4 , s5 , T1 , T2 , T3
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Once R is constructed, it is straightforward to draw uniformly from A by
rejection sampling: simply draw uniformly from R and then check whether
the candidate point belongs to A.
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Figure 2.4: (a) A bounded region A and the straight line v = xu
corresponding to the sample x = tan(α). Every point in the intersection
of the line v = xu and the set A yields the same sample x. The point on
the boundary, (v2, u2), has coordinates v2 = x

�
p(x) and u2 =

�
p(x). (b)

If the two functions
�

p(x) and x
�

p(x) are bounded, the set A is bounded
and embedded in the rectangle R.

Figure 2.5 (b)-(d) provides two examples of region A corresponding to
the standard Gaussian and Cauchy densities (shown in Figure 2.5 (a)-(c),
respectively). The pictures also illustrate different lines corresponding to x
constant (dotted line), u constant (dashed line), v constant (solid line) in the
domain x− u and in the transformed domain v − u.

In some cases the equation u =
�

p(v/u) can be solved analytically and

the boundary A can be found explicitly. In particular, when po(x) ∝ λ2

(αx+β)2

with x ∈ [a, b], the region A is a triangle, as depicted in Fig. 2.6 (a), with
one vertex at the origin, v1 = (0, 0), and the opposite side, v2 − v3, with
equation αv + βu = λ.

Figure 2.6 (b) illustrates the particular case with α = 0, when po(x)
becomes a uniform distribution and we obtain a triangular region with the
side v2 − v3 parallel to the axis v. Moreover, if β = 0 the pdf po(x) ∝ 1

x2

is called reciprocal uniform density (because we can obtain it by taking the
reciprocal of a uniform random variable U , i.e., 1/U) and the corresponding

Figure 2.7: (a)

It is straightforward to draw samples uniformly on the polygon Pt

dividing it in mt− 1 non-overlapping triangular areas Tk, i.e., Pt = ∪mt−2
k=1 Tk.

Moreover, it is possible to sample uniformly from a triangle Tk using only
two uniform random variables as described below. Therefore, to generate
samples uniformly in Pt, we first have to select a triangle proportionally to
the areas |Tk|, k = 0, ...,mt− 2. Therefore, we define the normalized weights

wk � |Tk|�mt

i=0 |Ti|
, (2.42)

and then we choose a triangular piece by drawing an index k� ∈ {0, ...,mt−2}
from the probability distribution P (k) = wk. Hence, we can easily generate
a point (v�, u�) uniformly in the selected triangular region Tk� .

If this point (v�, u�) belongs to A, we accept the sample x� = v�/u�

and set mt+1 = mt, St+1 = St and Pt+1 = Pt. Otherwise, we discard
the sample x� = v�/u� and incorporate it to the set of support points,
St+1 = St ∪ {s� = (v�, u�)}, so that mt+1 = mt + 1 and the region Tt+1 is
improved by adding another triangle.

This procedure is applicable if the region A is convex. It is possible to
prove that A is convex if, and only if, the target pdf po(x) is T -concave where
T (x) = −1/

√
x [6].
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Figure 2.16: (a) The shape of a table mountain density q(x) defined in Eq.
(2.93). (b) The region A obtained with the RoU transformation of the table
mountain density is a rectangle, i.e., A = R. The rectangular region R can
be divided in three non-overlapping triangular parts R = T1 ∪ T2 ∪ T3.

where |Ag| denotes the area of Ag, and J−1 is the Jacobian of the inverse
transformation, namely,

J−1 = det

[
ġ(z) xg̈(z)

0 1

]
= ġ(z). (2.97)

Substituting (2.97) into (2.96) yields

q(x, z) =





1

|Ag|
ġ(z) for 0 ≤ z ≤ g−1[cp(x)],

0, otherwise.

(2.98)

Hence, integrating q(x, z) w.r.t. z yields the marginal pdf of the r.v. X,

∫ +∞

−∞
q(x, z)dz =

∫ g−1[cp(x)]

0

1

|Ag|
ġ(z)dz =

=
1

|Ag|
[
g(z)

]g−1[cp(x)]

0
=

c

|Ag|
p(x)− 1

|Ag|
g(0) = q(x)

where the first equality follows from Eq. (2.98) and the remaining
calculations are trivial. Since we have also assumed g(0) = 0, it turns out
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that
q(x) =

c

|Ag|
p(x) = po(x). 2

In the boundary of the region Ag we have u = g−1[cp(x)] and, since
v = xġ(u), we also have v = xġ[g−1(cp(x))]. The contour of Ag is described
parametrically by the latter two equations.

Furthermore, if the two functions g−1[cp(x)] and xġ[g−1(cp(x))] are
bounded, the region Ag is embedded in the rectangular region

Rg =
{

(v, u) : 0 ≤ u ≤ sup
x
g−1[cp(x)],

inf
x
xġ[g−1(cp(x))] ≤ v ≤ sup

x
xġ[g−1(cp(x))]

}
.

(2.99)

In the sequel, we obtain the conditions that the function s = g(u) has to
satisfy in order that g−1[cp(x)] and xġ[g−1(cp(x))] be bounded.

Since g is a monotonic and continuous function, u = g−1[cp(x)] is bounded
if, and only if, p(x) is bounded. Moreover, the function v = xġ[g−1(cp(x))]
is bounded if p(x) is bounded and if the limits

lim
x→+∞

xġ[g−1(cp(x))] = L1, (2.100)

lim
x→−∞

xġ[g−1(cp(x))] = L2, (2.101)

are both finite, L1, L2 ≤ +∞. To obtain (2.100) and (2.101) we need that

1. the limits of the composition ġ ◦ g−1 ◦ cp vanish as x→ ±∞,

lim
x→±∞

ġ[g−1(cp(x))] = 0, (2.102)

2. and, ġ[g−1(cp(x))] decays to zero faster than x diverges to infinity.

Since limx→±∞ p(x) = 0 and g−1(0) = 0 (recall that we have assumed
g(0) = 0), the first condition is satisfied if

lim
u→0

ġ(u) = 0. (2.103)

Moreover, in order that ġ[g−1(cp(x))] decays to zero faster than x diverges
to infinity, the tails of p(x) have to decay to zero as

1

c
g

[
ġ−1

(
1

x

)]
, (2.104)
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or faster (note that ġ−1 denotes the inverse function of the derivative dg
du

).
Furthermore, given y = g(u) and since we know the relationship between the
derivatives

w = ġ(u) =
1

dg−1

dy
(g(u))

,

we can obtain (inverting both sides) u = ġ−1(w) and u = g−1

[(
dg−1

dy

)−1 (
1
w

)]

where
(
dg−1

dy

)−1

represents the inverse function of dg−1

dy
. Hence, we can also

write

ġ−1(w) = g−1

[(
dg−1

dy

)−1(
1

w

)]
, (2.105)

and with the change of variable w = 1/x we obtain

ġ−1

(
1

x

)
= g−1

[(
dg−1

dy

)−1

(x)

]
. (2.106)

Substituting (2.106) into (2.104), we find that the tails of p(x) have to decay
to zero as

1

c

(
dg−1

dy

)−1

(x) . (2.107)

Finally, the region Ag is bounded if

1. limu→0
dg
du

= 0,

2. and the tails of p(x) decays to zero as or faster than 1
c

(
dg−1

dy

)−1

(x).

Other generalizations of the RoU method can be found in the literature
[75]. Further development involving ratio of r.v.’s can be found in [8, 27, 31,
105, 127, 141, 150]

Transformation using power functions

A suitable family of transformations g(u) are the power functions [26], i.e.,

g(u) =
ur+1

(r + 1)
, u ≥ 0, (2.108)
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with r ≥ 0 and c = 1/(r + 1). Note that the first derivative ġ(u) is strictly
increasing for u ≥ 0.

The region Ag defined in Equation (2.94) becomes

Ag = Ar =
{

(v, u) : 0 ≤ u ≤
[
p(v/ur)

]1/(r+1)
}
, (2.109)

that we denote Ar, since with r = 1 we obtain the set of the standard RoU
method in Eq. (2.83) and the region A0 (delimited by the pdf po(x), see
Figure 2.1) defined in Eq. (2.29) with r = 0. The bounding rectangular
region is defined in this case as

Rr =
{

(v′, u′) :0 ≤ u′ ≤ sup
x

[p(x)]1/(r+1),

inf
x
x[p(x)]r/(r+1) ≤ v′ ≤ sup

x
x[p(x)]r/(r+1)

}
.

(2.110)

In other words, the region Ar is bounded if the functions [p(x)]1/(r+1) and
x[p(x)]r/(r+1) are both bounded. This occurs, in turn, when p(x) is bounded
and its tails decay as 1/x(r+1)/r or faster. Hence, for r > 1 we can handle
pdf’s with heavier tails than with the standard RoU method.

It is interesting to analyze the probability of acceptance, pA(r), for a
point drawn uniformly from the rectangle Rr. This probability is given by
the ratio between the two areas, i.e.,

pA(r) =
|Ar|
|Rr|

, (2.111)

and it is easy to prove that

|Ar| =
∫
D p(x)dx

r + 1
, (2.112)

in a way similar to the derivation of Eq. (2.89). Moreover, defining a(r) ,
sup[p(x)]1/(r+1), b−(r) , inf x[p(x)]r/(r+1) and b+(r) , supx[p(x)]r/(r+1), the
area of the bounding rectangle is |Rr| = a(r)[b+(r) − b−(r)]. Substituting
this expression into Eq. (2.111), we obtain

pA(r) =

∫
D p(x)dx

(r + 1)a(r)[b+(r)− b−(r)]
. (2.113)

In some cases, it is possible to analytically obtain the optimum value of r in
order to maximize the acceptance probability pA(r) in Eq. (2.113). We now
show an example involving a standard Gaussian pdf.
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Example 1 Consider a standard Gaussian density, i.e., po(x) ∝ p(x) =
exp{−x2/2} with x ∈ R. In this case, we know that

∫

R
p(x)dx = (2π)1/2

and

a(r) = sup[p(x)]1/(r+1) = 1. (2.114)

Moreover, we can find the first derivative of the function φ(x) ,
x[p(x)]r/(r+1) = x exp

{
− r

2(r+1)
x2
}

w.r.t. x and then write

dφ

dx
=

(
1− r

r + 1
x2

)
exp

{
− r

2(r + 1)
x2

}
. (2.115)

The solutions of dφ
dx

= 0 are x1,2 = ±
√

r+1
r

, where φ(x1) = b−(r) and

φ(x2) = b+(r) in Eq. (2.113). Namely, we obtain

b−(r) = inf
x
x[p(x)]r/(r+1) = −

(√
r + 1

r

)
exp{−1/2}, (2.116)

and

b+(r) = sup
x
x[p(x)]r/(r+1) =

(√
r + 1

r

)
exp{−1/2}. (2.117)

Substituting (2.114), (2.116) and (2.117) into (2.113) yields

pA(r) =
(2π)1/2

(r + 1)
[
( r+1

r
)1/2 exp{−1/2}+ ( r+1

r
)1/2 exp{−1/2}

] ,

which reduces to

pA(r) =
(2πre)1/2

2(r + 1)3/2
, (2.118)

after some straightforward calculations. The maximization of pA(r) in
(2.118) w.r.t. r yields minr pA(r) = 0.755, which is attained for r∗ = 1

2
.

Note that, for the standard RoU method (r = 1), we have pA(1) = 0.731.
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RoU method for multidimensional densities

The ratio of uniforms technique can be
easily generalized for multidimensional pdf’s. We provide below a version
using also the power transformation.

Theorem 7 Consider the target pdf po(x) ∝ p(x) with x = (x1, ..., xk) ∈ Rk

and assume that the point (v1, ..., vk, u) ∈ Rk+1 is a sample drawn uniformly
from the set

Ark =

{
(v1, ..., vk, u) : 0 ≤ u ≤

[
p

(
v1

ur
, ...,

vk
ur

)]1/(rk+1)
}
, (2.119)

where r ≥ 0. Then x = (x1, ..., xk), where xi = vi/u
r, is a sample from the

distribution with density po(x) ∝ p(x).

Proof: Assume that the r.v.’s (V1, ..., Vk, U) are distributed uniformly on
Ark, and consider the direct and inverse transformations





x1 =
v1

ur

. . .

xi =
vi
ur

. . .

y = u

−→





v1 = x1y
r

. . .

vi = xiy
r

. . .

u = y

. (2.120)

Then, the joint pdf q(x, y) of the r.v.’s (X1, ..., Xk, Y ) is

q(x, y) =
1

|Ark|
|J−1| for all 0 ≤ y ≤ [p(x1, ..., xk)]

1/(rk+1). (2.121)

Moreover, we can calculate easily the Jacobian of the inverse transformation

J−1 = det




yr 0 ... 0 x1ry
r−1

0 yr ... 0 x2ry
r−1

... ... ... ... ...
0 0 ... 0 1


 = yr × yr× (k)..... ×yr = yrk, (2.122)

so that

q(x, y) =
1

|Ark|
yrk for all 0 ≤ y ≤ [p(x1, ..., xk)]

1/(rk+1). (2.123)
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Finally, we integrate q(x, y) to obtain the marginal density q(x),

∫ +∞

−∞
q(x, y)dy =

∫ [p(x)]1/(rk+1)

0

yrk

|Ark|
dy =

=
1

|Ark|

[
y(rk+1)

rk + 1

][p(x)]1/(rk+1)

0

=
p(x)

(rk + 1)|Ark|
= po(x),

where the first equality follows from Eq. (2.123). 2

2.8.2 Relationship between the RoU, transformed
rejection and inverse-of-density methods

Let us consider a monotonic bounded target density po(x) with an unbounded
support D, so that the region A0 below po(x) is unbounded as well. In the
sequel, for simplicity we assume p(x) = po(x). Since y = po(x) is a bounded
monotonic function, the set Ag given by Eq. (2.94) can also be rewritten as

Ag =

{
(v, u) : 0 ≤ v ≤ p−1

o (g(u))ġ(u)

}
, (2.124)

where p−1
o (y) is the inverse of the target density (we have considered c = 1).

The RoU method asserts that if we are able to draw points (v′, u′) uniformly
from Ag defined as in Eq. (2.94) or, equivalently, in Eq. (2.124), the sample
x′ = v′/ġ(u′) is distributed according to po(x).

Let us consider an increasing differentiable transformation u = h(y).
Moreover, consider the random variable Y with pdf p−1

o (y) and the
transformed variable U = h(Y ) with density q(u) ∝ p−1

o (h−1(u))ḣ−1(u). The
region below q(u) is

Ah =

{
(v, u) : 0 ≤ v ≤ p−1

o (h−1(u))ḣ−1(u)

}
, (2.125)

and we can note that Eq. (2.124) is equivalent to Eq. (2.125) when
g(u) = h−1(u). Therefore, we can state the following result.

Proposition 1 The region Ag can be obtained as a transformation h = g−1

of a random variable Y distributed according to the inverse pdf p−1
o (y).

Specifically, given a r.v. U = h(Y ) = g−1(Y ) with pdf indicated as q(u),
the region Ag coincides with the area Ah below the curve q(u).
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Clearly, the cases of interest are those in which the region Ag is bounded,
as seen in Section 2.8. Moreover, in Section 2.5.6 we have discussed the
properties that a transformation h(y) have to fulfill in order to obtain a
bounded region Ah, when the inverse density p−1

o (y) is itself unbounded but
with bounded support, as shown in Figure 2.17(a). Specifically, we need that

lim
u→h(0)

dh−1

du
= 0, (2.126)

and x = p−1
o (y) goes to infinity faster than dh

dy
for y → 0, i.e., po(x) decays to

zero as (
dh

dy

)−1

(x), (2.127)

when x→ ±∞.
Note that if we set g(u) = h−1(u) and h(0) = 0, the expressions (2.126)

and (2.127) are exactly equivalent to the equations (2.103) and (2.104),
respectively. Hence, the conditions that the function g(u) in Section 2.8.1
must satisfy in order to guarantee the the region Ag be bounded are exactly
the same conditions that have to be imposed on the function h−1(u) of Section
2.5.6 in order to apply the transformed rejection method.

Therefore, we can argue the set Ag defined by Eq. (2.94) or (2.124) is
obtained by applying the transformed rejection method for unbounded pdf’s
to the inverse density p−1

o (y) (see Section 2.5.6). Figure 2.17(b) displays the
region Ah (that coincides with Ag if g = h−1) defined in Eq. (2.125). Figure
2.17(c) depicts the same region Ah rotated 90◦.

Moreover, given two variables v′ and u′ uniformly distributed on the set
Ah generated by extended inverse-of-density method described in Appendix
A, we can assert that the variable defined as

x′ =
v′∣∣dh−1

du

∣∣
u′

=
v′∣∣ḣ−1(u′)

∣∣ (2.128)

has density po(x). If we set h(y) = g−1(y) (with g a monotonic function)
we obtain x′ = v′/ġ(u′) that is exactly equivalent to the generalized RoU
technique in Section 2.8.1.

Therefore, we can see the RoU method as a combination of the
“transformed rejection method” applied to the inverse density p−1

o (y),
described in Section 2.5.6, with the “extended inverse-of-density method”
explained in Appendix A.
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This technique only requires us to know the functional form of the density
po(x) of interest up to a multiplicative constant (no deep analytical study of
po(x) is necessary). But an important limitation of RS methods is the need
to analytically establish a bound for the ratio of the target and proposal
densities, since there is a lack of general procedure for the computation
of exact bounds. The rejection sampling algorithm is based on a simple
connection with the uniform distribution, as explained below.

2.2.1 The fundamental theorem of simulation

There is a simple (fundamental) idea underlies the RS method and also other
Monte Carlo techniques.

Theorem: [5, Chapter 2] Drawing samples from a unidimensional target
density po(x) ∝ p(x) is equivalent to sample uniformly on the bidimensional
region defined by

A0 = {(x, u) : 0 ≤ u ≤ p(x)}. (2.5)

Fundamental Theorem of Simulation

Draw samples from a unidimensional target density po(x) ∝ p(x) it is equivalent to
sample uniformly on the bidimensional region defined by [2]

A0 = {0 ≤ u ≤ p(x)} (1)

Therefore, if we are able to sample points (x �, u�) uniformly on A0, the coordinate
x � is distributed as p(x) (i.e., x � ∼ p(x)).

The coordinate u is an “auxiliary” variable.

Many sampling techniques use this property (slice sampling, rejection sampling....).
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Figure 2.1: The area A0 indicates in green, below the target function p(x).
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where z� ∼ U([0, 1]). The Equations (B.6)-(B.7) differ only for the factor��dg−1
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��
u� . Hence, we can write

x� =
v���dg−1

du

��
u�

= v�|ġ(g−1(u�))|, (B.8)

i.e. the sample defined in Eq. (B.8) is distributed as po(x). We indicate with
ġ(x) = dg

dx
the first derivative of g(x).

The Eq. (B.8) can be seen as an extension of the Inverse-of-density
method when the inverse pdf Y ∼ p−1

o (y) is transformed by U = g(Y ).
Therefore, if we are able to draw points (u�, v�) uniformly in Ag we can
generate sample from the density po(x) using the Eq. (B.8). Moreover if
g(x) = 1, we have q(u) = p−1

o (y) and the area Ag is exactly A0 so that for
the Eq. (B.8)

x� = v�, (B.9)

i.e. we come back to the standard inverse-of-density method.
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Figure B.2: (a) If we first generate y� ∼ p−1
o (y) and then v� ∼ U([0, p−1

o (y�)]),
the sample x� = v� is distributed as po(x), as affirmed by the inverse-of-
density-method. (b) Given a transformation of random variable U = h(Y ),
we can generate uniformly points in the area Ah defined by the transformed
pdf q(u), drawing u� ∼ q(u) and then v� ∼ U([0, q(u�)]). The sample
x� = v�ḣ(h−1(u�)) has density po(x).
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€ 
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(c)

Figure 2.17: (a) Example of region A0 defined by the inverse density p−1
o (y).

(b) The density q(u) = 2
∣∣∣dh−1

du

∣∣∣ p−1
o (h−1(u)) obtained transforming the r.v.

Y , i.e., U = h(Y ). Generating uniformly the point (u′, v′) in the area Ah
we can obtain samples x′ from po(x) using Eq. (2.128). (c) The region
Ah rotated 90◦ in order to show it how appears when we apply the RoU
transformation.

2.8.3 Bounding polygons

The adaptive rejection sampling idea has been implemented jointly with
the RoU method in [92, 93]. Indeed, if the region A is convex it is
possible to construct adaptively a bounding region Pt, such that A ⊆ Pt,
with a polygonal boundary. The underlying idea is that drawing from the
polygon Pt is easier than drawing from A. This ability readily enables an
accept/reject procedure to draw uniformly from A. To be specific consider a
set of support points

St = {s1, s2, ..., smt}

where si = [vi, ui], i = 1, ...,mt, are point in the v − u space. The boundary
region Pt can be built using the straight lines tangent at si to the boundary
of the convex region A. Figure 2.18 shows an example of bounding set Pt
with polygonal boundary built using mt = 5 support points.

As a next step, note that it is always possible to calculate the first
derivative of the boundary of A if the function p(x) is differentiable, without
knowing the explicit equation of the contour. Indeed, the boundary of A can
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Once R is constructed, it is straightforward to draw uniformly from A by
rejection sampling: simply draw uniformly from R and then check whether
the candidate point belongs to A.
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Figure 2.4: (a) A bounded region A and the straight line v = xu
corresponding to the sample x = tan(α). Every point in the intersection
of the line v = xu and the set A yields the same sample x. The point on
the boundary, (v2, u2), has coordinates v2 = x

�
p(x) and u2 =

�
p(x). (b)

If the two functions
�

p(x) and x
�

p(x) are bounded, the set A is bounded
and embedded in the rectangle R.

Figure 2.5 (b)-(d) provides two examples of region A corresponding to
the standard Gaussian and Cauchy densities (shown in Figure 2.5 (a)-(c),
respectively). The pictures also illustrate different lines corresponding to x
constant (dotted line), u constant (dashed line), v constant (solid line) in the
domain x− u and in the transformed domain v − u.

In some cases the equation u =
�

p(v/u) can be solved analytically and

the boundary A can be found explicitly. In particular, when po(x) ∝ λ2

(αx+β)2

with x ∈ [a, b], the region A is a triangle, as depicted in Fig. 2.6 (a), with
one vertex at the origin, v1 = (0, 0), and the opposite side, v2 − v3, with
equation αv + βu = λ.

Figure 2.6 (b) illustrates the particular case with α = 0, when po(x)
becomes a uniform distribution and we obtain a triangular region with the
side v2 − v3 parallel to the axis v. Moreover, if β = 0 the pdf po(x) ∝ 1

x2

is called reciprocal uniform density (because we can obtain it by taking the
reciprocal of a uniform random variable U , i.e., 1/U) and the corresponding
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with x ∈ [a, b], the region A is a triangle, as depicted in Fig. 2.6 (a), with
one vertex at the origin, v1 = (0, 0), and the opposite side, v2 − v3, with
equation αv + βu = λ.

Figure 2.6 (b) illustrates the particular case with α = 0, when po(x)
becomes a uniform distribution and we obtain a triangular region with the
side v2 − v3 parallel to the axis v. Moreover, if β = 0 the pdf po(x) ∝ 1
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Figure 2.7: (a)

It is straightforward to draw samples uniformly on the polygon Pt

dividing it in mt− 1 non-overlapping triangular areas Tk, i.e., Pt = ∪mt−2
k=1 Tk.

Moreover, it is possible to sample uniformly from a triangle Tk using only
two uniform random variables as described below. Therefore, to generate
samples uniformly in Pt, we first have to select a triangle proportionally to
the areas |Tk|, k = 0, ...,mt− 2. Therefore, we define the normalized weights

wk � |Tk|�mt

i=0 |Ti|
, (2.42)

and then we choose a triangular piece by drawing an index k� ∈ {0, ...,mt−2}
from the probability distribution P (k) = wk. Hence, we can easily generate
a point (v�, u�) uniformly in the selected triangular region Tk� .

If this point (v�, u�) belongs to A, we accept the sample x� = v�/u�

and set mt+1 = mt, St+1 = St and Pt+1 = Pt. Otherwise, we discard
the sample x� = v�/u� and incorporate it to the set of support points,
St+1 = St ∪ {s� = (v�, u�)}, so that mt+1 = mt + 1 and the region Tt+1 is
improved by adding another triangle.
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reciprocal of a uniform random variable U , i.e., 1/U) and the corresponding

Figure 2.7: (a)

It is straightforward to draw samples uniformly on the polygon Pt

dividing it in mt− 1 non-overlapping triangular areas Tk, i.e., Pt = ∪mt−2
k=1 Tk.

Moreover, it is possible to sample uniformly from a triangle Tk using only
two uniform random variables as described below. Therefore, to generate
samples uniformly in Pt, we first have to select a triangle proportionally to
the areas |Tk|, k = 0, ...,mt− 2. Therefore, we define the normalized weights

wk � |Tk|�mt

i=0 |Ti|
, (2.42)

and then we choose a triangular piece by drawing an index k� ∈ {0, ...,mt−2}
from the probability distribution P (k) = wk. Hence, we can easily generate
a point (v�, u�) uniformly in the selected triangular region Tk� .

If this point (v�, u�) belongs to A, we accept the sample x� = v�/u�

and set mt+1 = mt, St+1 = St and Pt+1 = Pt. Otherwise, we discard
the sample x� = v�/u� and incorporate it to the set of support points,
St+1 = St ∪ {s� = (v�, u�)}, so that mt+1 = mt + 1 and the region Tt+1 is
improved by adding another triangle.

This procedure is applicable if the region A is convex. It is possible to
prove that A is convex if, and only if, the target pdf po(x) is T -concave where
T (x) = −1/

√
x [6].

€ 

v

Figure 2.18: Example of construction of a bounding polygon Pt using the
tangent lines at the support points si, i = 1, ...,mt = 5, to the boundary
of the convex region A. The polygon can be divided in mt − 2 = 3 non-
overlapping triangles, i.e., Pt = ∪3

k=1Tk.

be described parametrically as
{
u = u(x) =

√
p(x)

v = v(x) = x
√
p(x)

, (2.129)

in the case of the standard RoU method. Hence, we can use the chain rule
for computing the derivative and write

dv

du
=
dv

dx

dx

du
=

(
√
p(x) +

x

2
√
p(x)

dp

dx

)
(du/dx)−1 (2.130)

=

(
√
p(x) +

x

2
√
p(x)

dp

dx

)
 1

1

2
√
p(x)

dp
dx


 = 2

p(x)

ṗ(x)
+ x,

where x = v
u

and ṗ = dp
dx

.
Furthermore, it is straightforward to draw samples uniformly from the

polygon Pt by dividing it into mt − 2 non-overlapping triangular areas Tk,
i.e., Pt = ∪mt−2

k=1 Tk where Ti ∩ Tj = ∅ whenever i 6= j. Note that, it
is straightforward to sample uniformly from a triangle Tk using only two
uniform random variables, as shown in Appendix B.

Therefore, to generate samples uniformly from Pt, we first have to
randomly select a triangle with proportional probabilities to the areas |Tk|,
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k = 0, ...,mt− 2, and then draw from the selected triangular subset. For the
first step, we define the normalized weights

wk , |Tk|∑mt−2
i=0 |Ti|

, (2.131)

and then we choose a triangular piece by drawing an index k′ ∈ {0, ...,mt−2}
from the probability distribution P (k) = wk. For the second step, we easily
generate a point (v′, u′) uniformly in the selected triangular region Tk′ using
the procedure in Appendix B.

If this point (v′, u′) belongs to A, we accept the sample x′ = v′/u′

and set mt+1 = mt, St+1 = St and Pt+1 = Pt. Otherwise, we discard
the sample x′ = v′/u′ and incorporate it into the set of support points,
St+1 = St ∪ {s′ = (v′, u′)}, so that mt+1 = mt + 1 and the region Pt+1 is
improved by adding another tangent line.

We remark that this procedure is applicable if the region A is convex. It
is possible to prove that A is convex if, and only if, the target pdf po(x) is
T -concave where T (x) = −1/

√
x [92].

Moreover, in [61] it is proved that every log-concave density is also a T -
concave pdf with T (x) = −1/

√
x. Therefore, this adaptive RoU technique

can be applied to log-concave target pdf po(x) as well.
An outline of the adaptive RoU algorithm is given in Table 2.15.

2.9 Summary

In this chapter, we have described a collection of random sampling methods
[30, 44, 64, 149] that are relevant for the original material to be introduced
in Chapters 3, 4 and 5. All the technique we have discussed assume the
availability of a random source with known distribution (often uniform) and
all of them, except for the ARMS algorithm, are designed to yield i.i.d.
random samples.

The various techniques have been broadly classified by the methodology
in which they are based. Hence, we have started with direct algorithm
based on transformation of random variables. Then we have revisited the
fundamental theorem of simulation and, from there, we have elaborated on
the rejection sampling and adaptive rejection sampling families of methods.
Finally, we have explored the ratio of uniforms approach, that can be seen
both a transformation-based and as a rejection-based technique.
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Table 2.15: Adaptive RoU scheme.
1. Start with t = 0, j = 1 and initialize the set of support points
S0 = {s1, ..., sm0}.

For every t ≥ 0:
2. Construct the enveloping polygon Pt using the tangent lines at si,

i = 1, ...,mt, to the boundary of the convex region A.

3. Construct the triangular regions Tk, k = 0, ...,mt − 2, as described
in Figure 2.18.

4. Calculate the area |Tk| of every triangle, and compute the normalized
weights

wk , |Tk|∑mt−2
i=0 |Ti|

, with k = 0, ...,mt − 2.

5. Draw an index k′ ∈ {0, ...,mt − 2} from the probability distribution
P (k) = wk.

6. Generate a point (v′, u′) uniformly from the region Tk′ as explained
in Appendix B.

7. If u′ ≤
√
p(v′/u′), then accept the sample x(j) = x′ = v′

u′ , set j = j + 1,
St+1 = St and mt+1 = mt.

8. Otherwise, if u′ >
√
p(v′/u′), then reject the sample x′ = v′

u′ ,
set St+1 = St ∪ {s′ = (v′, u′)}, and sort St+1 in ascending order.
Finally, update mt+1 = mt + 1.

9. If j > N then stop, else go back to step 2.

An additional effort has been made to establish connections and
relationships among the various techniques. Some of these links are well-
known, but some others we have not to be able to find in the literature. The
latter include the material on Section 2.2.4 (on the generic deconvolution
method); the equivalent between the inverse-of-density algorithm and the
VDR type 2 technique (see Section 2.4.1); the extension of the transformed
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rejection method for unbounded pdf’s (see Section 2.5.6); and the extensions
of the transformed density rejection in Section 2.7.3.
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Chapter 3

A generalization of the adaptive
rejection sampling algorithm.

In this chapter, we introduce a generalization of the standard ARS method
of [50]. The new algorithm can be applied to a large class of target pdf’s,
possibly not log-concave and possibly multimodal. In particular, we only
assume that the log-density log[po(x)] can be expressed as a sum of composed
functions, log[po(x)] = −∑n

i (V̄i ◦ gi)(x) + cst, where the V̄i’s are convex
and the gi’s are either convex or concave. These initial assumptions on the
convexity of the V̄i’s and the gi’s can be relaxed, as shown in Chapter 5.
Although this is not a universal decomposition that can be applied to every
density of interest, indeed the freedom in the choice of the V̄i’ and the gi’s
enables to describe a large family of pdf’s that includes, e.g., a posteriori
distributions of random variables given a set of independent observations.

The method is based on constructing piecewise-linear approximations of
the nonlinearities gi underlying the target density. The construction of these
approximations requires a sequence of calculations that can be relatively long
depending on the target pdf. They are very systematic, though, and the
resulting piecewise-linear approximation yields an easy-to-sample proposal
pdf. In the same spirit as the original ARS, the proposals are improved
every time a candidate sample is rejected.

The proposed method includes the standard ARS of [47, 50] as a
special case and brings other improvements over existing techniques. It
can be applied to non-log-concave pdf’s (unlike the standard ARS [50]),
to multimodal pdf’s (differently from the transformed density rejection of
[61], described in Section 2.7.3) and does not need the knowledge of the
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inflection points of the potential function (as required in [36]). Moreover,
the proposed technique produces independent samples (differently from the
ARMS algorithm of [48], described in Section 2.7.1).

The new generalized ARS (GARS) technique is conceived to be used
within more elaborate Monte Carlo methods. It enables, for instance, a
systematic implementation of the accept/reject particle filter of [90]. There
is another potential application in the implementation of the Gibbs sampler
for systems in which the conditional densities are complicated.

The rest of the chapter is organized as follows. Some preliminary
definitions and assumptions are presented in Section 3.1. The basic form
of the new algorithm is introduced in Section 3.2 that contains the standard
ARS as a special case, as shown in Section 3.3. In Section 3.4, we study
the asymptotic convergence of sequence of the proposal pdf’s built with the
GARS method toward the target density. Some limitations are discussed in
Section 3.6. Section 3.7 is devoted to describe the range of applicability of
the proposed technique. We conclude with a brief summary and conclusions
in Section 3.8.

3.1 Model

In this chapter we consider a target pdf po(x), x ∈ D ⊆ R, that can be
written as

po(x) ∝ p(x) = exp {−V (x; g)} = exp

{
−

n∑

i=1

V̄i(gi(x))

}
, (3.1)

where the potential function has the form

V (x; g) ,
n∑

i=1

V̄i(gi(x)). (3.2)

We assume that

1. the functions V̄i(ϑi), for i = 1, . . . , n (hereafter called marginal
potentials), are convex with a minimum at µi and

2. the nonlinearities gi(x), i = 1, . . . , n, are either convex or concave (i.e.,
they have a second derivative with constant sign).

82



Note that this scenario can be related to a product of densities [104], i.e.,
po(x) can be expressed as

po(x) ∝
n∏

i=1

qi(x), (3.3)

where qi(x) ∝ exp{−V̄i(gi(x))}, i = 1, ..., n.
The potential V (x; g) in Eq. (3.2) is, in general, a non-convex function.

Moreover, in general it is impossible to study analytically the first and second
derivatives of the potential V (x; g) of Eq. (3.2) in order to calculate the
stationary or inflection points. Therefore, the procedures (standard ARS,
transformed density, concave convex ARS, etc...) [36, 50, 61, 54] in the
literature cannot be applied, in general, but only for some specific choices of
the V̄i’s and gi’s.

3.2 The GARS algorithm

3.2.1 Basics

In this section we describe the basic procedure to build a proposal density
π(x) in a given interval I ⊂ D of values of x. Later on, we generalize this
procedure to yield an adaptive method. We first recall the potential function
− log[p(x)] in Eq.( 3.2),

V (x; g) = − log[p(x)] =
n∑

i=1

V̄i(gi(x)).

Given an interval I ⊂ D, we proceed in two steps. First, we replace every
nonlinearity gi(x) with a suitable linear function ri(x). In this way we
generate a modified potential V (x, r), with

r(x) , [r1(x), r2(x), . . . , rn(x)],

that lies below the original one, i.e., V (x, r) ≤ V (x,g). Second, we construct
a linear function W (x) that is tangent at an (arbitrary) point x∗ ∈ I to the
modified potential V (x, r). The two steps are described in detail below.

1. We build linear functions ri(x) such that

V̄i(ri(x)) ≤ V̄i(gi(x)) , ∀x ∈ I, (3.4)
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for every i = 1, . . . , n (see Section 3.2.3 for details). As a consequence,
substituting g by r into the functional V (x; ·), we obtain the inequality

V (x; r) ,
n∑

i=1

V̄i(ri(x))

≤ V (x; g) =
n∑

i=1

V̄i(gi(x)),

(3.5)

∀x ∈ I. Note that exp{−V (x; r)} is already an overbounding function
for p(x), i.e.,

exp{−V (x; r)} ≥ exp{−V (x; g)} = p(x). (3.6)

However, it is not possible in general to draw from π∗(x) ∝
exp{−V (x; r)} and we need to seek further simplifications.

