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Abstract

In MIMO (multiple input-multiple output) communication, the adaptation

of the modulation and coding at the transmitter side according to the chan-

nel characteristics allows reducing the transmission power and/or enhanc-

ing the data rates. However, it is not always feasible to have instantaneous

knowledge of the channel at the transmitter. This Thesis focuses on the

case that the receiver has (perfect) instantaneous Channel State Informa-

tion (CSIR) but the transmitter has only access to its distribution (CDIT).

This is a practical case that applies, particularly, to situations where the

channel varies rapidly. Under CDIT, the input cannot be adapted to the

instantaneous state of the channel and thus SVD (singular value decom-

position) cannot be used to diagonalize the channel. Achieving capacity

requires a complex Gaussian input vector with a covariance that depends

on the channel distribution. In practice, however, discrete constellations are

used instead of Gaussian signals. Determining the optimum signalling strat-

egy with discrete constellations is difficult in general, and thus a pragmatic

approach is using the spatial signalling directions indicated by the capacity-

achieving covariance. Several classical practical bit and power loading algo-

rithms are available for parallel-channel settings. To guarantee the quality

of service, a certain average bit error probability (BER) is required at the

receiver side. Different types of receiver correspond to differente relation-

ships between the BER and the SINR. With the feedback of the parameters

of the SINR (Signal-to-Interference-plus-Noise Ratio) distribution, two op-

timization problems for single user MIMO systems with correlation at the

transmitter side can be solved, namely rate maximization with a total power

constraint and power minimization with a target bit rate.

The goal of this Thesis is to devise practical bit and power loading schemes

for MIMO that can operate on the basis of CDIT only. For practical reasons,
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three typical receivers are considered, namely zero-forcing (ZF), minimum

mean squared error (MMSE) and zero-forcing with successive interference

cancellation (ZF-SIC). The following problems are addressed:

• Maximization of the bit rates with discrete constellations, using the

transmit directions given by the capacity achieving input covariance,

at a certain average bit error probability (BER) and a constraint of

total transmit power.

• Minimization of the transmit power with discrete constellations, using

the transmit directions given by the capacity achieving input covari-

ance, at a certain average bit error probability (BER) and a target

transmit bit rate.

• Evaluation and comparison of the power gain when optimizing the

transmission with the three mentioned types of receivers relative to a

non-optimized transmission.

In order to address these items, in this work it is essential to establish a

relationship between the average BER corresponding to each of the three

receivers and the powers allocated at the transmitter under the premise of

CDIT. By utilizing these BER approximations, two dual optimization prob-

lems, bit maximization and power minimization, are solved for the practical

case of statistical channel knowledge at the transmitter side and discrete

constellations. Using a Gamma or a generalized Gamma distribution of the

SINR, BER approximations can be obtained through integration.

For a single user MIMO system with correlated channel, to accomplish the

optimization process the mathematical methods used are a Levin-Campello

algorithm for ZF, exhaustive search with additional constraints for MMSE

and tree search with bit rate boundary for ZF-SIC. The accuracy of the

developed expressions is verified with Monte Carlo simulations. The trans-

mission environment is specified to be a Rayleigh flat-fading channel with

correlation at the transmitter side.

The Thesis is structured as follows. An introduction is presented at the

first chapter, explaining the contents of this Thesis. Following a description
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of the basic process which takes place at the transmitter side, the second

chapter presents the characteristics of the MIMO channel. Moreover, the

system models of three typical receivers are described, namely ZF, MMSE

and ZF-SIC. The third chapter starts with a review of capacity, and leads to

the so-called waterfilling distribution. The dual optimization problems, bit

rate maximization and power minimization, are defined with the objective

of enhancing the performance via processing at the transmitter side. In

some practical systems, Levin-Campello develops a solution for the dual

optimization problems for discrete constellations that is described. Also, in

order to further understand the power minimization problem for discrete

constellations considering the loss of mutual information due to a given

modulation, Mercury/Waterfilling is reviewed.

In chapter IV, the BER of a ZF receiver is computed by using its SINR

distribution, which is a Gamma distribution. For convenience, it is further

accurately approximated at the high SNR regime. From the relationship

between BER and power for different constellations, the two dual problems

can be solved by a Levin-Campello algorithm, as the streams are indepen-

dent with each other. To facilitate using the Levin-Campello algorithm,

BER approximations are simplified to be established in convenient closed-

form equations.

In chapter V, the BER of an MMSE receiver is also computed by using its

SINR distribution, which can be modeled as a Gamma distribution or a

generalized Gamma distribution. Some accurate closed-formed approxima-

tions are proposed and compared. In chapter VI, from these relationships

between BER and power for different constellations, the two dual problems

are solved by exhaustive search, as the streams are coupled with each other

in the case of the MMSE receiver. In order to reduce the computational

complexity, some additional constrains are added. For the two dual opti-

mization problems, the total number of transmitted bits with an MMSE

receiver cannot be less than those with a ZF receiver. Therefore, the start-

ing point for the search is always the solution derived for ZF receivers, and
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the search progresses from that point towards higher loads until the con-

straints set in. The BER of MMSE can be approximated by the moment

generating function (MGF), which includes the first three moments of SINR.

Comparing two randomly selected antennas, when an increment of the num-

ber of bits is added to one of them, placing the increment in the antenna

with better channel condition requires less total power to accomplish the

transmission. Thus, it can be concluded that the better channel should be

loaded with more bits. With this additional constraint, the computational

complexity of the exhaustive search can be reduced even more reasonably.

In chapter VII, taking into account the error propagation, a closed-form

BER approximation can be derived for the ZF-SIC receiver by using the

total probability theorem. Moreover, since the ordering of the decoding

process can dramatically impact the system performance when using this

receiver, a precoder is proposed to determine the decoder ordering to mini-

mize the total power. Moreover, a boundary of possible bit rates for ZF-SIC

is presented, considering the bit rate of ZF and ZF-PSIC (perfect SIC), for

the two dual optimization problems. To make the search converge more

efficiently, a tree search is implemented making use of this boundary.

In the final chapter, the results obtained for the different receivers are com-

pared to conclude the core of this Thesis. Then, some future work is out-

lined.
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Resumen

En los sistemas de comunicaciones multiantena (MIMO: multiple input-

multiple output), la adaptación de los esquemas de modulación y codifi-

cación en el extremo transmisor según las caracteŕısticas del canal permite

reducir la potencia de transmisión y/o aumentar la velocidad de trans-

misión. Sin embargo, no siempre es posible tener conocimiento instantáneo

del canal en el transmisor. Esta Tesis se centra en el caso en que el receptor

tiene (perfecta) información instantánea del canal (CSIR: Channel State

Information at the Receiver), pero el transmisor únicamente tiene acceso

a su distribución (CDIT: Channel Distribution Information at the Trans-

mitter). Este es un caso práctico que sucede, en particular, en situaciones

en las que el canal vaŕıa rápidamente. Con CDIT, la señal no se puede

adaptar al estado instantáneo del canal y, por tanto, no es posible usar una

descomposición en valores singulares para diagonalizar el canal. Alcanzar la

capacidad requiere el uso de señales Gaussianas cuya correlación depende de

la distribución del canal. En la práctica, sin embargo, se utilizan constela-

ciones discretas y no señales Gaussianas. Determinar la estrategia óptima

de transmisión con constelaciones discretas es dif́ıcil en general y, por ello,

tomaremos una aproximación pragmática consistente en utilizar las direc-

ciones espaciales correspondientes a la matriz de covarianza que permite

obtener la capacidad (con señales Gaussianas). Para constelaciones disc-

retas y canales paralelos independientes existen varios algoritmos de carga

adaptativa de bits y potencia (bit and power loading) clásicos, que no son

directamente aplicables al sistema bajo estudio. Si deseamos garantizar la

calidad de servicio, se requiere una cierta probabilidad de error promedio

(BER: bit error rate) en el extremo receptor. A diferentes tipos de receptor

corresponden relaciones distintas entre la BER y la relación señal a interfer-

encia (SINR: signal to interference plus noise ratio). Con la realimentación
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de los parámetros de la distribución de SINR al transmisor es posible re-

solver dos problemas duales de optimización en sistemas MIMO de usuario

único con canal con correlación en el extremo transmisor: maximización de

la tasa binaria con una restricción de potencia y minimización de la potencia

transmitida con una restricción de la tasa binaria objetivo.

El objetivo de esta Tesis es diseñar esquemas prácticos de carga adaptativa

de bits y potencia para sistemas MIMO, que puedan operar sobre la base de

conocimiento estad́ıstico del canal en el transmisor (CDIT) únicamente. Por

motivos prácticos, consideramos tres tipos de receptores t́ıpicos: receptor de

forzado a cero (ZF), receptor de mı́nimo error cuadrático medio (MMSE), y

receptor ZF con cancelación sucesiva de interferencias (ZF-SIC). Para estos

tres receptores se abordan los siguientes problemas:

• Maximizar la tasa binaria con constelaciones discretas, usando las di-

recciones espaciales de transmisión dictadas por la matriz de covari-

anza que alcanza la capacidad, garantizando una cierta probabilidad

de error promedio y con la restricción de la potencia total a transmitir.

• Minimizar la potencia de transmisión con constelaciones discretas, us-

ando las direcciones espaciales de transmisión dictadas por la matriz

de covarianza que alcanza la capacidad, garantizando una cierta prob-

abilidad de error promedio y satisfaciendo un requisito de tasa binaria.

• Obtener y comparar la ganancia de potencia de los tres tipos de recep-

tores mencionados en relación con una transmisión sin optimizar.

Para abordar estos problemas, es esencial establecer una relación entre la

probabilidad de error promedio de cada uno de los receptores y la potencia

asignada en el transmisor a cada flujo de datos MIMO, bajo la premisa de

conocimiento CDIT. A partir de la distribución Gamma o Gamma general-

izada de la SINR, se obtienen aproximaciones para la probabilidad de error

promedio mediante integración.

Para un sistema MIMO de usuario único con canal correlado, los métodos

matemáticos empleados para resolver los problemas de optimización son: al-

goritmo “Levin-Campello” para ZF, búsqueda exhaustiva con restricciones
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adicionales para MMSE, y búsqueda en árbol con tasa binaria acotada para

ZF-SIC. La precisión de las aproximaciones y las prestaciones de los al-

goritmos desarrollados se evalúan mediante simulación de Monte Carlo. El

entorno de transmisión viene dado por un canal MIMO con desvanecimiento

tipo Rayleigh, plano en frecuencia y con correlación en el extremo trans-

misor.

La estructura de la Tesis es la siguiente. En el primer caṕıtulo se presenta

una introducción y se describe el contenido de la Tesis. A continuación,

tras una descripción del procesado básico que tiene lugar en el transmisor,

el caṕıtulo II presenta las caracteŕısticas del canal MIMO. Además, se de-

scriben el modelo del sistema y los tres receptores que se van a tratar: ZF,

MMSE y ZF-SIC.

El caṕıtulo III comienza con una revisión de la capacidad, lo que conduce

a la denominada distribución de “waterfilling” en sistemas MIMO. Los dos

problemas de optimización duales, maximización de la tasa binaria y mini-

mización de la potencia, se definen para mejorar las prestaciones mediante

procesado en el extremo transmisor. En algunos sistemas prácticos, el algo-

ritmo de Levin-Campello constituye una solución para estos problemas de

optimización duales con constelaciones discretas, por lo que se presenta una

revisión del mismo. Con el fin de comprender mejor el problema de mini-

mización de potencia para constelaciones discretas, considerando la pérdida

de información mutua debida a una modulación concreta, se revisa a con-

tinuación la distribución conocida como “mercury/waterfilling”.

En el caṕıtulo IV, se estima la probabilidad de error promedio para un

receptor ZF utilizando la distribución de la SINR, que corresponde a una

función de densidad de probabilidad Gama, y se encuentra una aproxi-

mación para relación señal a ruido alta que resulta muy precisa. A partir

de la relación entre la BER y la potencia requerida para diferentes constela-

ciones, los dos problemas duales se pueden resolver mediante un algoritmo

tipo “Levin-Campello”, dado que los flujos de datos son independientes.

Para facilitar el uso de este algoritmo, se mejoran las aproximaciones de la

BER, obteniendo cómodas ecuaciones en forma compacta.
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En el caṕıtulo V, se estima la probabilidad de error promedio para un

receptor MMSE, también utilizando la distribución de la SINR, que ahora

corresponde a una Gama o Gama generalizada. Se proponen y comparan

varias expresiones en forma cerrada.

En el caṕıtulo VI, a partir de la relación entre la BER y la potencia re-

querida para diversas constelaciones, se resuelven los dos problemas duales

mediante búsqueda exhaustiva, dado que en este caso los flujos de datos

están acoplados debido a que el receptor MMSE no cancela la interferencia.

Para reducir la carga computacional se añaden algunas restricciones. Para

los dos problemas duales, el número total de bits que se pueden transmitir

cuando el receptor es MMSE no puede ser menor que el correspondiente a

un receptor ZF. Aśı pues, el punto de partida de la búsqueda es la solución

para el receptor ZF y la búsqueda progresa desde ese punto hacia may-

ores tasas mientras lo permiten las restricciones. La probabilidad de error

tras el receptor MMSE se puede aproximar a través de la MGF (moment

generating function) que incluye los tres primeros momentos de la SINR.

Comparando dos antenas cualesquiera se demuestra que si hay que añadir

un cierto incremento de bits en una de ellas, la antena con mejor canal es la

que requiere menor incremento de potencia total para transmitirlo. Aśı, se

puede concluir que los mejores canales deben llevar mayor número de bits

y esto permite añadir una restricción adicional a la búsqueda, que conlleva,

de este modo, una carga computacional razonable.

En el caṕıtulo VII, se obtiene una aproximación cerrada para la BER de

un receptor ZF-SIC considerando la propagación de errores, a partir del

teorema de la probabilidad total. Dado que el orden del proceso de decod-

ificación tiene un impacto importante en las prestaciones del sistema con

este receptor, se propone un precodificador que determina el orden que min-

imiza la potencia total. Por otra parte, se presentan unas cotas de las tasas

binarias posibles con ZF-SIC, considerando las de ZF y ZF-PSIC (perfect

SIC) para los dos problemas duales de optimización. Haciendo uso de estas

cotas, se emplea una búsqueda en árbol para agilizar la convergencia.
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En el último caṕıtulo, los resultados obtenidos para los diferentes receptores

se comparan, concluyendo la Tesis con una descripción de las ĺıneas de

trabajo futuras.
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Introduction

With the rapid development of wireless telecommunication systems, there are more

requirements for higher quality of service and data transmission rate. The applications

with mobility, flexible usage, convenient maintenance and flexibility are demanded more

and more. Facing the increasing demand of data services, especially multimedia ser-

vices, the limited bandwidth, the interference and multi-path propagation seriously

restrict further development.

In wireless telecommunication systems, multiple-input multiple-output (MIMO) de-

notes the use of multiple antennas at both the transmitter and receiver to improve the

communication performance. As a smart antenna technology, MIMO is quickly becom-

ing a central ingredient in the design of wireless systems. MIMO techniques can provide

a significant improvement in the system capacity and spectral efficiency (more bits per

second per hertz of bandwidth). They offer significant increases in data throughput

and link range (through the use of diversity) without additional bandwidth or transmit

power. Because of these properties, MIMO is an important part of modern wireless

communication standards such as IEEE 802.11n (WiFi), WiMAX, HSPA+, and 3GPP

Long Term Evolution towards the 4th generation of mobile communications.

The use of bit and power optimization was first introduced in wire-line telecommu-

nication systems and afterwards extended to wireless communications. Subsequently it

was extended to MIMO systems, and it is widely used in several current communication

standards. In MIMO communication, the adaptation of the modulation and coding at

the transmitter side according to the channel characteristics allows reducing the trans-

mission power and/or enhancing the data rates [Lozano et al. 2006a]. However, it is not
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1. INTRODUCTION

always feasible to have instantaneous knowledge of the channel at the transmitter. This

Thesis focuses on the case that the receiver has (perfect) instantaneous channel state

information (CSIR) but the transmitter has only access to its distribution (CDIT).

This is a practical case that applies, particularly, to situations where the channel varies

rapidly. Under CDIT, the input cannot be adapted to the instantaneous state of the

channel and thus SVD (singular value decomposition) cannot be used to diagonalize

the channel.

On the other hand, achieving capacity requires a complex Gaussian input vector

with a covariance that depends on the channel distribution [Tulino et al. 2006]. In prac-

tice, however, discrete constellations are used instead of Gaussian signals. Determining

the optimum signalling strategy with discrete constellations is difficult in general, and

thus a pragmatic approach is taken here, namely using the spatial signalling directions

indicated by the capacity-achieving covariance.

Several classical practical bit and power loading algorithms [Chow et al. 1995;

Campello et al. 1999; Cioffi; Lozano et al. 2006b; Hong et al. 2009] are available for

parallel-channel settings. However, in MIMO with CDIT it is not always feasible to have

parallel-channel settings as we will see. To guarantee the quality of service, a certain

average bit error probability (BER) is required at the receiver side. Different types

of receiver correspond to different relationships between the BER and the signal-to-

interference-plus-noise ratio (SINR) [P. Li et al. 2006; Armada et al. 2009; Hong et al.

2010]. With the feedback of the parameters of the SINR distribution, two optimization

problems for single user MIMO systems can be solved at the transmitter side [Cioffi;

Armada et al. 2009], namely rate maximization with a total power constraint and

power minimization with a target bit rate.

1.1 Objectives

The goal of this Thesis is to devise practical bit and power loading schemes for MIMO

that can operate on the basis of CDIT only. For practical reasons, three typical receivers

are considered, namely zero-forcing (ZF), minimum mean squared error (MMSE) and

zero-forcing with successive interference cancellation (ZF-SIC) [Paulraj et al. 2003].

The following problems are addressed:
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• Maximization of the bit rates with discrete constellations, using the transmit

directions given by the capacity achieving input covariance, at a certain average

bit error probability (BER) and a constraint of total transmit power.

• Minimization of the transmit power with discrete constellations, using the trans-

mit directions given by the capacity achieving input covariance, at a certain av-

erage bit error probability (BER) and a target transmit bit rate.

• Evaluation and comparison of the power gain when optimizing the transmission

with the three mentioned types of receivers relative to a non-optimized transmis-

sion.

In order to address these problems, in this work it is essential to establish a re-

lationship between the average BER corresponding to each of the three receivers and

the powers allocated at the transmitter under the premise of CDIT [P. Li et al. 2006;

Armada et al. 2009; Hong et al. 2010].

1.2 Thesis Organization and Contributions

1.2.1 Methodology

Using a Gamma or a generalized Gamma distribution of the SINR, BER approximations

can be obtained through integration [P. Li et al. 2006; Armada et al. 2009; Hong et

al. 2010].

For a single user MIMO system with correlated channel, to accomplish the opti-

mization process, the mathematical methods used are a Levin-Campello algorithm for

ZF, exhaustive search with additional constraints for MMSE and tree search with bit

rate boundary for ZF-SIC [P. Li et al. 2006; Armada et al. 2009; Hong et al. 2010].

The accuracy of the developed expressions and the gain obtained through transmit

optimization with the proposed algorithms are evaluated using Monte Carlo simula-

tions.

1.2.2 Organization

The Thesis is focused on the design and optimization of the transmitter in MIMO

communications. The transmission environment is specified to be a Rayleigh flat-fading
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channel with correlation at the transmitter side. An introduction is presented at the

first chapter, addressing the structure of this Thesis.

Following a description of the basic process which takes place at the transmitter

side, the second chapter presents the characteristics of the MIMO channel. Moreover,

the system models of three typical receivers are described, including ZF, MMSE and

ZF-SIC.

The third chapter starts with a review of capacity, and leads to the so-called wa-

terfilling distribution in MIMO systems. The dual optimization problems, bit rate

maximization and power minimization, are defined to enhance the performance with

processing at the transmitter side [Cioffi]. In some practical systems, Levin-Campello

algorithm develops a solution for the dual optimization problems for discrete constella-

tions [Campello et al. 99], so it is briefly reviewed. In order to further understand the

power minimization problem for discrete constellations, considering the loss of mutual

information due to a given modulation, Mercury/Waterfilling is also reviewed [Lozano

et al. 2006b].

In chapter IV, the BER of a ZF receiver is computed by using its SINR distribution,

which is a Gamma distribution, and it is also accurately approximated at the high

SNR regime [Armada et al. 2009]. From the relationship between BER and power

for different constellations and ZF receiver, the two dual problems can be solved by a

Levin-Campello algorithm, as the streams are independent with each other [Armada et

al. 2009]. To facilitate using the Levin-Campello algorithm, BER approximations are

improved to be established in convenient closed-form equations [Armada et al. 2009].

In chapter V, the BER of an MMSE receiver is also computed by using its SINR

distribution, which can be modelled as a Gamma distribution or a generalized Gamma

distribution [P. Li et al. 2006], and some accurate closed-formed approximations are

proposed and compared [Hong et al. 2010].

In chapter VI, from the relationship between BER and power for different constel-

lations, the two dual problems can be solved by exhaustive search, as the streams are

coupled with each other in the case of the MMSE receiver. In order to reduce the com-

putational complexity, some additional constrains are necessary to be added. For the

two dual optimization problems, the total number of transmitted bits with an MMSE

receiver cannot be less than with a ZF receiver. Therefore, the starting point for the
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search is always the solution derived for ZF receivers, and the search progresses from

that point towards higher loads until the constraints set.

The BER of the MMSE receiver can be approximated by the moment generating

function (MGF), which includes the first three moments of SINR. Comparing two ran-

domly selected antennas, when an increment of the number of bits is added to one of

them, the antenna with better channel condition spend less total power to accomplish

the transmission. Thus, it can be concluded that the better channel can be loaded

with more bits. With this additional constraint, the computational complexity of the

exhaustive search can be reduced even more reasonably.

In chapter VII, taking into account the error propagation, a closed-form BER ap-

proximation is derived for the ZF-SIC receiver by using the total probability theorem.

Moreover, since the ordering of the decoding process can dramatically impact the sys-

tem performance when using this receiver, a method is proposed to determine the

decoder ordering to minimize the total power. Moreover, a boundary of possible bit

rates for ZF-SIC is presented, considering the bit rate of ZF and ZF-PSIC (perfect SIC),

for the two dual optimization problems.To make the search converge more efficiently, a

tree search is implemented making use of this boundary.

In the final chapter, the results obtained for the different receivers are compared to

conclude the core of this Thesis. Then, some future work is outlined.

1.2.3 Contributions

For a single user MIMO system, the BER of three typical receivers, ZF, MMSE and ZF-

SIC, is estimated and convenient closed-form approximations are provided, by using the

statistical information of the channel matrix with correlation at the transmitter side.

By utilizing these BER approximations, two dual optimization problems, bit maxi-

mization and power minimization, are solved for the practical case of statistical channel

knowledge at the transmitter side and discrete constellations.
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2

MIMO system and Receivers

This chapter focuses on MIMO systems and provides an overview of MIMO receivers

for spatial multiplexing (SM) schemes.

2.1 System model of a MIMO system

In a MIMO system several antennas are used at the transmitter and receiver sides. Due

to the propagation channel, the information sent from each of the transmit antennas

will be present at the input of each receive antenna, causing the so called multistream

interference (MSI). The presence of MSI is a key problem that should be solved at the

MIMO receiver side, as the multiple transmit streams interfere with each other.

Fig. 2.1 illustrates the configuration of a general MIMO system and the use of a

linear receiver for separating the transmitted data streams.

Let nT and nR denote the number of transmit and receive antennas, respectively,

with nT ≤ nR. The nT × 1 transmit vector is denoted by x = VP1/2s, where s =

[s1, · · · , snT ] is a vector of unit-variance M-QAM symbols. The unitary matrix V

represents a linear precoder whose columns define the signalling directions. In turn,

P = diag [p1, · · · , pi, · · · , pnT ] with pi ≥ 0 the power allocated to the ith signaling

vector, normalized such that E
{

Tr
[

xHx
]}

= nT ≥ Tr [P]. Then, the nR × 1 received

vector is

y =

√

γ

nT
HcVP1/2s+ n, (2.1)
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Figure 2.1: Illustration - use of a linear receiver for separating the transmitted data

streams over a MIMO channel.

where n is a vector with independent zero-mean unit-variance complex Gaussian

noise samples, γ = Es
No

is the average signal-to-noise ratio (SNR) per receive antenna

[Paulraj et al. 2003] , and Hc is the matrix representing the MIMO wireless channel.

Allowing for arbitrary correlations among the transmit antennas, Hc = HwR
1/2 where

the (i, j)th entry ofR equals the correlation between the ith and jth transmit antennas,

normalized such that Tr [R] = nT , while Hw contains independent zero-mean unit-

variance complex Gaussian entries. The correlations among the receiver antennas are

not considered in this work.

Defining an effective channel matrix

H =
√

γ
nT

HcVP1/2

=
√

γ
nT

HwR
1/2VP1/2

. (2.2)

The received signal can be simply written

y = Hs+ n. (2.3)

For a rather general class of channel models, the precoder V is capacity-achieving

when its columns coincide with the eigenvectors of R [Tulino et al. 2006]. This same

8
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precoder is also shown in [Scaglione et al. 1999] to be optimal, from an SINR standpoint.

Thus the precoder V is found from

R = VHΛV, (2.4)

where Λ is the diagonal matrix of eigenvalues of R.

2.2 MIMO receivers

For the purpose of reducing the decoding complexity of the ML (maximum likelihood)

receiver, several receivers can separate the transmitted data streams, and then inde-

pendently decode each stream. ZF, MMSE and ZF-SIC receivers are discussed below,

to cancel or compensate MSI.

2.2.1 ZF receiver

The ZF matrix filter that separates the received signal into its component transmitted

streams is given by

GZF = H†, (2.5)

where H† is the pseudo inverse of matrix H [Armada et al. 2009] [S. Verdú 98].

The output of a linear ZF receiver is

zZF = GZFy = H†y = s+
⌢
n. (2.6)

The ZF receiver decouples the composite channel matrix into nT parallel scalar

channels with additive noise enhanced by GZF. Because each scalar channel is decoded

independently ignoring noise correlation, ZF is sub-optimal which results in significant

performance degradation, but with a very reduced complexity.

From (2.6), zi = si +
⌢
ni is the ith element of zZF, so the detected signal ŝi can be

obtained from a decision made on zi.

The SINR corresponding to the reception of the signal of the ith transmit antenna

can be expressed as

SINRZFi =
1

[

(HHH)†
]

i,i

. (2.7)
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where [·]i,i means the ith diagonal element and HH is the Hermitian transpose matrix

of H [P. Li et al. 2006] [Armada et al. 2009].

Assuming a channel without correlation, it has been shown in [Winters et al.

1994][Gore et al. 2002] that the SINR on each of the received streams is distributed as

f (t) =
nT

γ (nR − nT )!
e
−nT

γ
t
(

nt

γ
t

)nR−nT

u (t) . (2.8)

So SINRZFi is a Chi-square random variable with 2 (nR − nT + 1) degrees of free-

dom. Moreover, SINRZFi can also be characterized as a Gamma distribution [P. Li et

al. 2006], with a higher accuracy as is shown in [P. Li et al. 2006].

2.2.2 MMSE receiver

At the expense of noise enhancement, the ZF receiver completely eliminates MSI. To

minimize the total error, MMSE receiver can balance MSI mitigation with noise en-

hancement [Paulraj et al. 2003]. The MMSE receive filter is [Hong et al. 2010]

GMMSE = argmin E
G

{

‖Gy − s‖2F
}

. (2.9)

Utilizing the orthogonality principle,

E
{

(Gy − s)yH
}

= 0, (2.10)

GMMSE =
(

I+HHH
)†

HH . (2.11)

And the output of a linear MMSE receiver is

zMMSE = GMMSEy =
(

I+HHH
)†

HHy. (2.12)

The SINR on the ith decoded stream can be shown to be

SINRMMSEi =
1

[

(HHH+ I)†
]

i,i

− 1. (2.13)
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2.2 MIMO receivers

Figure 2.2: Structure - ZF-SIC receiver.

2.2.3 ZF-SIC receiver

Fig. 2.2 shows the structure of a ZF-SIC receiver.

For a ZF-SIC receiver [Paulraj 2003], there are two cases that should be analyzed

respectively. First we consider the process of detection for the first stage i = 1, and

afterwards we consider the case for any stage i > 1.

From Fig. 2.2 and (2.6), as G0 = GZF, z̃1 = s1 +
⌢
n1 is the first element of zZF. So

the detected signal ŝ1 of the first stage (i = 1) can be obtained from a decision made

on z̃1.

Observing Fig. 2.2, the ith detected signal ŝi, i = 2, · · ·nT of the ith stage can be

obtained by the following steps.

Denote hi−1 as the (i− 1)th column ofH and H−(i−1) is matrixH with the columns

from first to (i− 1)th removed.

After cancelling the interference, the ith received signal becomes

ỹ−(i−1) = y − h1ŝ1 − · · · − hi−1ŝi−1. (2.14)

11
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The output of the ith received signal is

zi = G−(i−1)ỹ−(i−1)

= H†
−(i−1)ỹ−(i−1)

= H†
−(i−1) ((s1 − ŝ1)h1 + · · ·+ (si−1 − ŝi−1)hi−1 + ni) + si

. (2.15)

Denote z̃i as the ith element of the vector zi. After the detection, the final output

signal ŝi will be obtained from a decision made on z̃i.

12



3

Capacity and Bit loading

3.1 Capacity of the frequency-flat MIMO channel

The channel capacity is the maximum error-free data rate that a channel can sup-

port. At the beginning of this chapter, the fundamental limit on the spectral efficiency

that can be supported reliably in MIMO wireless channels is shown. Claude Shannon

firstly derived the channel capacity for additive white Gaussian noise (AWGN) channels

[Shannon 1948]. As MIMO channels exhibit fading and encompass a spatial dimension,

their capacity has been focused on the recent years.

Assuming perfect channel knowledge at the receiver side, there are two different

cases for frequency-flat fading channels that will be discussed, namely channel infor-

mation unknown or channel information known to the transmitter.