2. Note that the modified potential V (x; r) is convex in I. Indeed,

d2V̄i(ri(x))

dx2
=
dV̄i
dϑ

d2ri
dx2

+

(
dri
dx

)2
d2V̄i
dϑ2

= 0 +

(
dri
dx

)2
d2V̄i
dϑ2
≥ 0

(3.7)

where we have used that
d2ri
dx2

= 0,

because ri is linear, and the convexity of the marginal potentials V̄i(ϑ),
i = 1, . . . , n. Therefore, we can choose a line tangent to V (x; r) at
an arbitrary point x∗ ∈ I to build a linear function W (x) such that
W (x) ≤ V (x; r) for all x ∈ I. Thus,

exp{−W (x)} ≥ exp{−V (x; r)}
≥ exp{−V (x; g)} = p(x)

(3.8)

is an overbounding function of p(x) ∝ po(x). Since W (x) is linear, it is
straightforward to compute the proportionality constant

c−1 =

∫

x∈I
exp{−W (x)}dx (3.9)
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and to use the density π(x) = c exp{−W (x)} as a proposal function.
Drawing from π(x) is easy because it is a truncated exponential pdf,
restricted to I.

Figure 3.1 shows an example of construction of the linear function W (x) in
a generic interval I ⊂ D. The picture represents a non-convex potential
V (x; g) (solid line) and the corresponding modified potential V (x; r) in I,
depicted with a dashed line. The linear function W (x) is tangent to the
modified potential V (x; r) in an arbitrarily chosen point x∗ ∈ I.
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and to use the density π(x) = c exp{−W (x)} as a proposal function.
Drawing from π(x) is easy because it is a truncated exponential pdf,
restricted to I.

Figure 3.1 (b) shows an example of construction of the linear function W (x)
in a generic interval I ⊂ D. The picture represents a non-convex potential
V (x;g) (solid line) and the corresponding modified potential V (x; r) in I,
depicted in dashed line. The linear function W (x) is tangent to the modified
potential V (x; r) in an arbitrary point x∗ ∈ I.
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Figure 3.1: (b) Example of construction of the linear function W (x) inside
a generic interval I = [s1, s2]. The picture shows a non-convex potential
V (x;g) in solid line while the modified potential V (x; r) is depicted in dashed
line for ∀x ∈ I. The linear function W (x) is tangent to V (x; r) at a arbitrary
point x∗ ∈ I.
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The basic method described above can be iterated to yield a sequence of
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V (x;g) in solid line while the modified potential V (x; r) is depicted in dashed
line for ∀x ∈ I. The linear function W (x) is tangent to V (x; r) at a arbitrary
point x∗ ∈ I.
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line for ∀x ∈ I. The linear function W (x) is tangent to V (x; r) at a arbitrary
point x∗ ∈ I.

3.2.2 Adaptive algorithm

The basic method described above can be iterated to yield a sequence of
proposal pdf’s

π1(x), π2(x), . . . , πt(x), . . . ,

that converges to the target pdf po(x). Similar to other ARS-like techniques,
the proposed adaptive algorithm is based on a collection of support points
from which the proposed densities are built. Let us denote the set of support
points after the t-th iteration as

St , {s1, s2, . . . , smt} ⊂ D (3.10)
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and sort them in ascending order, s1 < . . . < smt , where mt is the
number of elements. From the points in St we construct the closed intervals
Ik , [sk, sk+1] for k = 1, . . . ,mt − 1, together with two semi-open intervals
I0 , (−∞, s1] and Imt , [smt ,+∞). For each interval Ik, k = 0, . . . ,mt, we
build suitable vectors of linear functions rk(x) , [r1,k(x), . . . , rn,k(x)], using
the technique in Section 3.2.3, to comply with the inequality (3.4), i.e.,

V̄i(ri,k(x)) ≤ V̄i(gi,k(x)), (3.11)

for all x ∈ Ik, i = 1, ..., n and k = 0, ...,mt. This implies that V (x; rk) ≤
V (x; g) when x ∈ Ik.

Moreover, since the modified potential V (x; rk) is convex, it is possible
to build a piecewise-linear lower hull Wt(x) such that

Wt(x) ≤ V (x; rk) ≤ V (x; g), (3.12)

for all x ∈ Ik and for every k = 0, ...,mt. Indeed, let us build the
straight lines tangent to the modified potential V (x; rk) at arbitrary points
x∗k ∈ Ik = [sk, sk+1], and denote them wk(x). As a result, the piecewise linear
function Wt(x) at the t-iteration is

Wt(x) ,





w0(x), if x ∈ I0
...
wmt(x), if x ∈ Imt ,

(3.13)

Since wk(x) ≤ V (x; g) ∀x ∈ Ik, it follows that Eq. (3.12) is satisfied.
The t-th proposal density is

πt(x) ∝ exp{−Wt(x)}. (3.14)

When a sample x′ drawn from πt(x) is rejected, x′ is incorporated as a support
point in the new set St+1 , St ∪ {x′} and, as a consequence, a refined lower
hull Wt+1(x) is constructed yielding a better approximation of the potential
function V (x; g). In this way, πt+1(x) ∝ exp{−Wt+1(x)} becomes closer to
the target pdf po(x) and it can be expected that the mean acceptance rate
be higher.

Figure 3.2 illustrates the construction of the piecewise linear function
Wt(x) using the proposed technique for the non-convex potential V (x; g) =
16 − 8x2 + x4 with three support points, St = {s1, s2, smt=3}. Indeed,
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this potential can be rewritten as V (x; g) = (4 − x2)2, so that we can
interpret it as a composition of functions (V̄1 ◦ g1)(x), where V̄1(ϑ) = ϑ2

and g1(x) = 4 − x2 (n = 1). The dashed line shows the modified potentials
V (x; rk), k = 0, . . . ,mt = 3. Function Wt(x) consists of segments of linear
functions wk(x) tangent to the modified potentials V (x; rk) at arbitrary
points x∗k ∈ Ik, with k = 0, . . . ,mt = 3.
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Figure 3.1: (b) Example of construction of the linear function W (x) inside
a generic interval I = [s1, s2]. The picture shows a non-convex potential
V (x;g) in solid line while the modified potential V (x; r) is depicted in dashed
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that converges to the target pdf po(x). Let us consider the set of support
points after the t-th iteration

St � {s1, s2, . . . , smt} ⊂ D (3.16)

sorted in ascending order, s1 < . . . < smt , where mt is the number of elements.
From the points in St we construct the closed intervals Ik � [sk, sk+1] for
k = 1, . . . ,mt − 1, together with two semi-open intervals I0 � (−∞, s1] and
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hull Wt+1(x) is constructed yielding a better approximation of the potential
function V (x;g). In this way, πt+1(x) ∝ exp{−Wt+1(x)} becomes closer to
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Figure 3.2: Example of construction of the piecewise linear function Wt(x)
with three support points St = {s1, s2, smt=3}, as carried out by the GARS
technique. The potential is V (x; g) = 16 − 8x2 + x4 = (4 − x2)2 (blue solid
line), therefore we can express it as V (x; g) = (V̄1 ◦ g1)(x) where V̄1(ϑ) = ϑ2

and g1(x) = 4 − x2 (i.e., n = 1 and the vector of nonlinearities g = g1 is
scalar). The modified potential V (x; rk), for x ∈ Ik, is depicted with dashed
red lines. The piecewise linear function Wt(x) (depicted with solid black
lines) consists of segments of linear functions wk(x) tangent to the modified
potential V (x; rk) at arbitrary points x∗k ∈ Ik, with k = 0, . . . ,mt = 3, where
I0 = [−∞, s1], I1 = [s1, s2], I2 = [s2, s3] and I3 = [s3,+∞].

3.2.3 Construction of the linear functions ri,k(x)

In this subsection we first define the set of simple estimates, needed in the
sequel, and then describe in detail how to build adequate linear functions
ri,k(x), i = 1, ..., n and k = 0, ...,mt, for each nonlinearity gi and each interval
Ik.
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Simple estimates

In order to build suitable linear functions ri,k(x), we need to introduce the
set of simple estimates corresponding to the nonlinearity gi(x) as

Xi , {xi ∈ R : gi(xi) = µi}, (3.15)

where µi is the position of the minimum of the marginal potential V̄i. The
reason of the name “simple estimates” is clarified in Section 3.7.1.

We recall that each function gi(x) is assumed to have a second derivative
with constant sign, hence the equation µi = gi(xi) can yield zero (|Xi| = 0,
i.e., it is empty), one (|Xi| = 1) or two (|Xi| = 2) simple estimates. Clearly,
if gi(x) is a monotonic function then |Xi| ≤ 1. Figure 3.3 displays the three
possible cases for a generic concave gi(x).
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Figure 3.3: Example of the three possible cases for a concave nonlinearity
gi(x). (a) The set Xi is empty, |Xi| = 0. (b) There exists one simple estimate
xi, i.e., |Xi| = 1. (c) The nonlinearity gi(x) is a non-monotonic function and
|Xi| = 2 (Xi = {xi,1, xi,2}).

We assume that all the simple estimates in Xi, i = 1, ..., n, are included
in the initial set of support points S0 (t = 0), i.e.,

Xi ⊂ S0, for i = 1, ..., n. (3.16)

This condition is needed for the construction of suitable linear functions
ri,k(x), i = 1, ..., n and k = 0, ...,mt.
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Construction

The GARS algorithm relies on the ability to obtain linear functions ri,k(x),
for i = 1, . . . , n and k = 0, . . . ,mt. It is easy to see that the inequality (3.4)
is satisfied for the class of marginal potential functions V̄i (convex with a
minimum at µi) if

|µi − ri,k(x)| ≤ |µi − gi(x)| and (3.17)

(µi − ri,k(x))(µi − gi(x)) ≥ 0 (3.18)

jointly, ∀x ∈ Ik, where µi = arg min
ϑ
V̄i(ϑ). Indeed, if µi ≤ a ≤ b then

V̄i(a) ≤ V̄i(b) because V̄i is increasing in (µi,+∞) whereas for b ≤ a ≤ µi
we have also V̄i(a) ≤ V̄i(b) because V̄i is decreasing in (−∞, µi). Figure 3.4
illustrates the latter inequalities. We can see that green points, closer to the
minimum µi than the red points, have always a smaller potential value.
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Figure 3.4: An example of marginal potential V̄i(ϑi). Since we assume that
V̄i is convex with a minimum at µi, we have always V̄i(a) ≤ V̄i(b) if b ≥ a ≥ µi
or V̄i(a

′) ≤ V̄i(b
′) if b′ ≤ a′ ≤ µi.

Figure 3.5 provides the basic idea of how to construct the linear functions
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lines while in I1 = [s1, s2] and I2 = [s2, s3] we should use the linear functions
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I0, I1, I2, I3, I4

The algorithm described above, rely on the ability to obtain linear functions
ri,k(x), for i = 1, . . . , n and k = 0, . . . ,mt, such that

V̄i(ri,k(x)) ≤ V̄i(gi(x)) ∀x ∈ Ik = [sk, sk+1]. (3.24)

If Eq. (3.24) holds then it is straightforward to check that V (x; rk) ≤ V (x;g)
∀x ∈ Ik, where rk(x) = [r1,k(x), . . . , rn,k(x)] and g(x) = [g1(x), . . . , gn(x)]. On
the other hand, it is easy to see that the inequality (3.24) holds for the class of
marginal potential functions V̄i if

|µi − ri,k(x)| ≤ |µi − gi(x)| and (3.25)
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∀x ∈ Ik, where rk(x) = [r1,k(x), . . . , rn,k(x)] and g(x) = [g1(x), . . . , gn(x)]. On
the other hand, it is easy to see that the inequality (3.24) holds for the class of
marginal potential functions V̄i if

|µi − ri,k(x)| ≤ |µi − gi(x)| and (3.25)
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Figure 3.5: Example of construction of the linear function ri,k(x) in order to
replace a convex nonlinearity gi(x) in different intervals Ik, using mt = 3
support points, St = {s1 = xi,1, s2, s3 = xi,2}. The absolute difference
between the linear function ri,k(x) and the value µi, i.e., dr = |µi − ri,k(x)|,
is always less than the distance dg = |µi − gi(x)| in the interval Ik, i.e.,
dr ≤ dg for all x ∈ Ik. Hence, in I0 = [−∞, s1] and I3 = [s3,+∞] we use
tangent straight lines while in I1 = [s1, s2] and I2 = [s2, s3] we use the linear
functions passing through the two support points.

Note that if we denote as Ji = [s1 = xi,1, s3 = xi,2] the interval limited
by the simple estimates associated to the function gi(x), the procedure in
Figure 3.5 can be summarized as

1. if Ik ⊂ Ji (i.e., Ik ∩ Ji = Ik), use secant lines,

2. otherwise, if |Ik ∩ Ji| = 0, use tangent lines.

Figures 3.6 displays two examples of construction with four support
points. Specifically, it shows the construction of the linear functions ri,k(x)
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I0, I1, I2, I3,Ji

The algorithm described above, rely on the ability to obtain linear functions
ri,k(x), for i = 1, . . . , n and k = 0, . . . ,mt, such that

V̄i(ri,k(x)) ≤ V̄i(gi(x)) ∀x ∈ Ik = [sk, sk+1]. (3.24)

If Eq. (3.24) holds then it is straightforward to check that V (x; rk) ≤ V (x;g)
∀x ∈ Ik, where rk(x) = [r1,k(x), . . . , rn,k(x)] and g(x) = [g1(x), . . . , gn(x)]. On
the other hand, it is easy to see that the inequality (3.24) holds for the class of
marginal potential functions V̄i if

|µi − ri,k(x)| ≤ |µi − gi(x)| and (3.25)
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The algorithm described above, rely on the ability to obtain linear functions
ri,k(x), for i = 1, . . . , n and k = 0, . . . ,mt, such that

V̄i(ri,k(x)) ≤ V̄i(gi(x)) ∀x ∈ Ik = [sk, sk+1]. (3.24)

If Eq. (3.24) holds then it is straightforward to check that V (x; rk) ≤ V (x;g)
∀x ∈ Ik, where rk(x) = [r1,k(x), . . . , rn,k(x)] and g(x) = [g1(x), . . . , gn(x)]. On
the other hand, it is easy to see that the inequality (3.24) holds for the class of
marginal potential functions V̄i if
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Figure 3.6: Example of construction of the appropriate linear functions
ri,k(x), with k = 0, . . . ,mt = 4 for a non-monotonic convex nonlinearity
gi(x). The interval defined by the simple estimates Ji = [xi,1, xi,2] is indicated
by solid double arrows. The set of support points St = {s1, s2, s3, s4}
includes always the simple estimates xi,1 and xi,2 (indicated by squares) and
Ik = [sk, sk+1], k = 1, 2, 3, I0 = (−∞, s1] and I4 = [s4,+∞). (a) Since I0,
I4 are not contained in Ji we use tangent lines for ri,0(x) and ri,4(x). Since
I1, I2, I3 ⊆ Ji, we use secant lines for ri,1(x), ri,2(x) and ri,3(x). (b) Since
I0, I3 and I4 are not contained in Ji we use tangent lines for ri,0(x), ri,3(x)
and ri,4(x). Since I1, I2 ⊆ Ji, we use secant lines for ri,1(x) and ri,2(x).

when gi(x) is non-monotonic and convex with mt = 4 support points. In
Figure 3.6(a) the intervals I0 and I4 are not contained in Ji = [xi,1, xi,2],
hence the use two tangent lines to build ri,0(x) and ri,4(x). Since I1, I2, I3 ⊆
Ji, we use secant lines for ri,1(x), ri,2(x) and ri,3(x). In Figure 3.6(b) the
intervals I0, I3 and I4 are not contained in Ji, hence we use tangent lines
for ri,0(x), ri,3(x) and ri,4(x). Since I1, I2 ⊆ Ji, we use secant lines for ri,1(x)
and ri,2(x).

Computational procedure

Now, we introduce a general computational procedure that enables the
computation of ri,k(x) for all cases of interest. For the adequate enumeration
of the possible scenarios, we have to extend the definition of the interval Ji
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associated to the function gi(x). Recall that xi,j is a simple estimate of gi(x)

if, and only if, gi(xi,j) = µi. Since d2gi
dx2 is assumed to have constant sign in

Ik, there are three possibilities for the construction of Ji:

• If gi(x) is non-monotonic then there may exist two, one or zero solutions
to the equation gi(x) = µi. If there are two solutions, denoted
xi,1 < xi,2, we define Ji = [xi,1, xi,2]. Otherwise, we define Ji = ∅.

• If gi(x) is monotonic and

dgi(x)

dx
× d2gi(x)

dx2
≥ 0

(increasing and convex or decreasing and concave, see Figure 3.8(f)
and Figure 3.8(h)), then there may exist one or zero solutions to
the equation gi(x) = µi. If there is one solution, denoted xi, then
Ji = (−∞, xi] otherwise Ji = ∅.

• If gi(x) is monotonic and

dgi(x)

dx
× d2gi(x)

dx2
≤ 0

(decreasing and convex or increasing and concave, see Figure 3.8(e) and
Figure 3.8(i)), then there may also exist at most one solution xi. If xi
exists, then Ji = [xi,+∞), otherwise Ji = ∅.

Take some Ik, k ∈ {0, . . . ,mt}. With the above definition, Ji is either
disjoint of Ik (except, maybe, for a single point, and |Ji ∩ Ik| = 0 anyway)
or a superset of the interval Ik, i.e., Ik ∩ Ji = Ik. Any other possibility is
excluded because the sets of support points S0 ⊆ . . . ⊆ St contain all the
simple estimates.

Now we provide a procedure for the construction of ri,k(x), i ∈ {1, . . . , n},
k ∈ {0, . . . ,mt} with x ∈ I0 = (−∞, s1] for k = 0, x ∈ Ik = [sk, sk+1] for
k = 1, . . . ,mt − 1 and x ∈ Imt = [smt ,+∞) for k = mt:

1. If Ik ∩ Ji = Ik then choose the secant line ri,k(x) that connects the
points (sk, gi(sk)) and (sk+1, gi(sk+1)).

2. If |Ik ∩ Ji| = 0 and gi(x) is monotonic in Ik (this is always true if
|Ji| > 0), then set ri,k(x) as the tangent line to gi(x)
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2a) at sk, if dgi(x)
dx
× d2gi(x)

dx2 ≥ 0 in Ik, or

2b) at sk+1, if dgi(x)
dx
× d2gi(x)

dx2 ≤ 0 in Ik.

3. If |Ji| = 0 and gi(x) is non-monotonic in Ik then ri,k(x) = Bi, where
Bi is a bound of gi(x). Specifically, set

Bi ,
{

max{µi, εi}, if d2gi(x)
dx2 > 0

min{µi, εi}, if d2gi(x)
dx2 < 0

, (3.19)

where εi is the image of the intersection point x∗ ∈ Ik such that
ri,k−1(x∗) = ri,k+1(x∗) = εi.
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ri,k(x), for i = 1, . . . , n and k = 0, . . . ,mt, such that

V̄i(ri,k(x)) ≤ V̄i(gi(x)) ∀x ∈ Ik = [sk, sk+1]. (3.24)
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marginal potential functions V̄i if
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the intervals [−∞, s1] and [s3,+∞] we use tangent straight lines while in [s1, s2]
and [s2, s3] we use the linear functions passing through the two support points.
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through the two support points.

only if, gi(xi,j) = µi. Since d2gi

dx2 is assumed to have constant sign in Ik, there
are three possibilities for the construction of Ji:

• If gi(x) is non-monotonic then there may exist two, one or zero solutions
to the equation gi(x) = µi. If there are two solutions, denoted
xi,1 < xi,2, we define Ji = [xi,1, xi,2]. Otherwise, we define Ji = ∅.

• If gi(x) is monotonic and dgi(x)
dx

× d2gi(x)
dx2 ≥ 0 then there may exist one

or zero solutions to the equation gi(x) = µi. If there is one solution,
denoted xi, then Ji = (−∞, xi] otherwise Ji = ∅.

• If gi(x) is monotonic and dgi(x)
dx

× d2gi(x)
dx2 ≤ 0 then there may also exist

at most one solution xi. If xi exists, then Ji = [xi, +∞), otherwise
Ji = ∅.

Take some Ik, k = 0, . . . ,mt. With the above definition, Ji is either disjoint
of Ik (except, maybe, for a single point, and |Ji ∩ Ik| = 0 anyway) or a
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I0, I1, I2, I3, I4

The algorithm described above, rely on the ability to obtain linear functions
ri,k(x), for i = 1, . . . , n and k = 0, . . . ,mt, such that

V̄i(ri,k(x)) ≤ V̄i(gi(x)) ∀x ∈ Ik = [sk, sk+1]. (3.24)

If Eq. (3.24) holds then it is straightforward to check that V (x; rk) ≤ V (x;g)
∀x ∈ Ik, where rk(x) = [r1,k(x), . . . , rn,k(x)] and g(x) = [g1(x), . . . , gn(x)]. On
the other hand, it is easy to see that the inequality (3.24) holds for the class of
marginal potential functions V̄i if

|µi − ri,k(x)| ≤ |µi − gi(x)| and (3.25)
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Figure 3.7: Example of construction of the linear functions ri,k(x) when
|Ji| = 0 and gi(x) is non-monotonic and convex. We use two support points
St = {s1, s2}. Since |Ji ∩ I0| = |Ji ∩ I2| = 0 (|Ji| = 0), we construct
ri,0(x) and ri,2(x) as tangent lines. In I1 = [s1, s2], the nonlinearity gi(x) is
non-monotonic, since this interval contains the minimum value, and we set
ri,1(x) = Bi. (a) The value µi is greater than εi. So we choose Bi = µi. (b)
The value εi is greater than µi. Therefore, we set Bi = εi.

We have already illustrated in Figures 3.5 and 3.6 the construction of the
linear functions ri,k(x) when gi(x) is non-monotonic, convex and |Ji| > 0
(indeed, in this case there are two simple estimates xi,1, xi,2). Those figures
illustrate the steps 1 and 2 of the procedure proposed above.
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Figure 3.7 depicts the construction of ri,k(x) when |Ji| = 0 and gi(x)
is convex. The linear functions ri,0(x) and ri,2(x) are tangent to gi(x) and
they have an intersection ri,0(x∗) = ri,2(x∗) = εi, x

∗ ∈ I1. Since gi(x) is
non-monotonic in I1 = [s1, s2], ri,1(x) is a constant. Those figures illustrate
step 3 of the procedure.

Finally, Figure 3.8 displays an example of construction of the linear
functions ri,k(x) for all possible types of nonlinearities gi(x). Figures
3.8(a),(d),(g) show a marginal potential V̄i(ϑi) (convex with a minimum
at µi) with rotated axes. Figures 3.8(b),(c) illustrate the construction
of ri,k(x) with mt = 3 support points for non-monotonic gi(x). Figures
3.8(e),(f) depict the construction with mt = 2 support points for monotonic
increasing gi(x), while Figures 3.8(h),(i) correspond to monotonic decreasing
nonlinearities gi(x). For all cases, we can see that given an arbitrary x′

the value V̄i(ri,k(x)) (green point) is always less than V̄i(gi(x)) (red point),
i.e., V̄i(ri,k(x)) ≤ V̄i(gi(x)). Moreover, note that, if gi(x) is monotonic, then
either Ji = (−∞, xi] or Ji = [xi,+∞) and it occurs that I0 = (−∞, s1] ⊆ Ji
or Imt = [smt ,+∞) ⊆ Ji, respectively. In the first case, the construction
algorithm yields ri,0(x) = gi(s1) while, in the second case, ri,mt(x) = gi(smt).
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Figure 3.8: Example of construction of suitable linear functions ri,k(x),
for different types of nonlinearities gi(x). (a)-(d)-(g) The corresponding
marginal potential V̄i(ϑi) is convex, with a minimum at µi. Note that the axis
of the independent variable ϑi is vertical. (b) Non-monotonic and concave
gi(x), mt = 3. (c) Non-monotonic and convex gi(x), mt = 3. (e) Monotone
increasing and concave gi(x), mt = 2. (f) Monotone increasing and convex
gi(x), mt = 2. (h) Monotone decreasing and concave gi(x), mt = 2. (i)
Monotone decreasing and convex gi(x), mt = 2.
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3.2.4 Initialization and summary

Let us recall that the set of simple estimates corresponding to the
nonlinearities gi(x) is defined as Xi = {xi ∈ R : gi(xi) = µi}, where µi
is the position of the minimum of the marginal potential V̄i. Since we have
assumed nonlinearities gi(x) for which the second derivative ∂2gi

∂2x2 has constant
sign, each equation µi = gi(xi) can yield zero, one or two different simple
estimates.

We initialize the algorithm with a set of support points S0 , {sj}m0

j=1 such
that all simple estimates are contained in S0, i.e., Xi ⊂ S0, i = 1, . . . , n.

The set S0 thus constructed enables us to build the linear functions ri,k(x)
in the way described in the Appendix. If additional support points are
included in S0, the resulting proposal π0(x) becomes a tighter approximation
of po(x).

The proposed generalized adaptive rejection sampling (GARS) algorithm
is summarized in Table 3.1. Figures 3.9 illustrates how the sequence of
proposal pdf’s converges toward the target density as the number of support
points increases.
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Figure 3.9: Convergence of the overbounding functions exp{−V (x; rk)} (red
dashed line), and exp{−Wt(x)} (black dotted line) toward the function
p(x) = exp{−(4 − x2)2} (black solid line), with the GARS technique. The
points, corresponding to the support points {sj}mtj , are depicted with green
circles. (a) Construction of the overbounding functions with mt = 3 support
points. (b) Construction with mt = 7. (c) Construction with mt = 13.
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Table 3.1: Generalized Adaptive Rejection Sampling Algorithm.

1. Start with q = 1, t = 0 and S0 , {sj}m0

j=1 such that ∪ni=1Xi ⊂ S0.

Let N be the number of desired samples from po(x). At t-th iteration,
perform the following steps.

2. Build ri,k(x) for i = 1, . . . , n, k = 0, . . . ,mt.

3. Build Wt(x) , wk(x) ∀x ∈ Ik, for every k = 0, . . . ,mt, where wk(x)
is a line tangent to V (x; rk) at an arbitrary point x∗ ∈ Ik.

4. Draw a sample x′ from πt(x) ∝ exp[−Wt(x)].

5. Sample u′ from U([0, 1]).

6. If u′ ≤ p(x′)
exp[−Wt(x′)]

then accept x(q) = x′ and set St+1 = St, q = q + 1.

7. Otherwise, if u′ > p(x′)
exp[−Wt(x′)]

, reject x′ and update St+1 = St ∪ {x′}.

8. Sort St+1 in ascending order, increment t = t+ 1 and if q > N then
stop, else go back to step 2.

3.3 The standard ARS algorithm as a special

case

Note that if all the functions gi(x), i = 1, ..., n, are linear the procedure
described above coincides with the standard ARS method [50]. Indeed, in
this case, the potential V (x; g) is already convex and we can use lines tangent
to V (x; g) at the support points in order to build the lower-hull Wt(x). To
be specific, if ri,k(x) = gi(x) for all i = 1, ..., n and k = 0, ...,mt, then the
modified and the true potentials coincides V (x; rk) ≡ V (x; g) and the GARS
method consists in constructing straight lines tangent to V (x; g) exactly as
in the standard ARS method.
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3.4 Acceptance probabilities

Note that every time a sample x′ drawn from πt(x) is rejected, x′ is
incorporated as a support point in the new set St+1 = St ∪ {x′} and, as a
consequence, a refined lower hull Wt+1(x) is constructed yielding a better
approximation of the system potential function. In this way, πt+1(x) ∝
exp{−Wt+1(x)} becomes “closer” to p(x) ∝ po(x) and it can be expected
that the mean acceptance rate be higher. This is illustrated by numerical
examples in Chapter 6 (in particular, see Section 6.1.2).

To be precise, the probability of accepting a sample x ∈ D drawn from
πt(x) is

at(x) , exp{−V (x; g)}
exp{−Wt(x)} = exp{− [V (x; g)−Wt(x)]}, (3.20)

and we define the acceptance rate at the t-th iteration of the GARS algorithm,
denoted as ât, as the expected value of at(x) with respect to the proposal
density

πt(x) = ct exp{−Wt(x)},
i.e.,

ât , E[at(x)] =

∫

A
at(x)πt(x)dx = ct

∫

A
exp{−V (x; g)}dx =

ct
cv
≤ 1,

(3.21)
where ct and cv are the proportionality constants for πt(x) and p(x),

ct =

(∫

A
exp{−Wt(x)}dx

)−1

and

cv =

(∫

A
exp{−V (x; g)}dx

)−1

,

respectively. Note that ct
cv
≤ 1 because Wt(x) ≤ V (x; g) ∀x ∈ D.

From the Eq. (3.21), we obtain that ât = 1 if, and only if, ct = cv or,
equivalently, ât = 1 if and only if the integral

e(t) ,
∫

A
[exp{−Wt(x)} − exp{−V (x; g)}] dx (3.22)

vanishes, i.e., e(t) = 0.
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The error signal e(t) can be interpreted as a divergence1 between πt(x) and
p(x). In particular if e(t) decreases, the acceptance rate ât = ct

cv
increases

and, since exp{−Wt(x)} ≥ exp{−V (x; g)} ∀x ∈ D, e(t) = 0 if, and only
if, Wt(x) = V (x; g) almost everywhere. Equivalently, ât = 1 if, and only
if, πt(x) = po(x) almost everywhere. The convergence of ât toward 1 is
illustrated numerically in Section 6.1.2.

3.5 Continuous proposals

The procedure to build the piecewise linear function Wt(x), such that
Wt(x) ≤ V (x; g), is not unique. For instance, we could build a continuous
lower-hull Wt(x) with little variations in the two steps composing the
GARS technique. Figure 3.10 depicts how to modify first step of the
GARS algorithm in order to obtain a continuous linear approximation of
a nonlinearity gi(x). Figure 3.10(a) can be compared with Figure 3.6(b).

To be specific, it is necessary to calculate the intersection points
(displayed with red points in Figure 3.10) ei1,...,eiki , i = 1, ...n, (the number
ki changes for each nonlinearity gi(x)), of the straight lines tangent to the
nonlinearity gi at the support points s1, ...smt outside the interval Ji (defined
in Section 3.2.3). In Figure 3.10(a) we have only one intersection point ei1
between the lines ri,3(x) and ri,4(x), while in Figure 3.10(b) we have two
points, ei1, ei2, between the lines ri,0(x) and ri,1(x) and between the lines
ri,4(x) and ri,5(x). We can denote the set of all intersection points associated
to the nonlinearities as

Et = {eij}n,kii=1,j=1, (3.23)

hence |Et| = γt is the number of points in Et. Note that, in Figure 3.10 the
straight lines ri,k form a continuous piecewise linear approximation of the
nonlinearity gi(x). Thus, we ensure that the modified potential V (x; rk) is
also a continuos function. On the contrary, the procedure originally described
in Section 3.2.3 (and illustrated in Fig. 3.6(b)) produces a discontinuity at
s4.

Recalling the set of support points St = {s1, ..., smt}, in this case we need
to define a extended set

S̄t , St ∪ Et = {s̄1, ..., s̄m̄t}, (3.24)

1Note that exp{−Wt(x)} − exp{−V (x; g)} ≥ 0 for all x ∈ D.
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exp{−Wt(x)} ≥ exp{−V (x;g)} ∀x ∈ D, e(t) = 0 if, and only if, Wt(x) = V (x;g)
almost everywhere. Equivalently, ât = 1 if, and only if, πt(x) = p(x) ∝ po(x)
almost everywhere.

The convergence of ât toward 1 is illustrated numerically in Chapter 6 Section
??.

3.5 Continuous proposals

The procedure to build the piecewise linear function Wt(x), such that Wt(x) ≤
V (x;g), is not unique. For instance, we could build a continuous lower-hull Wt(x)
with little variations in the two steps composing the GARS technique. Figure
3.10 depicts how to modify first step of the GARS algorithm in order to obtain
a continuous linear approximation of a nonlinearity gi(x). Figure 3.10(a) can be
compared with Figure 3.6(b).

To be specific, it is necessary to calculate the intersection points (displayed
with red points in Figure 3.10) ei1,...,eiki

, i = 1, ...n, (the number ki changes for
each nonlinearity gi(x)), of the straight lines tangent to the nonlinearity gi at
the support points s1, ...smt outside the interval Ji (defined in Section 3.2.3). In
Figure 3.10(a) we have only one intersection point ei1 between the lines ri,3(x)
and ri,4(x), while in Figure 3.10(b) we have two points, ei1, ei2, between the lines
ri,0(x) and ri,1(x) and between the lines ri,4(x) and ri,5(x). We can denote the set
of all intersection points associated to the nonlinearities as

Et = {eij}n,ki
i=1,j=1. (3.23)

We denote as |Et| = γt the number of points in Et. Note that, in Figure 3.10
the straight lines ri,k form a continuous piecewise linear approximation of the
nonlinearity gi(x). Hence, we ensure that the modified potential V (x; rk) is also a
continuos function. On the contrary, the procedure originally described in Section
3.2.3 (and illustrated in Fig. 3.6(b)) produces a discontinuity at s4.

Recalling the set of support points St = {s1, ..., smt}, in this case we need to
define a extended set

S̄t � St ∪ Et = {s̄1, ..., s̄m̄t}, (3.24)

where m̄t = mt + γt and s̄1 < ... < s̄m̄t . The points in St are shared for all
nonlinearities gi(x), i = 1, ..., n, in order to build the linear functions ri,k(x), while
we incorporate the set Et in S̄t to construct adequately the lower-hull Wt(x).

Figure (3.11) shows an example of construction of the continuous piecewise
linear function Wt(x) ≤ V (x;g) for a generic potential V (x;g). The construction
uses the extended set S̄t = {s̄1, ..., s̄m̄t}. In order to make the piecewise function
Wt(x) be continuous, it is formed by tangent lines to the modified potential
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Figure 3.10: Construction of a continuous piecewise linear approximation
of the nonlinearity gi(x). a) Example with mt = 4 support points. In the
figure, ri,3(x) is defined ∀x ∈ [s3, ei1] while ri,4(x) is defined ∀x ∈ [ei1,+∞).
b) Example with mt = 5 support points. The linear functions ri,0(x), ri,1(x)
are defined ∀x ∈ (−∞, ei1] and ∀x ∈ [ei1, s1], respectively, while ri,4(x),
ri,5(x) are defined ∀x ∈ [s4, ei2] and ∀x ∈ [ei2,+∞), respectively.

where m̄t = mt + γt and s̄1 < ... < s̄m̄t . The points in St are shared for all
nonlinearities gi(x), i = 1, ..., n, in order to build the linear functions ri,k(x),
while we incorporate the set Et in S̄t to construct adequately the lower-hull
Wt(x).

Figure (3.11) shows an example of construction of the continuous
piecewise linear function Wt(x) ≤ V (x; g) for a generic potential V (x; g).
The construction uses the extended set S̄t = {s̄1, ..., s̄m̄t}. In order to
make the piecewise function Wt(x) continuous, it is built by lines tangent
to the modified potential V (x, rk) at the support points s̄k and s̄k+1, for
k = 1, ..., m̄t. Figure 3.11 can be compared with Figure 3.5.

Let us remark that, in order to draw from the proposal πt(x) ∝
exp{−Wt(x)}, we need to calculate other intersection points v1, v2, ..., shown
in Figure 3.11 with green points. Specifically, v1, v2, ... are the intersection
points for the straight lines tangent to the modified potential V (x; rk) at the
extended support points s̄1, s̄2..., s̄m̄t .

In particular, when a sample x′, drawn from πt(x), is accepted we keep
St+1 = St, so that the construction of the linear functions ri,k remain the
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Figure 3.11: Example of construction of a continuous lower-hull Wt(x) for a
generic potential V (x; g). In the figure, there are m̄t = 5 extended support
points S̄t = {s̄1, s̄2, s̄3, s̄4, s̄5}. The piecewise linear function Wt(x) is formed
by straight lines tangent to the modified potential V (x; rk) (shown in dashed
line) at the support points s̄k and s̄k+1. To draw from πt(x) ∝ exp{−Wt(x)},
it is necessary to compute the positions v1, v2, v3 and v4.

same, and then Et+1 = Et and S̄t+1 = S̄t. Otherwise, if x′ is rejected, we set
St+1 = St∪{x′} and sort it in ascending order. Moreover, we have to update
the set of the intersection points Et+1 (after building the linear functions
ri,k(x)) and the extended set S̄t+1 = St+1 ∪ Et+1.