Assuming that the channel has a bandwidth of 1 Hz and is frequency-flat over

the whole bandwidth, the input-output relation for the MIMO channel was derived in

Chapter II. The capacity of the MIMO channel is defined as [Froschini 1996] [Telatar

1999]

C = max
f(s)

I {s;y} , (3.1)

where f (s) is the probability distribution of the input vector s and I {s;y} is the

mutual information between s and y.

Note that

I {s;y} = H (y)−H (y |s) , (3.2)

13
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where H (y) is the differential entropy of the vector y, and H (y |s) is the conditional

differential entropy of the vector y, when given knowledge of the vector s. As the

vectors s and n are independent, H (y |s) = H (n), (3.2) can be simplified to

I {s;y} = H (y)−H (n) . (3.3)

If H (y) is maximized, the maximization of mutual information I {s;y} can also

be achieved. The covariance matrix of y, denoted as Ryy = E
{

yyH
}

when H =
√

γ
nT

HwR
1/2P1/2, satisfies

Ryy = HRssH
H + I, (3.4)

where Rss = E
{

ssH
}

is the covariance matrix of s.

The differential entropy H (y) can be maximized, when y is a zero mean circularly

symmetric complex Gaussian (ZMCSCG) vector [Neeser and Massey 1993]. So s should

be a ZMCSCG vector with the distribution characterized by Rss.

Therefore, I {s;y} can be reduced to [Telatar 1999]

I {s;y} = log2 det
(

I+HRssH
H
)

bits/s/Hz. (3.5)

Following (3.1), the capacity of the MIMO channel is given by

C = max
Tr(Rss)=nT

{

log2 det
(

I+HRssH
H
)}

bits/s/Hz. (3.6)

Equation (3.6) is referred to the error-free spectral efficiency, or the data rate per

unit bandwidth that can be sustained reliably over the MIMO link. From here, the

units bits/s/Hz will be dropped to simplify the expressions of capacity.

3.2 Capacity with channel unknown to the transmitter

If the channel is unknown to the transmitter, the vector s can be chosen to be sta-

tistically non-preferential Rss = I and P = I. Thus, the signals are independent and

equally-powered at the transmit antennas. In the absence of channel knowledge at the

transmitter side, the capacity is given by

C = log2 det
(

I+HHH
)

. (3.7)
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Using the eigenvalue decomposition of HHH = QΛQH , the capacity of the MIMO

channel can be expressed as

C = log2 det

(

I+
γ

nT
QΛQH

)

. (3.8)

Using det (Im +AB) = det (In +BA) with A (m × n) and B (n × m), (3.8) can

be simplified to be

C = log2 det

(

I+
γ

nT
PΛ

)

. (3.9)

Denote r as the rank of the channel and λi, i = 1, 2, · · · , r are the positive eigen-

values of HHH . Then (3.9) can be expressed equivalently

C =
r
∑

i=1

log2

(

1 +
γ

nT
λi

)

. (3.10)

This means that the capacity of the MIMO channel is the sum of the capacities of

r single-input single-output (SISO) channels, each having power gain λi with the SNR

γ.

Hence, in the absence of channel knowledge, multiple scalar spatial data modes

between transmitter and receiver exist and equal energy is allocated to each spatial

data stream.

3.3 Capacity with channel known to the transmitter

The capacity with channel known at the transmitter side can be realized via the feed-

back from the receiver or through the reciprocity principle in a time-duplex system.

The individual channel modes can be accessed through precoder and decoder pro-

cessing at the transmitter side and the receiver side respectively [Froschini 1996; Telatar

1999; Lozano and Papadias 2002].

Equation (2.1) can be explicitly decomposed into r parallel SISO channels satisfying

yi =

√

γpiλi

nT
si + ni. (3.11)
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The capacity of the MIMO channel is the summation of these individual parallel

SISO channel capacities and can be given by

C =
r
∑

r=1

log2

(

1 +
γ

nT
piλi

)

. (3.12)

Since the special streams can be accessed at the transmitter side, the mutual infor-

mation can be maximized by allocating variable energy across these streams. So the

maximization of the mutual information becomes

C = max
r
∑

i=1
pi=nT

r
∑

r=1

log2

(

1 +
γ

nT
piλi

)

. (3.13)

3.4 Bit and power loading

3.4.1 Multi-channel modulation and SNR gap

Bit and power loading were first described to optimize a set of non-overlapping narrow

input signals (multi-tone), transmitting via different types of fading channels. In this

work, the input signals are specified to be Quadrature Amplitude Modulation (QAM).

Multi-tone transmission uses two or more coordinated passband (QAM or QAM-like)

signals to carry a single bit stream over a communication channel. The passband signals

are independently demodulated in the receiver and then re-multiplexed into the original

bit stream. Multi-channel modulation methods are generally considered to be the best

for data transmission channels with moderate or severe intersymbol interference.

Moreover, for spatial multiplexing, multi-channel indicates that a set of input sig-

nals are independently transmitted by a set of antennas, and received by another set

of antennas individually. Shannon’s 1948 [Shannon 1948] constructed capacity bounds

for transmission on an AWGN channel with linear ISI, effectively using multi-tone

modulation. The 1958 Collins Kineplex MODEM appeared with the first uses of multi-

channel modulation [Mosier and Clabaugh 1958]. Over a 30-year period, a bunch of

increasingly successful attempts at the use of multi-channel modulation occurred, espe-

cially the technique with digitally implementable solutions under the name “Discrete

Multitone” (DMT) emanated from Stanford University [Chow 1995].

The heuristic motivation for multitone modulation is that if the bandwidth f each of

the “tones” is sufficiently narrow, then no ISI occurs on any subchannel. The individual
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3.4 Bit and power loading

passband signals may carry data equally or unequally. Generally, multichannel systems

can be constructed as having N subchannels (parallel channels), where several pairs

of these subchannels have identical gains and can be considered as two-dimensional

subchannels (carrying complex symbols).

Examples of parallel channels abound in both wire-line and wireless communication

[Lozano et al. 2006b]:

• Multicarrier transmission. Signalling takes place over a number of distinct fre-

quency bands, each of which constitutes a parallel channel.

• Multiantenna communication. If multiple transmit and receive antennas are em-

ployed and the transfer coefficients between them are known, the left singular

vectors of the resulting matrix can be used for signaling and the right singular

vectors for reception. The outcome is a set of parallel noninteracting channels

[Telatar 1999].

• Power control for fading channels. When the gain of an individual frequency-

flat channel varies over time, it can be seen as a collection of parallel channels

where each such channel encompasses a group of symbols over which the fading

coefficients are identical [Goldsmith and Varaiya 1997].

• Dispersive channels. In linear dispersive channels, a power-preserving orthonor-

mal linear transformation at transmitter and receiver turns the channel into one

with parallel branches having uncorrelated noises.

The concept of the so-called “SNR gap”, denoted as Γ, is related with parallel

channels and loading algorithms.

Denoting the capacity of each of the parallel subchannels as c̄i, on an AWGN channel

the maximum data rate or capacity corresponds to unit gap (Γ = 1)

c̄i = log2

(

1 +
γ

nTΓ
piλi

)

. (3.14)

SNR gap is fixed to a value of 0 dB, meaning that a modulation and coding scheme

are used that can achieve maximum mutual information.
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3. CAPACITY AND BIT LOADING

The bit distribution vector for a set of parallel subchannels that in aggregate carry

b total bits of information is given by

b = [b1, · · · , bi, · · · bnT ] . (3.15)

The sum of the elements in b is clearly equal to the total number of transmitted

bits,

btot =

nT
∑

i=1

bi. (3.16)

More generally, the passband signal(s) with largest channel output signal-to-noise

ratio carry a proportionately larger fraction of the digital information,

bi = log2

(

1 +
γ

nTΓ
piλi

)

. (3.17)

In (3.14) and (3.17), SNR gap Γ is defined as

Γ =
22c̄i − 1

22bi − 1
. (3.18)

For a given bit error rate, Γ is the SNR loss due to the actual modulation and coding

schemes as compared to the ideal channel capacity. In multitone systems, SNR gap is

a key parameter, that depends on several factors, as the coding gain, the shaping gain

of modulation and constellation, etc [Cioffi et al. 1995; Armada 2006; Fung and Lim

2007]. A practical way to estimate its value is given in [Forney and Ungerboeck 1998].

If the SNR gap is a value of 12.8 dB, it corresponds to a BER = 10−7 for M-QAM

modulation [Forney and Ungerboeck 1998].

3.4.2 Waterfilling

The optimal power allocation named as “Waterfilling” was proposed by Cover and

Thomas, [Telatar 1999; Cover and Thomas 1991; Chuah et al. 1998; Chuah et al.

2002]. Two dual problems of optimization, including rate maximization and power

minimization, can be solved with a Waterfilling distribution.
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3.4 Bit and power loading

3.4.2.1 Rate maximization

When the symbol rate 1/Ts is fixed, the data rate

R =
1

Ts

nT
∑

i=1

bi (3.19)

for a set of parallel subchannels should be maximized with an energy constraint

Tr [P] =

nT
∑

i=1

pi = nT . (3.20)

When the total power (3.20) is fixed, the sum of the number of bits (3.19) should be

maximized, transmitting over a set of parallel subchannels.

When Ts = 1s, plugging (3.17) into (3.19) ,

R =

nT
∑

i=1

log2

(

1 +
γ

nTΓ
piλi

)

. (3.21)

(3.21) can be maximized by Lagrangian methods, subject to (3.14), when

popti +
nTΓ

γλi
= µ̄, i = 1, · · · , r, (3.22)

with

r
∑

i=1

popti = nT , (3.23)

and µ̄ is a constant and (x)+ means

(x)+ =







x, if x ≥ 0

0, if x < 0
, (3.24)

µ̄ in (3.23) can be calculated by

µ̄ =
nT

r

[

1 +
Γ

γ

r
∑

i=1

1

λi

]

. (3.25)

Using the value of µ̄, the power allocated to the ith stream can be calculated as

pi =

(

µ̄− nTΓ

γλi

)

+

. (3.26)
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3. CAPACITY AND BIT LOADING

The optimal Waterfilling power allocation policy is accomplished when power al-

located to each stream is non-negative, otherwise this channel is discarded by setting

pi = 0. Hence, the capacity of the MIMO channel when the channel is known, utilizing

Waterfilling, is greater or equal than the capacity when the channel is unknown to the

transmitter.

3.4.2.2 Power minimization

For many transmission systems, variable data rate is not desirable. In this case, the best

design will maximize the performance margin at a given fixed data rate. To maximize

fixed-rate margin, the designer equivalently minimizes the total energy

Tr [P] =

nT
∑

i=1

pi ≤ nT , (3.27)

subject to

R =

nT
∑

i=1

bi =

nT
∑

i=1

1

2
log2

(

1 +
γ

nTΓ
piλi

)

. (3.28)

This energy-minimizing form of the loading problem is known in mathematics as

”the dual form” of the rate-maximizing formulation.

Thus, the optimal power allocation should satisfy

popti =

(

µ̄− nTΓ

γλi

)

+

, i = 1, · · · , r, (3.29)

with

r
∑

i=1

popti ≤ nT . (3.30)

Using the value of µ̄, the power allocated to the th stream can be calculated by

pi =

(

µ̄− nTΓ

γλi

)

+

. (3.31)
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3.4 Bit and power loading

3.4.2.3 Levin-Campello algorithm

Waterfilling algorithms produce bit distributions that can be made of any real numbers.

It can be difficult to realize bit distributions with non-integer values. In practical

systems, some alternative loading algorithms [Chow et al. 1995] [Campello et al. 1999]

are proposed to realize bit distributions with a finite granularity.

Chow’s algorithm [Chow et al. 1995] verifies that an “on/off” energy distribution

can exhibit negligible loss with respect to the exact waterfilling shape, where “on”

means flat energy distribution in the same used bands as waterfilling and “off” means

zero energy distribution where waterfilling would be zero. The reason for the use of

“on/off” energy distributions is that practical systems usually have a constraint on the

maximum power spectral density along with a total energy/power constraint.

Optimum discrete loading algorithms [Campello et al. 1999] for the computation

of bit distributions can be implemented amenably. The information granularity ζ of a

multichannel transmission system is the smallest incremental unit of information that

can be transmitted. The number of bits on any subchannel is then given by

bi = giζ, (3.32)

where gi ≥ 0 is an integer.

Typically, ζ takes values such as 0.25, 0.5, 0.75, 1, or 2 bit(s) with fractional bit

constellations. It depends on the available modulation and coding schemes.

Any monotonically increasing relation between transmit symbol energy and the

number of bits transmitted on any subchannel that is not a function of other subchan-

nel’s energies can be used by discrete loading algorithms [Campello et al. 1999]. This

function can be different for each subchannel, and there need not be a constant gap

used. In general, the concept of incremental energy is important to discrete loading.

The symbol energy for an integer number of information units (3.32) on each sub-

channel can be notationally generalized to the energy function

pi (bi) , (3.33)

where the symbol energy’s dependence on the number of information units trans-

mitted, bi, is explicitly shown. The incremental energy to transmit bi information units
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3. CAPACITY AND BIT LOADING

on a subchannel is the amount of additional energy required to send the gith informa-

tion unit with respect to the gi−1th information unit (that is, one more unit of ζ). The

incremental energy is then

∆pi (bi) = pi (bi)− pi (bi − ζ) . (3.34)

For M-QAM, an energy function with ζ = 1 can be defined via the gap approxima-

tion as

pi (bi) =
2nTΓ

γλi

(

2bi − 1
)

. (3.35)

Considering this incremental energy, Levin-Campello algorithm starts with any bit

distribution, then it makes it ”efficient” and ”tight” afterwards, and the result is the

optimum discrete bit distribution that solves either the rate maximization or the power

minimization problems.

With this algorithm, the subchannel with the minimal incremental energy is selected

each time for adding one more bit into subchannels, what is called a ”greedy” algorithm.

3.4.2.4 Mercury/Waterfilling

The power distribution that maximizes mutual information for given arbitrary (i.e.

not necessarily Gaussian) inputs has been recently unveiled [Lozano et al. 2006b] and

it is known as Mercury/Waterfilling (MW). The work in [Lozano et al. 2006b] has

been extended to the Multiuser scenario in [Lozano et al. 2008]. Mercury/Waterfilling

provides a method for power loading according to a known bit distribution. Some efforts

have been initiated to obtain a bit loading algorithm based on Mercury/Waterfilling.

For example, [Taouk and Peacock 2006] proposes a statistical power loading and tree-

search bit loading algorithm, that works under a given constellation but is not optimal

for varying M-QAM modulation. [Matas and Lamarca 2007] introduces the mutual

information loss of suboptimum receivers for Waterfilling and Mercury/Waterfilling,

according to joint power allocation and bit loading in more general scenarios.

Mercury/Waterfilling is derived from the relation between the mutual information

and the nonlinear MMSE of the input signals [Guo et al. 2005] [Lozano et al. 2006b]

d

dρ̇i
Ii (ρ̇i) = MMSEi (ρ̇i) . (3.36)
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3.4 Bit and power loading

where

ρ̇i =
γ

nTΓ
λipi. (3.37)

Define

ġi =
γ

nTΓ
λi, (3.38)

the power allocation popti satisfies [Lozano et al. 2006b]

popti = 0, ġi ≤ η̄

ġiMMSEi

(

popti ġi

)

= η̄, ġi > η̄
, (3.39)

with

1

nT

nT
∑

i=1

popti = 1. (3.40)

Denote the inverse of MMSEi (·) as MMSE−1
i (·), with domain equal to [0, 1]

and MMSE−1
i (1) = 0, the policy of the power allocation popti can be implemented

explicitly as the following steps.