This construction may improve the mean acceptance rate since possibly
the continuous lower-hull Wt(x) is closer to V (x; g). However, the resulting
procedure becomes more complicated and computationally more expensive
than the original method in Section 3.2.

3.6 Improper proposals

The GARS algorithm summarized in Table 3.1 breaks down when the
potential function V (x; g) has both an infinite support (x ∈ D = R) and
concave tails.

This occurs when all the nonlinearites gi(x), i = 1, . . . , n, are monotonic
and the product

dgi(x)

dx
× d2gi(x)

dx2
,

has the same sign for all the functions gi(x), i = 1, . . . , n.
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In this case, the proposed procedure yields a piecewise lower hull Wt(x)
which is constant in an interval of infinite length. Thus, the resulting
proposal, πt(x) ∝ exp{−Wt(x)} is improper (

∫ +∞
−∞ πt(x)dx → +∞) and

cannot be used for rejection sampling.
For instance, if all the nonlinearities gi(x), i = 1, . . . , n are monotonic

functions with
dgi(x)

dx
× d2gi(x)

dx2
> 0,

i.e., increasing and convex or decreasing and concave (see Figures 3.8(f)
and (h)), the left tail of πt(x) ∝ exp{−Wt(x)} is constant, while, if all the
nonlinearities gi(x), i = 1, . . . , n are monotonic with

dgi(x)

dx
× d2gi(x)

dx2
< 0,

i.e., increasing and concave or decreasing and convex (see Figures 3.8(e) and
(i)), the right tail of πt(x) ∝ exp{−Wt(x)} is constant.

This drawback is shared by all other adaptive techniques in the literature
[36, 50, 54, 61]. We address this problem in Chapter 4.

3.7 Applicability

In this section we briefly describe three general classes of target densities
that appear often in practice and can be easily handled with the proposed
method. We do not imply that only these three types of pdf’s can be sampled
using our method. Many other classes of densities can also fit the structure
of Eq. (3.1).

3.7.1 Class 1: posterior pdf’s in Bayesian inference

Densities of the form of Eq. (3.1) appear naturally in Bayesian inference
problems [7, 15, 45, 66] (see also the so-called nonlinear hierarchical models
[51, Chapter 19], [37, 42, 43]) where it is desired to draw from the posterior
pdf p(x|y) with y = [y1, y2, ..., yn] ∈ Rn, of a random variable X given a
collection of observations 




Y1 = ḡ1(X) + Θ1,

...

Yn = ḡn(X) + Θn,

(3.25)
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where Θ1, ...,Θn are independent “noise” variables. In fact, writing the noise
pdf’s as p(ϑi) ∝ exp{−V̄i(ϑi)} (with a mode at ϑ∗i = µi), i = 1, ..., n, the
likelihood function can be expressed as

p(y|x) ∝ exp

{
−

n∑

i=1

V̄i(yi − ḡi(x))

}
. (3.26)

Therefore, denoting gi(x) = yi − ḡi(x) and writing the prior pdf as p(x) ∝
exp{−V̄n+1(gn+1(x))}, the potential function is

V (x; g) = − log[p(x|y)]

= − log[p(y|x)p(x)] =
n+1∑

i=1

V̄i(gi(x)).
(3.27)

Since we are assuming that each p(ϑi) ∝ exp{−V̄i(ϑi)} has only a mode
at ϑ∗i = µi, if we have only one observation (n = 1, hence we have only
one equation, for instance, Y1 = ḡ1(X) + Θ1) the set of maximum likelihood
estimators X̂ of the variable of interest x is

X̂ = {x ∈ D : g1(x) = µ1}, (3.28)

where g1(x) = y1 − ḡ1(x). Note that Eq. (3.28) is exactly the definition of
the “simple estimates” (see Eq. (3.15)) for the first nonlinearity g1(x), hence
the name.

The GARS algorithm can be applied in a more general framework than
the model with additive noise of Eq. (3.25), as shown below.

Non-additive noise models

Let us consider a generic collection of r.v.’s [Y1, ..., Yn] ∈ Rn obtained as





Y1 = G1(X,Θ1),

...

Yn = Gn(X,Θn),

(3.29)

where Gi(X,Θi) are nonlinear real functions of the r.v.’s X and Θi with
pdf’s p(ϑi) ∝ exp{−V̄i(ϑi)}, i = 1, ..., n. If every Gi(x, ·) is invertible for
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the second argument, then we can solve for the noise variables, i.e., we can
transform the system of Eq. (3.29) into





G−1
1 (X, Y1) = Θ1,

...

G−1
n (X, Yn) = Θn.

(3.30)

From (3.30), we obtain a collection of “null pseudo-observations” with
additive noise,

0 = −G−1
1 (X, Y1) + Θ1, . . . , 0 = −G−1

n (X, Yn) + Θn. (3.31)

Note that the collection of observations in Eq. (3.29) is also contained in
the system of Eq. (3.31). Moreover, the model of (3.31) is equivalent to the
model (3.25) if we define the nonlinearities as gi(x) = −G−1

i (x, yi) (yi is a
realization/sample of Yi). This simple transformation enables us to work,
e.g., with observations contaminated with multiplicative noise [34, Chapter
9],[69].

3.7.2 Class 2: marginal potential ϑ− log[ϑ]

The standard ARS algorithm can be interpreted as a method for sampling
from pdf’s of the form po(x) ∝ exp{−h(x)}, where h(x) is a convex function.
From a similar perspective, the proposed GARS algorithm can handle target
pdf’s of the form

po(x) ∝ h(x) exp{−h(x)}
= exp{−h(x) + log[h(x)]}, (3.32)

where the function h(x) can be either convex or concave. In fact, in this
case we can write − log[po(x)] as a composition of two functions, V̄1 ◦ g1,
where V̄1(θ1) , ϑ1− log[ϑ1] (which is convex with a minimum at µ1 = 1) and
g1(x) , h(x). In Chapter 5, we extend this class of pdf’s (see Example 2).

3.7.3 Class 3: polynomial potentials

In this subsection, we provide guidelines to apply the GARS technique when
V (x; g) is a polynomial function. Indeed, in some cases, a polynomial can be
decomposed in a suitable way that eases the algorithm derivation. Obviously,
there are many possibilities and here we show just two simple examples.
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4th order polynomials

Consider a generic polynomial potential of 4th order,

V (x; g) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4, (3.33)

with a4 > 0. This can be always written as

V (x; g) = κ+ (α + βx+ γx2)2 + (δ + ηx)2

= κ+ V̄1(g1(x)) + V̄2(g2(x)),
(3.34)

where κ, α, β, γ, η, δ are real constants, V̄i(ϑi) = ϑ2
i , i = 1, 2, g1(x) ,

α + βx + γx2 is a 2nd-order polynomial and g2(x) , δ + ηx is linear. Since

V̄1(ϑ) = V̄2(ϑ) are convex, d2g1
dx2 = γ is constant and g2(x) is linear, it is

straightforward to apply the GARS procedure.
The constants κ, α, β, γ, η and δ have to satisfy the following equalities





γ2 = a4,

2βγ = a3,

β2 + 2αγ + η2 = a2,

2αβ + 2δη = a1,

α2 + δ2 + κ = a0.

(3.35)

this is a nonlinear system of 5 equations and 6 unknowns that can be always
solved if we assume a4 > 0.

8th order polynomials

Consider now a polynomial potential of 8th order,

V (x; g) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a6x

6 + a8x
8, (3.36)

where the coefficients corresponding to the powers 5, 7 are null, i.e., a5 =
a7 = 0. Moreover, if a2, a6, a8 > 0, we can rewrite the polynomial in Eq.
(3.36) as

V (x; g) = κ+

(
a1

2
√
a2

+
√
a2x

)2

+

(
a3

2
√
a6

+
√
a6x

3

)2

+

(
a4

2
√
a8

+
√
a8x

4

)2

= κ+ V̄1(g1(x)) + V̄2(g2(x)) + V̄3(g3(x)),

(3.37)
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where

κ = a0 −
a2

1

2a2

− a2
3

2a6

− a2
4

2a8

, (3.38)

and V̄i(ϑi) = ϑ2
i , i = 1, 2, 3, g1(x) , a1

2
√
a2

+
√
a2x is already linear,

g2(x) , a3

2
√
a6

+
√
a6x

3 is concave when x < 0 and convex when x > 0

and g3(x) , a4

2
√
a8

+
√
a8x

4 is always convex.

It is important to remark that although the second derivative of g3(x)
has not a constant sign, it is possible to apply the GARS procedure because
we know the inflection points (x = 0 in this case). We discuss this issue in
detail in Chapter 5 (Section 5.2.1).

3.8 Summary

We have proposed a novel adaptive rejection sampling scheme that can be
used to draw exactly from a certain family of pdf’s, not necessarily log-
concave and possibly multimodal. The new method is a generalization of
the classical adaptive rejection sampling scheme of [50], and includes it as a
particular case as shown in Section 3.3. The proposed algorithm constructs
a sequence of proposal pdf’s that converge towards the target density and,
therefore, can attain very high acceptance rates. We have discussed the
asymptotic convergence of the constructed proposal pdf’s in Section 3.4.

An alternative continuous, but more complicated, construction of the
proposal pdf’s has been introduced in Section 3.5. Finally, the applicability
of the introduced GARS algorithm has been discussed in Section 3.7, where
some examples are provided, including posterior pdf’s for Bayesian inference
and polynomial potentials.

The proposed technique can also be extended in different ways, as we show
in Chapter 5. For example, it is also possible to build easily a lowerbounding
function of the target pdf, in order to apply the squeeze principle (discussed
in Section 2.5.2) and simplify the test for acceptance of candidate samples.
Additionally, we have only tackled the log-transformation to introduce the
potential function V (x; g) = − log[p(x)] but, in general, we can also consider
more general approaches, for instance, with monotonic T -transformations as
described in [61]. Moreover, the assumptions over the nonlinearities gi and
V̄i can be relaxed in order to extend the classes of target pdf’s that can be
tackled and to render more automatic as possible the the GARS method.
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This problem is tackled in Chapter 5.
It has also been shown that in some specific cases the new GARS

algorithm may yield improper proposal densities, namely when the tails of
po(x) are log-convex. We address this problem in the following chapter and
introduce two alternative strategies to overcome it.
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Chapter 4

GARS for densities with
log-convex tails

As shown in Section 3.6, the GARS technique fails when the target pdf has
log-convex tails and an infinite domain D. In this chapter, we introduce
two different ARS schemes that can be used to draw exactly from a large
family of univariate pdf’s, not necessarily log-concave and including cases in
which the pdf has log-convex tails in an infinite domain. Therefore, the new
methods can be applied to problems where classical techniques such as the
standard ARS algorithm of Section 2.6 [50], the TDR technique of Section
2.7.3 [61], the concave-convex ARS algorithm of Section 2.7.2 [55] and other
methods [36, 113, 114] are invalid.

The first adaptive scheme introduced below, is easy to implement and
provides good performance (as shown by the numerical examples of Sections
6.2.1 and 6.2.2). However, it presents some technical requirements that can
prevent its use with certain densities.

The second proposed approach is more general and it is based on the
ratio of uniforms (RoU) technique [30, 79, 153] described in Chapter 2. The
RoU method enables us to obtain a two dimensional region A such that
drawing from the univariate target density is equivalent to drawing uniformly
from A. Assuming that A is bounded, we introduce an adaptive technique
that generates a collection of non-overlapping triangular regions that cover A
completely. Then, we can efficiently use rejection sampling to draw uniformly
from A (by first drawing uniformly from the triangles). Let us recall that a
basic adaptive rejection sampling scheme based on the RoU technique was
already introduced in [92, 93] but it only works when the region A is strictly
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convex. It can be seen as a RoU-based counterpart of the original ARS
algorithm in [50], that requires the log-density to be concave. The adaptive
scheme that we introduce can also be used with non-convex sets.

4.1 The difficulty of handling log-convex tails

Given a target pdf of the form

po(x) ∝ exp{−V (x; g)}, (4.1)

with x ∈ D ⊆ R. The GARS algorithm introduced in Chapter 3 breaks down
when the potential function V (x; g) has both an infinite support (x ∈ D = R)
and concave tails (i.e, the target pdf, po(x), has log-convex tails). In this case,
the function Wt(x) becomes constant over an interval of infinite length and
we cannot obtain a proper proposal pdf πt(x). To be specific, if V (x; g) is
concave in the intervals (−∞, s1], [smt ,+∞) or both, then w0(x), wmt(x), or
both, are constant and, as a consequence,

∫ +∞
−∞ exp{−Wt(x)}dx = +∞ and

a proper pdf of the form πt(x) ∝ exp{−Wt(x)} does not exist.

This difficulty with the tails is actually shared by all adaptive rejection
sampling techniques in the literature. A theoretical solution to the problem is
to find an invertible transformation G : D → D∗, where D∗ ⊂ R is a bounded
set [30, 63, 106, 154]. Indeed, consider a r.v. X with pdf po(x). Then, we
can define a random variable Y = G(X) with density q(y), draw samples
y(1), . . . , y(N) and then convert them into samples x(1) = G−1(y(1)), . . . , x(N) =
G−1(y(N)) from the target pdf po(x) of the r.v. X. However, in practice, it is
difficult to find a suitable transformation G, since the resulting density q(y)
may not have a structure that makes sampling any easier than in the original
setting.

A similar, albeit more sophisticated, approach is to use the method of [36],
also described in Section 2.7.3. In this case, we need to build a partition of
the domain D with disjoint intervals, D = ∪mi=1Di, and then apply invertible
transformations Ti : Di → R, i = 1, ...,m, to the target function p(x). In
particular, the intervals D1 and Dm contain the tails of p(x) and the method
works correctly if the composed functions (T1 ◦ p)(x) and (Tm ◦ p)(x) are
concave. However, finding adequate T1 and Tm is not necessarily a simple
task and, even if they are obtained, applying the algorithm of [36] requires
the ability to compute all the inflection points of the target function p(x).
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4.2 GARS with log-convex tails

4.2.1 Algorithm

In this section, we investigate a variant of standard GARS strategy of
Chapter 3 to obtain an adaptive rejection sampling algorithm that remains
valid when the tails of the potential function V (x; g) are concave (i.e, when
the target pdf po(x) has log-convex tails).

Consider a target pdf po(x) of the type in Eq. (4.1), with a potential
function of the form

V (x; g) =
n∑

i=1

V̄i(gi(x)), (4.2)

and also recall the set of support points

St = {s1, ..., smt},

and the intervals I0 = (−∞, s1], Ik = [sk, sk+1] for k = 1, ...,mt − 1 and
Imt = [smt ,+∞). Let us assume that, for some j ∈ {1, . . . , n}, the pdf
defined as

q(x) ∝ exp{−V̄j(gj(x))} (4.3)

is such that:

(a) we can integrate q(x) over the intervals I0, I1, ..., Imt and

(b) we can sample from the density q(x) restricted to every Ik.

To be specific, let us introduce the reduced potential

V−j(x; g) ,
n∑

i=1,i 6=j
V̄i(gi(x)), (4.4)

attained by removing V̄j(gj(x)) from V (x; g) in Eq. (4.2). Assume for the
moment that it is possible to calculate lower bounds for the reduced potential
in every interval between two support points, i.e., we can compute bounds
γk such that

γk ≤ V−j(x; g),
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for every x ∈ Ik, k = 0, ...,mt. Once these bounds are available, we set
Lk , exp{−γk} and build the piecewise exponential proposal function

πt(x) ∝





L0 exp{−V̄j(gj(x))}, ∀x ∈ I0,
...
Lk exp{−V̄j(gj(x))}, ∀x ∈ Ik,
...
Lmt exp{−V̄j(gj(x))}, ∀x ∈ Imt .

(4.5)

Notice that, for all x ∈ Ik, we have Lk ≥ exp{−V−j(x; g)} and multiplying
both sides of this inequality by the positive factor exp{−V̄j(gj(x))} ≥ 0, we
obtain

Lk exp{−V̄j(gj(x))} ≥ exp{−V (x; g)}, ∀x ∈ Ik,
hence πt(x) is suitable for rejection sampling.

Also note that πt(x) is a mixture of truncated densities with non-
overlapping supports. Indeed, let us define the mixture coefficients

ᾱk , Lk

∫

Ik
q(x)dx (4.6)

and normalize them as αk = ᾱk/
∑mt

k=0 ᾱk. Then,

πt(x) =
mt∑

k=1

αkq(x)IIk(x) (4.7)

where IIk(x) is an indicator function (IIk(x) = 1 if x ∈ Ik and IIk(x) = 0
if x /∈ Ik). The complete variant of the standard GARS algorithm, that
uses the sequence of densities πt(x) of Eq. (4.5) as proposals, is summarized
below.

1. Initialization. Set i = 1, t = 0 and choose m1 support points,
S1 = {s1, ..., sm1}.

2. Iteration. For t ≥ 1, take the following steps.

• From St, determine the intervals I0, . . . , Imt .
• Choose a suitable pdf q(x) ∝ exp{−V̄j(gj(x))} for some j ∈
{1, ..., n}.
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• For k = 0, . . . ,mt, compute the lower bounds γk ≤ V−j(x,g),
∀x ∈ Ik, and set Lk = exp{−γk} (see Section 4.2.2 for details).

• Calculate the weights ᾱk in Eq. (4.6) and normalize them
obtaining αk, k = 0, ...,mt.

• Draw x′ from the proposal πt(x) in Eq. (4.7) and u′ from U(0, 1).
To generate x′, it is necessary

– draw an index k′ with probability Prob{k′ = k} = αk,

– then draw x′ from q(x) restricted to the interval Ik′ =
[sk′ , sk′+1].

• If u′ ≤ exp{−V−j(x′;g)}
Lk

, then accept x(i) = x′ and set St+1 = St,
mt+1 = mt, i = i+ 1.

• Otherwise, if u′ > exp{−V−j(x′;g)}
Lk

, then reject x′, set St+1 = St∪{x′}
and update mt+1 = mt + 1.

• Sort St+1 in ascending order and increment t = t + 1. If i > N ,
then stop the iteration.

When a sample x′ drawn from πt(x) is rejected, x′ is added to the set
of support points St+1 , St ∪ {x′}. Hence, we improve the piecewise
constant approximation of V−j(x; g) (formed by the upper bounds Lk) and
the proposal pdf πt+1(x) ∝ Lk exp{−V̄j(gj(x))}, ∀x ∈ Ik, becomes closer to
the target pdf po(x).

Figure 4.1(a) illustrates the reduced potential exp{−V−j(x; g)} and its
stepwise approximation Lk = exp{−γk} built using mt = 4 support points.
Figure 4.1(b) depicts the target pdf po(x) together with the proposal pdf
πt(x), composed by weighted pieces of the function exp{−V̄j(gj(x))} (shown
in dashed line).

This procedure is feasible only if we can find a pair V̄j, gj, for some
j ∈ {1, ..., n}, such that the pdf q(x) ∝ exp{−V̄j(gj(x))}

• is analytically integrable in every interval Ik ⊂ D, since otherwise the
weights α1,...,αmt in Eq. (4.6)-(4.7) cannot be computed in general,
and

• is easy to sample when truncated into a finite or an infinite interval,
since otherwise we cannot draw from it.
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The technique that we introduce in Section 4.3, based on the RoU method,
overcomes these constraints. Before that Section 4.2.2 below describes the
procedure to obtain the lower bounds γk, k = 0, ...,mt.

4

where k > 0 is a proportionality constant and V̄i : R → [0,+∞), i = 1, ..., n, are real functions,

subsequently referred to as marginal potentials.

We also assume that every V̄i(ϑi) is a convex function with a minimum at ϑ = µi. Without loss of

generality, we set µi = 0, i = 1, ..., n, in the sequel. Note that, we can always consider V̄i(ϑi + µi) and

modify the corresponding observation as ȳi = yi − µi to obtain a system equivalent to Eq. (1)-(2) with

“centered” marginal potentials.

The scalar observations are conditionally independent given the SoI x, hence the likelihood function

p(y|x) can be written in terms of the marginal potentials as

p(y|x) ∝ exp

�
−

n�

i=1

V̄i(yi − gi(x))

�
, (3)

and we use the term system potential for the function defined as

V (x; y, g) �
n�

i=1

V̄i(yi − gi(x)), (4)

where g � [g1, . . . , gn]� is a vector of nonlinearities.

We also assume a prior pdf for the SoI x of the form

p(x) ∝ exp{−V̄n+1(gn+1(x))}, (5)

where V̄n+1(ϑn+1) is a convex function with a minimum at µn+1 = 0 and gn+1(x) is a nonlinear function.

Taking Eqs. (3) and (5) together, the posterior pdf of the SoI has the form

p(x|y) ∝ p(y|x)p(x) = k exp

�
−

n�

i=1

V̄i(yi − gi(x))− V̄n+1(gn+1(x))

�
. (6)

The aim of this paper is to design efficient RS methods to generate i.i.d. samples from pdf’s of the form

of Eq. (6).

In order to rewrite the posterior density p(x|y) in a more compact manner, we define the

generalized observation vector ỹ � [y1, . . . , yn, 0]� and the generalized nonlinearity vector g̃(x) �

[g1(x), . . . , gn(x),−gn+1(x)]�. Then, Eq. (6) induces a generalized system potential V (x; ỹ, g̃) : R→ R,

defined as

V (x; ỹ, g̃) �
n+1�

i=1

V̄i(yi − gi(x)). (7)

Note that, in order to apply RS, one often needs to find an upper bound for the posterior p(x|y), which

is equivalent to find a lower bound for the generalized system potential V (x; ỹ, g̃).
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interval Ik (see Figure 3 (b)). Once these bound are available, we build the proposal function by pieces

as

πt(x) ∝





exp{−γ0} exp{−V̄j(gj(x))}, ∀x ∈ I0,
...

exp{−γk} exp{−V̄j(gj(x))}, ∀x ∈ Ik,
...

exp{−γmt
} exp{−V̄j(gj(x))}, ∀x ∈ Imt

.

(21)

Notice that, for all x ∈ Ik, we have exp{−γk} ≥ exp{−V−j(x; g)} and multiplying both members for
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with non-overlapping supports. Indeed, let us define the mixture coefficients
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and normalize them as ωk = ω̄k/
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where χk(x) is an indicator function (χk(x) = 1 if x ∈ Ik and χk(x) = 0 if x /∈ Ik). In order to draw

from πt(x) we need to be able to draw from truncated pieces of qj(x).

Therefore, this procedure is possible only if we have on hand a suitable pdf qj(x) ∝ exp{−V̄j(gj(x))}.

The technique that we introduce in this work, based on ratio of uniforms method, does not need this

condition (it is more general, as shown in the numerical example in Section IV-B).

E. Ratio of uniforms method

The RoU method [2, 12, 21] is a sampling technique that relies on the following result.

Theorem: Let q(x) ≥ 0 be a pdf known only up to a proportionality constant. If (u, v) is a sample

drawn from the uniform distribution on the set

A =
�

(v, u) : 0 ≤ u ≤
�

q(v/u)
�

, (24)

then x = v
u is a sample form q(x).

Proof: See [3, Theorem 7.1].
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π t (x)∝ L4 exp{−V j (g j (x))}
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Figure 4.1: (a) Example of the function exp{−V−j(x; g)} and its stepwise
approximation Lk = exp{−γk}, k = 0, ...,mt = 4, constructed with the
proposed technique using four support points St = {s1, s2, s3, s4}. (b) Our
target pdf po(x) ∝ exp{−V (x; g)} = exp{−V−j(x; g) − V̄j(gj(x))} obtained
by multiplying exp{−V−j(x; g)} × exp{−V̄j(gj(x))}. The picture also shows
the shape of the proposal density πt(x) consisting of pieces of the function
exp{−V̄j(gj(x))} scaled by the constant values Lk = exp{−γk}.

4.2.2 Calculation of lower bounds

We tackle the calculation of a lower bound

γk ≤ min
x∈Ik

V (x; g), (4.8)

in some interval Ik = [sk, sk+1]. Note that if we are able to minimize
analytically the modified potential V (x; rk), then we trivially obtain

γk = min
x∈Ik

V (x; rk) ≤ min
x∈Ik

V (x; g), (4.9)

and the problem is solved. Let us assume, however, that the analytical
minimization of V (x; rk) remains intractable. Since the modified potential
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V (x; rk) is convex ∀x ∈ Ik, we can use a straight line wk(x) tangent to
V (x; rk) at an arbitrary point x∗ ∈ Ik to attain a bound. Indeed, a lower
bound ∀x ∈ Ik = [sk, sk+1] can be defined as

γk , min{wk(sk), wk(sk+1)}, (4.10)

so that we can write

γk ≤ min
x∈Ik

V (x; rk) ≤ min
x∈Ik

V (x; g). (4.11)

Figure 4.2 sketches the procedure to obtain a lower bound in an interval Ik
for a system potential V (x; g) (blue) using a straight line tangent (black) to
the modified potential V (x; rk) (red dashed) at an arbitrary point x∗ ∈ Ik.
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is an overbounding function of p(x). Since W (x) is linear, it is
straightforward to compute the proportionality constant

c−1 =

�

x∈I
exp{−W (x)}dx (3.15)

and to use the density π(x) = c exp{−W (x)} as a proposal function.
Drawing from π(x) is easy because it is a truncated exponential pdf,
restricted to I.

Figure 3.1 (b) shows an example of construction of the linear function W (x)
in a generic interval I ⊂ D. The picture represents a non-convex potential
V (x;g) (solid line) and the corresponding modified potential V (x; r) in I,
depicted in dashed line. The linear function W (x) is tangent to the modified
potential V (x; r) in an arbitrary point x∗ ∈ I.
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Figure 3.1: (b) Example of construction of the linear function W (x) inside
a generic interval I = [s1, s2]. The picture shows a non-convex potential
V (x;g) in solid line while the modified potential V (x; r) is depicted in dashed
line for ∀x ∈ I. The linear function W (x) is tangent to V (x; r) at a arbitrary
point x∗ ∈ I.

3.2.3 Adaptive algorithm

The basic method described above can be iterated to yield a sequence of
proposal pdf’s

π1(x), π2(x), . . . , πt(x), . . . ,

7

1) We build linear functions ri,k(x) such that

V̄i(ri,k(x)) ≤ V̄i(gi(x)) , ∀x ∈ Ik, (9)

for every i = 1, . . . , n. As a consequence, substituting g by rk(x) � [r1,k(x), r2,k(x), . . . , rn,k(x)]

into the functional V (x; ·), we obtain the inequality

V (x; rk) �
n�

i=1

V̄i(ri,k(x))

≤ V (x; g) =
n�

i=1

V̄i(gi(x)),

(10)

∀x ∈ Ik. Note that exp{−V (x; rk)} is already an overbounding function for p(x), i.e.,

exp{−V (x; rk)} ≥ exp{−V (x; g)} = p(x). (11)

However, it is not possible in general to draw from π∗
t (x) ∝ exp{−V (x; rk)} and we need to seek

further simplifications.

2) Note that the modified potential V (x; rk) is convex in Ik. Indeed,

d2V̄i(ri,k(x))
dx2

=
dV̄i

dϑ

d2ri,k

dx2
+
�

dri,k

dx

�2 d2V̄i

dϑ2

= 0 +
�

dri,k

dx

�2 d2V̄i

dϑ2
≥ 0

(12)

where we have used that d2ri,k

dx2 = 0 (since ri,k is linear) and the convexity of the marginal potentials

V̄i(ϑ), i = 1, . . . , n. Therefore, we can use a line tangent to V (x; rk) at an arbitrary point x∗ ∈ Ik

to build a linear function wk(x) such that wk(x) ≤ V (x; rk) for all x ∈ Ik. Thus,

exp{−wk(x)} ≥ exp{−V (x; rk)}

≥ exp{−V (x; g)} = p(x)
(13)

is an overbounding function of p(x). Therefore, we can use the density πt(x) ∝ exp{−wk(x)} as

a proposal function for all x ∈ Ik. Note that drawing from πt(x) is easy because it is a truncated

exponential pdf, restricted to Ik.

We repeat the procedure above for each value k = 0, ...,mt. Namely for each interval Ik = [sk, sk+1]

we, first, replace every nonlinearity gi(x) with a suitable linear function ri,k(x). In this way we generate a

modified potential V (x, rk) that lies below the original one, i.e., V (x, r) ≤ V (x, g). Second, we construct

a linear function wk(x) that is tangent at an (arbitrary) point x∗ ∈ Ik to the modified potential V (x, rk).
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is an overbounding function of p(x). Since W (x) is linear, it is
straightforward to compute the proportionality constant

c−1 =

�

x∈I
exp{−W (x)}dx (3.15)

and to use the density π(x) = c exp{−W (x)} as a proposal function.
Drawing from π(x) is easy because it is a truncated exponential pdf,
restricted to I.

Figure 3.1 (b) shows an example of construction of the linear function W (x)
in a generic interval I ⊂ D. The picture represents a non-convex potential
V (x;g) (solid line) and the corresponding modified potential V (x; r) in I,
depicted in dashed line. The linear function W (x) is tangent to the modified
potential V (x; r) in an arbitrary point x∗ ∈ I.

2 0 2
40

20

0

20

W(x)

x*s1 s2

V(x;g)

V(x;r)

I

x

(b)

! 

s1

! 

s2

! 

x *

Figure 3.1: (b) Example of construction of the linear function W (x) inside
a generic interval I = [s1, s2]. The picture shows a non-convex potential
V (x;g) in solid line while the modified potential V (x; r) is depicted in dashed
line for ∀x ∈ I. The linear function W (x) is tangent to V (x; r) at a arbitrary
point x∗ ∈ I.
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Figure 3.1: (b) Example of construction of the linear function W (x) inside
a generic interval I = [s1, s2]. The picture shows a non-convex potential
V (x;g) in solid line while the modified potential V (x; r) is depicted in dashed
line for ∀x ∈ I. The linear function W (x) is tangent to V (x; r) at a arbitrary
point x∗ ∈ I.
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that converges to the target pdf po(x). Let us consider the set of support
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vectors of linear functions rk(x) � [r1,k(x), . . . , rn,k(x)], using the technique
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Since the modified potential V (x; rk) is convex, we can build a piecewise-
linear lower hull Wt(x) such that Wt(x) ≤ V (x; rk) ≤ V (x;g) for ∀x ∈ Ik.
Then, we build the tangent lines to the modified potential V (x; rk) at
arbitrary points x∗

k ∈ Ik = [sk, sk+1], denoted as wk(x). As a result, the
piecewise linear function Wt(x) at the t-iteration is
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...
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points x∗
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Fig. 2. (a) Example of construction of the linear function W (x) inside a generic interval I = [s1, s2]. The picture shows

a non-convex potential V (x; g) in solid line while the modified potential V (x; r) is depicted in dashed line for ∀x ∈ I. The

linear function W (x) is tangent to V (x; r) at a arbitrary point x∗ ∈ I. (b) Example of construction of the piecewise linear

function Wt(x) with three support points St = {s1, s2, smt=3}, as carried out by the generalized ARS technique. The modified

potential V (x; rk), for x ∈ Ik, is depicted with a dashed line. The piecewise linear function Wt(x) consists of segments of

linear functions wk(x) tangent to the modified potential V (x; rk) at arbitrary points x∗k ∈ Ik, with k = 0, . . . , mt = 3, where

I0 = [−∞, s1], I1 = [s1, s2], I2 = [s2, s3] and I3 = [s3, +∞].

in some interval Ik = [sk, sk+1].

If we are able to minimize analytically the modified potential V (x; rk), we obtain

γk = min
x∈Ik

V (x; rk) ≤ min
x∈Ik

V (x; g). (17)

If the analytical minimization of the modified potential V (x; rk) remains intractable, since the modified

potential V (x; rk) is convex ∀x ∈ Ik, we can use the tangent straight line wk(x) to V (x; rk) at an

arbitrary point x∗ ∈ Ik to attain a bound. Indeed, a lower bound ∀x ∈ Ik = [sk, sk+1] can be defined as

γk � min[wk(sk), wk(sk+1)] ≤ min
x∈Ik

V (x; rk) ≤ min
x∈Ik

V (x; g). (18)

Figure 3 (b) depicts this procedure to obtain a lower bound in an interval Ik for a system potential

V (x; g) (solid line) using a tangent line (dotted line) to the modified potential V (x; rk) (dashed line) at

an arbitrary point x∗ ∈ Ik.

D. Problem with the tails...improper proposals...

1) Alternative approach: To overcome this difficulty, we also propose an alternative strategy in [17].

If, for some j ∈ {1, . . . , n}, the pdf defined as

qj(x) ∝ exp{−V̄j(gj(x))} (19)

Figure 4.2: The picture shows the potential V (x; g) (solid blue line), the
modified potential V (x; rk) (dashed red line) and the straight line wk(x)
(solid black line) tangent to the modified potential at an arbitrary point x∗

in Ik. The lower bound γk is obtained as γk = min{wk(sk), wk(sk+1)}. In
this picture, we have γk = wk(sk).

Note that this procedure for the computation of a lower bound can be
applied both to the complete potential V (x; g) and to the reduced potential
V−j(x; g), as needed in the previous section.

4.3 Adaptive RoU scheme

The RoU method described in Section 2.8 is a potentially useful tool to draw
samples from a target pdf po(x) ∝ p(x) = exp{−V (x; g)} with log-convex

115



tails. Indeed, we have seen that, as long as the tails of po(x) decay as 1/x2

(or faster), the problem of drawing from po(x) can be transformed into a
problem of drawing uniformly from a bounded set A ⊂ R2 that is obtained
thorough a transformation of po(x).

The main difficulty of this approach is that the boundary of the set Amay
take complicated forms, possibly intractable by analytical means, making it
impossible to draw directly from this set. In this section, we show how to
build a sequence of decreasing bounded sets P1 ⊇ P2 ⊇ ...Pt ⊇ ... ⊇ A
that contain and approximate A. The sets Pt are regular (they can be
partitioned into disjoint triangular regions) and, hence it is straightforward
to draw uniformly from them. The draws (v, u) from Pt that belong to A are
also uniform in A, and hence x = v

u
are exact samples from po(x). Moreover,

as Pt → A, the acceptance rate converges to 1.
In Section 4.3.1 we outline the proposed adaptive RoU (ARoU) algorithm.

Some implementation issues are discussed in Section 4.3.2.

4.3.1 Algorithm

The notation for the description of the algorithm is very similar to the ARS
method. After the t − 1-th iteration, we obtain a set of support points
St = {s1, . . . , smt} ⊂ D, sorted out in ascending order, s1 < s2 < .... < smt .
These points, in turn, yield a collection of intervals I0 = (−∞, s1], Imt =
[smt ,+∞) and Ik = [sk, sk+1] for k = 1, ...,mt−1. We assume that the point
0 is contained in St, i.e., there exists j ∈ {1, ...,mt} such that sj = 0. As a
consequence, for every interval Ik = [sk, sk+1] the points sk and sk+1 are both
either non-positive or non-negative. We also assume the ability to compute
the upper bounds

1. L
(1)
k ≥

√
p(x), for all x ∈ Ik,

2. L
(2)
k ≥ x

√
p(x), for all x ∈ Ik ∩ [0,+∞),

3. L
(3)
k ≥ −x

√
p(x), for all x ∈ Ik ∩ (−∞, 0].

A computational procedure is given in Section 4.3.2. Below, we introduce
the approximating sequence of the sets P1 ⊇ P2 ⊇ ...Pt ⊇ ... ⊇ A, then
explain how to generate candidate samples using Pt and, finally, summarize
the ARoU algorithm.
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Construction of Pt

Consider the construction in Figure 4.3(a). The consecutive support points
sk, sk+1 ∈ St yield the angles αk , arctan(sk) and αk+1 , arctan(sk+1),
k = 1, ...,mt − 1. We then define the subset Ak , A ∩ Jk, where Jk is
the cone with vertex at the origin (0, 0) and delimited by the two straight
lines that form angles αk and αk+1 w.r.t. the u axis. Additionally, the sets
A0 and Amt are formed from the cones delimited by the angles α0 = −π/2,
α1 = arctan(s1), and αmt = arctan(smt), αmt+1 = π/2. Note that, clearly,
A = ∪mtk=0Ak.