(a) Find the unique solution of η̄ from the nonlinear equation

1

nT

nT
∑

i=1
ġi>η̄

1

ġi
MMSE−1

i

(

η̄

ġi

)

= 1. (3.41)

(b) The power allocation is

popti =
1

ġi
MMSE−1

i

(

min

{

1,
η̄

ġi

})

. (3.42)

An M-ary modulation defined by M discrete points, denoted by {sl}Ml=1 with proba-

bilities {ql}Ml=1, and
M
∑

l=1

ql = 1. The optimum mass probablities are generally a function

of the input power. Even though it is sub-optimal in terms of mutual information,
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3. CAPACITY AND BIT LOADING

in most practical circumstances the signalling is equiprobable [Arimoto 1972; Blahut

1972; Varnica et al. 2002]. Then

MMSE (ρ̇) = 1− 1

π

∫

∣

∣

∣

∣

m
∑

l=1

qlsle
−(y−

√
ρ̇sl)

2
∣

∣

∣

∣

2

m
∑

l=1

qle
−(y−

√
ρ̇sl)

2
dy. (3.43)

Thus, (3.43) can be expressed distinctly in terms of different types of modulation.

For example, 4-QAM (QPSK) amounts into two BPSK constellations in quadrature,

each with half the QPSK power,

MMSEQPSK
i (ρ̇i) = MMSEBPSK

i

(

ρ̇i
2

)

= 1−
∫∞
−∞ tanh

(

2
√

ρ̇i/2x
)

e
−(x−

√
ρ̇i/2)

2

√
π

dx
. (3.44)

In [Hong et al. 2009] Levin-Campello algorithm is compared to the Mercury Wa-

terfilling distribution, giving the results of using other methods such as Waterfilling

and Chow’s algorithm as a reference. Bit rate maximization and energy minimization

problems are explored using different granularities (1 or 2) for the input constellations.

The influence of the SNR gap in the optimality of the power distribution obtained by

Levin-Campello is analyzed [Hong et al. 2009].

24



4

Optimization of a MIMO system

with ZF receiver

This chapter starts with the analysis of the statistical distribution of the SINR for the

ZF receiver in MIMO wireless communications. The channel model is assumed to be

(transmit) correlated Rayleigh flat-fading and the transmitted signals from each an-

tenna are allowed to have unequal powers. A Gamma distribution has been proposed

in the literature as approximation to the finite sample distribution of the SINR. The

BER of each transmitted stream can be expressed in closed-form and will be derived

using this distribution. It will be further simplified for the high SNR regime. Simula-

tions confirm that these approximate distributions can be used to accurately estimate

the probability of error even for very small dimensions (e.g., 2 transmit antennas).

For single-user MIMO communication with either uncoded or coded QAM signals,

bit and power loading schemes are proposed that rely only on the channel distribution

information at the transmitter. The relationship between the average bit error proba-

bility at the output of a ZF linear receiver and the bit rates and powers allocated at

the transmitter is developed. This relationship, and the fact that a ZF receiver decou-

ples the MIMO parallel channels, allows us leveraging bit loading algorithms already

existing in the literature. To that end, the dual bit rate maximization and power min-

imization problems are solved and the performance results that illustrate the gains of

the proposed scheme with respect to a non-optimized transmission are discussed.
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4. OPTIMIZATION OF A MIMO SYSTEM WITH ZF RECEIVER

4.1 BER of ZF receiver based on Gamma distribution

A series of works have focused on the SINR distribution at the receiver side in MIMO

systems. Starting with the works related with the asymptotic properties of multiuser

receivers (e.g., [Sergio V. 1998; Poor and Sergio V. 1997; Tse and Zeitouni 2000; Sergio

V. and Shamai 1999; Guo et al. 2002; Tulino and Sergio V. 2004; L. Li et al. 2001; Tse

and Hanly 1999]), Tse and Hanly [Tse and Hanly 1999] and Verdu and Shamai [Sergio

V. and Shamai 1999] independently derived the asymptotic first moment of SINR for

uncorrelated channels. For the equal power case, Tse and Zeitouni [Tse and Zeitouni

2000] proved the asymptotic Normality of SINR, and commented on the possibility of

extending the result to the unequal powers scenario. The asymptotic Normality of the

multiple access interference (MAI), closely related to SINR, has been proved by Zhang

et. al. [Zhang et al. 2001]. For a variety of linear multiuser receivers, Guo et. al. [Guo

et al. 2002] proved the asymptotic Normality of the decision statistics, considering a

general power distribution and corresponding unconditional asymptotic behavior.

Poor and Verdu [Poor and Sergio V. 1997] (also in [Sergio V. 1998], [Guo et al.

2002]) proposed using the limiting BER (denoted by BER1) based on the asymptotic

normality results, which is obtained as a single Q-function,

BER∞ = Q

(

√

E (SINR)∞

)

=

∫ ∞
√

E(SINR)∞

e−t2/2dt, (4.1)

where E (SINR)∞ denotes the asymptotic first moment of SINR.

Equation (4.1) is convenient and accurate for large dimensions. However, for small

dimensions, more asymptotic moments should be contained in the expression to im-

prove its accuracy [P. Li et al. 2006]. In current practice, general MIMO channels

with nT , nR between 32 and 64 are typical and in multi-antenna systems arrays of

4 antennas are typical but arrays with 8 to 16 antennas would be considered feasible

in the near future [Tulino and Sergio V. 2004]. Therefore, there is a requirement to

formulate and compute error probabilities both efficiently and accurately for small and

high antenna dimensions. Also for system optimization designs, a simple and accurate

BER approximation is needed [Gesbert 2003], [Rungnes and Gesbert 2004].

The presence of channel correlation makes the analysis very difficult [Ralf R. M.

2002]; considering the effect of correlation tends to invalidate the independence as-
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4.1 BER of ZF receiver based on Gamma distribution

sumption [Biglieri 2004]. Taking it into account, the asymptotic moments of SINR and

several useful formulae are given for small dimensions [P. Li et al. 2006].

4.1.1 Average bit error rate based on SINR of ZF

The system model for a MIMO system with ZF receiver has been described in chapter

II.

The SINR statistics can be considered as a function of the input and the channel

characteristics. The ultimate goal is to relate the average BER at the receiver (through

the corresponding SINR) with the power matrix P. The output SINR for a ZF receiver

on a transmit-correlated Rayleigh-faded channel with unequal powers, nT ≤ nR, is

characterized in [P. Li et al. 2006]. For the ith received stream it follows the Gamma

distribution

fg (t) =
tα−1e−t/θi

Γ (α) θαi
, (4.2)

with parameters

α = αZF = nR − nT + 1, (4.3)

θi =
1

[

R−1
c

]

i,i

= piλi, (4.4)

where

Rc =
γ

nT
P

1
2VHRVP

1
2 . (4.5)

Then, the average BER for the ith signal (the subindex i is dropped for notational

simplicity) can be obtained from the Gamma parameters as

P (αZF , θ) =

∫ ∞

0
Pe (t) fg (t) dt =

∫ ∞

0
Pe (t)

tαZF−1e−t/θ

Γ (αZF ) θαZF
dt. (4.6)

where Γ (·) is the complete Gamma function and Pe (·) is the instantaneous BER

function for the corresponding scalar signal, which depends on the modulation and

coding scheme used at the transmitter. Expressions for Pe (·) are developed in the

following subsections for uncoded and coded M-QAM modulations.
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4.1.2 Approximations of Q-function

As Pe (t) is derived from Q function

Q (t) =
1√
2π

∫ ∞

t
exp

(

−u2

2

)

du, (4.7)

its approximations should be analyzed at first for the further derivation.

The Q-function Q (t) can be expressed in terms of the complementary error function

as

Q (t) =
1

2
erfc

(

t√
2

)

. (4.8)

erfc (t) is defined by

erfc (t) =
2√
π

∫ ∞

t
e−u2

du. (4.9)

The complementary error function (11) can be approximated by the equation (14)

of [Chiani et al. 2003], whose behaviour is shown in Fig.2 of [Chiani et al. 2003]. It

can be seen that the curve of this approximation gives a good fit with the exact one

for all SNR regimes.

Hence, from (14) of [Chiani et al. 2003], a tight and simple approximation is

erfc (t) ≃ 1

6
e−t2 +

1

2
e−4t2/3. (4.10)

Plugging (4.10) into (4.8),

Q (t) ≃ 1
2

(

1
6e

−t2/2 + 1
2e

−2t2/3
)

= 1/12e−t2/2 + 1/4e−2t2/3

= Q̃ (t)

. (4.11)

For high SNR, the expression (4.11) can be approximated and simplified as

erfc (t) ≈ 1√
π
e−t2 . (4.12)

Plugging (4.12) into (4.8),

Q (t) ≈ 1

2
√
π
e−

t2

2 = Q′ (t) . (4.13)
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4.1 BER of ZF receiver based on Gamma distribution

Figure 4.1: Comparison - exponential approximations for the Q function.

29

4/figures/Fig4-1.eps


4. OPTIMIZATION OF A MIMO SYSTEM WITH ZF RECEIVER

The behaviors of Q (t), Q̃ (t) (app 1) and Q′ (t) (app 2) are compared in Fig. 4-1.

Observing Fig. 4.1, it can be seen that all these three curves are close to each other,

so they are good choices to accomplish the calculation for the purpose of simplification

of the resulting expressions, even for low SNR.

4.1.3 Closed-form of average bit error rate for uncoded M-QAM

Pe (t) is derived from the Q-function Q (t), and its high SNR approximation P ′
e (t)

is obtained from the approximated Q-function Q′ (t). Pe (t) for uncoded M-QAM,

conditioned on the fading realization, is given by the expressions [Armada et al. 2009]

in Table 4.1.

Pe (t) P̃e (t) P ′
e (t)

2-QAM Pe (t) = Q
(√

2t
)

P̃e (t) =
1
12
e−t + 1

4
e−4t/3 P ′

e (t) =
1

2
√
π
e−t

4-QAM Pe (t) = Q
(√

t
)

P̃e (t) =
1
12
e−t/2 + 1

4
e−2t/3 P ′

e (t) =
1

2
√
π
e−t/2

M -QAM Pe (t) =
4Q

(√

3t
M−1

)

log2 M
P̃e (t) =

1
3 log2 M

e
− 3t

2(M−1) + 1
log2 M

e
− 2t

(M−1) P ′
e (t) =

1
log2 M

2√
π
e

−3t
2(M−1)

Table 4.1: Exact and approximate BER in AWGN.

Plugging these approximate P ′
e expressions into (4.6) and integrating, approximate

average BER expressions as function of the Gamma parameters Gamma (αZF, θ) for

the uncoded case are found [Armada et al. 2009].

P2qam ≈ 1

2
√
π
(1 + θ)−αZF . (4.14)

P4qam ≈ 1

2
√
π

(

1 +
θ

2

)−α
ZF

, (4.15)

PMqam ≈ 1

log2M

2√
π

(

1 +
3θ

2 (M − 1)

)−α
ZF

. (4.16)

Their counterparts, obtained by integrating (4.14) with the formulas in the first

column of Table 4.1, can be expressed by means of the hypergeometric function

2F1 (a, b; c; d) =
Γ (c)

Γ (b) Γ (c− b)

∫ 1

0

tb−1 (1− t)c−b−1

(1− td)a
dt. (4.17)
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as follows. For 2-QAM,

P2qam = 1
2Γ(αZF )

[

Γ (αZF )− 2
√

θ
πΓ
(

1
2 + αZF

)

2F1

(

1
2 ,

1
2 + αZF ;

3
2 ;−θ

)

]

, (4.18)

while, for 4-QAM,

P4qam =
1

2Γ (αZF )

[

Γ (αZF )− 2
√

2θ
π Γ

(

1

2
+ αZF

)

2F1

(

1

2
,
1

2
+ αZF ;

3

2
;
−θ

2

)]

,

(4.19)

and, for M -QAM (M > 4),

PMqam = 1
2 log2(M)Γ(αZF )

[

Γ (αZF )− 2
√

6θ
π(M−1)Γ

(

1
2 + αZF

)

2F1

(

1
2 ,

1
2 + αZF ;

3
2 ;

−3θ
2(M−1)

)] . (4.20)

On account of the excellent agreement of both sets of expressions (that will be

shown in section 4.3), the much simpler expressions (4.14) - (4.16) will be used for the

purpose of bit loading.

4.1.4 Closed-form expression of the average bit error rate for coded

M-QAM

Consider now M-QAMmodulation in conjunction with a convolutional code of rate rc =

kc/nc and minimum distance df . With hard-decision decoding, maximum likelihood

reduces to a minimum distance criterion and the BER at the output of the decoder is

upper bounded by [Proakis 2000].

Pc ≤
1

k

∞
∑

d=df

Ad

(

2
√

Pe (1− Pe)
)d

. (4.21)

with Pe the bit error probability of the corresponding uncoded M-QAM. In turn,

Ad is the number of paths in the trellis with distance d from the all-zero path that

merge with this all-zero path for the first time.

At high SINR, the summation in (4.21) is dominated by the first term and, if Pe is

small, it can be further approximated

Pc ≈
1

k
Adf 2

dfP
df/2
e . (4.22)
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Using the parameter

D =
Adf

k
2df/2π−df/4. (4.23)

and with the approximate Pe expressions in Table 4.1, second column, we obtain

by integrating (4.6) the following average BER expressions.

Pc 2qam ≈ D

(

1 +
df
2
θ

)−αZF

, (4.24)

Pc 4qam ≈ D

(

1 +
dfθ

4

)−αZF

, (4.25)

Pc Mqam ≈ 4

log2M
D

(

1 +
3dfθ

4 (M − 1)

)−αZF

. (4.26)

4.2 Optimization problems

Denote by Mi the cardinality of the modulation applied to the ith eigenvector of V,

by Pei its average BER after the ZF receiver, and by BER the target average BER.

Once the relationship between average BER and the parameters (αZF , θ) has been

established and the SINR can be expressed as function of the channel correlations

and the power allocation, we have the tools to solve the following dual optimization

problems.

2-QAM θ = (2
√
πP2qam)

−1/αZF − 1

4-QAM θ = 2
[

(2
√
πP4qam)

−1/αZF − 1
]

M -QAM θ = 2
3
(M − 1)

[

(1/2 log2 (M)
√
πPMqam)

−1/αZF − 1
]

Table 4.2: Requiered θ to satisfy Pe i - uncoded modulations.

2-QAM θ = 2
dfree

[

(

Pc 2qam

D

)−1/αZF

− 1

]

4-QAM θ = 4
dfree

[

(

Pc 2qam

D

)−1/αZF

− 1

]

M -QAM θ = 4(M−1)
3dfree

[

(

Pc Mqam

4D
log2 (M)

)−1/αZF

− 1

]

Table 4.3: Requiered θ to satisfy Pe i - coded modulations.
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4.2 Optimization problems

4.2.1 Maximize Bit Rate

max R =
nT
∑

i=1
log2Mi

s.t. Pe i ≤ BER, 1 ≤ i ≤ nT

Tr [P] = nT , pi ≥ 0

. (4.27)

Problem (4.27) can be solved by searching over all matricesP that satisfy Tr[P] =nT ,

calculating every Pe i from the equations (4.14)-(4.16) and selecting the solution that

satisfies Pe i ≤ BER, and achieves the maximum sum bit rate. Efficient bit and power

loading algorithms available in the literature can be leveraged (cf. Chapter 4.3 of

[Cioffi]).