For each k = 0, ...,mt the subset Ak is contained in a piece of circle Ck
(Ak ⊆ Ck) with center at (0, 0), delimited by the angles αk, αk+1 and radius

rk =





√(
L

(1)
k

)2

+
(
L

(2)
k

)2

, if sk, sk+1 ≥ 0
√(

L
(1)
k

)2

+
(
L

(3)
k

)2

, if sk, sk+1 ≤ 0

(4.12)

also shown (with a dashed red line) in Fig. 4.3(a).

Unfortunately, it is not straightforward to generate samples uniformly
from Ck. However, we can easily draw samples uniformly from a triangle in
the plane R2 (see Appendix B.1). Hence, we can choose an arbitrary point

in the arc of circumference that delimits Ck (e.g., the point (L
(2)
k , L

(1)
k ) in Fig.

4.3(a)) and calculate the straight line tangent to the arc at this point. In
this way, we build a triangular region Tk such that Tk ⊇ Ck ⊇ Ak, with a
vertex at (0, 0).

We can repeat the procedure for every k = 0, ...,mt and define the
polygonal region Pt , ∪mtk=0Tk composed by non-overlapping triangular
subsets. Note that, by construction, Pt embeds the entire region A, i.e.,
A ⊆ Pt.

Figure 4.3 summarizes the procedure to build the set Pt. In Figure 4.3(a)
we show the construction of a triangle Tk within the angles αk = arctan(sk),

αk+1 = arctan(sk+1), using the upper bounds L
(1)
k and L

(2)
k for the single

interval x ∈ Ik = [sk, sk+1]. Figure 4.3(b) illustrates the entire region
Pt , ∪5

k=0Tk formed by mt + 1 = 6 triangular subsets that covers completely
the region A, i.e., A ⊆ Pt.
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domain. Indeed, as long as the tails of p(x) decay as 1/x2 (or faster), the region A defined by the

(b)

Figure 4.3: (a) A region A constructed by the RoU method and a triangular
region Tk defining by the vertices v1, v2 and v3 built using the upper
bounds L

(1)
k , L

(2)
k for the functions

√
p(x) and x

√
p(x), x ∈ Ik = [sk, sk+1].

The red dashed line depicts the piece of circumference Ck with radius

rk =

√
(L

(1)
k )2 + (L

(2)
k )2. The set Tk embeds the subset Ak = A ∩ Jk where

Jk is the cone defined as v ∈ Jk if and only if v = θ1v1 +θ2v2 and θ1, θ2 ≥ 0.
(b) Construction of the polygonal region Pt = ∪5

k=0Tk using mt = 5 support
points, i.e., St = {s1, s2, s3 = 0, s4, s5}. Observe that each triangle Tk has a
vertex at (0, 0). The set Pt covers completely the region A obtained by the
RoU method, i.e., A ⊂ Pt.

Adaptive sampling

To generate samples uniformly in Pt, we first draw an index k ∈ {0, ...,mt}
with probability proportional to the area |Tk|, k = 0, ...,mt. To be specific,
we define the normalized weights

δk , |Tk|∑mt
i=0 |Ti|

, k = 0, ...,mt, (4.13)

and then choose a triangular piece by drawing an index k′ ∈ {0, ...,mt} from
the probability distribution P (k) = δk. Using the procedure in Appendix
B.1, we draw a point (v′, u′) uniformly from the triangular region Tk′ . If
(v′, u′) ∈ A, then we accept the sample x′ = v′/u′ and set mt+1 = mt,
St+1 = St and Pt = Pt. Otherwise, we discard the sample x′ = v′/u′

and incorporate it to the set of support points, St+1 = St ∪ {x′}, so that
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mt+1 = mt + 1 and we build Pt+1 ⊆ Pt, that yields a tighter approximation
of A.

Summary of the algorithm

The ARoU algorithm to generate N samples from po(x) is outlined below.

1. Initialization. Start with i = 1, t = 0 and choose m1 support points,
S1 = {s1, ..., sm1}, with 0 ∈ S1.

2. Iteration. For every t ≥ 1, take the following steps.

• From St, determine the intervals I0, . . . , Imt .
• Compute the upper bounds L

(j)
k , j = 1, 2, 3, for each k = 0, ...,mt

(see Section 4.3.2).

• Construct the triangular regions Tk, k = 0, ...,mt, as described in
Section 4.3.1.

• Compute the area |Tk| of every triangle and the normalized weights

δk , |Tk|∑mt
i=0 |Ti|

, (4.14)

with k = 0, ...,mt.

• Draw an index k′ ∈ {0, ...,mt} from the probability distribution
P (k) = δk.

• Generate a point (v′, u′) uniformly from the region Tk′ (see
Appendix B.1).

• If u′ ≤
√
p
(
v′
u′
)
, then accept the sample x(i) = x′ = v′

u′ , set i = i+1,

St+1 = St and mt+1 = mt. If i > N , then stop the iteration.

• Otherwise, if u′ >
√
p
(
v′
u′
)
, then reject the sample x′ = v′

u′ , set

St+1 = St ∪ {x′} and mt+1 = mt + 1.

• Sort St+1 in ascending order and increment t = t+ 1.

It is interesting to note that the uniform distribution over Pt is equivalent, in
the domain of x, to a proposal function πt(x) formed by pieces of reciprocal
uniform distributions scaled and translated, i.e., πt(x) ∝ 1/(λkx + βk)

2 in
every interval Ik, for some constants λk and βk.

119



4.3.2 Computation of bounds

In this section we provide the details on the computation of the bounds L
(j)
k ,

j = 1, 2, 3, needed for the implementation of the ARoU algorithm.
We associate a potential V (j) to each function of interest. Specifically,

since p(x) ∝ exp{−V (x; g)} we readily obtain that
√
p(x) ∝ exp

{
− V (1)(x; g)

}
,

x
√
p(x) ∝ exp

{
− V (2)(x; g)

}
, (x > 0),

−x
√
p(x) ∝ exp

{
− V (3)(x; g)

}
, (x < 0),

(4.15)

with

V (1)(x; g) , 1

2
V (x; g),

V (2)(x; g) , 1

2
V (x; g)− log(x), (x > 0),

V (3)(x; g) , 1

2
V (x; g)− log(−x), (x < 0),

(4.16)

respectively. It is equivalent to maximize the functions
√
p(x), x

√
p(x),

−x
√
p(x) w.r.t. x and to minimize the corresponding potentials V (j)(x; g),

j = 1, 2, 3, also w.r.t. x. As a consequence, we may focus on the calculation of
lower bounds γ

(j)
k ≤ V (j)(x; g), x ∈ Ik, which are related to the upper bounds

as L
(j)
k = exp{−γ(j)

k }, j = 1, 2, 3 and k = 0, ...,mt. This problem is far from
trivial, though. Even for very simple marginal potentials, V̄i, i = 1, . . . , n,
the potential functions, V (j), j = 1, 2, 3, can be highly multimodal w.r.t. x
[114].

In Section 4.2.2 we describe a procedure to find a lower bound γk for
the potential V (x; g). We can apply the same technique to the function
V (1)(x; g) = 1

2
V (x; g), associated to the function

√
p(x), since V (1) is a scaled

version of the potential function V (x; g). Therefore, we can easily compute

a lower bound γ
(1)
k ≤ V (1)(x; g) in the interval Ik.

The procedure in Section 4.2.2 can also be applied to find upper bounds
for x

√
p(x), with x > 0, and −x

√
p(x) with x < 0. Indeed, we can use the

modified potentials V (x; rk) to build

V (2)(x; rk) , 1

2
V (x; rk)− log(x), and

V (3)(x; rk) , 1

2
V (x; rk)− log(−x).

(4.17)
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for all x ∈ Ik. Clearly, both V (2)(x; rk) and V (3)(x; rk) are convex in Ik.
Hence, it is straightforward to obtain lower bounds γ

(2)
k ≤ V (2)(x; rk) ≤

V (2)(x; g) and γ
(3)
k ≤ V (3)(x; rk) ≤ V (3)(x; g), as explained in Section 4.2.2.

The corresponding upper bounds are L
(j)
k = exp{−γ(j)

k }, j = 1, 2, 3, for all
x ∈ Ik.

4.3.3 Heavier tails

It is possible to generalize the RoU method [26] shown in Section 2.8.1, in
order to state that if we draw a point (v′, u′) uniformly from the set

Aρ =
{

(v, u) : 0 ≤ u ≤ [p(v/uρ)]1/(ρ+1)
}
, (4.18)

then x = v′
u′ρ is a sample form po(x) ∝ p(x). The cases of interest are those

in which Aρ is a bounded set, and it can be shown that Aρ is bounded when
the tails of p(x) decay as 1/x(ρ+1)/ρ or faster. Therefore, for ρ > 1 we can
extend the RoU method to deal with heavy-tailed distributions.

The ARoU algorithm can be extended in a similar way. The potentials
associated to the target pdf po(x) ∝ exp{−V (x; g)} become

V (1)(x; g) , 1

ρ+ 1
V (x; g),

V (2)(x; g) , ρ

ρ+ 1
V (x; g)− log(x), for x > 0

V (3)(x; g) , ρ

ρ+ 1
V (x; g)− log(−x), for x < 0,

(4.19)

and we can use the technique of Section 4.2.2 to obtain the necessary lower
bounds. Moreover, the constant parameter ρ can be selected to maximize
the acceptance rate.

4.4 Position of the stationary points

In this section, we present a result that can be useful to initialize (i.e., to
choose adequately and automatically the initial set of support points S0) the
two strategies introduced in this chapter. Namely, it can be used to identify
automatically the tails of po(x).
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Indeed, it is possible to prove that all the stationary points of the potential
V (x; g) and, as a consequence, all the stationary points of the target pdf
po(x) ∝ exp{−V (x; g)}, are contained within the interval defined by the
minimum and maximum value of the simple estimates, i.e.,

xmin , min {x ∈ ∪ni=1Xi} , (4.20)

and
xmax , max {x ∈ ∪ni=1Xi} , (4.21)

where
Xi = {xi ∈ R : gi(xi) = µi}, (4.22)

i = 1, ..., n, contains the simple estimates corresponding to the nonlinearity
gi(x). Specifically, the potential V (x; g) is strictly decreasing for x ≤ xmin
and strictly increasing for x ≥ xmax. The following proposition summarizes
this result.

Proposition 2 All the stationary points of the potential V (x; g), i.e., every
x̂ that belongs to the set

X̂ ,
{
x̂ ∈ D :

dV

dx

∣∣∣∣
x=x̂

= 0

}
, (4.23)

are contained in the interval [xmin, xmax], where xmin and xmax are defined
in Eqs. (4.20) and (4.21), respectively. Namely, we have

X̂ ⊆ [xmin, xmax]. (4.24)

Proof : We have to prove that the first derivative of the potential function
V (x; g) is

dV

dx
< 0, for all x < xmin, (4.25)

and
dV

dx
> 0, for all x > xmax, (4.26)

so that all stationary points of V stay inside [xmin, xmax]. Routine
calculations yield the derivative of V (x; g),

dV

dx
=

n∑

i=1

dϑi
dx

dV̄i
dϑi

∣∣∣∣
ϑi=gi(x)

, (4.27)
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and we aim to evaluate it outside the interval [xmin, xmax].

To do it, first we recall that we assume nonlinearities gi(x), i = 1, ..., n,

with constant concavity (d
2gi
dx2 with constant sign ∀x ∈ D). This implies

that gi(x) can be monotonic, or non-monotonic with one minimum or one
maximum. Then, we also have to notice that:

1. If gi(x) is a monotonic function then the first derivative dgi
dx

has also
constant sign ∀x ∈ D.

2. If gi(x) is non-monotonic and we denote xi,1 and xi,2 (xi,1 < xi,2) the
two simple estimates (i.e., µi = gi(xi,1) and µi = gi(xi,2)), the first
derivative dgi

dx
has constant sign for all x < xi,1 and x > xi,2 (i.e.,

x /∈ Ji = [xi,1, xi,2]). Indeed, the first derivative dgi
dx

changes sign in the
interval Ji = [xi,1, xi,2] that contains the minimum or the maximum of
the non-monotonic gi(x).

Moreover, note that each interval Ji is included in [xmin, xmax], i.e.,
Ji ⊆ [xmin, xmax], i = 1, ..., n. Hence, for any type of gi(x) we can assert that
dgi
dx

has constant sign ∀x /∈ [xmin, xmax]. Let us consider the cases dgi
dx
> 0 and

dgi
dx
< 0, separately, first for x ≤ xmin and then for x ≥ xmax.

• dgi
dx

> 0: since for every simple estimate xi we have xi ≥ xmin,

µi = gi(xi), and since dgi
dx
> 0, we can write

µi = gi(xi) ≥ gi(xmin) > gi(x), for all x < xmin.

Then µi > gi(x), for all x < xmin, and due to the marginal potential
V̄i(ϑi) being convex with minimum at µi, we have

dV̄i
dϑi

∣∣∣∣
ϑi=gi(x)<µi

< 0,

for all i = 1, ..., n and ∀x < xmin. As a consequence,

dV

dx
=

n∑

i=1

dgi
dx︸︷︷︸
>0

dV̄i
dϑi

∣∣∣∣
ϑi=gi(x)︸ ︷︷ ︸
<0

< 0, ∀x < xmin.
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• dgi
dx

< 0: since for every simple estimate xi we have xi ≥ xmin,

µi = gi(xi), and since dgi
dx
< 0, we can write

µi = gi(xi) ≤ gi(xmin) < gi(x), for all x < xmin.

Then µi < gi(x), for all x < xmin, and since the marginal potential
V̄i(ϑi) is convex with minimum at µi, we have

dV̄i
dϑi

∣∣∣∣
ϑi=gi(x)>µi

> 0,

for all i = 1, ..., n and ∀x < xmin. As a consequence,

dV

dx
=

n∑

i=1

dgi
dx︸︷︷︸
<0

dV̄i
dϑi

∣∣∣∣
ϑi=gi(x)︸ ︷︷ ︸
>0

< 0, ∀x < xmin.

Since in both cases dV
dx
< 0, we can assert that

dV

dx
< 0 for all x < xmin. (4.28)

A similar argument for x > xmax yields dV
dx
> 0 for all x > xmax and completes

the proof. 2

This property can be used to identify the tails of the target pdf po(x) ∝
exp{−V (x; g)} and to handle them separately. However, if no simple
estimates exist, i.e., |Xi| = 0 for all i = 1, ...., n, the proposition above
becomes of no use for this purpose.

4.5 Summary

Many strategies presented in the literature (ARS, TDR, Concave-convex
ARS, GARS, etc....) [36, 50, 55, 93, 113] break down when the tails of
the target pdf are log-convex1 in an infinite domain. In this chapter, we
have proposed two adaptive rejection sampling schemes that can be used
to draw exactly from a large family of pdf’s, not necessarily with log-
concave tails. Probability distributions of this class appear in many inference

1or T -convex, more in general.
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problems as, for example, localization in sensor networks [90, 113, 114],
stochastic volatility [34, Chapter 9], [69] or hierarchical models [51, Chapter
9], [37, 42, 43]. The new methods yield a sequence of proposal pdf’s that
converge towards the target density and, as a consequence, can attain high
acceptance rates. Since they can be applied to multimodal densities also
when the tails are log-convex, these new techniques have a broad applicability
compared to the related methods in the literature.

The first adaptive approach in Section 4.2 is easier to implement.
However, it needs to identify a suitable pdf q(x) ∝ exp{−V̄j(gj(x))} with
j ∈ {1, ..., n}, that in general can be a difficult task. One type of pdf’s for
which the identification of q(x) can turn out natural includes the a posteriori
density of a random variable X given a collection of observations (see Section
3.7.1). In this case, it may often be simple to identify q(x) with the prior of
X and exp{−V−j(x; g)} with the likelihood.

The proposed adaptive RoU technique is more general than the first
scheme, as also shown in the application to a stochastic volatility model
in Chapter 6 (Section 6.2.3). Indeed, it can be always applied for all the
target pdf’s of the form po(x) ∝ exp{−∑n

i=1 V̄i(gi(x))}. Moreover, using the
adaptive RoU scheme to generate a candidate sample, we only need to draw
two uniform random variates although, in exchange, we have to find bounds
for three (similar) potential functions.

In Section 4.4 we have proved that all the stationary points of the target
pdf po(x) are included in an interval delimited by the minimum and the
maximum value of the simple estimates. This result can be used to identify
automatically the tails of po(x).

In the next chapter, we extend the class of pdf’s that can be tackled with
the GARS algorithm introduced in the previous Chapter 3 and also with the
two adaptive techniques presented in this chapter. For instance, we relax the
assumptions about the marginal potentials V̄i and the nonlinearities gi.
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Chapter 5

Extensions and enhancements

In Chapter 3, we have introduced the standard version of the GARS
technique. The basic assumptions for the development of the method are
that

• the target pdf has the form po(x) ∝ exp
{
−∑n

i=1 V̄i(gi(x))
}

where

• the marginal potentials V̄i(ϑi) are all convex with a minimum µi,
i = 1, ..., n, and

• the nonlinearities gi(x) are all either convex or concave.

In this chapter, we study techniques that enable us to relax some of these
assumptions. Specifically, in Section 5.1, we apply the GARS method to
target densities that may not belong of the exponential family. Then, in
Section 5.2, we discuss how the assumptions about the marginal potentials
V̄i and the nonlinearities gi can be relaxed.

Finally, we introduce a simpler automatic implementation of the basic
GARS strategy in Section 5.3. This alternative GARS procedure requires
only the ability to evaluate the potential function V (x; g), i.e., the knowledge
of the simple estimates and of the minima µi, i = 1, ..., n, is not necessary.
The need to compute the first derivatives of the gi’s (and the V̄i’s) is also
removed in Section 5.3.3.
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5.1 Non-exponential target densities

5.1.1 GARS with T -transformation

So far, in Chapters 3 and 4 we have considered target pdf’s of form

po(x) ∝ exp

{
−

n∑

i=1

V̄i(gi(x))

}
.

However, the GARS procedure can also be applied to target pdf’s of the
more general type

po(x) ∝ p(x) = T−1

[
−

n∑

i=1

V̄i(gi(x))

]
, (5.1)

where T is some transformation that satisfies the following conditions (as
shown in Section 2.7.3):

1. T is monotonically increasing, hence invertible.

2. Given the inverse transformation T−1, the integral
∫ ϑ
−∞ T

−1(t)dt must
be bounded for ϑ in the image of T . Moreover, it must be possible to
analytically obtain the integral

∫ b

a

T−1(t)dt, a, b ∈ R. (5.2)

Then, we can use the two usual two steps of the GARS technique in order
to build:

1. Suitable linear functions ri,k(x), i = 1, ..., n, in order to replace gi(x),
∀x ∈ Ik, and to obtain the modified potentials V (x; rk), k = 0, ...,mt.

2. The piecewise linear function Wt(x) composed by straight lines tangent
to each potential V (x; rk), ∀x ∈ Ik and k = 0, ...,mt.

The resulting proposal pdf has the form

πt(x) ∝ T−1[−Wt(x)]. (5.3)
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5.1.2 GARS and the TDR method

The transformed density rejection (TDR) technique of Section 2.7.3 enables
us to draw from target pdf’s of the type

po(x) ∝ T−1[g(x)] = (T−1 ◦ g)(x),

where T−1(ϑ) is monotonically increasing and g(x) is concave.1

The GARS technique can be expressed in a similar form, that extends the
applicability of the TDR method to non-monotonic transformations. Indeed,
let us assume that we are able to draw from the pdf

f(ϑ) ∝ H(ϑ), (5.4)

∀ϑ ∈ C ⊆ R, with a single mode2 at µ. Furthermore, consider a target
density of the form

po(x) = f(g(x)) = (f ◦ g)(x), (5.5)

where g(x) is either a concave or a convex function (or a general function
with known inflection points, see Section 5.2.1). Hence, the target pdf is a
distribution generated by a transformation of scale g(x) of the pdf f(ϑ) [74].

The first step of the standard GARS procedure can be used to replace
the nonlinearity g(x) with suitable linear functions rk(x) = akx + bk, for all
x ∈ Ik and k = 0, ...,mt, such that

H(rk(x)) = H(akx+ bk) ≥ H(g(x)), (5.6)

in order to use
πt(x) ∝ H(rk(x))

as the proposal pdf in a RS scheme. Since f(ϑ) ∝ H(ϑ), it is important to
remark that πt(x) ∝ f(rk(x)) ∝ H(rk(x)) is a linearly-scaled version of the
pdf f(ϑ), hence if we can draw from f then we can generate samples also
from πt(x). We recall that if the function H is monotonic, then we go back

1Table 2.13 in Section 2.7.3 summarizes the other three possible cases where the
technique is applicable: T−1(ϑ) increasing and g(x) convex, T−1(ϑ) decreasing and g(x)
concave and finally T−1(ϑ) decreasing and g(x) convex. Note that in all the four cases
T−1(ϑ) is a monotonic function.

2However, these considerations can also be extended when f(ϑ) has several modes,
following the ideas in Section 5.2.5.
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to the scenario in Section 2.7.3, where H = T−1 (with either µ → +∞ if H
is increasing, or µ→ −∞ if H is decreasing).

The construction of the necessary linear functions is very similar to the
standard algorithm. Given a set of support points

St = {s1, ..., smt},
we aim to find a linear function rk(x) in the interval Ik = [sk, sk+1] such that
H(rk(x)) ≥ H(g(x)). An example with mt = 3 support points and a convex
nonlinearity g(x) is shown in Figure 5.1. The simple estimates (shown with
squares) are calculated as solutions of the equation µ = g(x). The straight
lines r0(x) and r3(x) are tangent to g(x) at s1 and s3, respectively, while
r1(x) and r2(x) are secant lines.
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ϑ ' '= rk (x ')

Figure 5.1: Example of construction of the linear functions rk(x), k =
0, ...,mt = 3 for a convex nonlinearity g(x) and a function H(ϑ) with a single
mode at µ. The simple estimates s1 and s3 are solutions of the equation
µ = g(x).

The construction is valid because the inequality in Eq. (5.6) is satisfied.
Indeed, arbitrarily choosing x′ and taking the values ϑ′ = g(x′) and ϑ′′ =
rk(x

′) we always have that H(ϑ′′) ≥ H(ϑ′).
Therefore, the GARS method can be interpreted as a technique to use

rejection sampling for target densities generated by a transformation of scale
[74]. Here, we have considered target pdf’s which are scaled versions of a
pdf f(ϑ) with a single mode µ, but the GARS technique can also be applied
when f(ϑ) has several modes (the underlying idea is the same used in Section
5.2.5).
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5.2 Extensions of the standard GARS

procedure

In Chapters 3 and 4, we have considered nonlinearities gi(x) with second
derivatives with constant sign and we have assumed convex marginal
potentials V̄i(ϑi), i = 1, ..., n. In the following sections, we address how we
can relax these assumptions and use the GARS technique with more general
nonlinearities and marginal potentials.

5.2.1 General nonlinearities gi(x)

Let us consider a generic (almost everywhere) continuous nonlinearity gi(x),
defined in D, with second derivative with non-constant sign. In this case, it
is not possible to apply directly the proposed GARS method of Chapter 3.
However, we can extend the proposed methodology to this more general case
if the inflection points of gi are available.

Indeed, if we are able to calculate the inflection points di,j, j = 1, ..., qi,
of each nonlinearity gi(x) with x ∈ Di, i = 1, ..., n, then we can also find a
partition Di = ∪qij=1[Di,j] (where [·] denotes the closure of an interval) such

that Di,j ∩ Di,k = ∅, ∀j 6= k, and such that d2gi
dx2 has constant sign in every

Di,j, i = 1, ..., n and j = 0, . . . , qi. This information can be incorporated into
the initial set of support points S0 and apply the standard GARS algorithm.

Specifically, let Di,j = (di,j, di,j+1). If we let di,j, di,j+1 ∈ S0 =
{s1, . . . , sm0} (in addition to the simple estimates, as indicated in Section
3.2.4), then gi(x) is either convex or concave in every Ik = [sk, sk+1] and we
can apply the GARS algorithm exactly as described in Section 3.2.

Figure 5.2(a) displays an example of a generic nonlinearity with 3
inflection points, shown with red triangles. In this case, the initial set
of support points is S0 = {di,1, xi,1, xi,2, di,2, di,3} (m0 = 4), including the
inflection points and the simple estimates. Figure 5.2(b) illustrates an
example of construction of the suitable linear functions ri,k(x) with mt = 7
support points.

Note that the analytical study of the nonlinearities gi(x) is, in general,
easier than the study of the entire log-density, as required, e.g., in [36]. For
example, in the positioning application of Chapter 6 (Section 6.1.4) we can
easily find the inflection points of each gi(x), i = 1, . . . , n, but the analysis
over the whole log-density function is intractable (so that the method in [36]
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Figure 5.2: (a) Example of a generic nonlinearity gi(x) with three inflection
points di,1, di,2 and di,3, shown with red triangles. In this case the initial
set of support points S0 = {di,1, xi,1, xi,2, di,2, di,3} (m0 = 5) has to contain
the two simple estimates xi,1, xi,2 (depicted with squares) and the inflection
points. (b) Construction of the suitable linear functions ri,k(x), k = 0, ..., 7,
with mt = 7 support points, as described for the standard GARS procedure.

In the sequel, we discuss how we can relax some of the assumptions on
the marginal potentials V̄i(ϑi), i = 1, ..., n.

5.2.2 Monotonic marginal potentials

The standard strategy in Chapter 3 can be easily extended for a monotonic
(always convex) marginal potential V̄i(ϑi). Indeed, the procedure described
in Section 3.2.3 to build the linear functions ri,k(x) can also be applied when
some marginal potential V̄i(ϑi), i ∈ {1, ..., n}, is a monotonic function.

In particular, it is sufficient to assign either µi → −∞ if V̄i is
monotonically increasing, or µi → +∞ if V̄i is monotonically decreasing.

Figures 5.3 illustrates how the procedure in Section 3.2.3 works in
this case, considering µi → ±∞, for non-monotonic concave or convex
nonlinearities gi(x). Clearly, the method can also be applied when the
nonlinearity gi(x) is monotonic.
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Figure 5.3: Example of construction of the linear functions ri,k(x) when V̄i(ϑi)
is monotonic. (a) A decreasing marginal potential V̄i(ϑi). The axis associated
to the independent variable ϑi is vertical. (b),(e) Construction with a non-
monotonic concave gi(x). (c),(f) Construction with a non-monotonic convex
gi(x). (d) An increasing marginal potential V̄i(ϑi). The axis associated to
the independent variable ϑi is vertical.

Figure 5.3(a) shows a decreasing (convex) marginal potential V̄i while
Figure 5.3(d) depicts an increasing (convex) V̄i. In Figures 5.3(b),(f),
the linear functions ri,k are all tangent at the support points to the the
nonlinearities gi(x). Note that the linear functions ri,1 and ri,2 are represented
by the same straight line, in both pictures.

On the contrary, in Figures 5.3(c),(e), the linear functions ri,k are all
secant straight lines. However, it is important to remark that in Figures
5.3(c),(e), i.e. when V̄i is decreasing and gi is convex or V̄i is increasing and
gi is concave, the construction is possible only in a finite domain. Indeed,
the linear functions ri,0 and ri,3 have an infinite slope in both figures.

Finally, note that in Figures 5.3(a),(d) the axis associated to the
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independent variable ϑi is vertical.
A simple analytical example is given below.

Example 2 Consider the target pdf

po(x) ∝ w(x) exp{−h(x)}, (5.7)

where w(x) > 0 is a positive function, either convex or concave, and h(x) is
a convex function with a minimum at µ1. We can rewrite po(x) as

po(x) ∝ exp{−h(x) + log[w(x)]}, (5.8)

so that the associated potential function is

V (x; g) = h(x)− log[w(x)].

We decompose V as

V (x; g) = V̄1(g1(x)) + V̄2(g2(x)),

where V̄1(ϑ1) = h(ϑ1), g1(x) = x, V̄2(ϑ2) = − log(ϑ2) and g2(x) = w(x).
Note that V̄2(ϑ2) is a monotonic (decreasing) marginal potential (hence,
µ2 → +∞).

5.2.3 Quasi-convex marginal potentials

Let us now consider the case of quasi-convex marginal potentials, i.e.,
functions V̄i(ϑi), i = 1, ...n, such that

• V̄i is increasing for ϑi > µi, and

• V̄i is decreasing for ϑi < µi.

Figure 5.4(a) displays an example of a quasi-convex marginal potential V̄i(ϑi),
where the independent variable ϑi is plotted in the vertical axis. In this case,
the procedure to construct the linear functions ri,k(x), x ∈ Ik, in Section
3.2.3 (i.e., the first step of the standard GARS technique) remains valid.
Namely, we are able to find suitable linear functions such that

V̄i(ri,k(x)) ≤ V̄i(gi(x)), (5.9)
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Figure 5.4: (a) Example of quasi-convex potential V̄i(ϑi). The axis of the
independent variable ϑi is rotated by 90◦. (b) Example of construction of
the linear functions ri,k(x) such that V̄i(ri,k(x)) ≤ V̄i(gi(x)), ∀x ∈ D, when
the nonlinearity gi(x) is non-monotonic and concave.

i = 1, ..., n and k = 0, ...,mt, using the procedure explained in Section 3.2.3.
Figure 5.4(b) illustrates the construction of the linear functions ri,k when the
nonlinearity gi(x) is non-monotonic and concave.

Actually, given an interval Ik = [sk, sk+1] and denoting

I(k)
ϑi

, {ϑi ∈ R : ϑi = gi(x), ∀x ∈ Ik}, (5.10)

the image set corresponding to the interval Ik, the procedure to construct
the linear functions ri,k(x), x ∈ Ik, can be summarized as follows:

R1 If the marginal potential V̄i(ϑi) is increasing in the image interval I(k)
ϑi

(ϑi > µi), then use a straight line tangent to gi(x).

R2 Otherwise, if the marginal potential V̄i(ϑi) is decreasing in the image

interval I(k)
ϑi

(ϑi < µi), use a line secant to gi(x).

We also use this construction procedure in the next Sections 5.2.4 and 5.2.5.
With these rules, even with quasi-convex marginal potentials we can produce
a modified potential that satisfies

V (x; rk) ≤ V (x; g), ∀x ∈ D. (5.11)
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If we are able to draw from π∗t (x) ∝ exp{−V (x; rk)}, then we can simply use
π∗t (x) as the proposal pdf in the RS scheme. However, if are not able to draw
from π∗t (x), in this scenario we cannot ensure that the modified potential
V (x; rk) is convex and, therefore, the second step of the standard GARS
algorithm cannot be implemented. Namely, in general we cannot build a
piecewise-linear lower hull Wt(x) ≤ V (x; rk).

Next we consider a special kind of quasi-convex marginal potentials such
that, if and only if all the marginal potentials are of this type, it is also
possible to build an adequate lower hull Wt(x). However, the resulting
proposal pdf πt(x) can be improper.

A special kind of quasi-convex marginal potentials

Consider a target pdf po(x) ∝ exp{−V (x; g)} where the potential function
has the form V (x; g) =

∑n
i=1 V̄i(gi(x)) and each marginal potential V̄i(ϑi),

i = 1, ..., n, is

• strictly increasing and concave for ϑi > µi, and

• strictly decreasing and concave for ϑi < µi.

Obviously, V̄i(ϑi) has a unique minimum at ϑ = µi and we are also assuming
V̄i(µi) > −∞. Figure 5.5 shows an example of this class of functions.
These potentials describe super-Gaussian distributions, i.e., probability
densities with positive kurtosis, which often appear in financial or biological
applications [117, 131].

With the assumptions above, the system potential V (x; g) is differentiable
almost everywhere, except for the (null measure) set of all simple estimates
∪ni=1Xi (we recall that x ∈ Xi if, and only if, gi(x) = µi). Moreover, since the
set of support points St includes all the simple estimates (see Section 3.2.4),
i.e., ∪ni=1Xi ⊂ St = {sk}mtk=1, a simple estimate xi can belong to the interval
Ik = [sk, sk+1] only as a border point. Therefore, replacing gi(x) with the
linear function ri,k(x), where x belongs to the interval Ik = [sk, sk+1] defined
by two support points, we can write

d2V̄i(ri,k(x))

dx2
=
d2ri,k
dx2

dV̄i
dϑi

+

(
dri,k
dx

)2
d2V̄i
dϑ2

i

= 0 +

(
dri,k
dx

)2
d2V̄i
dϑ2

i

≤ 0 (5.12)

for all x ∈ Ik, except possibly the border points sk or sk+1 if they are simple
estimates. Hence, substituting the vector of nonlinearities g with the vector
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Figure 5.5: Example of generic marginal potential function V̄i(ϑi) strictly
increasing and concave for ϑi > µi, strictly decreasing and concave for
ϑi < µi.

of linear functions rk in Ik, we obtain that the modified system potential
V (x; rk) is concave in Ik. Thus we can build Wt(x) for x ∈ Ik = [sk, sk+1],
k = 1, . . . ,mt − 1, as the linear function passing through the points
(sk, V (sk; rk)) and (sk+1, V (sk+1; rk+1)).

For k = 0 and k = mt we have, in general, semi-open intervals
I0 = [−∞, s1] and Imt = [smt ,+∞], hence Wt(x) = V (s1; r1) for all
x ∈ I0 and Wt(x) = V (smt ; rmt) for all x ∈ Imt , respectively. However,
a constant value of Wt(x) in an infinite interval yields an improper proposal
πt(x) ∝ exp{−Wt(x)}. Therefore this procedure can only be applied exactly
either when the target pdf po(x) has a finite domain or using the alternative
procedure explained in the Chapter 4.

Figure 5.6 shows an example of construction of the lower hull Wt(x) with
three support points, mt = 3.

5.2.4 Concave marginal potentials

Let us consider a target pdf po(x) ∝ exp
{
−∑n

i=1 V̄i(gi(x))
}

, x ∈ D, where
all the marginal potentials V̄i are concave with maxima at µi, i = 1, ..., n.
Note that, in this case, the domain D has to be bounded for po(x) to be a
proper pdf.

The construction of the linear functions ri,k(x) follows the rules R1 and
R2 described in the previous Section 5.2.3. Therefore, given the intervals Ik,
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V(x;g)

V(x;r0)
V(x;r1)

V(x;r2)
V(x;r3)

w0(x)
w1(x)

w2(x)
w3(x)

s1 s2 s3
x

(c)

€ 

x

Figure 5.6: Example of construction of the modified potentials V (x; rk)
(dashed red lines) and the piecewise linear function Wt(x) (black straight
lines) when the potential function is V (x; g) =

√
|x2 − 4| +

√
|1− exp(x)|

(blue line). We can express it as V (x; g) = V̄1(x2−4)+ V̄2(1−exp(x)), where
V̄1(ϑi) = V̄2(ϑi) =

√
|ϑi|, i.e., the marginal potentials are concave, strictly

decreasing for ϑi < 0 and strictly increasing for ϑ > 0. The two nonlinearities
g1(x) = x2 − 4 and g2(x) = 1− exp(x) generate the sets of simple estimates
X1 = {−2, 2} and X2 = {0}, that are contained in the set of support points
St = {s1 = −2, s2 = 0, s3 = 2}.

and

I(k)
ϑi

= {ϑi ∈ R : ϑi = gi(x), x ∈ Ik},
k = 0, ...,mt, we use a straight line ri,k(x) tangent to gi(x) at an arbitrary
point x∗ ∈ Ik if the marginal potential V̄i(ϑi) is increasing in the interval

I(k)
ϑi

. Otherwise, if the marginal potential V̄i(ϑi) is decreasing in the interval

I(k)
ϑi

, we use a secant line. Note that this construction is proper because the
domain D is bounded.

Figure 5.7 sketches an example of construction of the linear functions
ri,k(x), k = 0, ..., 5, when V̄i is concave and the nonlinearity gi is convex.
The straight lines ri,1(x) and ri,2(x) are tangent to gi(x) at arbitrary points
within I1 and I2, respectively. The linear functions ri,0(x) and ri,3(x) are
secant, passing through the support points. This construction ensures that
V̄i(ri,k(x)) ≤ V̄i(gi(x)) for all x ∈ Ik, k = 0, ...,mt. The value µi is indicated
with a green dashed line.
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2.6 Adaptive rejection sampling

The main limitation of RS methods is that it is in general very hard to find a
proposal function π(x) and a bound L ≥ p(x)/π(x), such that the overbounding
function Lπ(x) ≥ p(x) be actually “close” enough to the target density, as needed
as to attain good acceptance rates. One way to tackle this difficulty is to construct
π(x) adaptively.