4.2.2 Minimize Power

min Tr [P]

s.t. Pe i ≤ BER, 1 ≤ i ≤ nT
nT
∑

i=1
log2Mi =Rtot, pi ≥ 0

. (4.28)

Problem (4.28) can be solved using the inverse functions that give the matrix P

required to satisfy a given average BER per signal for each constellation cardinality.

These inverse functions are shown in Tables 4.2 and 4.3 for uncoded and coded modu-

lations, respectively [Armada et al. 2009].

4.2.3 Levin-Campello Bit Loading

As introduced in chapter III, the Levin-Campello algorithm [Campello et al. 1999] is

known to optimally solve the problem of bit loading with discrete constellations at a

target error probability. Its key tenet is that each additional information unit to be

transmitted should be allocated to the signalling channel (spatial stream in our case)

that requires the least incremental energy for its transport. Incremental energies for the

modulation schemes can be obtained from Tables 4.2 and 4.3 and the application of the

algorithm to the solution of Problems (4.27) and (4.28) is then quite straightforward.
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4.3 Numerical examples

4.3.1 Average BER of ZF

Assuming that the transmit correlation matrix has elements Ri,j = ρ(i−j)2 correspond-

ing to suburban/rural environments with small angular spreads at the transmitter [Chu

et al. 1997]

R =























1 ρ ρ4 · · · ρ(nT−1)2

ρ 1 ρ · · · ρ(nT−2)2

ρ4 ρ 1 · · · ρ(nT−3)2

...
...

...
. . .

...

ρ(nT−1)2 · · · ρ4 ρ 1























. (4.29)

Fig. 4.2 is obtained with the power matrix P = I and precoding matrix V contains

the eigenvectors of (2.4). It shows the excellent agreement between the exact values

of BER (exa) in (4.18)-(4.20) and those approximations (app) in (4.14)-(4.16), for the

operational range of interest (Pe ≤ 10−1).

4.3.2 Bit loading and power allocation for ZF

The following three scenarios, in terms of modulation and coding schemes available at

the transmitter, are considered.

• 8 uncoded bit rates: Mi takes values in the set {0, 2, 4, 8, 16, 32, 64, 128, 256}.
Although cardinalities beyond 64 might be unpractical, this scenario illustrates

what would happen if the modulation cardinality were unbounded.

• 6 uncoded bit rates: Mi takes values in the set {0, 2, 4, 8, 16, 32, 64}. This is a
more realistic uncoded scenario.

• 12 bit rates with convolutional coding: Mi takes values in the set {0, 2, 4, 8, 16,
32, 64}. Each of the signals will either be uncoded or coded with a rate - 1/2

convolutional code of generator polynomials (133, 171) and df = 10.
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4.3 Numerical examples

Figure 4.2: Exact and approximate average BER for uncoded QPSK - i.i.d

Rayleigh flat-fading channel.
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Figure 4.3: Bit rate vs. SNR - 6 uncoded bit rates with nT = 3, nR = 4 and

BER = 10−2.
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4.3 Numerical examples

Figure 4.4: Bit rate vs. SNR - 12 uncoded bit rates with nT = 3, nR = 4 and

BER = 10−2.
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Figure 4.5: Bit rate vs. SNR - 6 uncoded bit rates with nT = 8, nR = 10 and

BER = 10−2.
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4.3 Numerical examples

4.3.2.1 Bit Rate Maximization

Figs. 4.3-4.5 show the achievable bit rate R as a function of the SNR - γ of (2.1) - when

the power allocation P is optimized in comparison with the case P = I. Different values

for the channel correlation parameter ρ (cf. eq. 4.29) are used while nT = 3, nR = 4

and BER = 10−2. By optimizing P, higher bit rates are always achieved. The gains in

bit rate are larger when ρ is high since, in that case, optimizing P allows adapting to

the fact that the output SINRZF of each stream become very different. Also, optimizing

P allows extending the range of operational SNR since nonzero bit rates are possible

at low SNRs even when transmission is not possible using simply P = I. With a richer

set of bit rates via coding, this range extension is more pronounced as can be seen by

comparing both figures.

It is known that correlation has the following effect on the CDIT capacity (with the

optimum transmit covariance): correlation is beneficial at low SNR and it is detrimental

above a critical SNR [Tulino et al. 2005]. Figure 4.4 shows the CDIT capacity according

to [Tulino et al. 2006] for the channel model. Interestingly, correlation has the same

effect on the bit rate achieved by the proposed bit loading with ZF receiver, with the

particularity that the critical SNR is higher in this case. With simple convolutional

codes and a ZF receiver, the proposed scheme is seen to perform with 9 dB of capacity

at BER = 10−2 and SNR = 20dB.

To illustrate the applicability of the optimization procedure to settings with large

numbers of antennas, Fig. 4.4-4.5 presents some achievable bit rates as function of the

SNR with 8 transmit and 10 receive antennas and SNR = 20dB.

4.3.2.2 Power Minimization

Let us now examine the power gain defined as the dB difference that results from

optimizing Tr [P] versus using P = I. Fig. 4.6 shows this gain for nT = 3, nR = 4 and

BER = 10−2 with 6 uncoded bit rates. Gains in excess of 10 dB can be obtained for

high ρ. In order to show the dependence on BER, Fig. 4.7 plots the same scenario of

Fig. 4.6 except with BER = 10−4. The impact of BER in the power gain is seen to be

negligible.

In Figs 4.8-4.9, the extreme cases are explored when the required bit rate is either

R = nT or R = 6nT . This provides insight on the low- and high-SNR behaviors,
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Figure 4.6: Power gain vs. ρ - 6 uncoded bit rates with nT = 3, nR = 4 and

BER = 10−2.
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4.3 Numerical examples

Figure 4.7: Power gain vs. ρ - 6 uncoded bit rates with nT = 3, nR = 4 and

BER = 10−4.
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Figure 4.8: Power gain vs. ρ - 8 uncoded bit rates with BER = 10−2.
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4.3 Numerical examples

Figure 4.9: Power gain vs. ρ - 6 uncoded bit rates with BER = 10−2.
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respectively. Uncoded modulation is used, with BER = 10−2. Contrasting these figures,

it can be seen that limiting the number of bit rates without coding limits the power

gain at high SNR since no higher cardinality constellations are available to profit from

such high SNR. This effect does not occur at low SNR. Higher gains are achieved for

R = nT (low SNR) than for R = 6nT (high SNR).

4.4 Conclusion

In the context of single-user MIMO communication, expressions have been obtained

that relate the channel statistics, the precoding vectors, and the power allocation, with

the average BER at the output of a ZF receiver when uncoded or coded M-QAM

modulation is used. These expressions enable bit and power loading procedures that

can be formalized into two dual optimization problems: bit rate maximization and

power minimization. With an optimized transmission, substantially higher bit rates

can be achieved and/or less power spent. The developed formulation can leverage

available loading algorithms to render the optimization process highly efficient.
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5

BER of a MIMO system with

MMSE receiver

This chapter studies the statistical distribution of the signal-to-interference-plus-noise

ratio (SINR) for the minimum mean squared error (MMSE) receiver in MIMO wireless

communications. The channel model is assumed to be (transmit) correlated Rayleigh

flat-fading with unequal powers for the different transmitted data streams. A Gamma

distribution and a generalized Gamma distribution have been proposed in the literature

as approximations to the finite sample distribution of SINR for this receiver. The BER

of each stream can be approximated and simplified into closed-form with these distribu-

tions, particularized for high or low SNR. Simulations confirm that these approximate

distributions can be used to accurately estimate the probability of error even for very

small dimensions (e.g., 2 transmit antennas).

The performance of a general MIMO system is analyzed, with or without precod-

ing, in transmit-correlated Rayleigh flat-fading channels with an MMSE receiver. Our

analysis will be based on the signal-to-interference-plus-noise ratio (SINR) distribution.

It is proved in [Gore et al. 2002] that the SINR after a ZF receiver is a Gamma random

variable when a uniform power distribution is used in the transmitter. Making use of

this distribution in [Armada et al. 2009] the average BER can be obtained when a ZF

scheme is employed at the receiver. As regards the MMSE receiver, some expressions

have been developed that are only accurate for high dimensions [Guo et al. 2002] or

particularized to diversity combining receivers [Kiessling and Speidel 2003]. In [Mous-

takas et al. 2009] the performance is evaluated for large dimensions in terms of mutual
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5. BER OF A MIMO SYSTEM WITH MMSE RECEIVER

information. None of these works contemplates the precoder.

Recently the distribution of the SINR after an MMSE receiver has been obtained

for the case of transmit-correlated Rayleigh flat-fading channel [P. Li et al. 2006]. The

authors show that the SINR approaches a Gamma or generalized Gamma distribution.

Using both of them, the average BER can be obtained for a MIMO system employing M-

ary quadrature amplitude modulation (M-QAM). As we will show it is accurate, even for

a small number of antennas. We will compare our approximations with the expressions

obtained in [Guo et al. 2002], that are accurate for large antenna dimensions, and

[Kammoun et al. 2009]. In this last paper the authors also use a generalized Gamma

distribution. However its parameters are obtained following a different procedure and

assumptions [Hachem et al. 2008] and the developed expressions are accurate for both

large and small dimensions but in this last case only for small signal to noise ratios,

as shown in [Kammoun et al. 2009]. Also, in [Kammoun et al. 2009] the BER is

averaged over all the MIMO transmitted streams while in channels that exhibit high

correlation the use of a precoder may lead to substantial differences among the spatially

multiplexed streams. Therefore we present several approximations that may be chosen

depending on the accuracy and complexity requirements of the adaptation algorithms

used to reduce the transmission power and/or enhance the data rates.

5.1 BER of MMSE receiver based on Gamma distribution

The system model for a MMSE receiver in MIMO system has been described in chapter

II.

In [P. Li et al. 2006], the SINR for the MMSE is shown to be the sum of two parts,

S and T, being T the SINR part when the ZF receiver is used, and T an independent

part. The first two moments of this T are derived in [L. Hong 10], µ and σ2, and they

will be used to express the parameters of the Gamma distribution.

These first two moments for the ith stream can be obtained by numerically solving

µ =
1

nT − 1

nT−1
∑

i=1

1

τi (1− υ + υµ) + 1
, (5.1)
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5.2 BER of MMSE receiver based on generalized Gamma distribution

σ2 =

(

1
nT−1

nT−1
∑

i=1

τiυµ+1

(τi(1−υ+υµ)+1)2

)

(

1 + 1
nT−1

nT−1
∑

i=1

τiυ
(τi(1−υ+υµ)+1)2

) . (5.2)

where τi are the eigenvalues of R(−i,−i) and υ = nT−1
nR

. R(−i,−i) is the generalized

covariance matrix (4.5) Rc = γ
nT

VHP
1
2RP

1
2V with the ith row and ith column re-

moved. Although (5.1)-(5.2) are exact expressions for large antenna dimensions; they

are also accurate for small antenna dimensions as shown in [P. Li et al. 2006].

For the ith stream, the parameters of the Gamma distribution for the MMSE re-

ceiver can then be written as

αM =
(nR − nT + 1 + (nT − 1)µ)2

nR − nT + 1 + (nT − 1)σ2
, (5.3)

βMi = Σi
nR − nT + 1 + (nT − 1)σ2

nR − nT + 1 + (nT − 1)µ
. (5.4)

Σi =
1

[R−1
c ]

i, i

and
[

R−1
c

]

i, i
indicates the ith diagonal element of the matrix R−1

c .

From here, the subindex i is dropped from βMi for simplicity.

Closed-form expressions of average bit error rate for uncoded or coded M-QAM can

be found in the chapter IV for a Gamma distribution of the SINR, corresponding to

(4.14)-(4.16) and (4.18)-(4.20). Replacing the αZF and θ to be αM and βM in these

equations, the BER of MMSE receiver can be computed.

5.2 BER of MMSE receiver based on generalized Gamma

distribution

In [P. Li et al. 2006], it is shown how the SINR distribution (for the MIMO MMSE

receiver and a Rayleigh flat-fading channel, is better approximated using a Generalized

Gamma distribution, instead of a Gaussian or a Gamma distribution.

5.2.1 Parameters of the generalized gamma distribution

The generalized Gamma distribution will be defined using three parameters, Gamma(

αM , βM , ξM ). In [P. Li et al. 2006], the SINR for the MMSE is shown to be the sum

of two parts, S and T, being S the SINR part when the ZF receiver is used, and T an
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independent part. The first two moments of this T has been shown in (5.1) and (5.2),

and the third moment η is also derived in [P. Li et al. 2006], therefore they will be used

to express the parameters of the generalized Gamma distribution.

The third moment of the ith stream can be approximated by numerically solving

η =

(

2
nT−1

nT−1
∑

i=1

τiυσ
2

(τi(1−υ+υµ)+1)2
+ 2

nT−1

nT−1
∑

i=1

(τiυµ−τiυσ
2+1)

(τi(1−υ+υµ)+1)3

)

(

1 + 1
nT−1

nT−1
∑

i=1

τiυ
(τi(1−υ+υµ)+1)2

) , (5.5)

For the ith stream, the third parameter of generalized gamma distribution can then

be written as

ξM =
2
(

1− nT−1
nR

+ nT−1
nR

µ
)(

1− nT−1
nR

+ nT−1
nR

η
)

(

1− nT−1
nR

+ nT−1
nR

σ2
)2 − 1. (5.6)

5.2.2 Closed-form approximation of average bit error rate for uncoded

M-QAM

The analysis starts with the Moment Generating Function (MGF) [Mark E. Irwin] of

the SINR. The MGF of a random variable T is

MT (s) =

∫ ∞

−∞
estfgg (t)dt. (5.7)

where fgg is the generalized Gamma probability density function. On the other

side, the average BER for the ith signal stream can be obtained from the generalized

Gamma parameters as

Pgg =

∫ ∞

0
Pe (t) fgg (t)dt. (5.8)

Where Pe (t) is the instantaneous BER function for the corresponding scalar signal,

which depends on the modulation and coding scheme used at the transmitter.

For M-QAM modulation, (4.7) and (4.11) in chapter IV show Q (t) and an accurate

approximation Q̃ (t). Pe (t) is derived from the Q-function Q (t), and its high SNR

approximation P̃e (t) is obtained from the approximated Q-function Q̃ (t).
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5.2 BER of MMSE receiver based on generalized Gamma distribution

As SINR ≥ 0, combining (5.7) and (5.8), and considering (4.11) for the correspond-

ing P̃e (t),

Pmqam ≃
∫∞
0 P̃e (t) fgg (t)dt

≃ Ap

∫∞
0

(

1
12e

spt

2 + 1
4e

2spt

3

)

fgg (t)dt

= Ap

(

1
12MT

( sp
2

)

+ 1
4MT

(

2sp
3

))

. (5.9)

For 2-QAM, sp = −2, Ap = 1, and for 4-QAM, sp = −1, Ap = 1, according to

chapter IV, and, sp =
−3

(M−1) , Ap =
4

log2 M
for M -QAM (M > 4).