The standard adaptive rejection sampling (ARS) [22], [10, Chapter 7] algorithm
enables the construction of a sequence of proposal densities, {πt(x)}t∈N, tailored
to the target density po(x) ∝ p(x). Its most appealing feature is that each time
we draw a sample from a proposal πt and it is rejected, we can use this sample to
build an improved proposal, πt+1, with a higher mean acceptance rate.

Unfortunately, the ARS method can only be applied with target pdf’s which are
log-concave (hence, unimodal), which is a stringent limitation for many practical
applications.

Assume that we want to draw from the pdf po(x) ∝ p(x) ≥ 0 with support in
D ⊆ R. The standard ARS procedure can be applied when log[p(x)] is concave,
i.e., when the potential function

V (x) � − log[p(x)], x ∈ D ⊆ R, (2.69)

is convex.
The basic idea is to partition the domain D into several intervals and construct

the overbounding function locally on each of these pieces. Let

St � {s1, s2, . . . , smt} ⊂ D (2.70)

be a set of support points, sorted in ascending order s1 < . . . < smt . The number
of points mt can grow with the iteration index t. From St we build a piecewise-
linear lower hull of V (x), denoted Wt(x), formed by segments of linear functions
tangent to V (x) at the support points sk in St. If we denote as wk(x) the linear
function tangent to V (x) at sk, then we can define

Wt(x) � max{w1(x), . . . , wmt(x)} ≤ V (x) ∀x ∈ D. (2.71)

Figure 2.8 illustrates the construction of Wt(x) with three support points for
the convex potential function V (x) = x2. It is apparent that Wt(x) ≤ V (x)
by construction, therefore exp{−Wt(x)} is an overbounding function for p(x), i.e.,

exp{−Wt(x)} ≥ p(x) = exp{−V (x)}. (2.72)

37

Figure 5.7: Example of construction of the linear functions ri,k(x), k =
0, ...,mt, using mt = 5 support points when V̄i is concave with a maximum
at µi and the nonlinearity gi is convex. Note that, clearly, V̄i(ri,k(x)) ≤
V̄i(gi(x)). The value µi is indicated with green dashed line.

Note that, unlike in the case of convex marginal potentials, when the
function V̄i is concave, the condition satisfied by the linear functions ri,k(x)
is

|µi − ri,k(x)| ≥ |µi − gi(x)|,
for all x ∈ Ik = [sk, sk+1].

Since we assume that all V̄i are concave, the modified potential

V (x; rk) =
n∑

i=1

V̄i(ri,k(x)), ∀x ∈ Ik,

is also concave. Then, the lower hull Wt(x), x ∈ Ik = [sk, sk+1], k = 0, ...,mt,
can be easily built using the linear segments joining the points (sk, V (sk; rk))
and (sk+1, V (sk+1; rk+1)) as in Figure 5.6 (recall that the domain D is
bounded in this case).

It is important to remark that if some marginal potentials are convex
and others are concave, the substitution of the gi’s with suitable ri,k’s is
possible, but the modified potential V (x; rk) has a second derivative with
non-constant sign, in general. Therefore, in such scenario we cannot build a
suitable piecewise linear function Wt(x)3. The only proposal function that

3However, the alternative procedure of Section 5.3.1 may be applied to overcome this
limitation.
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we can obtain is π∗t (x) ∝ exp{−V (x; rk)}, but it may not be easy to draw
directly from it.

5.2.5 Marginal potentials with several stationary
points

So far, we have considered marginal potentials with only one minimum or
one maximum (or without any stationary points, in Section 5.2.2). Here, we
deal with marginal potentials V̄i with more than one stationary point.

It turns out that we can still build useful linear functions ri,k(x) using

the image sets I(k)
ϑi

defined Eq. (5.10) and the construction rules R1 and R2
of Section 5.2.3. Figure 5.8(a) depicts an example of a marginal potential
V̄i with two minima, µi,1, µi,3, and a maximum, µi,2. The vertical axis
corresponds to the independent variable ϑi. Figure 5.8(b) illustrates an
example of construction of the linear functions ri,k(x), k = 0, ...,mt, using
mt = 7 support points St = {s1, ..., s7}, with a non-monotonic convex
nonlinearity gi(x). We use secant lines in the intervals I1 = [s1, s2],
I3 = [s3, s4], I4 = [s4, s5] and I6 = [s6, s7], and we use tangent lines in
the intervals I0 = (−∞, s1], I2 = [s2, s3], I5 = [s5, s6] and I7 = [s7,+∞).
The value µi,2 of the maximum is indicated with a green dashed line, while
the values µi,1 and µi,3 of the minima are displayed with red dashed lines.

More details of the construction are provided in the sequel. Let q be the
number of stationary points of the marginal potential V̄i(ϑi) (in Figure 5.8(a)
we have q = 3). The set of simple estimates is extended as

Xi = {x ∈ D : µi,j = gi(x) j = 1, ..., q}, (5.13)

hence, in Figure 5.8(b) we have |Xi| = 6 simple estimates and Xi =
{s1, s2, s3, s5, s6, s7} (only s4 is not a simple estimate). Four of them are
generated from the minima µi,1 and µi,3 while the two remaining ones come
from the maximum µi,2. All the simple estimates are contained in the set of
support points, i.e., Xi ⊆ St, as described in Section 3.2.4.

The linear functions ri,k(x), for k ∈ {0, ..., 7}, are properly built. Namely,
it is easily seen from Figure 5.8 that

|µi,1 − ri,k(x)| ≤ |µi,1 − gi(x)|, x ∈ Ik,
for k = 0, k = 1,k = 6 and k = 7,s while

|µi,3 − ri,k(x)| ≤ |µi,3 − gi(x)|, x ∈ Ik,
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Figure 5.8: (a) Example of a marginal potential V̄i(ϑi) with two minima µi,1,
µi,3, and a maximum µi,2. The axis of the independent variable ϑi is vertical.
(b) Example of construction of the linear functions ri,k(x), k = 0, ...,mt,
using mt = 7 support points, with a non-monotonic convex nonlinearity
gi(x). The simple estimates are indicated by squares s1, s2, s3, s5, s6 and s7

(s4 is not a simple estimate).

for k = 2, 3, 4, 5. Additionally, the inequality

|µi,2 − ri,k(x)| ≥ |µi,2 − gi(x)|, x ∈ Ik,

is verified for k = 1, 2 and k = 5, 6. As a consequence, if we define rk =
[r1,k, ..., rn,k], k = 0, ...,mt, as usual then the condition V (x; rk) ≤ V (x; g) is
satisfied.

If it is easy to draw from π∗t (x) ∝ exp{−V (x; rk)}, then we can readily use
π∗t (x) as a proposal pdf. Unfortunately, we cannot ensure that the modified
potential V (x; rk) is convex (or concave). Hence, in general, we cannot
implement the second step of the standard GARS algorithm. Namely, we
cannot build a piecewise linear lower hull Wt(x) ≤ V (x; rk) ≤ V (x; g), in
general. However, this problem may be overcome when the inflection points
of V̄i are available using the alternative GARS procedure in Section 5.3.1.

141



5.2.6 Summary

Table 5.1 provides a summary of the different possibilities that we have
analyzed so far. The first column describes the type of the marginal
potentials, the second column states whether the domain D of the target
pdf po(x) can be unbounded or not with the previous choice of the marginal
potentials. The remaining columns indicate whether it is possible, in general,
to build the modified potential V (x; rk) and the piecewise lower hull Wt(x).

5.3 Simplified GARS algorithm

The standard GARS procedure introduced in Chapter 3 relies on the ability
to analytically obtain the minima µi of the marginal potentials V̄i and the
sets of simple estimates Xi = {x ∈ D : µi = gi(x)}, i = 1, ..., n.

The need for the (not necessarily straightforward) calculation of the µi’s
and Xi’s may render the GARS algorithm non-intuitive for some problems
and discourage many potential users. Ideally, the technique should be easy
to code, requiring only the ability to evaluate some function related to the
pdf.

Let us note that leaving aside the calculation of µi and Xi, i = 1, ..., n,
the application of GARS method demands:

• the evaluation of the marginal potentials V̄i(ϑi),

• the evaluation of the nonlinearities, ϑi = gi(x), and

• the evaluation of the first derivatives gi
dx

,

for i = 1, ..., n. In the sequel, we propose extensions of the standard
GARS algorithm that enable its use when the minima µi, i = 1, ..., n, are
unknown (see Section 5.3.1) and the simple estimates Xi, i = 1, ..., n, are
unavailable (see Section 5.3.2). Finally, in Section 5.3.3, we explain how to
remove the computation of the derivatives dgi

dx
, i = 1, ..., n, from the sampling

procedure. The implementation of the resulting method is straightforward,
nearly automatic, and interestingly enough, this simplified method turns out
to be applicable in problems that cannot be tackled using the conventional
GARS algorithm.
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Table 5.1: Summary of the different cases.
Marginal potentials Domain D of Construction Construction

V̄i the target pdf po(x) of V (x; rk) of Wt(x)
all convex

non-monotonic unbounded possible possible
some V̄i convex
and increasing, unbounded possible possible
with gi convex
some V̄i convex
and increasing, bounded possible possible
with gi concave
some V̄i convex
and decreasing, bounded possible possible
with gi convex
some V̄i convex
and decreasing, unbounded possible possible
with gi concave

quasi-convex unbounded possible impossible
quasi-convex possible but

specific case of unbounded possible πt(x) is
subsection in 5.2.3 improper

all concave bounded possible possible
possible

some convex unbounded possible (see Section
and others concave 5.3.1)

possible
with several unbounded possible (see Section

stationary points 5.3.1)

5.3.1 Unknown µi

The standard GARS procedure described in Section 3.2 consists in the
following two steps:

1. Replace the nonlinearities gi(x) with the linear functions ri,k(x) for all
x ∈ Ik, i = 1, ..., n, and k = 0, ...,mt.
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2. Build the piecewise linear function Wt(x) using straight lines tangent
to the modified potential V (x; rk) =

∑n
i=1 V̄i(ri,k(x)), in such a way

that Wt(x) ≤ V (x; rk).

In the first step, we need to know the position µi of the minima of the
marginal potentials, V̄i(ϑi), i = 1, ..., n. If the minima µi are unknown, we
can apply the alternative procedure described below.

Let us consider a convex marginal potential V̄i(ϑi), ϑi ∈ C ⊆ R, with an
unknown minimum at µi, and a set of qt support points at time t,

Ft = {θ1, ..., θqt} ⊂ C, (5.14)

sorted out in ascending order θ1 < ... < θqt . We can construct straight
lines tangent to V̄i at the support points in Ft and combine them to yield a
piecewise linear lower hull Ri(ϑi), i.e.,

Ri(ϑi) ≤ V̄i(ϑi), ϑi ∈ C. (5.15)

Figure 5.9 shows a simple example, where Ri(ϑi) is built using qt = 3 support
points.
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V i(ϑi)
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ˆ µ i
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θ1
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θ2
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θ3

Figure 5.9: Example of construction of the lower hull Ri(ϑi) ≤ V̄i(ϑi) using
straight lines tangent to V̄i(ϑi) with qt = 3 support points, Ft = {θ1, θ2, θ3}.

The lower hull Ri(ϑi) has a minimum at µ̂i that can be calculated in a
straightforward manner. The value µ̂i can be used as a surrogate for µi in
order to apply the GARS method. In particular, from µ̂i we can obtain an
alternative set of simple estimates

X̂i = {xi ∈ D : gi(x) = µ̂i}

144



and then use X̂i, i = 1, ..., n, to construct the set of support points
St = {s1, ..., smt} ⊂ D. Given St, we compute the linear functions ri,k,
i = 1, ..., n, and k = 0, ...,mt, in the usual way and, given these functions,
we obtain a lower hull

Wt(x) ,
n∑

i=1

Ri(ri,k(x)) ≤ V (x; g) =
n∑

i=1

V̄i(gi(x)). (5.16)

The main difference with the convention GARS techniques is that we have
to build two sets of support points (Ft and St) instead of one. Figure 5.10
shows how the ri,k(x), k = 0, ...,mt = 3, are built, involving both Ft and St.
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Figure 5.10: Example of construction of the linear functions ri,k, k =
0, ...,mt = 3, using µ̂i to calculate the simple estimates. The set of support
points is St = {s1, s2, s3} and the simple estimates are s1 and s3. The point
s2 is arbitrary (as long as s1 < s2 < s3).

The alternative GARS procedure with unknown minima µi can be
outlined as follows.

1. Choose arbitrarily F0 = {θ1, ..., θq0} ∈ C and an auxiliary set A0 =
{s1, ..., sa0} ∈ D. Set t = 0.

2. Substitute each marginal potential V̄i with a lower hull Ri, i = 1, ..., n,
formed by straight lines tangent at the points Ft = {θ1, ..., θqt}.

3. Find the minimum µ̂i of each Ri and calculate X̂i = {xi ∈ D : gi(x) =
µ̂i}, i = 1, ..., n.
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4. Build the set of support points

St = {s1, ..., smt} = At ∪ X̂1 ∪ X̂2 ∪ ... ∪ X̂n ⊂ D,

and sort it in ascending order, i.e., s1 < s2 < .... < smt . Namely, the set
St contains all points in At and all the simple estimates. For instance,
in Figure 5.10 we have At = {s2} and St = {s1, s2, s3}.

5. Replace the nonlinearities gi(x) with the linear functions ri,k(x) for all
x ∈ Ik = [sk, sk+1], i = 1, ..., n, k = 0, ...,mt, as described in Chapter
3.

6. Build the piecewise linear function Wt(x) =
∑n

i=1 Ri(ri,k(x)), for all
x ∈ Ik.

7. Draw samples x′ from πt(x) ∝ exp{−Wt(x)} and u′ from U([0, 1]).

8. If u′ ≤ exp{−V (x′;g)}
exp{−Wt(x′)

then accept x′ and set At+1 = At and Ft+1 = Ft.

9. Otherwise, if u′ > exp{−V (x′;g)}
exp{−Wt(x′)

, then discard x′ and set At+1 = At∪{x′}
and Ft+1 = Ft ∪ {θ′ = gi(x

′)}.

10. Sort At+1 and Ft+1 in ascending order, set t = t + 1 and go back to
step 2.

This strategy actually enables us to address more general cases. Consider, for
instance, a marginal potential with V̄i with several stationary points. We have
seen in Section 5.2.5 that the second step of the standard GARS procedure
cannot be implemented. However, if the positions of the inflection points of
V̄i are available, we can construct adequately a lower hull Ri(ϑi) ≤ V̄i(ϑi) and
then apply the alternative GARS procedure introduced above. Moreover, it
can be directly applied when some marginal potentials V̄i are convex and
others are concave (also in this case the standard GARS procedure cannot
be used, see Section 5.2.4).

5.3.2 Unknown Xi
Consider a collection of marginal potentials and nonlinearities such that the
minima µi, i = 1, ..., n, are available but it is not possible to solve the
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equations µi = gi(xi) and, hence we cannot construct the sets Xi of simple
estimates.

We need to devise a new method for the computation of suitable linear
functions ri,k(x) that does not involve the sets Xi. Recall that the conditions

|µi − ri,k(x)| ≤ |µi − gi(x)| and (5.17)

(µi − ri,k(x))(µi − gi(x)) ≥ 0. (5.18)

should be satisfied in order to guarantee that V (x; rk) ≤ V (x; g), ∀x ∈ Ik.
We start choosing an auxiliary set Et of et > 0 support points, Et =

{s1, ..., set}. For each non-linearity gi, i = 1, ..., n, we build a partition of Et
as

Et = E it,1 ∪ E it,2 ∪ E it,3,
where the disjoint subsets E it,1, E it,2 and E it,3 are constructed as follows:

For i = 1, ..., n
if gi is convex then

E it,2 = {s ∈ Et : gi(x) ≤ µi},

E it,1 = {s ∈ Et : s < min{E it,2} and gi(s) > µi},
E it,3 = {s ∈ Et : s > max{E it,2} and gi(s) > µi},

otherwise if gi is concave then

E it,2 = {s ∈ Et : gi(x) ≥ µi},

E it,1 = {s ∈ Et : s < min{E it,2} and gi(s) < µi},
E it,3 = {s ∈ Et : s > max{E it,2} and gi(s) < µi}.

It should be noticed that when the nonlinearity gi(x) is monotonically
increasing and concave, or monotonically decreasing and convex, E it,1 = ∅.
Also, if the nonlinearity gi(x) is monotonically increasing and convex or
monotonically decreasing and concave, E it,3 = ∅.

In order to build the linear functions we need to add two supports points
for each unknown simple estimate of a nonlinearity gi. We denote the set of
these new added points as Bit = {b1, ..., bbit} and define

S it , {s1, ..., smit} = Et ∪ Bit,
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with s1 < .... < smit where mi
t = et + bit, i = 1, ..., n. Note that the set S it is

specific for each gi. For example, if the nonlinearity gi(x) is non-monotonic
and either concave or convex, in general we have to incorporate 4 support
points, i.e., mi

t = et + bit = et + 4.
Figure 5.11 shows the construction of the linear functions ri,k(x), k =

0, ...,mi
t = 7, without the knowledge of the positions of the simple estimates,

when gi(x) is a non-monotonic convex nonlinearity. The bit = 4 added points
(shown with red circles) are

• the intersection point of the straight line tangent to gi(x) at max{E it,1}
and the straight line ϑi = µi (parallel to the axis x),

• the intersection point of the secant line passing through the points
(max{E it,1}, gi(max{E it,1})), (min{E it,2}, gi(min{E it,2})), and the straight
line ϑi = µi (parallel to the axis x),

• the intersection point of the secant line passing through the points
(max{E it,2}, gi(max{E it,2})), (min{E it,3}, gi(min{E it,3})), and the straight
line ϑi = µi (parallel to the axis x),

• and the intersection point of the straight line tangent to gi(x) at
min{E it,3} and the straight line ϑi = µi.

Although the choice of these points may seen complicated, we have simple
selected them to enclose the unknown solutions of the equation gi(x) = µi.
To summarize, in the figure we have Et = {s1, s4, s7}, E it,1 = {s1}, E it,2 = {s4}
and E it,3 = {s7}. The added points are Bit = {s2, s3, s5, s6} so that
S it = {s1, s2, s3, s4, s5, s6, s7} (mi

t = 7).
All the linear functions ri,k(x) in Figure 5.11 satisfy the conditions in Eq.

(5.17) and (5.18). Furthermore, Figure 5.11 can be compared with Figure
3.5 in Chapter 3 that depicts the construction when the simple estimates
are known. In particular, note that, as other support points are added
the intervals [s2, s3] and [s5, s6], that contain the simple estimates, become
smaller and smaller, and the construction here becomes equivalent to the
standard procedure in Section 3.2.3.

Since S it is different for each gi, i = 1, ..., n, the number mi
t of linear

functions ri,k changes for each nonlinearity gi. However, we can define the
piecewise linear function

r̂i(x) = ri,k(x), ∀x ∈ Ik ⊂ D, (5.19)
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Figure 5.11: Example of construction of the linear functions ri,k(x), k =
0, ...,mi

t = 7, without the knowledge of simple estimates, with a non-
monotonic convex gi(x). We have E it,1 = {s1}, E it,2 = {s4}, E it,3 = {s7},
Et = {s1, s4, s7} and Bit = {s2, s3, s5, s6} while S it = {s1, s2, s3, s4, s5, s6, s7}.
The unknown simple estimates are shown with squares. The linear functions
ri,0(x) = ri,1(x) are tangent lines to gi(x) at s1, ri,2(x) = ri,5(x) = µi are
constant, ri,3(x) and ri,4(x) are secant lines and ri,0(x) = ri,1(x) are tangent
lines to gi(x) at s7.

with k = 0, ...,mi
t for each i ∈ {1, ..., n}. Note that r̂i(x) is defined for all

x ∈ D. Then, denoting as r̂ = [r̂1(x), ..., r̂n(x)], the modified potential is
built as

V (x; r̂) =
n∑

i=1

V̄i(r̂i(x)) ≤ V (x; g) =
n∑

i=1

V̄i(gi(x)), (5.20)

for all x ∈ D and we can construct the lower-hull Wt(x) by tracing lines
tangent to V (x; r̂) at arbitrary points. We recall that the proposal pdf is
πt(x) ∝ exp{−Wt(x)}.

Let us mention that the technique in this section can be combined with
the procedure of Section 5.3.1 when the locations of the minima µi are not
available.

5.3.3 A derivative-free procedure

To apply the procedure of Section 5.3.2, the position of the simple estimates
is not needed. However, it is still necessary to use the first derivative of
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gi(x) and also to build the lower hull Ri(ϑi) to substitute V̄i, i = 1, .., n, as
described in Section 5.3.1.

However, we can use exactly the same procedure of Section 2.6.1 (for the
standard ARS algorithm) to construct a piecewise linear lower hull Ri(ϑi)
using only secant lines, i.e, without the need to compute derivatives.

Moreover, to avoid the calculation of the first derivative of the
nonlinearity gi(x) (and only to evaluate it), we introduce here a derivative-
free procedure using only secant lines, similar to the techniques of Section
2.6.1 for the standard ARS algorithm.

Figure 5.12 displays an example of construction of the linear functions
ri,k(x), k = 0, ...,mi

t = 5, without using the first derivative for a nonlinearity
gi(x), which is non-monotonic and convex. In this case, we need to add
only one support point for each unknown simple estimate (displayed as red
circles). Figure 5.12 can be compared with Figure 5.11, where we use the
first derivative and Figure 3.5, where we also know the position of the simple
estimates.

The straight lines ri,0(x), ∀x ∈ I0 = (−∞, s1], and ri,2(x), ∀x ∈
I2 = [s2, s3], are formed by the secant line passing through (s3, gi(s3))
and (s1, gi(s1)). The straight lines ri,3(x), ∀x ∈ I3 = [s3, s4], and ri,5(x),
∀x ∈ I5 = [s5,+∞), are formed by secant lines passing through (s3, gi(s3))
and (s5, gi(s5)), respectively. The linear functions ri,1(x) = µi, ∀x ∈ I1 =
[s1, s2] and ri,4(x) = µi, ∀x ∈ I4 = [s4, s5] are constant. Finally, note that
E it,1 = {s1}, E it,2 = {s3}, E it,3 = {s5} and Bit = {s2, s4}.

Figure 5.13 depicts the construction incorporating one additional support
point. In this case, we have E it,1 = {s1, s2}, E it,2 = {s4} and E it,3 = {s6}.
The straight line ri,0(x), ∀x ∈ I0 = (−∞, s1], is formed by a piece of
the secant line passing through (s1, gi(s1)) and (s2, gi(s2)), while ri,1(x),
∀x ∈ I1 = [s1, s2], is formed by a piece of the secant line passing through
(s2, gi(s2)) and (s4, gi(s4)).

Finally, Figure 5.14 shows an example of the construction with one more
point, i.e., E it,1 = {s1, s2}, E it,2 = {s4, s5}, E it,3 = {s7} and Bit = {s3, s6}. We
recall that Et = E it,1 ∪ E it,2 ∪ E it,3 = {s1, s2, s4, s5, s7} and

S it = Et ∪ Bit = {s1, s2, s3, s4, s5, s6, s7}.

In this case, ri,1(x), ∀x ∈ I1 = [s1, s2], is formed by a piece of the secant line
passing through (s2, gi(s2)) and (s4, gi(s4)) and ri,7(x), ∀x ∈ I7 = [s7,+∞),
by a piece of the secant line passing through (s5, gi(s5)) and (s7, gi(s7)).
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Figure 5.12: Example of construction of the linear functions ri,k(x), k =
0, ..., m̂t = 5, without the knowledge of simple estimates and without using
the first derivative. All the linear functions ri,k(x) consist of pieces of secant
lines passing through the support points. In this case, we have E it,1 = {s1},
E it,2 = {s3}, E it,3 = {s5} and Bit = {s2, s4}. The dashed straight lines
represent the secant lines passing through the points (s1, gi(s1)), (s3, gi(s3))
and (s3, gi(s3)), (s5, gi(s5)).

From the sequence of plots in Figures 5.12-5.14 we can see how the
approximation of gi is improved when incorporating more support points
(mi

t = 5, mi
t = 6 and mi

t = 7, respectively). Indeed, the straight lines ri,k
form the piecewise linear function

r̂i(x) = ri,k(x), ∀x ∈ Ik ⊂ D (5.21)

with k = 0, ...,mi
t, that becomes closer and closer to the nonlinearity gi as

we add support points (i.e. r̂i(x)→ gi(x) when mi
t → +∞).

To summarize, the entire GARS technique can be implemented only
evaluating V̄i(ϑi) (in order to build Ri(ϑi)) and gi(x) (in order to build r̂i(x)).
Specifically, the computation of the first derivatives can be skipped.

5.4 Summary

In this chapter, we have presented several extensions of the standard GARS
technique presented in Chapter 3. We have first explained how to use the
GARS algorithm when the target pdf does not belong to the exponential
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Figure 5.13: Example of construction of the linear functions ri,k(x), k =
0, ..., m̂t = 6, without the knowledge of simple estimates and without using
the first derivative. All the linear functions ri,k(x) are composed for pieces of
secant lines. In this case, we have E it,1 = {s1, s2}, E it,2 = {s4}, E it,3 = {s6} and
Bit = {s3, s5}. The dashed straight lines represent the secant lines passing
through between the points (s1, gi(s1)), (s2, gi(s2)), between (s2, gi(s2)),
(s3, gi(s3)) and finally (s5, gi(s5)), (s6, gi(s6)).

family (Section 5.1.1) and an interpretation of the GARS algorithm of
Chapter 3 as a technique to draw samples from a target pdf generated by a
transformation of scale of another density [74]. Note that the idea in Section
5.1.2 can be seen as a generalization of the concept of T -transformation,
introduced in Section 2.7.3.

We have also discussed how it is possible to extend the class of target
pdf’s that the GARS method can address. In particular, we have shown that,
with some minor modifications, the GARS methodology can be applied with
a broader class of nonlinearities (not necessarily either convex or concave)
and marginal potentials (not necessarily convex, with a minimum at µi).

In Section 5.3 we have introduced an alternative “automatic” algorithm
that demands only the ability to evaluate the potential function V (x; g),
and does not assume knowledge of the simple estimates and/or the minima
µi of the marginal potentials V̄i, i = 1, ..., n. Furthermore, a derivative-
free algorithm has also been introduced in Section 5.3.3. Besides its
simplicity, this alternative procedure expands the class of target pdf’s that
can be tackled with the GARS technique. Indeed, all the pdf’s po(x) ∝
exp{−∑n

i=1 V̄i(gi(x))}, where the minima (or maxima) µi of V̄i are unknown
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Figure 5.14: Example of construction of the linear functions ri,k(x), k =
0, ..., m̂t = 7, without the knowledge of simple estimates and without using
the first derivative. All the linear functions ri,k(x) are composed for pieces
of secant lines. In this case, we have E it,1 = {s1, s2}, E it,2 = {s4, s5},
E it,3 = {s7} and Bit = {s3, s6}. The dashed straight lines represent the secant
lines passing through between the points (s1, gi(s1)), (s2, gi(s2)), between
(s2, gi(s2)), (s4, gi(s4)) and finally (s6, gi(s6)), (s7, gi(s7)).

or the equations µi = gi(x) cannot be solved, can be addressed with the
alternative procedure.

We have described each extension separately for clarity, and in order to
focus the attention on one specific technique at a time. However, almost all
the extensions and improvements presented in this chapter can be combined
and utilized together. For instance, all techniques described in Section 5.2 can
be applied without the knowledge of the minima (or maxima) µi, without the
set of simple estimates Xi, i = 1, ..., n, and without using the first derivative,
by combining them with the method of Section 5.3.
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Chapter 6

Numerical Results

In this chapter we present a collection of examples where the proposed
adaptive sampling methods can be applied. They are broadly classified
as applications of the standard GARS algorithm of Chapter 3 (in Section
6.1), examples involving target distributions with log-convex tails (in Section
6.2) and an application of the simplified GARS procedure of Chapter 5 (in
Section 6.3). The goal is not to carry out an extensive numerical study of
all the proposed algorithms (as the possible variations and versions are very
numerous) but to illustrate how the main techniques can be used in practice
and how they compare to some relevant methods existing in the literature.
Most of the examples involve computer simulations only, but we have also
applied the GARS algorithm to a target localization problem using real data
from a network of wireless sensors.

6.1 Standard GARS technique

All the examples of this Section can be addressed using the standard GARS
methodology of Chapter 3. The first one, in Section 6.1.1, is a toy problem
where both the GARS algorithm and Evans’ method [36] can be applied.
In Section 6.1.2, we compare the performance of the GARS technique and
the ARMS algorithm of Section 2.7.1 [48] when sampling from a bimodal
target pdf. In the third example, Section 6.1.3, we use the GARS method
to improve the performance of a standard particle filter. Finally, in order
to show how the proposed technique can be used to draw samples from a
multivariate distribution, we consider the problem of positioning a target in
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a 2-dimensional space using range measurements in Section 6.1.4. In this
case, we use the GARS technique jointly with a Gibbs sampler.

6.1.1 A toy example

We begin with a simple example in order to illustrate how to apply the GARS
technique. Let us consider a target pdf

po(x) ∝ p(x) = exp

{
−

4∑

i=0

aix
i

}
,

with a4 > 0. The potential function is a 4th order polynomial, V (x; g) =∑4
i=0 aix

i. Every 4th order polynomial can be easily expressed as

V (x; g) = κ+ (α + βx+ γx2)2 + (δ + ηx)2, (6.1)

where κ, α, β, γ, η and δ are real constants and, as a consequence, we can
rewrite V (x; g) using our notation as

V (x; g) = κ+ V̄1(g1(x)) + V̄2(g2(x)) = κ+
n=2∑

i=1

V̄i(gi(x)), (6.2)

where V̄1(ϑ) = V̄2(ϑ) = ϑ2, g1(x) , α + βx + γx2 is a 2nd-order polynomial

and g2(x) , δ + ηx is linear. Since V̄1(ϑ) = V̄2(ϑ) are convex, d2g1
dx2 = γ is

constant and g2(x) is linear, it is straightforward to apply the basic GARS
algorithm of Section 3.2 to this problem.

In particular, let St = {s1, s2, . . . , smt} be the set of support points at the
t-th iteration of the algorithm. For each interval Ik = [sk, sk+1] we can build
a suitable linear function r1,k(x) = a1,kx + b1,k (while r2,k(x) = g2(x) for all
x) using the method in Chapter 3 in order to obtain a lower bound for the
potential,

V (x; rk) = κ+ V (r1,k(x)) + V (r2,k(x))

≤ V (x; g) = κ+ V (g1(x)) + V (g2(x)),
(6.3)

for all x ∈ Ik. Note that, for this specific example, the proposal density

π∗t (x) ∝





exp{−V (x; r0)}, if x ∈ I0
...
exp{−V (x; rmt)}, if x ∈ Imt

(6.4)
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Figure 6.1: (a) The target density po(x) ∝ exp{−( 1
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(dashed line) and the normalized histogram of N= 10,000 samples obtained
using the GARS algorithm. (b) The curve of acceptance rates (averaged
over 10,000 simulations) as a function of the accepted samples using the
GARS algorithm with proposal function πt(x) (black solid line) and using
the method of [36] with a log-transformation (blue dashed line).

is a piecewise pdf that could be used directly to draw candidate samples if
an efficient method to sample from truncated Gaussian pdf’s is at hand [85].

Alternatively, we can apply the complete GARS scheme. Specifically,
since the modified potentials V (x; rk) are convex in Ik for all k, we can build
a piecewise linear function Wt(x) such that Wt(x) ≤ V (x; rk) ≤ V (x; g),
∀x ∈ Ik, and use the corresponding piecewise exponential density

πt(x) ∝ exp{−Wt(x)}

to draw candidates using the inversion method described in Section 2.2.1.
Figure 6.1 illustrates the results obtained with this algorithm. The

specific target density po(x) results from the choice of parameters γ = 0.0707,
β = −0.0094, α = −5.3033, η = 0.7071, δ = 0 and κ = −28.1250, and it is
depicted in Fig. 6.1(a) with a dashed line. In the same plot, we observe the
normalized histogram of 10, 000 samples drawn with the GARS algorithm.

Let us note that in this simple example it is possible to analytically find
the inflection points of the potential V (x; g) and, as a consequence, we can
apply the method of [36], described in Section 2.7.3, and compare it with the
GARS technique.
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Figure 6.1(b) shows the acceptance rates1 (averaged over 10,000
independent simulation runs) versus the number of accepted samples for
the GARS algorithm using the proposal functions πt(x) ∝ exp{−Wt(x)}
(black solid line) and the method of [36] (blue dashed line), all of them
with the same number of supports points. When the information about
the inflection points of the potential V (x; g) is available, the method of
[36] provides a tighter piecewise linear approximation of V (x; g) and, as a
result, attains a higher acceptance rate. Unfortunately, for more complicated
distributions the calculation of the inflection points of V (x; g) becomes
analytically intractable, as shown in the experimental example of Section
6.1.4.

6.1.2 Comparison of the ARMS and GARS techniques

Consider the problem of sampling a scalar random variable X from a
posterior bimodal density

po(x) = p(x|y) ∝ p(y|x)q(x),

where the likelihood function is

p(y|x) ∝ exp{− cosh(y − x2)},

and the prior pdf is

q(x) ∝ exp{−α(η − exp(|x|))2},

with constant parameters α > 0 and η. Therefore, the posterior pdf is

po(x) = p(x|y) ∝ exp {−V (x; g)} , (6.5)

where, g(x) = [g1(x), g2(x)] = [x2, exp(|x|)] and the potential function is

V (x; g) = cosh(y − x2) + α(η − exp(|x|))2. (6.6)

The marginal potentials are V̄1(ϑ1) = cosh(ϑ1) = exp{ϑ1}+exp{−ϑ1}
2

and
V̄2(ϑ2) = αϑ2

2. Note that the density p(x|y) is an even function, p(x|y) =

1In order to compute the (empirical) acceptance rate for the i-th sample of the adaptive
methods, we have run M = 10, 000 independent simulations and recorded the numbers
ki,j , j = 1, ...,M , of candidate samples generated in order to accept the i-th sample from
po(x) in the j-th simulation. The resulting empirical acceptance rate is R̂i = 1

M

∑M
j=1 κ

−1
i,j .
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p(−x|y), hence it has a zero mean, µ =
∫
xp(x|y)dx = 0. The constant α is

a scale parameter that allows to control the variance of the random variable
X, both a priori and a posteriori. The higher the value of α, the sharper the
modes of p(x|y) become.

There are no closed-form methods to sample directly from p(x|y).
Moreover, since the posterior density p(x|y) is bimodal, the system potential
is non-log-concave and the conventional ARS technique cannot be applied.
However, we can easily use the GARS technique of Chapter 3. If, e.g., y = 5
and η = 10, then the simple estimates corresponding to g1(x) are x1,1 = −

√
5

and x1,2 =
√

5, so that J1 = [−
√

5,
√

5] (see Section 3.2.3). In the same
way, the simple estimates corresponding to g2(x) are x2,1 = − log(10) and
x2,2 = log(10), therefore J2 = [− log(10), log(10)].

An alternative possibility to draw from this density is to use the ARMS
method [48]. Therefore, in this section we compare the two algorithms.
Specifically, we look into the accuracy of the approximation of the posterior
mean µ = 0 by way of the sample mean estimate, µ̂ = 1

N

∑N
i=1 x

(i), for
different values of the scale parameter α.

We have considered ten equally-spaced values of α in the interval [0.2, 5]
and then performed 10, 000 independent simulations for each value of α,
each simulation consisting of drawing 5, 000 samples with the GARS method
and the ARMS algorithm. Both techniques can be sensitive to their
initialization. The ARMS technique starts with 5 points selected randomly
in [−3.5, 3.5] (with uniform distribution). The GARS method starts with the
set of support points S0 = {x2,1, x1,1, s, x1,2, x2,2} sorted in ascending order,
including all simple estimates and an arbitrary point s, randomly chosen in
each simulation with uniform pdf in J1 = [x1,1, x1,2].