Recalling the equations (69) and (70) in [P. Li et al. 2006] and combining with

(6.5),

if ξ > 1,

Pmqam ≃ Ap

(

1
12MT

( sp
2

)

+ 1
4MT

(

2sp
3

))

= 1
12 exp

(

αM
ξM−1

(

1−
(

1− spβM ξM
2

)

ξM−1

ξM

))

+1
4 exp

(

αM
ξM−1

(

1−
(

1− 2spβM ξM
3

)

ξM−1

ξM

))

. (5.10)

and if ξ < 1,

Pmqam ≃ Ap

(

1
12MT

( sp
2

)

+ 1
4MT

(

2sp
3

))

= 1
12 exp





αM
1−ξM





(

1

1− spβMξM
2

)

1−ξM
ξM − 1









+1
4 exp





αM
1−ξM





(

1

1− 2spβMξM
3

)

1−ξM
ξM − 1









. (5.11)

5.2.3 High or low SNR approximations of average bit error rate for

uncoded M-QAM

For high SNR, combining (5.7) and (5.8), and considering (4.13) corresponding to P ′
e (t),

Pmqam ≈
∫ ∞

0
P ′
e (t) fgg (t)dt ≃ Ap

∫ ∞

0

1

2
√
π
e

spt

2 fgg (t)dt = Ap

(

1

2
√
π
MT

(sp
2

)

)

.

(5.12)
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Recalling the equations (69) and (70) in [P. Li et al. 2006] and combining with

(5.12), the high SNR approximations for the average BER of the ith stream are shown

in Table 5.1.

Constellation BER approximation with ξ > 1

2-QAM P2qam ≈ 1
2
√
π
exp

(

αM

ξM−1

(

1− (1 + βMξM )
ξM−1
ξM

))

4-QAM P4qam ≈ 1
2
√
π
exp

(

αM

ξM−1

(

1−
(

1 + βM ξM
2

)

ξM−1
ξM

))

M -QAM PMqam ≈ 2
log2(M)

√
π
exp

(

αM

ξM−1

(

1−
(

1 + 3
2(M−1)

βMξM
)

ξM−1
ξM

))

Constellation BER approximation with ξ < 1

2-QAM P2qam ≈ 1
2
√
π
exp

(

αM

1−ξM

(

(

1
1+βM ξM

)

1−ξM
ξM − 1

))

4-QAM P4qam ≈ 1
2
√
π
exp





αM

1−ξM





(

1

1+
βMξM

2

)

1−ξM
ξM

− 1









M -QAM PMqam ≈ 2
log2(M)

√
π
exp





αM

1−ξM





(

1

1+
3βMξM
2(M−1)

)

1−ξM
ξM

− 1









Table 5.1: Approximate average BER for uncoded modulations at high SNR.

At low SNR, the Gamma distribution and the generalized Gamma distribution are

very close. Thus, ξM ≈ 1. From the equation (2.6) in [Huang and Hwang 2006] it is

known that the expectation of e−stξ under the generalized Gamma distribution is

E
(

e−stξM
)

=

(

1
βM

)αM ξM

(

(

1
βM

)ξM
+ s

)αM
, (5.13)

which for ξM ≈ 1 becomes

E
(

e−st
)

=

(

(

1

βM

)ξM

+ s

)−αM (

1

βM

)αM ξM

. (5.14)

For 2-QAM, average BER is obtained setting s = 1 as

P2qam ≈ 1

2
√
π

∫ ∞

0
e−tfgg (t) dt ≈

1

2
√
π
E
(

e−t
)

≈ 1

2
√
π

(

(

1

βM

)ξM

+ 1

)−αM (

1

βM

)αM ξM

.

(5.15)
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5.3 Closed-form approximation of average bit error rate for coded M-QAM

The BER of 4-QAM and M -QAM can be also obtained following the same proce-

dure. They are shown in Table 5.2 [Hong et al. 2010].

2-QAM P2qam ≈ 1
2
√
π

(

1 +
(

1
βM

)ξM
)−αM (

1
βM

)αM ξM

4-QAM P4qam ≈ 1
2
√
π

(

1
2
+
(

1
βM

)ξM
)−αM (

1
βM

)αM ξM

M -QAM PMqam ≈ 2
log2(M)

√
π

(

3
2(M−1)

+
(

1
βM

)ξM
)−αM (

1
βM

)αM ξM

Table 5.2: Approximate average BER for uncoded modulations at low SNR.

5.3 Closed-form approximation of average bit error rate

for coded M-QAM

Furthermore, for M-QAM modulations in conjunction with a convolutional code of rate

rc = kc/nc and minimum distance df , the BER at the output of the decoder can be

approximated, for high SNR, as (4.21) shown.

Using the parameters (4.22)-(4.23) and the approximations for uncoded modulations

in Table 5.1, the average BER for coded M-QAM systems can be approximated as shown

in Table 5.3.

5.4 Numerical examples

The same transmit correlation matrix as in (4.29) and the power matrix P = I of

section 4.3.1 are used here.

Fig. 5.1 shows the excellent agreement between the Monte Carlo simulation (exa)

and those approximations (app) in Table 5.1, for the operational range of interest

(Pe ≤ 10−1).

Figure 5.2 shows the average BER of each transmitted stream with different modu-

lation schemes when ρ = 0 and SNR is 5 dB or 20 dB. The four theoretical expressions

here developed are represented, namely: Gamma approximation (Gamma), high SNR

Gamma approximation (App Gamma), generalized Gamma approximation (g Gamma)

and low SNR generalized Gamma approximation (App g Gamma). It can be seen that

for high SNR the generalized Gamma approximation fits extremely well the simulation

results (the curves labeled with Sim represent the 4 transmitted streams in the 4x4
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Figure 5.1: Simulated and approximate average BER for uncoded QPSK - i.i.d

Rayleigh flat-fading channel.
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5.4 Numerical examples

Figure 5.2: Average BER for 4 × 4 MIMO with precoding - several modulations

(represented by modulation order M), SNR = 5 dB and 20 dB. ρ = 0.

53

5/figures/Fig5-2.eps


5. BER OF A MIMO SYSTEM WITH MMSE RECEIVER

Constellation BER approximation with ξ > 1

2-QAM Pc 2qam ≈ D exp

(

αM

ξM−1

(

1−
(

1 +
dfβM ξM

2

)

ξM−1
ξM

))

4-QAM Pc 4qam ≈ D exp

(

αM

ξM−1

(

1−
(

1 +
dfβM ξM

4

)

ξM−1
ξM

))

M -QAM Pc Mqam ≈ 4D
log2(M)

exp

(

αM

ξM−1

(

1−
(

1 +
3dfβM ξM
4(M−1)

)

ξM−1
ξM

))

Constellation BER approximation with ξ < 1

2-QAM Pc 2qam ≈ D exp





αM

1−ξM





(

1

1+
dfβMξM

2

)

1−ξM
ξM

− 1









4-QAM Pc 4qam ≈ D exp





αM

1−ξM





(

1

1+
dfβMξM

4

)

1−ξM
ξM

− 1









M -QAM Pc Mqam ≈ 4D
log2(M)

exp







αM

1−ξM







(

1

1+
3dfβMξM
4(M−1)

)

1−ξM
ξM

− 1













Table 5.3: Approximate average BER for coded modulations.

system) while the other three approximations slightly overestimate the average BER.

For low SNR the fit is not so accurate while still the generalized Gamma gives the best

approximation together with its low SNR approximation (App g Gamma). Also shown

in this Figure are the values obtained in [Kammoun et al. 2009] ([K09]) where it has

been included the effect of the precoder. It can be seen that they are not accurate for

high SNR.

Figure 5.3 shows the average BER of each transmitted stream with Quadrature

Phase Shift Keying (QPSK) modulation when ρ = 0.9 and SNR is varied between 0

dB and 30 dB. For this value of ρ the BER of the 4 transmitted streams get very

dissimilar values due to the different SINR induced by the precoder, suggesting the

importance of being able to properly choose the transmitted powers. Since they are

the most accurate and for the sake of clarity, here only the generalized Gamma and its

low SNR approximation are represented and it can be seen that again the generalized

Gamma produces very close values to the simulation results for all SNR values. On the

other hand, the average BER obtained in [Guo et al. 2002] ([G02]) under the Normal

approximation assumed large antenna dimensions and it can be seen that it is clearly

not accurate for a small number of antennas.
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5.4 Numerical examples

Figure 5.3: Average BER for 4 × 4 MIMO with precoding - QPSK modulation

and several values of SNR. ρ = 0.9. Analytical versus simulated values.
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Figure 5.4: Average BER (averaged also over the 4 transmitted streams) for

4× 4 MIMO with precoding - QPSK modulation and SNR=20dB.
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5.4 Numerical examples

Figure 5.4 shows the average BER, averaged over the 4 transmitted streams, with

QPSK modulation when SNR=20 dB and different values of ρ. It can be seen that the

generalized Gamma gives a very good fit for all values of ρ. Reference [Kammoun et

al. 2009] ([K09]) assumes correlation only at the receiver side so it can be expected to

be accurate only for the smallest values of ρ. However, even for these values it can be

seen that our expressions give a better fit to the simulation results because [Kammoun

et al. 2009] ([K09]) is not accurate for high SNR values.

Figure 5.5: Analytical versus simulated values - Average BER for 4×4 MIMO with

precoding and nonuniform power [1.8,1.2,0.6,0.4]. QPSK modulation and several values of

SNR. ρ = 0.9.

The results shown until now considered a uniform power allocation. In Figure 5.5

the average BER is shown for a non-uniform power allocation example where the values

of the [p1, p2, p3, p4] are set to 1.8, 1.2, 0.6 and 0.4, so the stream that is transmitted

through the worst channel is enhanced with a higher power (i.e. the effect of the channel

is somehow compensated by the power allocation). It can be again seen a good fit of
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the analytical and Monte Carlo simulations.

5.5 Conclusion

Analytical expressions for the average BER of MIMO systems in transmit-correlated

Rayleigh flat-fading channels with or without precoding and with MMSE receivers

have been obtained in this chapter. These expressions, whose accuracy even for small

dimensions has been shown by analysis of numerical results, can be used to optimize

the transmitter for a given target BER or, in general, as a useful tool for the system

design.
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6

Optimization of a MIMO system

with MMSE receiver

Bit and power loading schemes for a single user MIMO system using a Minimum Mean-

Squaree Error (MMSE) receiver are proposed. The schemes define the precoding at the

transmitter, based on the knowledge of statistical channel information. The relationship

between the average bit error probability at the receiver and the powers allocated at

the transmitter is used, when the signal goes through a correlated Rayleigh flat-fading

channel, in order to improve the system performance by either maximizing the bit rate

or minimizing the power. Finally, the performance of the proposed schemes is analyzed

and benchmarked with respect to a non-optimized transmission and a bitloaded scheme

with Zero Forcing (ZF) receiver.

6.1 Optimization problem

As we mention in previous chapters, it is feasible to assume that the receiver has perfect

instantaneous channel state information (CSIR). However, since this information is

usually estimated at the receiver side and fed back to the transmitter, it can be assumed

that only the channel distribution information is known at the transmitter (CDIT).

Optimal design of linear MMSE precoders and decoders with perfect channel knowledge

at both transmitter and receiver ends is analyzed in [Scaglione et al. 2002]. In [Tulino

et al. 2006] the input covariance of the Gaussian input that achieves capacity when the

channel is known at the receiver (CSIR) but only the channel distribution is known at
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the transmitter (CDIT) is obtained.

In [Chien-Chang Li et al. 2009], the optimization of the transceiver jointly with

bitloading is proposed for MIMO assuming perfect channel state information at the

transmitter (CSIT) and a ZF receiver. Chengshan Xiao and Yahong Rosa Zheng pro-

pose an iterative algorithm for MIMO precoding systems with partial but instantaneous

channel state information at the transmitter and discrete-constellation inputs in [Xiao

et al. 2009].

Here, making use of the SINR distribution, the bit and power loading problem for

precoded MIMO systems is solved, based on the average bit error probability achieved at

the MMSE receiver when the signal goes over a correlated Rayleigh flat-fading channel.

For M-QAM MIMO MMSE receivers over a correlated Rayleigh flat-fading channel,

some closed-form BER approximations are presented in the previous chapter and [Hong

et al. 2010]. These approximations are used to realize the bit loading and power

allocation.

The problems of bit maximization and power minimization have been described by

(4.27) and (4.28). Now the optimization is done searching for the best combinations of

bit (i.e., constellation cardinalities) and power loads. For each possible bit allocation,

and using the approximations in Table 5.1 that relate the BER with the power matrix

P = diag [p1, · · · , pi, · · · , pnT ], the appropriate constraints can be enforced. Clearly,

for a given set of constraints, the total number of bits with an MMSE receiver cannot

be less than with a ZF receiver. Therefore, the starting point for the search is always

the solution derived in chapter IV for ZF receivers, and the search progresses from that

point towards higher loads until the constraints set in. The process is usually quick

and, even if truncated before termination, it always returns a performance point that

is superior to that achieved with a ZF receiver.

Nevertheless, the complexity of exhaustive search is exponential, so the main target

of the following steps is to add more feasible constraints to the exhaustive search to

speed up the solution of these two optimization problems.

6.2 Optimal bit distribution ordering

Because of the effect of the precoder matrix V and the channel correlation parameter

ρ ≥ 0, Ra = HH
c Hc is a positive definite matrix and its eigenvalues are all positive real
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6.2 Optimal bit distribution ordering

values, which can be sorted as

λ1 ≤ λ2 ≤ · · · ≤ λi ≤ λj ≤ · · · ≤ λnT , λi ≥ 0. (6.1)

We conjuncture that according to the relationship (6.1), the optimal bit distribution

ordering should be

b1 ≤ b2 ≤ · · · ≤ bi ≤ · · · ≤ bnT . (6.2)

with bi meaning the number of bits allocated to the ith stream. The derivation

of the proof of this conjecture is described in four parts. Firstly, an accurate BER

approximation is derived by using the Moment Generating Function (MGF) of SINR.

The second part shows the expression of the three moments of SINR. BER expressions

based on these moments of SINR are addressed in the third part. Finally, through

considering any two randomly selected antennas i and j, the relationship (6.2) is proved

mathematically.

6.2.1 BER based on the SINR moments

It is known that the equations (3) and (71) of [P. Li et al. 2006] based on the normal

distribution are accurate for large dimensions. But for small dimensions, they are not

accurate, because the higher moments introduce non-negligible errors. So not only the

first moment but also higher moments are taken into consideration in the following

analysis.