The simulation results show that the two techniques attain similar
performance when α ∈ [0.2, 1] (the modes of p(x|y) are relatively flat). When
α ∈ [1, 4] the modes become sharper and the Markov chain generated by the
ARMS algorithm remains trapped at one of the two modes in ≈ 10% of
the simulations. When α ∈ [4, 5] the same problem occurs in ≈ 25% of the
simulations. The performance of the GARS algorithm, on the other hand, is
comparatively insensitive to the value of α.

Table 6.1 illustrates the estimated posterior mean µ̂ in 5 independent
simulations, obtained with the two techniques when α = 5. We can see
that the ARMS algorithm remains trapped at the negative mode in the first
simulation (µ̂ = −2.2981) and at the positive mode (µ̂ = 2.2994) in the last
simulation.
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Table 6.1: Estimated posterior mean, µ̂ (for α = 5).

Simulation 1 2 3 4 5
ARMS -2.2981 0.0267 0.0635 0.0531 2.2994
GARS 0.0772 -0.0143 0.0029 0.0319 0.0709

Figure 6.2(a) shows the posterior density

p(x|y) ∝ exp
{
− cosh(y1 − x2)− α(µ− exp(|x|))2

}
,

with α = 0.2, depicted as a dashed line, and the normalized histogram
obtained with the samples drawn using the GARS technique.

Figure 6.2(b) illustrates the acceptance rates (averaged over 20, 000
simulations) for the first 50 accepted samples drawn with the GARS
algorithm. Every time a sample x′ drawn from πt(x) is rejected, it is
incorporated as a support point. Then, the proposal pdf πt(x) becomes
closer to the target pdf p(x|y) and, as a consequence, the acceptance rate
becomes higher. For instance, the acceptance rate for the first sample is
16%, but for the second sample, it is already ≈ 53%. The acceptance rate
for the 20-th sample is ≈ 93% and for the 50-th sample is ≈ 96%.

In Figure 6.2(c), we also depicts the average acceptance probability ât
defined in Section 3.4 (averaged over 10, 000 simulations) as a function of
the iteration index t. The acceptance probability for t = 1 is approximately
1.8%, but for t = 10, it is already ≈ 71%. The acceptance probability ât for
t = 100 is ≈ 95%.

6.1.3 Particle filtering

In filtering applications, the signal of interest (SoI) is a random sequence
Xk and the aim is to compute (or approximate) the conditional densities
p(xk|y1:k), where y1:k are the observations collected up to time k.

In many applications of signal processing, the SoI is generated by a
dynamic system, described as a state-space model. Let us consider, for
instance, the non-stationary growth model [34, Chapter 9] given by

Xk = 0.5Xk−1 + 25Xk−1/(1 +X2
k−1) + cos(1.2(k − 1)) + Θ1,k, (6.7)

Yk = X2
k/20 + Θ2,k, (6.8)
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Figure 6.2: (a) The bimodal density p(x|y) = po(x) ∝ exp {−V (x; g)}
(dashed line) and the normalized histogram of N = 5000 samples obtained
using GARS algorithm. (b) The curve of acceptance rates (averaged over
20, 000 simulations) as a function of the accepted samples. (c) The curve of
acceptance rate ât (averaged over 10, 000 simulations) as a function of the
iteration index t.

where k ∈ N represents discrete time, Xk is the unknown signal of interest, Yk
is the observation, Θ1,k and Θ2,k are Gaussian noise variables with densities
N (ϑ1,k; 0, 1) ∝ exp{ϑ1,k/2} and N (ϑ2,k; 0, 10) ∝ exp{ϑ2,k/20}. Often Eq.
(6.7) is termed “state equation” and Eq. (6.8) is termed “observation
equation”, meaning that Xk is the (unobserved) state of a system and Yk
is an observation, both at time k.

Due to the nonlinearities in the dynamic model (6.7)-(6.8), we need
to apply Monte Carlo techniques to estimate Xk from the observations
Y1:k = y1:k.
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The posterior density of Xk given the available data can be expressed as

p(xk|y1:k) ∝ p(yk|xk)
∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1, (6.9)

and we can approximate the integral (6.9) via Monte Carlo by sampling N
times from the posterior at time k − 1. As a result

p(xk|y1:k) ≈ pN(xk|y1:k) ∝ p(yk|xk)
1

N

N∑

i=1

p(xk|x(i)
k−1), (6.10)

where x
(i)
k−1, i = 1, ..., N , are samples (often called particles) from the

distribution with pdf p(xk−1|y1:k−1).
One possible procedure is the so called accept-reject particle filter

[12, 68, 90, 144, 145]. It entails to sample x
(i)
k from the (approximate) density

1
N

∑N
i=1 p(xk|x

(i)
k−1) and to accept with probability p(yk|xk)/L, where L is an

upper bound for the likelihood. Unfortunately the performance of the filter
proposed in [90] is limited, depending on the shape of the likelihood. If the
likelihood function is very sharp, the acceptance rate can be very low.

Here, we use a different approach. We can readily rewrite Eq. (6.10) as

p(xk|y1:k) ≈ pN(xk|y1:k) ∝
1

M

M∑

i=1

p(yk|xk)p(xk|x(i)
k−1),

and then, in order to draw from p(xk|y1:k), we apply the following procedure:

1. sample uniformly a discrete index j = 1, . . . ,M (each element has
probability 1/M), and then

2. draw the i-th particle x
(i)
t from po,j(xt) ∝ p(yk|xk)p(xk|x(j)

k−1).

This approach is feasible if, and only if, we are able to draw from every
factor po,j(xk) ∝ p(yk|xk)p(xk|x(j)

k−1). The potential function V (xk; g) ,
− log[po,j(xk)] has the form

V (xk; g) =
1

2

(
xk − µ(j)

k

)2

+
1

20

(
yk −

x2
k

20

)2

(6.11)

where µ
(j)
k , 0.5x

(i)
k−1 + 25x

(j)
k−1/(1 + (x

(j)
k−1)2) + cos(1.2(k − 1)) and

g(xk) = [g1(xk) = xk − µ(j)
k , g2(xk) = (yk − x2

k/20)/20].

162



The marginal potentials are both quadratic V̄1(ϑ1) = 1
2
ϑ2

1, V̄2(ϑ2) = 1
20
ϑ2

2,
since the noise variables Θ1,k, Θ2,k are Gaussian.

In general, the potential function in (6.11) is not convex, so that we
cannot use the standard ARS method to draw from po,j(xt). However, since
the marginal potentials and the nonlinearities are convex, we can apply
the GARS technique. When a sample is discarded, the GARS procedure
improves the proposal pdf in order to increase the probability of accepting
the next proposed sample. Hence, in order to take advantage of this adaptive
feature of the algorithm, one can draw first N indices j1, ..., jN , from the set
{1, ..., N}, and then let Nr denote the number of times the index r has been
drawn in such way that N = N1 + ... + NN . Then we generate Nr samples
x

(m)
k , m = 1, ..., Nr, from the pdf po,r(xk). We repeat the latter step for
r = 1, ..., N .

We have compared our approach, using the GARS technique, with a
standard sequential importance resampling (SIR) filter. We have run 10, 000
independent simulations calculating the absolute error between the real and
estimated trajectory of the dynamic system, with T = 50 time steps. With
the same number of particles, the GARS-based particle filter provides a lower
absolute error. However, the mean acceptance rate for one particle is ≈ 30%,
hence the complexity is higher. To take this issue into account, we have
also run simulations with a SIR filter with triple and quadruple number of
particles. In these cases, the performance is similar for all the algorithms.
Table 6.2 shows the numerical results.

Table 6.2: Absolute error between the real and estimated trajectory (10000
simulations).

Type of Filter SIR SIR SIR SIR SIR SIR-
GARS

Number of Particles 30 60 90 120 1000 30
Absolute Error 5,2281 5,0837 4,9910 4,9326 4.7654 4,9660

6.1.4 Experimental example: target localization

In order to show how the proposed techniques can be used to draw samples
from a multivariate distribution, we consider the problem of positioning a
target in a 2-dimensional space using range measurements. This is a problem
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that appears frequently in many engineering applications involving sensor
networks [3, 126].

Experimental setup

We have carried out an experiment with a network consisting of four nodes.
Three of them are placed at fixed positions and play the role of sensors that
measure the strength of the radio signals transmitted by the target. The
other node plays the role of the target to be localized. All nodes are bluetooth
devices (Conceptronic CBT200U2A) with a nominal maximum range of 200
m.

The deployment of the network is sketched in Figure 6.3 (a). We
consider a square monitored area of 4 × 4 m2 and place the sensors at
fixed positions h1 = [h1,1 = 0.5, h1,2 = 1], h2 = [h2,1 = 3.5, h2,2 = 1] and
h3 = [h3,1 = 2, h3,2 = 3], with all coordinates in meters. The target is
located at x = [x1 = 2.5, x2 = 2].
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Figure 6.3: (a) Deployment of the experimental sensor network over a
rectangular surveillance area of 4 × 4 m2. The sensors are depicted with
triangles while the target is depicted with a cross. (b) The least squares
regression to adjust the parameters l and γ. The points indicate the
measurements collected by the sensors at different distances, and the solid

curve denotes the function l̂− 10γ̂ log
[
d
d0

]
with d0 = 0.3, l̂ = −27.08 dB and

γ̂ = 1.52.

The measurement provided by the i-th sensor is modeled as a random
variable Yi. To describe the relationship between the observed radio signal

164



strength, Yi = yi, and the target position, modeled by the random vector
X = [X1, X2], we use the free space propagation model [130]

Yi = l − 10γ log

[
Di

d0

]
+ Θi (dB), (6.12)

where the norm

Di = ||X− hi|| =
√

[(X1 − hi,1)2 + (X2 − hi,2)2]

is the distance between the i-th sensor and the target, γ is a parameter
that depends on the physical environment (for open space, γ ≈ 2) and the
constant l is the mean power received by each sensor when the target is
located at a reference distance d0. The random variables Θi, i = 1, 2, 3, are

i.i.d. Gaussian variates with density N (ϑi; 0, σ2) ∝ exp
{
− ϑ2

i

2σ2

}
that model

the measurement noise.
For the experiment, the reference distance has been set to d0 = 0.3 m.

The parameters γ, l, and the noise variance σ2 have been fitted by least
squares regression using 200 measurements with the target placed at known
distances from each sensor. As a result, we have obtained l̂ = −27.08 dB,
γ̂ = 1.53 and σ̂ = 4.41. Figure 6.3(b) depicts the measurements at several

distances and the fitted curve l̂ − 10γ̂ log
[
d
d0

]
.

Algorithm

Assume we collect M independent measurements from each sensor using the
experimental setup just described. Let

Y = [Y1,1, . . . , Y1,M , Y2,1, . . . , Y2,M , Y3,1, . . . , Y3,M ]

denote the random observation vector. For some fixed Y = y the likelihood
of the target position X is Gaussian according to the model in Eq. (6.12),
i.e.,

p(y|x) =
3∏

q=1

M∏

m=1

N
(
yq,m; l̂ − 10γ̂ log(||X− hq||/d0), σ̂2

)
. (6.13)

In order to perform inference on the position of the target, we aim at drawing
from the posterior pdf

p(x|y) ∝ p(y|x)p(x), (6.14)
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where p(x) is the prior pdf of the target position X. We assume p(x) =
p(x1, x2) = p(x1)p(x2) where

p(xk) = N (xk; 1.5, 1/2), k = 1, 2. (6.15)

We apply the Gibbs sampler to draw N particles, denoted x(j) = [x
(j)
1 , x

(j)
2 ],

from the posterior pdf p(x1, x2|y) ∝ p(y|x1, x2)p(x1)p(x2). The algorithm
can be summarized as follows:

1. Set j = 1, and draw x
(1)
2 from the prior pdf p(x2).

2. Draw a sample x
(j)
1 from the conditional pdf p(x1|y, x(j)

2 ) and set

x(j) = [x
(j)
1 , x

(j)
2 ].

3. Draw a sample x
(j+1)
2 from the conditional pdf p(x2|y, x(j)

1 ).

4. Increment j = j + 1. If j > N stop, else go back to step 2.

The Markov chain generated by the Gibbs sampler converges to a stationary
distribution with pdf p(x1, x2|y). In order to use Gibbs sampling however,

we have to be able to draw from the conditional densities p(x1|y, x(j)
2 ) and

p(x2|y, x(j)
1 ). In general, these two conditional pdf’s can be non-log-concave

and can have several modes.
Next, we show how both p(x1|y, x(j)

2 ) and p(x2|y, x(j)
1 ) can be written

using the potential-function notation in this paper, in order to sample from
them using the proposed GARS method. Specifically, if we let x

(j)
1 , [x1, x

(j)
2 ]

and x
(j)
2 , [x

(j)
1 , x2], then we obtain that p(x1|y, x(j)

2 ) ∝ exp{−V (x1; g)} and

p(x2|y, x(j)
1 ) ∝ exp{−V (x2; g)} where

V (xk; g) =
3M∑

i=1

V̄i(gi(xk)) + V̄3M+1(g3M+1(xk)), (6.16)

and the functions V̄i(gi(xk)) have the form

V̄i(gi(xk)) =
[
yq,m − l̂ + 10γ̂ log

(
||x(j)

k − hq||/d0

)]2

, (6.17)

with k = 1, 2, and the integers q ∈ {1, 2, 3} and m ∈ {1, . . . ,M} are such
that i = (q − 1)M + m (in order to enumerate the elements in vector Y).
Finally

V̄3M+1(g3M+1(xk)) =
(
x

(j)
k − 1.5

)2

. (6.18)
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Therefore, the vector gi consists of 3M nonlinearities

g(q−1)M+m(xk) = yq,m − l̂ + 10γ̂ log
(
||x(j)

k − hq||/d0

)
, (6.19)

for q = 1, 2, 3 (sensors), m = 1, . . . ,M (measurements), k = 1, 2 and
j = 1, . . . , N , plus one extra linear function g3M+1(xk) = xk − 1.5.

Note that all the marginal potentials are purely quadratic functions, i.e.,
V̄i(ϑ) = 1

σ̂2ϑ
2 for i = 1, . . . , 3M , and V̄3M+1(ϑ) = ϑ2.

The potential functions V (xk; g), k = 1, 2, are not convex in general.

Their shape depends on the data set Y = y and the fixed coordinates x
(j)
1

or x
(j)
2 . Therefore, the ARS method can not be applied to implement steps

2) and 3) of the Gibbs sampler. However, all the marginal potentials are
convex and the support of the nonlinearities gi(xk), i = 1, . . . , 3M + 1, can
be partitioned as described in Section 5.2.1. As a consequence, we can use
the proposed GARS technique to implement the Gibbs sampler. On the
contrary, the form of Eqs. (6.16), (6.17) and (6.18) makes the calculation of
the inflection points (with respect xk) intractable and, therefore, the methods
of [36, 61] (see Section 2.7.3) and [54] (see Section 2.7.2) are not applicable
in this example.

Results

We have run the Gibbs sampler (using the GARS algorithm to sample from
the conditional pdf’s) with three different data sets y. In the first one we
collected M = 1 observation per sensor, in the second one we recorded M = 3
observations per sensor and, finally, we obtained a data set with M = 10
measurements per sensors. The target was placed at x = [2.5, 2].

The average acceptance rate of the GARS algorithm was ≈ 30% with
M = 1, ≈ 37% with M = 3 and ≈ 26% with M = 10. Note that these rates
are, indeed, averages, because the target pdf’s are different at each step of the
Markov chain (e.g., if x

(i)
1 6= x

(i−1)
1 then p(x2|y, x(i)

1 ) 6= p(x2|y, x(i−1)
1 )). The

acceptance rates can be further improved by including additional support
points in the initial set S0.

Figure 6.4(a) shows the shape of the true target density p(x1, x2|y)
with M = 1. Figure 6.4(b) depicts the corresponding histograms using
N = 30, 000 samples.

Figure 6.5(a) displays the shape of the true target density p(x1, x2|y)
when we have M = 3 measurements. Figure 6.5(b) depicts the corresponding
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(a) (b)

Figure 6.4: (a) The shape of the true target density p(x1, x2|y) with M = 1
measurement. (b) The normalized histogram, using N = 20, 000 samples,
corresponding to p(x1, x2|y) with M = 1 measurement per sensor.

histograms using N = 30, 000 samples. We can observe that Figures 6.4(b)
and 6.5(b) approximate closely the shape of target pdf’s.

Finally, Figures 6.6(a) and 6.6(b) illustrate the normalized histograms
corresponding to the number of proposed candidates which are needed to
accept one sample.

Note that we obtain an empirical approximation of the posterior
distribution that is very accurate although in terms of the localization
accuracy the performance is relatively poor, as there is a bias between the
mode of p(x|y) and the actual target position.

6.2 Log-convex tails

In this section we illustrate the application of the techniques proposed in
Chapter 4. The first example of Section 6.2.1 is devoted to compare the
performance of the GARS technique of Section 4.2 and the ARoU algorithm
of Section 4.3 using an artificial model.

In the second example, in Section 6.2.2, we implement an adaptive
version of the accept/reject particle filter (ARPF) in [90] using the technique
proposed in Section 4.2.

In Section 6.2.3, we apply the ARoU scheme as a building block in another
type of accept/reject particle filter for inference in a financial volatility model.
In this third example, the method of Section 4.2 cannot be implemented.
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(a) (b)

Figure 6.5: (a) The shape of the true target density p(x1, x2|y) with M = 3
measurements. (b) The normalized histogram, using N = 20, 000 samples,
corresponding to p(x1, x2|y) with M = 3 measurements per sensor.

It should be noted that the various generalizations of the standard ARS
algorithm, such as the TDR technique of Section 2.7.3 [61], the concave-
convex ARS algorithm of Section 2.7.2 [55] and other methods [36, 113, 114]
are all invalid in the first and third examples.

6.2.1 Drawing from a posterior pdf

Let X > 0 be a scalar r.v. with exponential prior pdf q(x) ∝ exp{−λx},
λ > 0. We collect three observations Y = [Y1, Y2, Y3], related to X, of the
form





Y1 = a exp(−bX) + Θ1,

Y2 = c log(dX + 1) + Θ2,

Y3 = (X − e)2 + Θ3,

(6.20)

where Θ1, Θ2, Θ3 are independent noise variables and a, b, c, d, e are
constant parameters. Specifically, Θ1 and Θ2 have generalized gamma pdf’s
Γg(ϑi;αi, βi) ∝ ϑαii exp{−ϑβii }, i = 1, 2, with parameters α1 = 4, β1 = 2
and α2 = 2, β2 = 2, respectively. The variable Θ3 has a Gaussian density
N (ϑ3; 0, 1/2) ∝ exp{−ϑ2

3}.
For a fixed vector of observations Y = y = [y1, y2, y3], our goal is to draw

from the posterior pdf p(x|y) ∝ p(y|x)q(x). Given Eq. (6.20), the target
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Figure 6.6: The normalized histogram corresponding to the number of
proposed candidates which are needed to accept one sample, with (a) M = 1
measurement or (b) with M = 3 measurements.

density can be written as

po(x) = p(x|y) ∝ exp{−V (x; g)}, (6.21)

where the potential function is

V (x; g) = (y1 − a exp(−bx))2+

− log[(y1 − a exp(−bx))4] + (y2 − c log(dx+ 1))2+

− log[(y2 − c log(dx+ 1))2] + (y3 − (x− e)2)2+

+ λx.

(6.22)

From (6.22), it is straightforward to identify four marginal potentials, i.e.,

V (x; g) =V̄1(g1(x)) + V̄2(g2(x)) + V̄3(g3(x)) + V̄4(g4(x))

where V̄1(ϑ) = ϑ2−log[ϑ4], V̄2(ϑ) = ϑ2−log[ϑ2], V̄3(ϑ) = ϑ2 and V̄4(ϑ) = λ|ϑ|.
The associated nonlinearities are

g1(x) = a exp(−bx),

g2(x) = c log(dx+ 1),

g3(x) = (x− e)2,

g4(x) = x.

(6.23)
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Since all the marginal potentials are convex and all the nonlinearities are
either convex or concave, we can apply the ARoU algorithm of Section
4.3. Moreover, since the fourth marginal potential yields a simple pdf
exp{−V̄4(g4(x))} = exp{−λx} (actually the prior of the r.v. X) that can
be easily integrated and sampled in arbitrary intervals, we can also apply
the adaptive rejection sampler of Section 4.2.

Note, however, that

• the potential V (x; g) in Eq. (6.22) is not convex,

• the target function p(x|y) ∝ exp{−V (x; g)} can be multimodal,

• the tails of the potential V (x; g) are not convex (i.e., the tails of
log po(x) are not concave) and

• it is not possible to obtain the zeros of the first and second derivatives
of the potential V (x; g), i.e., we cannot solve the equations V ′(x; g) = 0
and V ′′(x; g) = 0 analytically.

Therefore, the techniques in [50, 36, 55, 61, 114] and the basic GARS method
cannot be used in this problem.

In order to use the GARS procedure in Section 4.2 note that the reduced
potential is V−4(x; g) = V̄1(g1(x)) + V̄2(g2(x)) + V̄3(g3(x)) and it determines
the form of the likelihood function, i.e.,

p(y|x) = exp{−V−4(x; g)}.

To apply the ARoU algorithm, we additionally need to study the potential
functions V (1)(x; g) = 1

2
V (x; g) and V (2)(x; g) = 1

2
V (x; g)− log(x). Since we

have assumed X ≥ 0, it is not necessary to study the potential V (3).
For the simulations, we set a = −2, b = 1.1, c = −0.8, d = 1.5, e = 2,

λ = 0.2 and y = [2.314, 1.6, 2], and initialize the algorithms with the set of
support points S0 = {0, 2−

√
2, 2, 2 +

√
2}.

Figure 6.7(a) depicts, jointly, the likelihood function p(y|x) =
exp{−V−4(x; g)} and its stepwise approximation exp{−γk} ∀x ∈ Ik, k =
0, ...,mt. The computation of the lower bounds γk ≤ V−4(x; g) has been
carried out according to the procedure in Section 4.2.2. Figure 6.7(b) depicts
the transformed setA (solid) that corresponds to the posterior density p(x|y),
and the region Pt formed by triangular pieces, generated by the ARoU
algorithm with mt = 9 support points.
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Figure 6.7: (a) The function exp{−V−4(x; g)} obtained using the reduced
potential V−4(x; g) = V (x; g) − V̄4(g4(x)) and its constant upper bounds
exp{−γk}, k = 0, ...,mt. In this example, the function p(y|x) =
exp{−V−4(x; g)} coincides with the likelihood. (b) The set A corresponding
to the RoU transformation of the target pdf p(x|y) and the region Pt =
∪mt=9
k=0 Tk, formed by non-overlapping triangles, constructed using the ARoU

sampling scheme.

The simulations show that both methods attain very similar acceptance
rates. In Figure 6.8(a) and 6.8(b), we plot the empirical acceptance rates
(averaged over 10,000 independent simulation runs) versus the first 1, 000
accepted samples, using the GARS algorithm of Section 4.2 and the ARoU
method of Section 4.3, respectively. We can see that the two samplers are
equally efficient and the rates quickly converge close to 1.

6.2.2 Stochastic volatility model 1

We address the implementation of an accept/reject particle filter [12, 68,
90, 144, 145] to track the volatility of a financial time series Yk, k ∈ N. In
particular, we adopt the state space model [159]

{
Xk = βXk−1 + Θ2,k,
Yk = exp(−Xk)Θ1,k,

(6.24)

where Xk is the state at time k, Yk is the value of the financial series at
time k, β is a constant value, Θ2,k ∼ N (µ, σ2

1) and Θ1,k ∼ N (0, σ2
2) are

Gaussian noise variables with pdf’s p(ϑ1,k) ∝ exp{−(ϑ1,k − µ)2/2σ2
1} and
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Figure 6.8: (a) The curve of acceptance rates (averaged over 10,000
simulations) as a function of the first 1,000 accepted samples using the ARS
scheme of Section 4.2. (b) The curve of acceptance rates (averaged over
10,000 simulations) as a function of the first 1,000 accepted samples using
the ARoU algorithm.

p(ϑ2,k) ∝ exp{−(ϑ2,k)
2/2σ2

2}, respectively. Note that the model in Eq. (6.24)
can be rewritten in the equivalent form

{
Xk = βXk−1 + Θ2,k,
0 = −Yk exp(Xk) + Θ1,k,

(6.25)

following the argument in Section 3.7.1.

We want to implement a particle filter to make inference about xk.
Specifically, let {x(i)

k−1}Ni=1 be a collection of samples from p(xk−1|y1:k−1). We
can approximate the predictive density of Xk given Y1:k−1 = y1:k−1 as

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

≈ 1

N

N∑

i=1

p(xk|x(i)
k−1) (6.26)

and then the filtering pdf as [33]

p(xk|y1:k) ≈ pN(xk|y1:k) ∝ p(yk|xk)
1

N

N∑

i=1

p(xk|x(i)
k−1), (6.27)
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that we can also be written as

pN(xk|y1:k) =
1

N

N∑

i=1

po,i(xk) ∝
1

N

N∑

i=1

p(yk|xk)p(xk|x(i)
k−1),

where we have denoted po,i(xk) ∝ p(yk|xk)p(xk|x(i)
k−1),

If we can draw exact samples {x(i)
k }Ni=1 from (6.27) using a RS scheme,

then the integrals of measurable functions w.r.t. to the filtering pdf I(f) =∫
f(xk)p(xk|y1:k)dxk can be approximated as I(f) ≈ IN(f) = 1

N

∑N
i=1 f(x

(i)
k ).

With this purpose, we can use the GARS scheme of Section 4.2 at each time
step k in order to build an adaptive version of the accept/reject particle filter
(ARPF) in [90].

Specifically, we first draw uniformly a random index j ∈ {1, ..., N} and
then we draw a particle, using the GARS scheme of Section 4.2, from

po,j(xk) ∝ exp{−V (xk; g)} = p(yk|xk)p(xk|x(j)
k−1),

where the potential function2 is

V (xk; g) =
1

2σ2
2

(
yk exp(xk)− µ

)2

+
1

2σ2
1

(xk − βx(j)
k−1)2. (6.28)

It obviously decomposes naturally into two marginal potentials,

V (xk; g) = V̄1(g1,k(xk)) + V̄2(g2,k(xk)),

where V̄1(ϑ1) = 1
2σ2

2
ϑ2

1, V̄2(ϑ2) = 1
2σ2

1
ϑ2

2 and

g(xk) = [g1,k = yk exp(xk)− µ, g2,k = xk − βx(j)
k−1].

Using this notation, the likelihood function

p(yk|xk) ∝ exp

{
− 1

2σ2
2

(
yk exp(xk)− µ

)2
}

(6.29)

can be denoted as

p(yk|xk) ∝ exp{−V̄1(g1,k(xk))} = exp{−V−2(xk; g)}, (6.30)

2Note that the nonlinearities in g vary each time, we avoid explicitly showing it in the
notation for simplicity.
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where V−2(xk; g) = V̄1(g1,k(xk)) is a reduced potential, following the
terminology in Section 4.2. Moreover, we have

p(xk|x(j)
k−1) ∝ exp

{
−V̄2(g2,k(xk))

}
= exp

{
− 1

2σ2
1

(xk − βx(j)
k−1)2

}
,

that is a standard Gaussian density N (xk; βxk−1, σ
2
1). Notice that we can

draw from it when truncated within a finite interval [85].
Therefore, we can use the GARS procedure of Section 4.2, approximating

the likelihood function with piecewise constant upper bounds Lt,k(xk) and

generating samples from p(xk|x(j)
k−1), i.e., our proposal pdf is

πt(xk) = Lt,k(xk)p(xk|x(j)
k−1). (6.31)

We draw x′ from πt(xk) and then accept it, x
(i)
k = x′, with probability

pa =
p(yk|xk)p(xk|x(j)

k−1)

Lt,k(xk)p(xk|x(j)
k−1)

=
p(yk|xk)
Lt,k(x

(i)
k )

.

If the sample is discarded, we add it to the set of support points

St+1,k = St,k ∪
{
x′
}

in order to improve the stepwise approximation Lt+1,k(xk) of the likelihood
function. Otherwise, if it is accepted, we set St+1,k = St,k and Lt+1,k(xk) =
Lt,k(xk).

Note that, since in general the potential V (xk; g) has one concave tail
(i.e., p0,j(xk) has one log-convex tail), the standard ARS of Section 2.6, the
concave-convex ARS of Section 2.7.2 and the GARS of Chapter 3 cannot
be used. Figure 6.9(a) depicts an example of the reduced potential function
V−2(xk; g) (recall that V (xk; g) = V−2(xk; g) + V̄2(g2,k(xk))).

In order to take advantage of the adaptive nature of the proposed
technique, one can draw first N indices j1, ...jN , with ji ∈ {1, ..., N},
and then we sample Ni particles x

(m)
k from the same proposal, po,j(xk) ∝

Lt,k(xk)p(xk|x(i)
k−1), m = 1, ..., Ni, where Ni is the number of times the index

i ∈ {1, ..., N} has been drawn. Obviously, N1 +N2 + ...+NN = N .
We have used the set of parameters β = 1, µ = 1, σ1 = 1 and σ2 = 0.3

to carry out some illustrative simulations. The acceptance rate, averaged
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over 30 time steps and 10, 000 independent simulation runs, was ≈ 34%3.
Note that this is a relevant figure, since only Ni particles (a number typically
small) are drawn from the same target pdf, hence only a few support points
can be used. This acceptance rate can be improved adding support points in
the initial set S0 to the detriment of the computational cost.

Table 6.3: Mean Square Error.
Number of particles N 10 20 50

Boostrap Filter 1.31 0.50 0.24
Adaptive ARPF 0.92 0.38 0.22
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following state system [5, Chapter 9] with a scalar observation, yk ∈ Rn=1,



yk = log(x2
k) + ϑ1,

log(x2
k) = β log(x2

k−1) + ϑ2,
(39)

where k ∈ N denotes discrete time, β is just a constant value, yk = log(zk) with zk is the value of the

time series at time k, ϑ2 ∼ N(ϑ2; 0, σ2) is a Gaussian noise, i.e. p(ϑ2) ∼ exp{− ϑ2
2

2σ2 }, while ϑ1 has a

density of type p(ϑ1) ∝ exp{ϑ1/2−exp(ϑ1)/2} obtained as a transformation ϑ1 = log[ϑ2
0] of a Gaussian

variable ϑ0 ∼ N(ϑ0; 0, 1).

Now, as in the previous example, we will approximate the filtering pdf p(xk|y1:k) by exact sampling (as

opposed to the standard particle filters, that perform importance sampling). Let {x(i)
k−1}N

i=1 be a collection

of samples from p(xk−1|y1:k−1). If we approximate the predictive density as

p(xk|y1:k−1) =
�

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

≈ 1
N

N�

i=1

p(xk|x(i)
k−1)

then the filtering pdf becomes

p(xk|y1:k) ∝ p(yk|xk)
1
N

N�

i=1

p(xk|x(i)
k−1). (40)

We can draw new samples {x(i)
k }N

i=1 from (40) using a rejection sampling scheme.

In this example, defined by the system in Eq. (39), we can use only second scheme because there are

not easy (direct) techniques to sample the prior pdf

p(xt|xt−1) ∝ exp{−(log(x2
k)− β log(x2

k−1))}.

First of all, we rewrite the Eq. (40) in this way

p(xk|y1:k) ∝
1
N

N�

i=1

p(yk|xk)p(xk|x(i)
k−1). (41)

Therefore, to draw particles {x(i)
k }N

i=1 from p(xk|y1:k) we can first sample uniformly an index

j∗ ∈ {1, ..., N} and then sample a particle from the density

x
(i)
k ∼ p(xk|x(j∗)

k−1, yk) ∝ p(yk|xk)p(xk|x(j∗)
k−1). (42)

The potential function associated with the pdf in Eq. (42) is

V (xk; ỹk, g̃) = −yk − log(x2
k)

2
+

exp{yk − log(x2
k)}

2
+

�
log(x2

k)− αk

�2

2σ2

= −yk − log(x2
k)

2
+

exp{yk}
2

+
1

2x2
k

+

�
log(x2

k)− αk

�2

2σ2

(43)
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opposed to the standard particle filters, that perform importance sampling). Moreover, the ARPF is

specially advantageous w.r.t. to the standard particle filter when there is a significant discrepancy between

the likelihood and prior functions.

Specifically, let {x(i)
k−1}N

i=1 be a collection of samples from p(xk−1|y1:k−1). We can approximate the

predictive density as

p(xk|y1:k−1) =
�

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

≈ 1
N

N�

i=1

p(xk|x(i)
k−1) (33)

and then the filtering pdf as [5]

p(xk|y1:k) ∝ p(yk|xk)
1
N

N�

i=1

p(xk|x(i)
k−1). (34)

If we can draw exact samples {x(i)
k }N

i=1 from (34) using a RS scheme and, then, integrals of

measurable functions I(f) =
�

f(xk)p(xk|y1:k)dxk w.r.t. to the filtering pdf can be approximated as

I(f) ≈ Î(f) = 1
N

�N
i=1 f(x(i)

k ).

It is precisely to draw from Eq. (34) that we use the adaptive scheme of Section IV. To see how this

is done, we first note that the likelihood function can be expressed as

p(yk|xk) ∝ exp{−V (xk; ȳk, gk)}, (35)

where the system potential is

V (xk; ȳk, gk) =
1

2σ2
2

�
yk exp(xk)− µ

�2
, (36)

the pseudo-observation vector ȳk = ȳk = 0 and there is a single nonlinearity gk(x) � g1,k(x) =

yk exp(xk) − µ that varies depending on the value yk, as described in Section II-B. The prior density

p(xk|xk−1) is a standard Gaussian density N(xk;βxk−1, σ
2
1), i.e.,

p(xk|xk−1) ∝ exp{−(xk − βxk−1)2/2σ2
1}.

Since the prior pdf above p(xk|xk−1) is Gaussian and we are able to sample from it truncated within

a finite interval [13], the first adaptive scheme can be indeed applied. Specifically we can use it to

build a sequence of lower-bounding functions ηt,k(xk) ≤ V (xk; ȳk, gk), t = 0, 1, 2, ..., and overbounding

functions Lt,k(xk) = exp{−ηt,k(xk)} ≥ p(yk|xk). Note that, since in general the potential V (xk; ȳk, gk)

in Eq. (36) has concave tails, the methods to find bounds in [9, 10, 18] cannot be used. Figure 9 depicts

an example of the function V (xk; ȳk, gk).

If it is discarded, we add it to the set of support points St+1,k = St,k ∪
�
x

(i)
k

�
in

order to improve the stepwise approximation Lt+1,k(xk) of the likelihood function.
Otherwise, if it is accepted we set St+1,k = St,k and Lt+1,k(xk) = Lt,k(xk).

Note that, in order to take advantage of the adaptive nature of the proposed
technique, one can draw first N indices j1, ...jN , with ji ∈ {1, ..., N}, and then we
sample Ni particles from the same proposal, x

(m)
k ∼ po,j(xk) ∝ Lt,k(xk)p(xk|x(i)

k−1),
m = 1, ..., Ni, where Ni is the number of times the index i ∈ {1, ..., N} has been
drawn. Obviously, N1 + N2 + ... + NN = N .

We have used the set of parameters β = 1, µ = 1, σ1 = 1 and σ2 = 0.3 to
carry out some illustrative simulations. The acceptance rate, averaged over 30
time steps and 10, 000 independent simulation runs, was ≈ 30%. Note that this
is a relevant figure, since only Ni particles (a number typically small) are drawn
from the same target pdf, hence only a few support points can be used. For the
sake of comparison, we have also applied the standard bootstrap filter with prior
importance function [14] in the same set of simulations. Table 7.3 shows the mean
square error (MSE) achieved in the estimation of xk, using different numbers of
particles, with the standard bootstrap filter and with the ARPF.