The equation (45) of [P. Li et al. 2006] shows the first moment of SINR, which can

be approximated as

E (SINR) = E (SINRZF) + E (T) ≈ nR − nT + 1

nR
Σ+

nT − 1

nR
Σµ. (6.3)

µ can be calculated directly by the expression (5.1). However, in order to facilitate

the following derivation, another expression for µ, σ2 and η in the equations (22)-(24)

in [P. Li et al. 2006] can also be used for small antenna dimensions, which are

µ =
1

nT − 1

nT−1
∑

i=1

1
(

1 + 1
nR

(

λiγp (i)
nR
nT

)2
) , (6.4)
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6. OPTIMIZATION OF A MIMO SYSTEM WITH MMSE RECEIVER

σ2 =
1

nT − 1

nt−1
∑

i=1

1
(

1 + 1
nR

(

λiγp (i)
nR
nT

)2
)2 , (6.5)

η =
1

nT − 1

nt−1
∑

i=1

1
(

1 + 1
nR

(

λiγp (i)
nR
nT

)2
)3 . (6.6)

For antenna i, coupled with antenna j and (any other antenna besides i and j) z,

from (6.4)-(6.6), αM in (5.3) can be seen as a function of the following variables

αM (λipi, λjpj , λzpz) . (6.7)

Similarly, βM in (5.4) and ξM in (5.6) can also be seen as a functions of the following

variables

βM (λipi, λjpj , λzpz) , (6.8)

and

ξM (λipi, λjpj , λzpz) . (6.9)

respectively.

Plugging (6.7)-(6.9) into (5.10) or (5.11), Pmqam (αM , βM , ξM ) can be expressed as

Pmqam (Api , spi , αM (λipi, λjpj , λzpz) , βM (λipi, λjpj , λzpz) , ξM (λipi, λjpj , λzpz)) ,

(6.10)

so that can be further simplified as

Pmqam

(

Apj , spj , λipi, λjpj , λzpz
)

. (6.11)

6.2.2 Comparison of any two randomly selected antennas with the

target BER

If the maximum number of bits is B for each antenna, for any two randomly selected

antennas i and j, the possible combinations of the bits allocated to them are {bi, bj}.
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All the combinations of {bi, bj} can build a matrix Cn,m, n,m = 0, · · · , B, where

n is the number of allocated bits for antenna i and m is the number of allocated bits

for antenna j. That is, each (n, m)th entry of Cn,m equals to {n, m}.
At first, only the Cn, n combinations are concerned, in order to derive some equations

for the next step. And then, combining the previous results, the comparisons of Cm,n

and Cn,m are introduced to conclude the proof.

6.2.2.1 Analysis of Cn, n

When the bit distribution is Cn, n, considering (6.11), the average BER of antenna i

and j can be obtained.

For the same target BER, for antenna i, its average BER satisfies

Pmqam

(

A
Cn, n
pi , s

Cn, n
pi , λip

Cn, n

i , λjp
Cn, n

j , λzp
Cn, n
z

)

= BER. (6.12)

For antenna j,

Pmqam

(

A
Cn, n
pj , s

Cn, n
pj , λjp

Cn, n

j , λip
Cn, n

i , λzp
Cn, n
z

)

= BER. (6.13)

As the modulation type of antenna i and j are the same,

A
Cn, n
pi = A

Cn, n
pj , (6.14)

s
Cn, n
pi = s

Cn, n
pj . (6.15)

Equations (6.12) and (6.13) have the same structure, and the part
(

λip
Cn, n

i , λjp
Cn, n

j

)

is symmetrical with
(

λjp
Cn, n

j , λip
Cn, n

i

)

. After plugging (6.14) and (6.15) into (6.12)

and (6.13), and combining them, the relation of the assigned powers p
Cn, n

i and p
Cn, n

j

is found

λip
Cn, n

i = λjp
Cn, n

j . (6.16)
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6.2.2.2 Comparisons of Cm,n and Cn,m

For any two randomly selected antennas i and j, starting with the same modulation

Cn, n, additional ∆b bits will be added to one of them. Obviously, there are two possible

ways to do it. One is adding ∆b to antenna i, and another is adding ∆b to antenna j.

Cm,n and Cn,m can be expressed as

1.

Cm,n, m = n+∆b, (6.17)

where ∆b can be any one of the set {0, 1, · · · , B − n}, and only added on antenna i.

Alternatively

2.

Cn,m, m = n+∆b. (6.18)

In case 1, if ∆b is only added to the antenna i, and the bits of any other antenna

are not changed, the bit distribution of these two antennas is now Cm,n. To load more

∆b bits, the incremental energy of antenna i, j and z can be respectively denoted as

∆p
Cm,n

i , ∆p
Cm, n

j , ∆p
Cm, n
z . (6.19)

Their assigned powers are

p
Cm,n

i = p
Cn, n

i +∆p
Cm,n

i

p
Cm,n

j = p
Cn, n

j +∆p
Cm,n

j

p
Cm,n
z = p

Cn, n
z +∆p

Cm,n
z

. (6.20)

In case 2, if additional ∆b bits are only added to the antenna j, and the bits of any

other antenna are not changed, the bit distribution of these two antennas is now Cn,m.

Similarly to case 1, the incremental energy of each antenna can also be respectively

denoted as

∆p
Cn,m

i , ∆p
Cn, m

j , ∆p
Cn, m
z . (6.21)

and their assigned powers can be expressed as

p
Cn,m

i , p
Cn, m

j , p
Cn, m
z . (6.22)
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For these two cases, their new average bit error rates satisfy

Pmqam

(

A
Cm,n
pi , s

Cm,n
pi , λip

Cm,n

i , λjp
Cm,n

j , λzp
Cm,n
z

)

= BER

= Pmqam

(

A
Cn,m
pi , s

Cn,m
pi , λip

Cn,m

i , λjp
Cn,m

j , λzp
Cn,m
z

)

, (6.23)

Pmqam

(

A
Cm,n
pj , s

Cm,n
pj , λjp

Cm,n

j , λip
Cm,n

i , λzp
Cm,n
z

)

= BER

= Pmqam

(

A
Cn,m
pj , s

Cn,m
pj , λjp

Cn,m

j , λip
Cn, m

i , λzp
Cn, m
z

)

, (6.24)

Pmqam

(

A
Cm,n
pz , s

Cm,n
pz , λzp

Cm,n
z , λip

Cm,n

i , λjp
Cm,n

j

)

= BER

= Pmqam

(

A
Cn,m
pz , s

Cn,m
pz , λzp

Cn,m
z , λjp

Cn,m

j , λip
Cn,m

i

)

. (6.25)

From the definition of Cm,n and Cn,m,

A
Cn,m
pi = A

Cm,n
pj , (6.26)

s
Cn,m
pi = s

Cm,n
pj , (6.27)

A
Cm,n
pi = A

Cn,m
pj , (6.28)

s
Cm,n
pi = s

Cn,m
pj , (6.29)

A
Cm,n
pz = A

Cn,m
pz , (6.30)

s
Cm,n
pz = s

Cn,m
pz . (6.31)

Plugging (6.26)-(6.31) into (6.23)-(6.25), according to the principle of least action

[Maupertuis 1744] [Maupertuis 1744], and considering the symmetrical structure of

(6.23)-(6.25), the relations of the antenna powers at these two cases are

λip
Cm,n

i = λjp
Cn,m

j = f1 > 0, (6.32)

65



6. OPTIMIZATION OF A MIMO SYSTEM WITH MMSE RECEIVER

λip
Cn,m

i = λjp
Cm,n

j = f2 > 0, (6.33)

λzp
Cm,n
z = λzp

Cn,m
z = f3. (6.34)

When the relation (6.34) λzp
Cm,n
z = λzp

Cn,m
z is fixed, if

λip
Cm,n

i = λip
Cn,m

i = f4, (6.35)

λjp
Cm,n

j = λjp
Cn,m

j = f5. (6.36)

Then, from (5.8) and (6.34)-(6.36), we can see that fgg (t) is equal for Cm,n and

Cn,m for antenna i, and only the part of Pe (t) is different. For antenna j, fgg (t) is also

equal for Cm,n and Cn,m, and only the part of Pe (t) is different. Observing (5.8) and

(6.23), the BERs for these two cases Cm,n and Cn,m are

Pmqam

(

A
Cm,n
pi , s

Cm,n
pi , λip

Cm,n

i , λjp
Cm,n

j , λzp
Cm,n
z

)

=

∫ ∞

0
Pe

(

t, A
Cm,n
pi , s

Cm,n
pi

)

fgg (t)dt,

(6.37)

Pmqam

(

A
Cn,m
pi , s

Cn,m
pi , λip

Cn,m

i , λjp
Cn,m

j , λzp
Cn,m
z

)

=

∫ ∞

0
Pe

(

t, A
Cn,m
pi , s

Cn,m
pi

)

fgg (t)dt.

(6.38)

In (6.37) and (6.38), the modulation cardinality of
(

A
Cm,n
pi , s

Cm,n
pi

)

is more than
(

A
Cn,m
pi , s

Cn,m
pi

)

. In [Proakis 2000], when the mean energy of the constellation is to

remain the same (see (6.34)-(6.36)), the points must be closer together and are thus

more susceptible to noise. This results in a higher bit error rate (See chapter V and

Fig5.2-5 in [Proakis 2000])

Pe

(

t, A
Cm,n
pi , s

Cm,n
pi

)

> Pe

(

t, A
Cn,m
pi , s

Cn,m
pi

)

. (6.39)

Combining (6.39) and (6.37)-(6.38),

Pmqam

(

A
Cm,n
pi , s

Cm,n
pi , λip

Cm,n

i , λjp
Cm,n

j , λzp
Cm,n
z

)

> Pmqam

(

A
Cn,m
pi , s

Cn,m
pi , λip

Cn,m

i , λjp
Cn,m

j , λzp
Cn,m
z

) . (6.40)
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Also, observing (6.35) and (6.36), for antenna j,

Pmqam

(

A
Cn,m
pj , s

Cn,m
pj , λjp

Cn,m

j , λip
Cn,m

i , λzp
Cn,m
z

)

> Pmqam

(

A
Cm,n
pj , s

Cm,n
pj , λjp

Cm,n

j , λip
Cm,n

i , λzp
Cm,n
z

) . (6.41)

From (6.40) and (6.41), to achieve the target BER in (6.32) and (6.33), the antenna

powers of two cases should satisfy

f1 > f2. (6.42)

Combining (6.32) and (6.33), and recalling (6.1),

p
Cm,n

i − p
Cn,m

j = f1

(

1

λi
− 1

λj

)

≥ 0, (6.43)

p
Cn,m

i − p
Cm,n

j = f2

(

1

λi
− 1

λj

)

≥ 0. (6.44)

Observing (6.42)-(6.44),

p
Cm,n

i + p
Cm,n

j ≥ p
Cn,m

i + p
Cn,m

j . (6.45)

From (6.34),

p
Cm,n
z = p

Cn,m
z . (6.46)

From (6.45) and (6.46), it requires more sum power on antennas i and j, if ∆b are

added to the antenna i (6.45) and it requires the same power for antenna z in either

case (6.46). So it is better to place ∆b in antenna j, which corresponds to bigger λj .

Considering this, the bit distribution relationship of these two randomly selected

antennas should follow

bi ≤ bj . (6.47)

Because these two antennas i and j are randomly selected, (6.47) can be extended

to be

b1 ≤ b2 ≤ · · · ≤ bnT . (6.48)

which concludes the proof.
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6.3 Search procedure and its complexity

In the above part, it is shown that the best of two channels should be used to transmit

a number of bits greater or equal than the worst one. And the optimal bit distribution

follows (6.48).

Consider that the total required power of MMSE is always slightly lower than the

one of ZF for a given BER, so the maximum total number of bits of MMSE is not less

than that of ZF for each SNR value.

For problem (4.27), the maximum total number of loaded bits of ZF, Rzf , is calcu-

lated in chapter IV, and this value will be chosen as the starting value for the exhaustive

search.

The maximum possible number of bits allocated for each antenna is denoted as

B = max {log2Mi}, the whole point is to restrict the search to the solutions that lie

between the ZF one Rzf and the fully-loaded one (B bits on every antenna) with the

restriction that eigenvectors having larger eigenvalues receive more bits.

For problem (4.28), given (6.48) and Rtot, the minimum power can be obtained by

comparing the exhaustive search results calculated when the constrains (6.48) and Rtot

are all satisfied.

It is interesting to analyze the complexity of the proposed approach.

Denote that the maximal cardinality of each stream is q, then the complexity of

complete exhaustive search is (q + 1)nt .

Utilizing the proposed method, the complexity of exhaustive search can be decreased

noticeably. By adding the constraint (6.48) the calculations of exhaustive search can

be reduced to be (q+1)nt

2(nT−1) .

In problem (4.28), for the target total number of bits Rtot, the number of different

possible bit combinations is extremely limited. That is the reason why the complexity

of problem (4.27) is the main concern.

In the Table 6.1, there is a comparison of the maximum number of trials required to

solve problem (4.27), at a typical value ρ = 0.5 and BER = 10−2, and Mi takes values

in the set {0, 2, 4, 8, 16, 32, 64} (q = 6). The maximum number of trials is required in

a medium SNR regime, for both in low and high SNR scenarios, we have seen that the

convergence of the process is much faster. When SNR is varying from 0 dB to 30 dB,
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we have seen that the maximum number of trials is required at an SNR of around 15

dB.

nT × nR Exhaustive search Exhaustive search with (6.48) Exhuastive search with (6.48)

and the initial value Rzf

3× 4 343 86 15

8× 10 5764801 45038 197

Table 6.1: Maximum number of trials.

6.4 Numerical examples

The transmit covariance matrix R and the three evaluation scenarios are the same as

in chapter IV.

6.4.1 Bit Rate Maximization

Fig. 6.1 shows the achievable bit rate R with optimized power allocation. Two typical

values of the correlation parameter ρ are chosen, nt is 3, nR is 4 and BER = 10−2.

Here, the scenario is the second one (6 uncoded bit rates). The effect of correlation on

the channel capacity is already known from works like [Joham et al. 2005]. In Fig. 6.1,

it can be checked this effect: with high channel correlation, the bit loading algorithm

works better for low SNR regimes, while for low correlation, the performance is much

better for high SNR values. Apart from that, the performance at high SNR of receivers

MMSE and ZF is more similar, so the curves tend to converge in that regime, while

MMSE has a clear advantage at low SNR.

The results for the scenario with convolutional codes are shown in Fig. 6.2.

In Fig. 6.3, again the second scenario, in this case with a configuration of nT ×nR =

8× 10, is simulated, showing the applicability of the proposed optimization even under

such extreme dimensions.

6.4.2 Power Minimization

The following figures represent the power gain, in dB, of the proposed optimized P

with respect to the uniform power distribution P = I.
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Figure 6.1: Bit rate vs. SNR - 6 uncoded bit rates with nT = 3, nR = 4, and

BER = 10−2.
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6.4 Numerical examples

Figure 6.2: Bit rate vs. SNR - 12 uncoded bit rates with nT = 3, nR = 4, and

BER = 10−2.
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Figure 6.3: Bit rate vs. SNR - 6 uncoded bit rates with nT = 8, nR = 10, and

BER = 10−2.
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6.4 Numerical examples

Figure 6.4: Power gain vs. ρ - 6 uncoded bit rates with nT = 3, nR = 4, and

BER = 10−2.
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Figure 6.5: Power gain vs. ρ - 6 uncoded bit rates with nT = 3, nR = 4, and

BER = 10−4.
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6.4 Numerical examples

Fig. 6.4 shows the power gain when BER = 10−2 and nT × nR = 3× 4.