Table 7.3: Mean Square Error.
Number of particles N 10 20 50

Boostrap Filter 1.31 0.50 0.24
ARPF 0.92 0.38 0.22
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following state system [5, Chapter 9] with a scalar observation, yk ∈ Rn=1,



yk = log(x2
k) + ϑ1,

log(x2
k) = β log(x2

k−1) + ϑ2,
(39)

where k ∈ N denotes discrete time, β is just a constant value, yk = log(zk) with zk is the value of the

time series at time k, ϑ2 ∼ N(ϑ2; 0, σ2) is a Gaussian noise, i.e. p(ϑ2) ∼ exp{− ϑ2
2

2σ2 }, while ϑ1 has a

density of type p(ϑ1) ∝ exp{ϑ1/2−exp(ϑ1)/2} obtained as a transformation ϑ1 = log[ϑ2
0] of a Gaussian

variable ϑ0 ∼ N(ϑ0; 0, 1).

Now, as in the previous example, we will approximate the filtering pdf p(xk|y1:k) by exact sampling (as

opposed to the standard particle filters, that perform importance sampling). Let {x(i)
k−1}N

i=1 be a collection

of samples from p(xk−1|y1:k−1). If we approximate the predictive density as

p(xk|y1:k−1) =
�

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

≈ 1
N

N�

i=1

p(xk|x(i)
k−1)

then the filtering pdf becomes

p(xk|y1:k) ∝ p(yk|xk)
1
N

N�

i=1

p(xk|x(i)
k−1). (40)

We can draw new samples {x(i)
k }N

i=1 from (40) using a rejection sampling scheme.

In this example, defined by the system in Eq. (39), we can use only second scheme because there are

not easy (direct) techniques to sample the prior pdf

p(xt|xt−1) ∝ exp{−(log(x2
k)− β log(x2

k−1))}.

First of all, we rewrite the Eq. (40) in this way

p(xk|y1:k) ∝
1
N

N�

i=1

p(yk|xk)p(xk|x(i)
k−1). (41)

Therefore, to draw particles {x(i)
k }N

i=1 from p(xk|y1:k) we can first sample uniformly an index

j∗ ∈ {1, ..., N} and then sample a particle from the density

x
(i)
k ∼ p(xk|x(j∗)

k−1, yk) ∝ p(yk|xk)p(xk|x(j∗)
k−1). (42)

The potential function associated with the pdf in Eq. (42) is

V (xk; ỹk, g̃) = −yk − log(x2
k)

2
+

exp{yk − log(x2
k)}

2
+

�
log(x2

k)− αk

�2

2σ2

= −yk − log(x2
k)

2
+

exp{yk}
2

+
1

2x2
k

+

�
log(x2

k)− αk

�2

2σ2

(43)
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opposed to the standard particle filters, that perform importance sampling). Moreover, the ARPF is

specially advantageous w.r.t. to the standard particle filter when there is a significant discrepancy between

the likelihood and prior functions.

Specifically, let {x(i)
k−1}N

i=1 be a collection of samples from p(xk−1|y1:k−1). We can approximate the

predictive density as

p(xk|y1:k−1) =
�

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

≈ 1
N

N�

i=1

p(xk|x(i)
k−1) (33)

and then the filtering pdf as [5]

p(xk|y1:k) ∝ p(yk|xk)
1
N

N�

i=1

p(xk|x(i)
k−1). (34)

If we can draw exact samples {x(i)
k }N

i=1 from (34) using a RS scheme and, then, integrals of

measurable functions I(f) =
�

f(xk)p(xk|y1:k)dxk w.r.t. to the filtering pdf can be approximated as

I(f) ≈ Î(f) = 1
N

�N
i=1 f(x(i)

k ).

It is precisely to draw from Eq. (34) that we use the adaptive scheme of Section IV. To see how this

is done, we first note that the likelihood function can be expressed as

p(yk|xk) ∝ exp{−V (xk; ȳk, gk)}, (35)

where the system potential is

V (xk; ȳk, gk) =
1

2σ2
2

�
yk exp(xk)− µ

�2
, (36)

the pseudo-observation vector ȳk = ȳk = 0 and there is a single nonlinearity gk(x) � g1,k(x) =

yk exp(xk) − µ that varies depending on the value yk, as described in Section II-B. The prior density

p(xk|xk−1) is a standard Gaussian density N(xk;βxk−1, σ
2
1), i.e.,

p(xk|xk−1) ∝ exp{−(xk − βxk−1)2/2σ2
1}.

Since the prior pdf above p(xk|xk−1) is Gaussian and we are able to sample from it truncated within

a finite interval [13], the first adaptive scheme can be indeed applied. Specifically we can use it to

build a sequence of lower-bounding functions ηt,k(xk) ≤ V (xk; ȳk, gk), t = 0, 1, 2, ..., and overbounding

functions Lt,k(xk) = exp{−ηt,k(xk)} ≥ p(yk|xk). Note that, since in general the potential V (xk; ȳk, gk)

in Eq. (36) has concave tails, the methods to find bounds in [9, 10, 18] cannot be used. Figure 9 depicts

an example of the function V (xk; ȳk, gk).
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Figure 7.10: An example of potential function V (xk;gk) =
�
yk exp(xk) −

µ
�2

/2σ2
1 when yk = 1, µ = 1 and σ2

1 = 1/2. The left tail is concave.
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following state system [5, Chapter 9] with a scalar observation, yk ∈ Rn=1,



yk = log(x2
k) + ϑ1,

log(x2
k) = β log(x2

k−1) + ϑ2,
(39)

where k ∈ N denotes discrete time, β is just a constant value, yk = log(zk) with zk is the value of the

time series at time k, ϑ2 ∼ N(ϑ2; 0, σ2) is a Gaussian noise, i.e. p(ϑ2) ∼ exp{− ϑ2
2

2σ2 }, while ϑ1 has a

density of type p(ϑ1) ∝ exp{ϑ1/2−exp(ϑ1)/2} obtained as a transformation ϑ1 = log[ϑ2
0] of a Gaussian

variable ϑ0 ∼ N(ϑ0; 0, 1).

Now, as in the previous example, we will approximate the filtering pdf p(xk|y1:k) by exact sampling (as

opposed to the standard particle filters, that perform importance sampling). Let {x(i)
k−1}N

i=1 be a collection

of samples from p(xk−1|y1:k−1). If we approximate the predictive density as

p(xk|y1:k−1) =
�

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

≈ 1
N

N�

i=1

p(xk|x(i)
k−1)

then the filtering pdf becomes

p(xk|y1:k) ∝ p(yk|xk)
1
N

N�

i=1

p(xk|x(i)
k−1). (40)

We can draw new samples {x(i)
k }N

i=1 from (40) using a rejection sampling scheme.

In this example, defined by the system in Eq. (39), we can use only second scheme because there are

not easy (direct) techniques to sample the prior pdf

p(xt|xt−1) ∝ exp{−(log(x2
k)− β log(x2

k−1))}.

First of all, we rewrite the Eq. (40) in this way

p(xk|y1:k) ∝
1
N

N�

i=1

p(yk|xk)p(xk|x(i)
k−1). (41)

Therefore, to draw particles {x(i)
k }N

i=1 from p(xk|y1:k) we can first sample uniformly an index

j∗ ∈ {1, ..., N} and then sample a particle from the density

x
(i)
k ∼ p(xk|x(j∗)

k−1, yk) ∝ p(yk|xk)p(xk|x(j∗)
k−1). (42)

The potential function associated with the pdf in Eq. (42) is

V (xk; ỹk, g̃) = −yk − log(x2
k)

2
+

exp{yk − log(x2
k)}

2
+

�
log(x2

k)− αk

�2

2σ2

= −yk − log(x2
k)

2
+

exp{yk}
2

+
1

2x2
k

+

�
log(x2

k)− αk

�2

2σ2

(43)
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opposed to the standard particle filters, that perform importance sampling). Moreover, the ARPF is

specially advantageous w.r.t. to the standard particle filter when there is a significant discrepancy between

the likelihood and prior functions.

Specifically, let {x(i)
k−1}N

i=1 be a collection of samples from p(xk−1|y1:k−1). We can approximate the

predictive density as

p(xk|y1:k−1) =
�

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

≈ 1
N

N�

i=1

p(xk|x(i)
k−1) (33)

and then the filtering pdf as [5]

p(xk|y1:k) ∝ p(yk|xk)
1
N

N�

i=1

p(xk|x(i)
k−1). (34)

If we can draw exact samples {x(i)
k }N

i=1 from (34) using a RS scheme and, then, integrals of

measurable functions I(f) =
�

f(xk)p(xk|y1:k)dxk w.r.t. to the filtering pdf can be approximated as

I(f) ≈ Î(f) = 1
N

�N
i=1 f(x(i)

k ).

It is precisely to draw from Eq. (34) that we use the adaptive scheme of Section IV. To see how this

is done, we first note that the likelihood function can be expressed as

p(yk|xk) ∝ exp{−V (xk; ȳk, gk)}, (35)

where the system potential is

V (xk; ȳk, gk) =
1

2σ2
2

�
yk exp(xk)− µ

�2
, (36)

the pseudo-observation vector ȳk = ȳk = 0 and there is a single nonlinearity gk(x) � g1,k(x) =

yk exp(xk) − µ that varies depending on the value yk, as described in Section II-B. The prior density

p(xk|xk−1) is a standard Gaussian density N(xk;βxk−1, σ
2
1), i.e.,

p(xk|xk−1) ∝ exp{−(xk − βxk−1)2/2σ2
1}.

Since the prior pdf above p(xk|xk−1) is Gaussian and we are able to sample from it truncated within

a finite interval [13], the first adaptive scheme can be indeed applied. Specifically we can use it to

build a sequence of lower-bounding functions ηt,k(xk) ≤ V (xk; ȳk, gk), t = 0, 1, 2, ..., and overbounding

functions Lt,k(xk) = exp{−ηt,k(xk)} ≥ p(yk|xk). Note that, since in general the potential V (xk; ȳk, gk)

in Eq. (36) has concave tails, the methods to find bounds in [9, 10, 18] cannot be used. Figure 9 depicts

an example of the function V (xk; ȳk, gk).

If it is discarded, we add it to the set of support points St+1,k = St,k ∪
�
x

(i)
k

�
in

order to improve the stepwise approximation Lt+1,k(xk) of the likelihood function.
Otherwise, if it is accepted we set St+1,k = St,k and Lt+1,k(xk) = Lt,k(xk).

Note that, in order to take advantage of the adaptive nature of the proposed
technique, one can draw first N indices j1, ...jN , with ji ∈ {1, ..., N}, and then we
sample Ni particles from the same proposal, x

(m)
k ∼ po,j(xk) ∝ Lt,k(xk)p(xk|x(i)

k−1),
m = 1, ..., Ni, where Ni is the number of times the index i ∈ {1, ..., N} has been
drawn. Obviously, N1 + N2 + ... + NN = N .

We have used the set of parameters β = 1, µ = 1, σ1 = 1 and σ2 = 0.3 to
carry out some illustrative simulations. The acceptance rate, averaged over 30
time steps and 10, 000 independent simulation runs, was ≈ 30%. Note that this
is a relevant figure, since only Ni particles (a number typically small) are drawn
from the same target pdf, hence only a few support points can be used. For the
sake of comparison, we have also applied the standard bootstrap filter with prior
importance function [14] in the same set of simulations. Table 7.3 shows the mean
square error (MSE) achieved in the estimation of xk, using different numbers of
particles, with the standard bootstrap filter and with the ARPF.

Table 7.3: Mean Square Error.
Number of particles N 10 20 50

Boostrap Filter 1.31 0.50 0.24
ARPF 0.92 0.38 0.22
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following state system [5, Chapter 9] with a scalar observation, yk ∈ Rn=1,



yk = log(x2
k) + ϑ1,

log(x2
k) = β log(x2

k−1) + ϑ2,
(39)

where k ∈ N denotes discrete time, β is just a constant value, yk = log(zk) with zk is the value of the

time series at time k, ϑ2 ∼ N(ϑ2; 0, σ2) is a Gaussian noise, i.e. p(ϑ2) ∼ exp{− ϑ2
2

2σ2 }, while ϑ1 has a

density of type p(ϑ1) ∝ exp{ϑ1/2−exp(ϑ1)/2} obtained as a transformation ϑ1 = log[ϑ2
0] of a Gaussian

variable ϑ0 ∼ N(ϑ0; 0, 1).

Now, as in the previous example, we will approximate the filtering pdf p(xk|y1:k) by exact sampling (as

opposed to the standard particle filters, that perform importance sampling). Let {x(i)
k−1}N

i=1 be a collection

of samples from p(xk−1|y1:k−1). If we approximate the predictive density as

p(xk|y1:k−1) =
�

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

≈ 1
N

N�

i=1

p(xk|x(i)
k−1)

then the filtering pdf becomes

p(xk|y1:k) ∝ p(yk|xk)
1
N

N�

i=1

p(xk|x(i)
k−1). (40)

We can draw new samples {x(i)
k }N

i=1 from (40) using a rejection sampling scheme.

In this example, defined by the system in Eq. (39), we can use only second scheme because there are

not easy (direct) techniques to sample the prior pdf

p(xt|xt−1) ∝ exp{−(log(x2
k)− β log(x2

k−1))}.

First of all, we rewrite the Eq. (40) in this way

p(xk|y1:k) ∝
1
N

N�

i=1

p(yk|xk)p(xk|x(i)
k−1). (41)

Therefore, to draw particles {x(i)
k }N

i=1 from p(xk|y1:k) we can first sample uniformly an index

j∗ ∈ {1, ..., N} and then sample a particle from the density

x
(i)
k ∼ p(xk|x(j∗)

k−1, yk) ∝ p(yk|xk)p(xk|x(j∗)
k−1). (42)

The potential function associated with the pdf in Eq. (42) is

V (xk; ỹk, g̃) = −yk − log(x2
k)

2
+

exp{yk − log(x2
k)}

2
+

�
log(x2

k)− αk

�2

2σ2

= −yk − log(x2
k)

2
+

exp{yk}
2

+
1

2x2
k

+

�
log(x2

k)− αk

�2

2σ2

(43)
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opposed to the standard particle filters, that perform importance sampling). Moreover, the ARPF is

specially advantageous w.r.t. to the standard particle filter when there is a significant discrepancy between

the likelihood and prior functions.

Specifically, let {x(i)
k−1}N

i=1 be a collection of samples from p(xk−1|y1:k−1). We can approximate the

predictive density as

p(xk|y1:k−1) =
�

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

≈ 1
N

N�

i=1

p(xk|x(i)
k−1) (33)

and then the filtering pdf as [5]

p(xk|y1:k) ∝ p(yk|xk)
1
N

N�

i=1

p(xk|x(i)
k−1). (34)

If we can draw exact samples {x(i)
k }N

i=1 from (34) using a RS scheme and, then, integrals of

measurable functions I(f) =
�

f(xk)p(xk|y1:k)dxk w.r.t. to the filtering pdf can be approximated as

I(f) ≈ Î(f) = 1
N

�N
i=1 f(x(i)

k ).

It is precisely to draw from Eq. (34) that we use the adaptive scheme of Section IV. To see how this

is done, we first note that the likelihood function can be expressed as

p(yk|xk) ∝ exp{−V (xk; ȳk, gk)}, (35)

where the system potential is

V (xk; ȳk, gk) =
1

2σ2
2

�
yk exp(xk)− µ

�2
, (36)

the pseudo-observation vector ȳk = ȳk = 0 and there is a single nonlinearity gk(x) � g1,k(x) =

yk exp(xk) − µ that varies depending on the value yk, as described in Section II-B. The prior density

p(xk|xk−1) is a standard Gaussian density N(xk;βxk−1, σ
2
1), i.e.,

p(xk|xk−1) ∝ exp{−(xk − βxk−1)2/2σ2
1}.

Since the prior pdf above p(xk|xk−1) is Gaussian and we are able to sample from it truncated within

a finite interval [13], the first adaptive scheme can be indeed applied. Specifically we can use it to

build a sequence of lower-bounding functions ηt,k(xk) ≤ V (xk; ȳk, gk), t = 0, 1, 2, ..., and overbounding

functions Lt,k(xk) = exp{−ηt,k(xk)} ≥ p(yk|xk). Note that, since in general the potential V (xk; ȳk, gk)

in Eq. (36) has concave tails, the methods to find bounds in [9, 10, 18] cannot be used. Figure 9 depicts

an example of the function V (xk; ȳk, gk).
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Figure 7.10: An example of potential function V (xk;gk) =
�
yk exp(xk) −

µ
�2

/2σ2
1 when yk = 1, µ = 1 and σ2

1 = 1/2. The left tail is concave.
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Figure 6.9: (a) An example of reduced potential V−2(xk;g) =
�
yk exp(xk)−

µ
�2

/2σ2
1 when yk = 1, µ = 1 and σ2

1 = 1/2. The left tail is concave. (b) An
example of trajectory of the signal of interest xk with 30 time steps. The solid
line illustrates the real trajectory while the dashed line shows the estimated
trajectory obtained by the adaptive ARPF.

6.2.3 Stochastic volatility model 2

In this example, we implement a particle filter for a stochastic volatility model,
based on the ARoU scheme of Section 4.3. Let be Xk ∈ R+ the volatility of a
financial time series at time k, and consider the following state space system [34,
Chapter 9],[69] with a scalar observation, Yk ∈ R,

�
log(X2

k) = β log(X2
k−1) + Θ2,k,

Yk = log(X2
k) + Θ1,k,

(6.32)

where k ∈ N denotes discrete time, β is a constant, Θ2,k ∼ N (ϑ2,k; 0, σ2) is a
Gaussian noise r.v., i.e., p(ϑ2,k) ∝ exp{−ϑ2

2,k/2σ2}, while Θ1,k has a density
p(ϑ1,k) ∝ exp{ϑ1,k/2 − exp(ϑ1,k)/2} obtained from the transformation Θ1,k =
log[Θ2

0,k] of a standard Gaussian variable Θ0,k ∼ N (ϑ0,k; 0, 1).

Given the state-space system of Eq. (6.32), the prior pdf at time k is

p(xk|xk−1) ∝ exp

�
− log(x2

k)− β log(x2
k−1)

2σ2

�
, (6.33)
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Figure 6.9: (a) An example of reduced potential V−2(xk; g) =
(
yk exp(xk)−

µ
)2
/2σ2

1 when yk = 1, µ = 1 and σ2
1 = 1/2. The left tail is concave. (b) An

example of trajectory of the signal of interest xk with 30 time steps. The solid
line illustrates the real trajectory while the dashed line shows the estimated
trajectory obtained by the adaptive ARPF.

Figure 6.9(b) displays an example of real trajectory (solid line) and
its estimation (dashed line) with the adaptive ARPF. For the sake of
comparison, we have also applied the standard bootstrap filter with prior
importance function [34] in the same set of simulations. Table 6.3 shows the
mean square error (MSE) achieved in the estimation of xk, using different

3Since the target pdf changes each time step k, the GARS restarts each k from the
iteration index t = 0.
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numbers of particles, with the standard bootstrap filter and with the ARPF.
The ARPF obtains a better performances with a lesser number of particles
but the computational effort is greater because we have to generate more
candidate particles in order to accept one. However, it should be remarked
that the ARPF is specially advantageous w.r.t. to the bootstrap filter when
there is a significant discrepancy between the likelihood and prior functions.

6.2.3 Stochastic volatility model 2

In this example, we implement a particle filter for a stochastic volatility
model, based on the ARoU scheme of Section 4.3. Let be Xk ∈ R+ the
volatility of a financial time series at time k, and consider the following state
space system [34, Chapter 9],[69] with a scalar observation, Yk ∈ R,

{
log(X2

k) = β log(X2
k−1) + Θ2,k,

Yk = log(X2
k) + Θ1,k,

(6.32)

where k ∈ N denotes discrete time, β is a constant, Θ2,k ∼ N (ϑ2,k; 0, σ2)
is a Gaussian noise r.v., i.e., p(ϑ2,k) ∝ exp{−ϑ2

2,k/2σ
2}, while Θ1,k has a

density p(ϑ1,k) ∝ exp{ϑ1,k/2−exp(ϑ1,k)/2} obtained from the transformation
Θ1,k = log[Θ2

0,k] of a standard Gaussian variable Θ0,k ∼ N (ϑ0,k; 0, 1).
Given the state-space system of Eq. (6.32), the prior pdf at time k is

p(xk|xk−1) ∝ exp

{
− log(x2

k)− β log(x2
k−1)

2σ2

}
, (6.33)

and the likelihood function is

p(yk|xk) ∝ exp

{
yk − log(x2

k)

2
− exp(yk − log(x2

k))

2

}

= exp

{
yk − log(x2

k)

2
− exp(yk)− 1/x2

k

2

}
.

We can apply the proposed ARoU scheme of Section 4.3 to implement
a particle filter. Specifically, let {x(i)

k−1}Ni=1 be a collection of samples from
p(xk−1|y1:k−1). We can approximate the predictive density as

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

≈ 1

N

N∑

i=1

p(xk|x(i)
k−1) (6.34)
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and then the filtering pdf as [33]

p(xk|y1:k) ≈ pN(xk|y1:k) ∝ p(yk|xk)
1

N

N∑

i=1

p(xk|x(i)
k−1). (6.35)

As in the previous example, if we can draw exact samples {x(i)
k }Ni=1 from

(6.35) using a RS scheme, then the integrals of measurable functions w.r.t.
to the filtering pdf I(f) =

∫
f(xk)p(xk|y1:k)dxk can be approximated as

I(f) ≈ IN(f) = 1
N

∑N
i=1 f(x

(i)
k ).

To implement the sampler, we first recall that the problem of drawing x
(i)
k

from the pdf in Eq. (6.35) can be reduced to generate an index j ∈ {1, ..., N}
with uniform probabilities, 1/N , and then draw from the pdf

po,j(xk) ∝ p(yk|xk)p(xk|x(j)
k−1). (6.36)

Using the ARoU technique, in order to take advantage of the adaptive
feature of the algorithm, one can draw first N indices j1, ..., jN , from the
set {1, ..., N}, and then let Nr denote the number of times the index r has
been drawn in such way that N = N1 + ... + NN . Then we generate Nr

samples x
(m)
k , m = 1, ..., Nr, from the pdf po,r(xk). We repeat the latter step

for r = 1, ..., N .
The potential function associated with the pdf in Eq. (6.36) is

V (xk; g) = −yk − log(x2
k)

2
+

exp{yk}
2

+ +
1

2x2
k

+

(
log(x2

k)− αk
)2

2σ2
, (6.37)

where αk = β log
[
(x

(j)
k−1)2

]
is a constant and the nonlinearities are

g1(xk) = log(x2
k),

g2(xk) = − log(x2
k) + αk.

(6.38)

From Eq. (6.37) we identify the marginal potentials

V (xk; g) = V̄1

(
g1(xk)

)
+ V̄2

(
g2(xk)

)
, (6.39)

where V̄1(ϑ1) = 1
2

(
− ϑ1 + exp{ϑ1}

)
and V̄2(ϑ2) = 1

2σ2ϑ
2
2.

Let us remark that in this example:
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• Since the potential V (xk; g) is in general a non-convex function and
it is not possible to find the zeros of the first and second derivatives
analytically, the methods in [36, 50] cannot be applied.

• Since the potential function V (xk; g) possibly has concave tails, as
shown in Figure 6.10(a), the method in [55] and the basic adaptive
technique described in [113] cannot be used either.

• Finally, we cannot apply the GARS procedure of Section 4.2 because
there are no direct techniques to draw from (and to integrate) the
functions exp{−V̄1(g1(xk))} or exp{−V̄2(g2(xk))}.

However, since the marginal potentials V̄1 and V̄2 are convex and we also
know the concavity of the nonlinearities g1(xk) and g2(xk), it is possible to
apply the ARoU scheme of Section 4.3.
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following state system [5, Chapter 9] with a scalar observation, yk ∈ Rn=1,



yk = log(x2
k) + ϑ1,

log(x2
k) = β log(x2

k−1) + ϑ2,
(39)

where k ∈ N denotes discrete time, β is just a constant value, yk = log(zk) with zk is the value of the

time series at time k, ϑ2 ∼ N(ϑ2; 0, σ2) is a Gaussian noise, i.e. p(ϑ2) ∼ exp{− ϑ2
2

2σ2 }, while ϑ1 has a

density of type p(ϑ1) ∝ exp{ϑ1/2−exp(ϑ1)/2} obtained as a transformation ϑ1 = log[ϑ2
0] of a Gaussian

variable ϑ0 ∼ N(ϑ0; 0, 1).

Now, as in the previous example, we will approximate the filtering pdf p(xk|y1:k) by exact sampling (as

opposed to the standard particle filters, that perform importance sampling). Let {x(i)
k−1}N

i=1 be a collection

of samples from p(xk−1|y1:k−1). If we approximate the predictive density as

p(xk|y1:k−1) =
�

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

≈ 1
N

N�

i=1

p(xk|x(i)
k−1)

then the filtering pdf becomes

p(xk|y1:k) ∝ p(yk|xk)
1
N

N�

i=1

p(xk|x(i)
k−1). (40)

We can draw new samples {x(i)
k }N

i=1 from (40) using a rejection sampling scheme.

In this example, defined by the system in Eq. (39), we can use only second scheme because there are

not easy (direct) techniques to sample the prior pdf

p(xt|xt−1) ∝ exp{−(log(x2
k)− β log(x2

k−1))}.

First of all, we rewrite the Eq. (40) in this way

p(xk|y1:k) ∝
1
N

N�

i=1

p(yk|xk)p(xk|x(i)
k−1). (41)

Therefore, to draw particles {x(i)
k }N

i=1 from p(xk|y1:k) we can first sample uniformly an index

j∗ ∈ {1, ..., N} and then sample a particle from the density

x
(i)
k ∼ p(xk|x(j∗)

k−1, yk) ∝ p(yk|xk)p(xk|x(j∗)
k−1). (42)

The potential function associated with the pdf in Eq. (42) is

V (xk; ỹk, g̃) = −yk − log(x2
k)

2
+

exp{yk − log(x2
k)}

2
+

�
log(x2

k)− αk

�2

2σ2

= −yk − log(x2
k)

2
+

exp{yk}
2

+
1

2x2
k

+

�
log(x2

k)− αk

�2

2σ2

(43)
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and then the filtering pdf as [4]

p(xk|y1:k) ∝ p(yk|xk)
1
N

N�

i=1

p(xk|x(i)
k−1). (41)

If we can draw exact samples {x(i)
k }N

i=1 from (41) using a RS scheme, then the integrals of measurable

functions I(f) =
�

f(xk)p(xk|y1:k)dxk w.r.t. to the filtering pdf can be approximated as I(f) ≈ IN (f) =
1
N

�N
i=1 f(x(i)

k ).

To show it, we first recall that the problem of drawing from the pdf in Eq. (41) can be reduced to

generate an index j ∈ {1, ..., N} with uniform probabilities and then draw a sample from the pdf

x
(i)
k ∼ po,j(xk) ∝ p(yk|xk)p(xk|x(j)

k−1). (42)

Note that, in order to take advantage of the adaptive nature of the proposed technique, one can draw

first N indices j1, ...jN , with ji ∈ {1, ..., N}, and then we sample Ni particles from the same proposal,

x
(m)
k ∼ po,j(xk) ∝ Lt,k(xk)p(xk|x(i)

k−1), m = 1, ..., Ni, where Ni is the number of times the index

i ∈ {1, ..., N} has been drawn. Obviously, N1 + N2 + ... + NN = N .

The potential function associated with the pdf in Eq. (42) is

V (xk; g) = −yk − log(x2
k)

2
+

exp{yk}
2

+
1

2x2
k

+

�
log(x2

k)− αk

�2

2σ2
(43)

where αk = β log
�
(x(j)

k−1)
2
�

is a constant and g(xk) = [g1(xk) � log(x2
k), g2(xk) � − log(x2

k) + αk].

The potential function in Eq. (43) can be expressed as

V (xk; g) = V̄1

�
g1(xk)

�
+ V̄2

�
g2(xk)

�
, (44)

where the marginal potentials are V̄1(ϑ1) = 1
2

�
− ϑ1 + exp{ϑ1}

�
and V̄2(ϑ2) = 1

2σ2 ϑ2
2. Therefore, since

the marginal potentials V̄1 and V̄2 are convex and we also know the concavity of the nonlinearities g1(xk)

and g2(xk), we can apply the proposed adaptive RoU scheme.

Since the potential V (xk; g) is in general a non-convex function and the study of the first and the

second derivatives is not analytically tractable, the methods in [6, 8] can not be applied. Moreover, since

the potential function V (xk; g) has concave tails, as shown in Figure 10 (a), the method in [10] and the

basic adaptive technique described in [18] can not be used either. Note that in this example we cannot

apply the alternative idea introduced in [17] and recalled in Section III-A because there are no simple

(direct) techniques to sample from exp{−V̄1(g1(xk))} or exp{−V̄2(g2(xk))}.

Therefore, the used procedure can be summarized in this way: at each time step k, we draw N time

from the set of index i ∈ {1, ..., N} with uniform probabilities and denote as Ni the number of repetition
(a) (b)

Figure 6.10: (a) A realization of the potential function V (xk; g) defined in
Eq. (6.37), when αk = 1, yk = 2 and σ = 0.8. The right tail is concave. (b)
An example of a trajectory with 40 time steps of the signal of interest Xk.
The solid line illustrates the true trajectory generated by the system in Eq.
(6.32) with β = 0.8 and σ = 0.9, while the dashed line shows the estimated
trajectory computed by the particle filter with N = 1, 000 particles. The
shadowed area shows one standard deviation from the estimates.

If we set the constant parameters as β = 0.8 and σ = 0.9, we obtain
an empirical acceptance rate ≈ 42% (averaged over 40 time steps in 10, 000
independent simulation runs). It is important to remark that it is not easy
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to implement a standard particle filter to make inference directly about Xk,
because it is not straightforward to draw from the prior density in Eq. (6.33).
Indeed, there are no direct methods to sample from this prior pdf and, in
general, we need to use rejection sampling or MCMC techniques.

Figure 6.10(b) depicts 40 time steps of a trajectory (solid line) of the
signal Xk generated by the system in Eq. (6.32), with β = 0.8 and σ = 0.9.
In dashed line, we see the estimated trajectory obtained by the particle filter
using the ARoU scheme with N = 1, 000 particles. The shadowed area
shows one standard deviation from the estimates obtained by the filter. The
mean square error (MSE) achieved in the estimation of Xk using N = 1, 000
particles is 1.48.

6.3 Automatic procedure

In this section, we implement a simple example in order to compare the
performance of the alternative simplified algorithm in Section 5.3 with the
standard GARS technique. Let us consider a target pdf of the form

po(x) ∝ exp{−V (x; g)} = exp{−(−4− x+ x2)2}, (6.40)

where the potential is V (x; g) = V̄1(g1(x)) = (−4−x+x2)2 with V̄1(ϑ1) = ϑ2
1

and g1(x) = −4− x+ x2.
In this simple case, we know both the minimum µ1 = 0 of V̄1 and the

simple estimates x1,1 = −1.56 and x1,2 = 2.56 (solutions of the equation
g1(x) = µ1 = 0). Hence, we can apply the standard GARS technique.
However, we have also implemented different simplified GARS (S-GARS)
algorithms in order to assess the loss in the performance w.r.t. the standard
procedure. Specifically, we have applied 4 different simulations:

1) the standard GARS method of Chapter 3, using the known values µ1,
x1,1 and x1,2;

2) the alternative procedure of Section 5.3.1 assuming the minimum µi is
unknown but with calculating the corresponding simple estimates;

3) the alternative procedure of Section 5.3.2 assuming the value µ1 is
known but without calculating the simple estimates;

4) and, finally, an algorithm assuming that µ1 is unknown and g1(x) can
not be inverted.
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The algorithms built under the assumptions 2), 3) and 4) are termed S-
GARS-2, S-GARS-3 and S-GARS-4, respectively.

Figures 6.11(a), (b), (c), (d) depict the acceptance rates (averaged over
10,000 independent simulation runs) versus the number of the accepted
samples attained by the four methods. The numerical results show that
S-GARS-2 and S-GARS-4 techniques (in both the µ1 is unknown) yield the
worst performance in terms of acceptance rate. However, the procedure of
Section 5.3.1 has some advantages:

1. The same strategy can also be applied to a broader family of densities,
for instance, with marginal potentials V̄i with several stationary points
(see Section 5.2.5) or when some marginal potentials V̄i are convex and
others are concave (see in Section 5.2.4).

2. This procedure turns out to be numerically more robust than the
standard algorithm in Chapter 3. Indeed, the choice of arbitrary points
x∗ ∈ I0 and x∗ ∈ Imt (intervals that contain the tails of po(x)) is usually
critical at the beginning, when the algorithm starts with few support
points, because in some cases the slope of Wt(x) can turn out very sharp
and the value of exp{−Wt(x)} very high. This numerical problem does
not appear in the alternative S-GARS-2 and S-GARS-4 procedures.

3. It can be used when µi is unknown.

We can observe that there is no apparent difference between Figures 6.11(a)
and (c), and between Figures 6.11(b) and (d). These results indicate that
the procedure S-GARS-3, without the knowledge of the simple estimates,
does not cause a significant degradation of the acceptance rates. Clearly,
the procedure S-GARS-3 of Section 5.3.2 is computationally more expensive
than the standard GARS approach with knowledge of the positions of the
simple estimates, but the acceptance rates remain virtually the same.

Figure 6.12 displays together the curves of the acceptance rates for the
standard GARS method (solid line) and the S-GARS-4 alternative procedure
with unknown µ1 and unknown the simple estimates (dashed line). The
acceptance rates for the first sample are ≈ 25% and ≈ 9% for the standard
and the S-GARS-4 procedure, respectively. For the 20-th sample we have
acceptance rates ≈ 85% and ≈ 80% while for the 500-th sample they are
≈ 98% and ≈ 93%.
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Figure 6.11: Curve of the acceptance rates of: (a) the standard GARS
method. (b) The S-GARS-2 procedure assuming unknown the minimum µ1

of V̄1. (c) The S-GARS-3 procedure assuming unknown the simple estimates.
(d) The S-GARS-4 procedure assuming unknown both µ1 and the simple
estimates.

6.4 Summary

In this chapter, we have presented a collection of different applications of the
proposed GARS techniques. We have illustrated how the new techniques can
be used jointly with other Monte Carlo methods, such as the Gibbs sampler
and the particle filter.

In most of these examples, the adaptive rejection sampling schemes in
the literature (producing independent samples, i.e., except for the ARMS
technique of Section 2.7.1) can not be applied. Specifically, the standard
ARS of Section 2.6, the concave-convex ARS of Section 2.7.2 and the TDR
of Section 2.7.3 cannot be used in any of the examples. The Evans’ method
[36] (an extension of the TDR method when the inflection points of po(x)
are available, see Section 2.7.3) can be applied in the examples of Sections
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Figure 6.12: Curve of the acceptance rates of the standard GARS method
(solid line) and the S-GARS-4 procedure without the knowledge of µ1 and
the impossibility to invert g1(x) (dashed line).

6.1.1, 6.1.3, 6.2.2 and 6.3. However, in the examples of Sections 6.1.2, 6.1.4,
6.2.1 and 6.2.3 only the proposed GARS techniques can be used in order to
generate i.i.d. samples.

In the example of Section 6.1.4 we draw from a multidimensional target
pdf, using GARS method jointly with the Gibbs sampling. The Gibbs
sampler needs to be able to draw from one-dimensional conditional pdf’s
that, in general, can be very complicated. In this scenario, the GARS
algorithms (introduced in the previous chapters) can be applied to draw from
these conditional pdf’s. However, the generated multidimensional samples
are correlated.

We have also shown that it is possible to implement the GARS scheme
without the knowledge of the minima µi and the sets of simple estimates Xi.
This simplified procedure need only to identify and to evaluate components
of the target pdf. Although it exhibits some performance degradation when
compared with the standard GARS method (with knowledge of both the µi’s
and the Xi’s), this is compensated by the broader range of applicability and
its superior numerical stability.
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Chapter 7

Summary and future research

7.1 Summary

In this work has been aimed to the design, analysis and assessment of a family
of generalized adaptive rejection samplers that can be applied to generate
i.i.d. random variates from a broad class of probability distributions. The
novel adaptive schemes can be applied to draw exactly from a certain family
of pdf’s, not necessarily log-concave and possibly multimodal, including pdf’s
with log-convex tails. The new methodology can be seen as a generalization
of the classical adaptive rejection sampling scheme of [50], and includes it as
a particular case. All the proposed algorithms are based on the accept/reject
principle and the construction of a sequence of proposal pdf’s that converge
towards the target density and, therefore, can attain very high acceptance
rates.

The basics of the methodology, that we have termed generalized adaptive
rejection sampling (GARS), have been presented in Chapter 3. There, we
have first made explicit the family of target pdf’s that can be possibly handled
with the new methods. Then, we have introduced the standard form of the
GARS algorithm, discussed its applicability and found expressions for the
probability of acceptance of the sampler and the divergence between the
proposal densities and the target pdf.

One limitation that the basic GARS technique shares with virtually
all adaptive rejection samplers in the literature [36, 50, 55, 93] is the
impossibility to draw from a target pdf with log-convex tails in an infinite
domain. To address this difficulty, in Chapter 4 we have introduced two
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GARS schemes that can be used to draw exactly from densities that have not-
necessarily log-concave tails. The first adaptive approach in Section 4.2 runs
along the same lines as the basic GARS technique and is easier to implement.
However, it needs to identify a suitable pdf q(x) ∝ exp{−V̄j(gj(x))} with
j ∈ {1, ..., n}, from which samples can be drawn easily and this can be in
general a difficult task. One type of pdf’s for which the identification of q(x)
can turn out natural includes the a posteriori density of a random variable
X given a collection of observations as those appearing in typical Bayesian
inference problems (see Section 3.7.1). In this case, it may often be simple to
identify q(x) with the prior of X and exp{−V−j(x; g)} with the likelihood.

The second approach in Chapter 4, the adaptive ratio-of-uniforms
(ARoU) algorithm, is a more general scheme that combines techniques typical
from transformation-based random sampling with the rejection sampling
approach and the adaptation of proposal densities. The range of applicability
of ARoU method is larger, and its computational implementation essentially
requires being able to draw two independent samples from a uniform
distribution. On the other hand, the design of the algorithm may be more
demanding for the user, as it involves, e.g., the calculation of upper bounds
for three potential functions.

Even with the techniques of Chapter 4, there are a number of probability
distributions that can not be handled without further modifications of the
GARS scheme. Such extensions are explored in Chapter 5. We have
investigated how to relax various constrains on the nonlinearities and the
marginal potential functions from which the target pdf is constructed.
Most of these assumptions actually refer to the convexity and monotonicity
of these functions. Then, we have followed a different direction to
investigate simplifications of the GARS methodology that ease its software
implementation. Interestingly enough, this simplifications also have benefits
in term of expanding the class of tractable target pdf’s (since less
“knowledge” about them is required) and improving the numerical stability
of the algorithms.

Several numerical examples have been implemented in Chapter 6, in order
to illustrate the performance of the adaptive rejection schemes introduced
in this work. Although most of the examples are synthetic, we have also
included an application to positioning using real data from a wireless sensor
network. In most of the examples only the proposed GARS techniques can
be used in order to generate i.i.d. samples. We have also shown that it
is possible to implement the GARS scheme without the knowledge of the
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minima µi and the sets of simple estimates Xi. Although it exhibits some
performance degradation when compared with the standard GARS method
(with knowledge of both the µi’s and the Xi’s), this is compensated by the
broader range of applicability and its superior numerical stability.

7.2 Future research

The GARS techniques can be applied in a more general framework than
the one in this thesis. However, the necessary mathematical formulation
can easily become complicated and the resulting algorithms difficult to
understand. In our opinion, the future research on the topic can be organized
as shown below. We have already studied and analyzed the topics in Sections
7.2.1 and 7.2.2 but we still lack a formulation which is sufficiently concise
and appealing.

7.2.1 Different classes of densities

The underlying ideas that support the techniques described in Chapters 3
and 4, can be used to handle the following classes of pdf’s with different
structure.

• Composition of several nonlinearities: The GARS schemes can be
extended to draw form target pdf’s of the form

po(x) ∝ exp{−V̄ (g1(g2(...gτ (x))))} = exp{−(V̄ ◦ g1 ◦ g2 ◦ .... ◦ gτ )(x)},
(7.1)

where V̄ , gi, with i = 1, ..., τ are either convex or concave functions.
Actually, we address target densities that can be written as

po(x) ∝ (H ◦ g1 ◦ g2 ◦ .... ◦ gτ )(x) (7.2)

where H(ϑ) is an integrable function, i.e., there exists a pdf f(ϑ) ∝
H(ϑ).

• Joint potentials: It is also possible to deal with densities generated by
more complicated potentials, that not necessary can be written as a
sum of marginal potentials. Indeed, we can handled target pdf’s of the
form

po(x) ∝ p(x) = exp
{
−V̂n (g1(x), g2(x), ..., gn(x))

}
, (7.3)
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where the function

V̂n(ϑ1, ϑ2, ..., ϑn) : Rn → R,

is termed a joint potential, it has a Hessian matrix that is definite
positive with a minimum at µ = [µ1, ..., µn] and the nonlinearities
gi(x), i = 1, ..., n are either convex or concave functions. When the
joint potential can be expressed as

V̂n(ϑ1, ϑ2, ..., ϑn) =
n∑

i=1

V̄i(ϑi),

we come back to the basic framework of Chapter 3 (in this case, the
Hessian is a diagonal matrix). Pdf’s of Eq. (7.3) appear when we have a
collection of measurements contaminated by correlated noise variables
and we wish to draw samples from the posterior distribution of X.

7.2.2 Multidimensional random sampling

In this work, we have restricted our study to the case in which we have a
scalar random variable, X ∈ R, that we want to sample. We have seen
that a first possibility to draw from multidimensional random variables is to
use GARS method jointly with the Gibbs sampler. However, the resulting
samples are correlated. Moreover, as shown in Section 6.1.2, the Markov
chain produced by an MCMC algorithm can remain trapped at one of the
(possibly several) modes of the target density.

Alternatively, we are studying the possibility to extend the approaches
described in Chapters 3 and 4 to draw i.i.d. samples directly from
a multidimensional pdf po(x), with x ∈ Rm. The method involves
the construction of certain m-dimensional linear manifolds embedded in
an n-dimensional metric space (Rn, d), where d is a suitably defined
distance. Unfortunately, a complete description of this extension requires the
introduction of a considerable amount of new notations and mathematical
tools. Specifically, given a pdf with the form

po(x) ∝ exp
{
−V̂n (g1(x), g2(x), ..., gn(x))

}
,

where x ∈ Rm, the function V̂n(ϑ1, ϑ2, ..., ϑn) : Rn → R should have
Hessian matrix definite positive with a minimum at µ = [µ1, ..., µn] and the
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nonlinearities gi(x), i = 1, ..., n, either convex or concave functions. Consider
the manifold

G , {[ϑ1, ..., ϑn] ∈ Rn : ϑ1 = g1(x), ..., ϑn = gn(x) with x ∈ D ⊆ Rm} (7.4)

When m ≤ n, in general, Eq. (7.4) yields a parametric description of a
hypersurface (d-dimensional manifold with d < m), embedded in a space Rn,
where x plays the role of the parameter. Therefore, the potential

V (x; g) , V̂n (g1(x), g2(x), ..., gn(x)) ,

is equivalent to V̂n(ϑ1, ..., ϑn) when ϑi = gi(x), i = 1, ..., n. The problem to
minimize the potential V (x; g), i.e.,

min
x∈D

V (x; g),

is equivalent to minimizing the joint potential

min
[ϑ1,...,ϑn]∈G

V̂n(ϑ1, ..., ϑn),

restricted to the manifold G. This is an important consideration because,
similar to method of Chapter 4, we need to find lower bounds γk ≤ V (x; g)
with x ∈ Ik (where Ik is a cell in Rm). The rest of the procedure can also
related to the 1-dimensional GARS. Again, we wish to modify the potential
V̂n by substituting the nonlinearities gi by linear functions ri,k properly
defined in cells Ik ∈ Rm. The difficulty arises to compute an auxiliary
manifold

R , {[ϑ1, ..., ϑn] ∈ Rn : ϑ1 = r1,k(x), ..., ϑn = rn,k(x) with x ∈ Ik ⊆ Rm}

such that

min
x∈Ik

V (x; rk) = min
[ϑ1,...,ϑn]∈R

V̂n(ϑ1, ..., ϑn) ≤ min
[ϑ1,...,ϑn]∈G

V̂n(ϑ1, ..., ϑn) = min
x∈Ik

V (x; g).

where V (x; rk) , V̂n(r1,k(x), ..., rn,k(x)). The function V (x; rk) is built to
have a definite positive Hessian matrix in Ik, hence we can readily obtain

γk ≤ V (x; rk) ≤ V (x; g),

for all x ∈ Ik.
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7.2.3 Rejection control

Rejection sampling is a very useful tool to build random number generators,
but for numerical approximations the importance sampling is often preferred.
However, importance sampling methods usually produces samples with very
small importance weights depending on the choice of the proposal pdf.

For this reason, many different techniques combine rejection and
importance sampling [20, 24, 96] as the so-called weighted rejection sampling
and rejection control [17, 21, 99, 97]. Other methods combine rejection
sampling with sequential importance sampling [99] as partial rejection control
[97], and rejection particle filters [12, 68, 90, 144, 145].

We can use the rejection control approach jointly with the GARS
techniques to improve the performance of the estimators recycling the
discarded samples. Indeed, one can use the rejected samples and adjust
the bias by giving these samples appropriate weights.

In this way, we may obtain faster computation and better efficiency.

7.2.4 Implementation

In order to facilitate the use of the proposed techniques, we may produce
Matlab code, C code or both implementing the simplified algorithm in
Chapter 5, that can be run basically with the ability to evaluate different
components (potentials and nonlinearities) of the target pdf po(x).
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Appendix A

Inverse-of-density method for a
transformed random variable

Let us assume a monotonic pdf po(x), so that we can readily define the
inverse pdf p−1

o (y). In Chapter 2, Section 2.4.1, we have seen the relationship
between a pdf po(x) and its inverse pdf p−1

o (u) and how we can use samples
from po(x) or p−1

o (u) to draw from p−1
o (u) or po(x), respectively.

Specifically, we have proved that given x′ with pdf po(x) and z′ ∼ U([0, 1])
the sample

u′ = z′po(x
′),

has density p−1
o (y). While, given y′ with pdf p−1

o (y) and v′ ∼ U([0, 1]), the
sample

u′ = z′p−1
o (y′),

is distributed as po(x).
Now, we study the relationship between the r.v.’s X, with pdf po(x),

and Y , with pdf p−1
o (y), when one of them, X or Y , is transformed with a

monotonic transformation, u = h(x) or u = h(y), respectively.

A.1 Transforming X: U = h(X)

Given a random variableX with pdf po(x) and a transformed random variable
U = h(X), where h is a monotonic function, we know that the density of U
is

q(u) = po(h
−1(u))

∣∣∣∣
dh−1

du

∣∣∣∣. (A.1)
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Denoting as Ah the area below q(u), our goal in this appendix is to find the
relationship between the pair (U, V ) uniformly distributed on Ah and the r.v.
Y with density p−1

o (y). To obtain this relationship, we first investigate the
links between the r.v.’s X, U and later Y , U .

Clearly, if we are able to draw a sample u′ from q(u), we can easily find
a sample x′ from po(x) as

x′ = h−1(u′). (A.2)

Now consider a random variable Y with pdf p−1
o (y). Given a sample x′ from

po(x), we can obtain a sample y′ from p−1
o (y) using the inverse-of-density

relationship, i.e,

y′ = z′po(x
′), (A.3)

where z′ ∼ U([0, 1]). Then, replacing x′ of Eq. (A.2) into Eq. (A.3), we
arrive at

y′ = z′po(h
−1(u′)). (A.4)

The relationship in Eq. (A.4) connects the r.v. U = h(X) with density q(u)
in Eq. (A.1) and the r.v. Y with pdf p−1

o (y), namely

Y = Zpo(h
−1(U))

with Z ∼ U([0, 1]). Figure A.1(a) depicts the area A0 below po(x) and a
point (x′, y′) drawn uniformly from A0. As explained in Section 2.4.1, x′ is
distributed as po(x) and y′ is distributed as p−1

o (y).

Now, we denote as Ah the area below the density q(u), i.e, the region
delimited by the equation v = q(u) and the axis u. Figure A.1(b) shows
the pdf q(u), the area Ah and a point (u′, v′) drawn uniformly from Ah. To
generate the pair of samples (u′, v′) uniformly in Ah we can draw u′ from q(u)
and then draw v′ uniformly in the interval [0, q(u′)], i.e., v′ ∼ U([0, q(u′)]).
Moreover, given z′ ∼ U([0, 1]), this procedure is equivalent to writing

v′ = z′q(u′). (A.5)

Furthermore, we can substitute q(u) of Eq. (A.1) into Eq. (A.5) to obtain

v′ = z′ po(h
−1(u′))

∣∣∣∣
dh−1

du

∣∣∣∣
u′︸ ︷︷ ︸

q(u′)

. (A.6)
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Note that from Eq. (A.4) we have y′ = z′po(h−1(u′)), where y′ has pdf p−1
o (y)

and, since

v′ = z′po(h
−1(u′))︸ ︷︷ ︸
y′

∣∣∣∣
dh−1

du

∣∣∣∣
u′
, (A.7)

we can write

v′ = y′
∣∣∣∣
dh−1

du

∣∣∣∣
u′
. (A.8)

We recall that the sample

y′ =
v′∣∣dh−1

du

∣∣
u′

= v′|ḣ(h−1(u′))| (A.9)

is distributed as p−1
o (y). We indicate with ḣ = dh

dx
the first derivative of h.

The Eq. (A.9) asserts that if we are able to draw points (u′, v′) uniformly
in Ah, then we can generate a sample y′ from the inverse pdf p−1

o (y). We
recall that the region Ah is the area below q(u), that is the density of a
transformed r.v. U = h(X), where X has pdf po(x).

Therefore, we can state the following result.

Proposition 3 Let X be a r.v. with a monotonic pdf po(x), and let
U = h(X) be another (transformed) r.v., where h(x) is a monotonic
transformation. Let us denote with q(u) the density of U and let Ah be
the area below q(u). If we are able to draw a point (u′, v′) uniformly from the
region Ah, then

y′ =
v′∣∣dh−1

du

∣∣
u′

= v′|ḣ(h−1(u′))|,

is a sample from the inverse pdf p−1
o (y).

Moreover, since x′ = h−1(u′) is a sample from po(x) (if u′ is a sample from
q(u)), we can also write

y′ = v′|ḣ(x′)| = v′
∣∣∣∣
dh

dx

∣∣∣∣
x′
. (A.10)
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This technique only requires us to know the functional form of the density
po(x) of interest up to a multiplicative constant (no deep analytical study of
po(x) is necessary). But an important limitation of RS methods is the need
to analytically establish a bound for the ratio of the target and proposal
densities, since there is a lack of general procedure for the computation
of exact bounds. The rejection sampling algorithm is based on a simple
connection with the uniform distribution, as explained below.

2.2.1 The fundamental theorem of simulation

There is a simple (fundamental) idea underlies the RS method and also other
Monte Carlo techniques.

Theorem: [5, Chapter 2] Drawing samples from a unidimensional target
density po(x) ∝ p(x) is equivalent to sample uniformly on the bidimensional
region defined by

A0 = {(x, u) : 0 ≤ u ≤ p(x)}. (2.5)

Fundamental Theorem of Simulation

Draw samples from a unidimensional target density po(x) ∝ p(x) it is equivalent to
sample uniformly on the bidimensional region defined by [2]

A0 = {0 ≤ u ≤ p(x)} (1)

Therefore, if we are able to sample points (x �, u�) uniformly on A0, the coordinate
x � is distributed as p(x) (i.e., x � ∼ p(x)).

The coordinate u is an “auxiliary” variable.

Many sampling techniques use this property (slice sampling, rejection sampling....).
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Figure 2.1: The area A0 indicates in green, below the target function p(x).
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o (y) and the area Ah is exactly A0 so that for
the Eq. (B.8)
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where z� ∼ U([0, 1]). The Equations (B.6)-(B.7) differ only for the factor��dg−1

du

��
u� . Hence, we can write

x� =
v���dg−1

du

��
u�

= v�|ġ(g−1(u�))|, (B.8)

i.e. the sample defined in Eq. (B.8) is distributed as po(x). We indicate with
ġ(x) = dg

dx
the first derivative of g(x).

The Eq. (B.8) can be seen as an extension of the Inverse-of-density
method when the inverse pdf Y ∼ p−1

o (y) is transformed by U = g(Y ).
Therefore, if we are able to draw points (u�, v�) uniformly in Ag we can
generate sample from the density po(x) using the Eq. (B.8). Moreover if
g(x) = 1, we have q(u) = p−1

o (y) and the area Ag is exactly A0 so that for
the Eq. (B.8)

x� = v�, (B.9)

i.e. we come back to the standard inverse-of-density method.
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(b)

Figure B.2: (a) If we first generate y� ∼ p−1
o (y) and then v� ∼ U([0, p−1

o (y�)]),
the sample x� = v� is distributed as po(x), as affirmed by the inverse-of-
density-method. (b) Given a transformation of random variable U = h(Y ),
we can generate uniformly points in the area Ah defined by the transformed
pdf q(u), drawing u� ∼ q(u) and then v� ∼ U([0, q(u�)]). The sample
x� = v�ḣ(h−1(u�)) has density po(x).

(b)

Figure A.1: (a) Given a point (x′, y′) uniformly distributed on A0, x′ has pdf
po(x) while y′ is distributed as p−1

o (y), as given by fundamental theorem of
simulation and the inverse-of-density-method. (b) Given a transformation
of the r.v. U = h(X) with pdf q(u), and a point (u′, v′) uniformly distributed
on the area Ah below q(u), then the sample y′ = v′ḣ(h−1(u′)) has density
p−1
o (y).

A.1.1 Special cases

If we consider the identity function h(x) = x, we have U = X and
q(u) = po(x). Since h−1(y) = y as well, the relationship in Eq. (A.9)
becomes

y′ = v′. (A.11)

Indeed, in this case the region Ah is exactly the area A0 below po(x). So
that if we are to draw a point (u′ = x′, v′ = y′) uniformly from A0 ≡ Ah, the
fundamental theorem of simulation and the inverse-of-density method, yield
that x′ = u′ has pdf po(x) while y′ = v′ has pdf p−1

o (y).

Moreover, if we choose h(x) =
√
x, x ≥ 0, hence, since h−1(u) = u2, we

have

y′ =
v′

2u′
, (A.12)

that, except for the constant value 1/2, coincides with the standard RoU
method applied to the inverse pdf p−1

o (y).
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A.2 Extended inverse-of-density method

Given a random variable Y with pdf p−1
o (y) and a transformed random

variable U = h(Y ), where h is a monotonic function, we know that the
density of U is

q(u) = p−1
o (h−1(u))

∣∣∣∣
dh−1

du

∣∣∣∣. (A.13)

Denoting as Ah the area below q(u), our goal is now to find the relationship
between the pair (U, V ) uniformly distributed on Ah and the r.v. X with
density po(x). To obtain this relationship, we first investigate the links
between the r.v.’s Y , U and later X, U .

Obviously, if we are able to draw a sample u′ from q(u), we can easily
compute a sample y′ from p−1

o (y) as

y′ = h−1(u′). (A.14)

Therefore, using the inverse-of-density method, we can obtain a sample x′

from po(x) as

x′ = z′p−1
o (y′) = z′p−1

o (h−1(u′)), (A.15)

where z′ ∼ U([0, 1]), u′ ∼ q(u) and y′ = h−1(u′) from Eq. (A.14). Figure
A.2(a) depicts the area A0 delimited by po(x) and a point (y′, x′) drawn
uniformly from A0. As explained in Section 2.4.1, x′ is distributed as po(x)
and y′ is distributed as p−1

o (y).

Moreover, we denote as Ah the region delimited by the curve v = q(u)
and the axis u. Figure A.2(b) illustrates the pdf q(u), the area Ah and a
point (u′, v′) drawn uniformly from Ah. To draw a point (u′, v′) uniformly
from Ah, we can first draw a sample u′ from q(u) and then v′ uniformly the
interval [0, q(u′)], i.e., v′ ∼ U([0, q(u′)]). Therefore, the sample v′ can be also
expressed as

v′ = z′q(u′), (A.16)

where z′ ∼ U([0, 1]). Substituting q(u) in Eq. (A.13) into Eq. (A.16), we
obtain

v′ = z′ p−1
o (h−1(u′))

∣∣∣∣
dh−1

du

∣∣∣∣
u′︸ ︷︷ ︸

q(u′)

. (A.17)
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Furthermore, recalling Eq. (A.15) we can see that

v′ = z′p−1
o (h−1(u′))︸ ︷︷ ︸

x′

∣∣∣∣
dh−1

du

∣∣∣∣
u′
, (A.18)

hence

v′ = x′
∣∣∣∣
dh−1

du

∣∣∣∣
u′
. (A.19)

Then, we can also write

x′ =
v′∣∣dh−1

du

∣∣
u′

= v′|ḣ(h−1(u′))|, (A.20)

that is a sample from po(x). We indicate with ḣ = dh
dx

the first derivative of
h(x).
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of exact bounds. The rejection sampling algorithm is based on a simple
connection with the uniform distribution, as explained below.

2.2.1 The fundamental theorem of simulation

There is a simple (fundamental) idea underlies the RS method and also other
Monte Carlo techniques.

Theorem: [5, Chapter 2] Drawing samples from a unidimensional target
density po(x) ∝ p(x) is equivalent to sample uniformly on the bidimensional
region defined by

A0 = {(x, u) : 0 ≤ u ≤ p(x)}. (2.5)

Fundamental Theorem of Simulation

Draw samples from a unidimensional target density po(x) ∝ p(x) it is equivalent to
sample uniformly on the bidimensional region defined by [2]

A0 = {0 ≤ u ≤ p(x)} (1)

Therefore, if we are able to sample points (x �, u�) uniformly on A0, the coordinate
x � is distributed as p(x) (i.e., x � ∼ p(x)).

The coordinate u is an “auxiliary” variable.

Many sampling techniques use this property (slice sampling, rejection sampling....).
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Figure 2.1: The area A0 indicates in green, below the target function p(x).

Proof: The joint pdf of the random vector (X, U) is q(x, u) ∝ q(u|x)p(x),
where we use the symbol ∝ because p(x) ∝ po(x) in not necessarily
normalized. By the definition, we also have q(u|x) = 1/p(x) with 0 ≤ u ≤

! 

po
"1(y)

! 

y' ~ po
"1(y)! 

x'

! 

v'! 

x'= v ' ~ po(x)

(a)

! 

q(u)

! 

u' ~ q(u)

! 

v'

! 

x'= v ' ˙ g g"1(u')( ) ~ po(x)

where z� ∼ U([0, 1]). The Equations (B.6)-(B.7) differ only for the factor��dg−1

du

��
u� . Hence, we can write

x� =
v���dg−1

du

��
u�

= v�|ġ(g−1(u�))|, (B.8)

i.e. the sample defined in Eq. (B.8) is distributed as po(x). We indicate with
ġ(x) = dg

dx
the first derivative of g(x).

The Eq. (B.8) can be seen as an extension of the Inverse-of-density
method when the inverse pdf Y ∼ p−1

o (y) is transformed by U = g(Y ).
Therefore, if we are able to draw points (u�, v�) uniformly in Ag we can
generate sample from the density po(x) using the Eq. (B.8). Moreover if
g(x) = 1, we have q(u) = p−1

o (y) and the area Ag is exactly A0 so that for
the Eq. (B.8)

x� = v�, (B.9)

i.e. we come back to the standard inverse-of-density method.

! 

y'= g"1(u') ~ po
"1(y)

! 

(u',v')

(b)

Figure B.2: (a) If we first generate y� ∼ p−1
o (y) and then v� ∼ U([0, p−1

o (y�)]),
the sample x� = v� is distributed as po(x), as affirmed by the inverse-of-
density-method. (b) Given a transformation of random variable U = h(Y ),
we can generate uniformly points in the area Ah defined by the transformed
pdf q(u), drawing u� ∼ q(u) and then v� ∼ U([0, q(u�)]). The sample
x� = v�ḣ(h−1(u�)) has density po(x).

€ 

q(u)

€ 

u'
(b)

Figure A.2: (a) Given a point (x′, y′) uniformly distributed on A0, y′ has pdf
p−1
o (y) while x′ is distributed as po(x), as affirmed by fundamental theorem

of simulation and the inverse-of-density-method. (b) Given a transformation
of r.v. U = h(Y ) with pdf q(u), and a point (u′, v′) uniformly distributed on
the area Ah below q(u), then the sample x′ = v′ḣ(h−1(u′)) has density po(x).

Equation (A.20) can be seen as an extension of the inverse-of-density
method when the r.v. Y with inverse pdf p−1

o (y) is transformed by U = h(Y ).
Therefore, if we are able to draw points (u′, v′) uniformly from Ah we can
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generate sample x′ from the density po(x) using Eq. (A.20), as formalized
by the following proposition.

Proposition 4 Let Y be a r.v. with a monotonic pdf p−1
o (y), and let

U = h(Y ) be another (transformed) r.v., where h(y) is a monotonic
transformation. Let us denote with q(u) the density of U and let Ah be
the area below q(u). If we are able to draw a point (u′, v′) uniformly from the
region Ah, then

x′ =
v′∣∣dh−1

du

∣∣
u′

= v′|ḣ(h−1(u′))|,

is a sample from the pdf po(x), that is the inverse function of p−1
o (y).

Since y′ = h−1(u′) is a sample from p−1
o (y) (if u′ is a sample from q(u)), we

can also write

x′ = v′|ḣ(y′)| = v′
∣∣∣∣
dh

dy

∣∣∣∣
y′
. (A.21)

A.2.1 Special cases

If we choose h(y) = y, we have U = Y and as a consequence q(u) = p−1
o (y)

and the region Ah is exactly A0, so that Eq. (A.20) becomes

x′ = v′, (A.22)

i.e., we come back to the fundamental theorem of simulation and the standard
inverse-of-density method. Indeed, if we are to draw a point (u′ = x′, v′ = y′)
uniformly from A0 ≡ Ah, for the fundamental theorem of simulation and the
inverse-of-density method, yield that x′ = u′ has pdf po(x) while y′ = v′ has
pdf p−1

o (y).
Moreover, if we take h(y) =

√
y, y ≥ 0, since h−1(u) = u2, we have

x′ =
v′

2u′
, (A.23)

that, except for the constant value 1/2, corresponds to the standard RoU
method.
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Appendix B

Sampling from triangles

Sampling uniformly in a triangular region

Consider a triangular set T in the plane R2 defined by the vertices v1, v2

and v3. We can draw uniformly from a triangular region [77, 142], [30, p.
570] with the following steps:

1. Sample u1 from U([0, 1]) and u2 from U([0, 1]).

2. The resulting sample is generated by

x′ = v1 min[u1, u2] + v2(1−max[u1, u2])+

+ v3(max[u1, u2]−min[u1, u2]).
(B.1)

The samples x′ drawn with this convex linear combination are uniformly
distributed within the triangle T with vertices v1, v2 and v3.

199



200



Appendix C

Acronyms and abbrevations

• ARMS: Adaptive Rejection Metropolis Sampling.

• ARoU: Adaptive Ratio of Uniforms.

• ARPF: Accept/Reject Particle Filter.

• ARS: Adaptive Rejection Sampling.

• CCARS: Concave Convex Adaptive Rejection Sampling.

• cdf: cumulative distribution function.

• GARS: Generalized Adaptive Rejection Sampling.

• i.i.d.: identically and identical distributed.

• MCMC: Markov Chain Monte Carlo.

• pdf: probability density function.

• PF: particle Filter.

• RoU: Ratio of Uniforms.

• RS: Rejection Sampling.

• r.v.: random variable.

• SIR: sequential importance resampling.
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• SoI: signal of interest.

• TDR: Transformed Density Rejections.

• VDR: Vertical Density Representation.

• w.r.t.: with respect to.
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Appendix D

Publications

Most of the material related to the standard GARS method has been
published in the journal papers [113, 114] with some preliminary results
related to the computation of bounds for pdf’s in [111, 112]. An initial
version, of the first adaptive scheme in Chapter 4 was introduced in [110, 115].
The complete description of the latter method, together with the ARoU
algorithm can be found in [116].
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[90] H. R. Künsch. Recursive Monte Carlo filters: Algorithms and
theoretical bounds. The Annals of Statistics, 33(5):1983–2021, 2005.

[91] P. K. Kythe and M. R. Schaferkotter. Handbook of Computational
Methods for Integration. Chapman and Hall/CRC, 2004.

212



[92] J. Leydold. Automatic sampling with the ratio-of-uniforms method.
ACM Transactions on Mathematical Software, 26(1):78–98, 2000.

[93] J. Leydold. Short universal generators via generalized ratio-of-uniforms
method. Mathematics of Computation, 72:1453–1471, 2003.
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mammographic images. In Proceedings of the 26th IEEE EMBS,
volume 1, pages 247 – 250, September 2004.

[118] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller.
Equations of state calculations by fast computing machines. Journal
of Chemical Physics, 21:1087–1091, 1953.

[119] N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the
American Statistical Association, 44:335–341, 1949.

[120] R. Meyer, B. Cai, and F. Perron. Adaptive rejection Metropolis
sampling using Lagrange interpolation polynomials of degree 2.
Computational Statistics and Data Analysis, 52(7):3408–3423, March
2008.

[121] J.R. Michael, W.R. Schucany, and R.W. Haas. Generating random
variates using transformations with multiple roots. The American
Statistician, 30(2):88–90, May 1976.

[122] J. Monahan. An algorithm for generating chi random variables.
Transactions on Mathematical Software, 13(2):168–172, June 1987.

[123] P. Del Moral. Feynman-Kac Formulae: Genealogical and Interacting
Particle Systems with Applications. Springer, 2004.

[124] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo
Methods. Society for Industrial Mathematics, 1992.

[125] W. K. Pang, Z.H. Yang, S. H. Hou, and P.K. Leung. Non-uniform
random variate generation by the vertical strip method. European
Journal of Operational Research, 142:595–609, 2002.

215



[126] N. Patwari, A. O. Hero, M. Perkins, N. S. Correal, and R. J.
O’Dea. Relative location estimation in wireless sensor networks. IEEE
Transactions Signal Processing, 51(5):2137–2148, 2003.

[127] C. J. Perez, J. Mart́ın, C. Rojano, and F. J. Girón. Efficient generation
of random vectors by using the ratio-uniforms method with ellipsoidal
envelopes. Statistics and Computing, 18(4):209–217, January 2008.

[128] M. M. Pieri, H. Martel, and C. Grenón. Anisotropic galactic
outflows and enrichment of the intergalactic Medium. I. Monte Carlo
simulations. The Astrophysical Journal, 658(1):36–51, March 2007.

[129] S. B. Pope. A Monte Carlo method for the PDF equations of turbolent
reactive flow. Combustion Science and Technology, 25:159–174, 1981.

[130] T. S. Rappaport. Wireless Communications: Principles and Practice
(2nd edition). Prentice-Hall, Upper Saddle River, NJ (USA), 2001.

[131] R. Reiss and M. Thomas. Statistical analysis of extreme values: with
applications to insurance, finance, hydrology and other fields. Springer,
2007.

[132] D. Remondo, R. Srinivasan, V. F. Nicola, W. C. van Etten, and H. E. P.
Tattje. Adaptive importance sampling for performance evaluation and
parameter optimization of communication systems. IEEE Transactions
on communications, 48(4):557–565, l 2000.

[133] B. Ristic, S. Arulampalam, and N. Gordon. Beyond the Kalman Filter.
Artech House, Boston, 2004.

[134] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer,
2004.

[135] M. Rosenbluth and A. Rosenbluth. Monte Carlo calculation of average
extension of molecular chains. Journal of Chemical Physics, 23:356–
359, 1955.

[136] D. B. Rubin. A noniterative sampling/importance resampling
alternative to the data augmentation algorithm for creating a few
imputations when fractions of missing information are modest: the
sir algorithm. Journal of the American Statistical Association, 82:543–
546, 1987.

216



[137] J. I. Siepmann. A method for the direct calculation of chemical
potentials for dense chain systems. Molecular Physics, 70(6):1145–
1158, 1990.

[138] J. I. Siepmann and D. Frenkel. Configurational bias Monte Carlo: a
new sampling scheme for flexible chains. Molecular Physics, 75(1):59–
70, 1992.

[139] T. Siiskonen and R. Pollanen. Alpha-electron and alpha-
photon coincidences in high-resolution alpha spectrometry. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 558(2):437–440,
March 2006.

[140] E. Stadlober and H. Zechner. The patchwork rejection technique for
sampling from unimodal distributions. ACM Transactions on Modeling
and Computer Simulation, 9(1):59–80, 1999.

[141] S. Stefanescu and I. Vaduva. On computer generation of
random vectors by transformations of uniformly distributed vectors.
Computing, 39:141–153, September 1987.

[142] W. E. Stein and M. F. Keblis. A new method to simulate the triangular
distribution. Mathematical and Computer Modeling, 49(5):1143–1147,
2009.

[143] R. H. Swendsen and J.S. Wang. Replica Monte Carlo simulation of spin
glasses. Physical Review Letters, 57(21):2607–2609, November 1986.

[144] H. Tanizaki. On the nonlinear and non-normal filter using rejection
sampling. IEEE Transaction on automatic control, 44(3):314–319,
February 1999.

[145] H. Tanizaki. Nonlinear and non-Gaussian state space modeling
using sampling techniques. Annals of the Institute of Statistical
Mathemathics, 53(1):63–81, 2001.

[146] L. Tierney. Exploring posterior distributions using Markov Chains.
In Computer Science and Statistics: Proceedings of IEEE 23rd Symp.
Interface, pages 563–570, 1991.

217



[147] M. D. Troutt. A theorem on the density of the density ordinate and an
alternative interpretation of the box-muller method. Statistics, 22:463–
466, 1991.

[148] M. D. Troutt. Vertical density representation and a further remark on
the box-muller method. Statistics, 24:81–83, 1993.

[149] M. D. Troutt, W. K. Pang, and S. H. Hou. Vertical density
representation and its applications. World Scientific, 2004.

[150] I. Vaduva. Computer generation of random vectors based on
transformations on uniform distributed vectors. In Proceedings of Sixth
Conf. on Probability Theory, Brasov, pages 589–598, September 1982.

[151] J. P. Valleau. Density-scaling: A new Monte Carlo technique in
statistical mechanics. Journal of Computational Physics, 96(1):193–
216, September 1991.

[152] John von Neumann. Various techniques in connection with random
digits. National Bureau of Standard Applied Mathematics Series,
12:36–38, 1951.

[153] J. C. Wakefield, A. E. Gelfand, and A. F. M. Smith. Efficient generation
of random variates via the ratio-of-uniforms method. Statistics and
Computing, 1(2):129–133, August 1991.

[154] C.S. Wallace. Transformed rejection generators for gamma and normal
pseudo-random variables. Australian Computer Journal, 8:103–105,
1976.

[155] X. Wang. Improving the rejection sampling method in quasi-Monte
Carlo methods. Journal of Computational and Applied Mathematics,
114(2):231–246, Febrary 2000.

[156] E. M. Wijsman. Monte Carlo Markov chain methods and model
selection in genetic epidemiology. Computational Statistics & Data
Analysis, 32(3-4):349–360, January 2000.

[157] D. Williams. Probability with martingales. Cambridge University Press,
Cambridge, (UK), 1991.

218



[158] S. R. Williams and D. J. Evans. Nonequilibrium Dynamics and
Umbrella Sampling. Physical Review Letters, 105(11):1–26, September
2010.

[159] J. Yu, Z. Yang, and X. Zhang. A class of nonlinear stochastic volatility
models and its implications for pricing currency options. Computational
Statistics and Data Analysis, 51(4):2218–2231, December 2006.

[160] P. Zanetti. New Monte Carlo scheme for simulating Lagranian particle
diffusion with wind shear effects. Applied Mathematical Modelling,
8(3):188–192, June 1984.

219