In Fig. 6.5, the only parameter changed with respect to Fig. 4 is the target BER,

that now is 10−4. We can see that it has little effect on the performance comparison.

Figure 6.6: Power gain vs. ρ - 8 uncoded bit rates with BER = 10−2.

Finally, Fig. 6.6 and Fig. 6.7 show two extreme cases with the constraint BER =

10−2, when the required bit rate is either Rtot = nT or Rtot = 6nT . When Rtot = nT ,

the low SNR behaviour is illustrated, and the high SNR performance is explored when

Rtot = 6nT . From these Figs. 6.6 and 6.7, it can be seen that attainable gain in the

low SNR regime is higher than that in the high SNR regime. This is so, as in high SNR

regime the constellations used are always the higher cardinality constellations, leaving

no gap for improvement.

The power gain in Fig. 6.8 and Fig. 6.9 is defined for the optimized MMSE approach

as compared to the ZF power allocated by using the Levin-Campello algorithm in

chapter IV. From this comparison, the difference of power gain between MMSE and

ZF is varying from 0.2 dB to 5.5 dB in Fig. 6.8 and the gain is within the range 0-9.5
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Figure 6.7: Power gain vs. ρ - 6 uncoded bit rates with BER = 10−2.
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6.4 Numerical examples

Figure 6.8: Power gain vs. ρ - 6 uncoded bit rates with nT = 3, nR = 4, and

BER = 10−2.
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Figure 6.9: Power gain vs. ρ - 6 uncoded bit rates with nT = 3, nR = 4, and

BER = 10−4.
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dB in Fig. 6.9.

Figure 6.10: Total power vs. ρ - 6 uncoded bit rates with nT = 3, nR = 4, and

Rtot = nT .

In order to benchmark the performance of the previous schemes with the corre-

sponding to a MF (matched filter) receiver, the bit and power allocation for the later

can be obtained following the scheme in chapter IV, similarly to that of the ZF receiver,

assuming there is no interference. The MF is an optmimum receiver that assumes there

is no interference among the spatial streams. Even though it is not practical, we use

it here as an upper bound of the performance that may be achieved. It is known that

MMSE approaches MF performance for low SNR.

In figures Fig. 6.10 and Fig. 6.11 we plot the total required transmit power when

the SNR is fixed to 0 dB, and the target total number of bits Rtot equals nT for Fig.

6.10, and 6nT for Fig. 6.11.

In Fig. 6.10 it can be seen how the total power remains approximately constant for
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Figure 6.11: Total power vs. ρ - 6 uncoded bit rates with nT = 3, nR = 4, and

Rtot = 6nT .
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6.5 Conclusion

all values of the correlation parameter ρ, as for lower values of this parameter the bits

and power are allocated evenly through out all the channels, while for higher values of

ρ the optimization process assigns higher number of bits and power to those channels

with better characteristics. The performance of MMSE is very close to MF for this low

SNR situation, as it should be expected.

In Fig. 6.11, as Rtot = 6nT , it is hard to assign more bits to better channels when

ρ is high, the result is an increasing total required power. Another characteristic that

is observed is that the difference between MMSE and ZF tends to vanish, with respect

to the result shown in Fig. 6.10, as it corresponds to high SNR.

6.5 Conclusion

For uncoded or coded modulation in a single-user MIMO communication system with

a MMSE receiver, using the developed BER approximations, an efficient method is

proposed for solving the two dual optimization problems, bit rate maximization and

power minimization. As shown by the simulations, lower power cost and higher bit

rates are achieved with this optimization scheme. The asymptotical performance (low

and high SNR) of MMSE is also analyzed and compared with ZF and MF.
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7

Optimization of a MIMO system

with ZF-SIC receiver

This chapter analyzes the bit error rate (BER) after a zero-forcing successive interfer-

ence cancellation (ZF-SIC) receiver over uncorrelated or (transmit) correlated Rayleigh

flat-fading channels in MIMO wireless communication. Since the decoding ordering is

important for this kind of receivers, we will take it into account for the development of

the BER expressions. Using a Gamma approximation for the SINR of the ZF receiver,

a closed-form formulation can be derived and simplified for the average BER. Further-

more, bit and power loading schemes for a single user MIMO system using a ZF-SIC

receiver are proposed. The schemes define precoding at the transmitter, based on the

knowledge of statistical channel information. The developed approximations for the

BER and decoding ordering are used in order to improve the system performance by

either maximizing the bit rate or minimizing the power. We obtain some bounds for

the bit rate of ZF-SIC and a tree search algorithm facilitates the search process to be

more efficient. Finally, to show the accuracy of the proposed expressions, the theoreti-

cal results are compared with those of Monte Carlo simulations and the performance of

the proposed schemes is analyzed and benchmarked with respect to bitloaded schemes

with more simple linear receivers.
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7.1 BER of ZF-SIC receiver based on the Gamma distri-

bution

Despite the simplicity of the ZF receiver it is suboptimum and it can be outperformed

by other receiver choices, or by more advanced receivers such as successive interference

cancelation (SIC) [Paulraj 2003]. With the aim of improving the performance of the

ZF scheme of Chapter IV, in this chapter a bit loading procedure will be proposed for

a MIMO system with ZF-SIC receiver.

For the development of such a bit loading scheme a relationship between the av-

erage bit error rate (BER) after the ZF-SIC receiver and the powers allocated at the

transmitter under the premise of CDIT is required. A number of papers estimate the

BER of MIMO ZF-SIC receivers based on their SINR distribution. In [Gore et al.

2002], the authors proposed a chi-square distribution to approximate the SINR of a ZF

receiver while it is proved in [Xin Li and Nie 2004] that the SINR of ZF-SIC may be

approximated by a chi-square distribution in correlated channels at both transmitter

side and receiver side. The error performance bounds of ZF and perfect ZF-SIC in

M-QAM MIMO systems are analyzed in [XU et al. 2008] without considering channel

correlation and receiver error propagation. In [Wang and Blostein 2007] the SINR of

ZF-SIC is approximated by a noncentral chi-square density function.

While [Gore et al. 2002] used a chi-square approximation of the SINR, it is shown

in [P. Li et al. 2006] that the SINR obtained after a MIMO ZF follows a Gamma

distribution. The BER of MIMO ZF after a correlated Rayleigh flat-fading channel is

derived in [P. Li et al. 2006] using a Gamma distribution and the approximation is

shown to be much better than the previous works.

Also, [Xin Li and Nie 2004], [XU et al. 2008] and [Wang and Blostein 2007] omitted

the error propagation in their derivations. Considering the error propagation, the

authors of [Shen et al. 2004] provide a method to calculate the BER of ZF-SIC with

BPSK modulation. Moreover, the BER of space-time block codes for ZF-SIC with

MPSK modulation is analyzed in [Kim 2004]. However, the approximations in [Shen

et al. 2004] and [Kim 2004] do not include channel correlation.

Since the ordering of the decoding process can dramatically impact the system

performance when using ZF-SIC [Wolniansky et al. 1998; Xiaofeng et al. 2002; Zhi-

heng et al. 2007; HAN et al. 2009], often the BER formulations are obtained for
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a particular ordering. The authors of [HAN et al. 2009] propose an analytical SER

expression for the decoding ordering that maximizes the achievable rate [Wolniansky

et al. 1998] assuming Gaussian inputs. As we will show, this particular ordering does

not necessarily maximize the achievable rate when discrete constellations are used.

Here we will obtain accurate approximations for the average BER of each M-QAM

transmitted data stream in a MIMO system with precoding and ZF-SIC receiver. Chan-

nel correlation at the transmitter side and error propagation are considered.

7.1.1 Average Bit Error Probability

There are again two cases that should be analyzed respectively to obtain the average

bit error rate : with and without coding.

7.1.1.1 Average bit error rate without coding

For the first stage i = 1, since ŝ1 may be detected with errors, we define E1 that

represents the occurrence of error events (bit errors) at the first stage. The SINR

corresponding to the reception of the signal of the first transmit stream can be expressed

as

SINR (E1) =
1

[

(HHH)†
]

1,1

, (7.1)

where [·]1,1 means the first diagonal element.

The bit error probability of ŝ1 can be calculated based on the Gamma distribution

(4.2) with two parameters Gamma (α1, β1) of SINRZF, which has been proposed in

Chapter IV,

P (E1) ≈ Am (1− sβ1)
−α1 , (7.2)

where Am = 1
2
√
π
for 2-QAM and 4-QAM and Am = 2

log2(M)
√
π
for M-QAM(M > 4).

And s = −1 for 2-QAM, s = −1
2 for 4-QAM and s = − 3

2(M−1) for M-QAM(M > 4).

Although (7.2) is a high SNR approximation, it is also accurate for low SNR calcu-

lation as we discussed in Chapter IV.
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When the precoder V diagonalizes R in (2.4), the parameters in (7.2) can be ex-

pressed as

α1 = nR − nT + 1

β1 = λ1γp1
1
nT

, (7.3)

where λi, i = 1, · · · , nT are the eigenvalues of the covariance matrix R in (2.2).

The feedback symbol to the ith stage only can belong to one of these two possible

status: with or without bit errors. Considering that in the ith stage there are i − 1

feedbacks from the previous stages, so there is i−1C0 = 1 possible combination when all

feedbacks do not contain error events, where i−1C0 is the binomial coefficient i−1Cn =

(i−1)!
((i−1)−n)!n! , 0 ≤ n ≤ i − 1. There are also i−1C1 = i − 1 possible combinations when

any one feedback contains some error events. There are i−1C2 = (i−1)(i−2)
2 possible

combinations when any two given feedbacks contain error events. And so on, there are

i−1Ci−1 = 1 possible combinations when any i−1 feedbacks contain error events. Thus

the number of total combinations is denoted as Ni−1 = i−1C0 + i−1C2 + i−1C2 + · · ·+

i−1Ci−1 =
i−1
∑

j=0
i−1Cj = 2i−1.

The error probability at stage i will be obtained, looking at all the possible com-

binations of feedback errors in previous stages. Define Ei as the occurrence of error

events (bit errors) at the ith stage. Then Ēi represents the complementary event of Ei

and the probability P
(

Ēi

)

= 1− P (Ei).

The total probability of bit error for signal ŝi of stage i is

P (Ei) = P (Ei |Ei−1 ∩ Ei−2 · · ·E2 ∩ E1 )P (Ei−1 ∩ Ei−2 · · ·E2 ∩ E1)

+P
(

Ei

∣

∣Ei−1 ∩ Ei−2 · · ·E2 ∩ Ē1

)

P
(

Ei−1 ∩ Ei−2 · · ·E2 ∩ Ē1

)

+P
(

Ei

∣

∣Ei−1 ∩ Ei−2 · · · Ē2 ∩ E1

)

P
(

Ei−1 ∩ Ei−2 · · · Ē2 ∩ E1

)

+P
(

Ei

∣

∣Ei−1 ∩ Ei−2 · · · Ē2 ∩ Ē1

)

P
(

Ei−1 ∩ Ei−2 · · · Ē2 ∩ Ē1

)

+ · · ·
+P

(

Ēi

∣

∣Ēi−1 ∩ Ēi−2 · · · Ē2 ∩ Ē1

)

P
(

Ēi−1 ∩ Ēi−2 · · · Ē2 ∩ Ē1

)

. (7.4)

Using the conditional probability formula P (A ∩B) = P (B |A)P (A), (7.4) can be
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expanded as

P (Ei) = P (Ei |Ei−1 ∩ Ei−2 · · ·E2 ∩ E1 )P (Ei−1 |Ei−2 ∩ Ei−3 · · ·E2 ∩ E1 )

P (Ei−2 |Ei−3 ∩ Ei−4 · · ·E2 ∩ E1 ) · · ·P (E1)+

P
(

Ei

∣

∣Ei−1 ∩ Ei−2 · · ·E2 ∩ Ē1

)

P
(

Ei−1

∣

∣Ei−2 ∩ Ei−3 · · ·E2 ∩ Ē1

)

P
(

Ei−2

∣

∣Ei−3 ∩ Ei−4 · · ·E2 ∩ Ē1

)

· · ·P
(

Ē1

)

+

P
(

Ei

∣

∣Ei−1 ∩ Ei−2 · · · Ē2 ∩ E1

)

P
(

Ei−1

∣

∣Ei−2 ∩ Ei−3 · · · Ē2 ∩ E1

)

P
(

Ei−2

∣

∣Ei−3 ∩ Ei−4 · · · Ē2 ∩ E1

)

· · ·P (E1)+

P
(

Ei

∣

∣Ei−1 ∩ Ei−2 · · · Ē2 ∩ Ē1

)

P
(

Ei−1

∣

∣Ei−2 ∩ Ei−3 · · · Ē2 ∩ Ē1

)

P
(

Ei−2

∣

∣Ei−3 ∩ Ei−4 · · · Ē2 ∩ Ē1

)

· · ·P
(

Ē1

)

+ · · ·+
P
(

Ei

∣

∣Ēi−1 ∩ Ēi−2 · · · Ē2 ∩ Ē1

)

P
(

Ēi−1

∣

∣Ēi−2 ∩ Ēi−3 · · · Ē2 ∩ Ē1

)

P
(

Ēi−2

∣

∣Ēi−3 ∩ Ēi−4 · · · Ē2 ∩ Ē1

)

· · ·P
(

Ē1

)

. (7.5)

Define E
(1)
i = Ei |Ei−1 ∩ Ei−2 · · ·E2 ∩ E1 , E

(2)
i = Ei

∣

∣Ei−1 ∩ Ei−2 · · ·E2 ∩ Ē1 , and

the others follow this order one by one.

And similarly define E
(1)
i−1 = Ei−1 |Ei−2 ∩ Ei−3 · · ·E2 ∩ E1 , and then the others are

defined similarly.

P (Ei) = P
(

E
(1)
i

)

P
(

E
(1)
i−1

)

P
(

E
(1)
i−2

)

· · ·P (E1)

+P
(

E
(2)
i

)

P
(

E
(2)
i−1

)

P
(

E
(2)
i−2

)

· · ·P
(

Ē1

)

+P
(

E
(3)
i

)

P
(

E
(3)
i−1

)

P
(

E
(3)
i−1

)

· · ·P (E1)

+P
(

E
(4)
i

)

P
(

E
(4)
i−1

)

P
(

E
(4)
i−2

)

· · ·P
(

Ē1

)

+ · · ·
+P

(

E
(Ni−1)
i

)

P
(

Ē
(Ni−1)
i−1

)

P
(

Ē
(Ni−1)
i−2

)

· · ·P
(

Ē1

)

. (7.6)

If ŝ1, · · · , ŝi−1 are all detected incorrectly, to get P
(

E
(1)
i

)

in (7.6), the SINR of the

second transmit antenna can be expressed as

SINR
(

E
(1)
i

)

=
1

[

(

HH
−(i−1)H−(i−1)

)−1 (

|(s1 − ŝ1)h1|2 + · · ·+ |(si−1 − ŝi−1)hi−1|2 + σ2
)

]

1,1

.

(7.7)
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According to [Hong et al. 2011a], 1
[

(

HH
−(i−1)

H−(i−1)

)†
]

1,1

is a Gamma random variable

and its distribution follows

Gamma

(

nr − nt + i, λiγpi
1

nt

)

. (7.8)

The expectation of the part |(s1 − ŝ1)h1|2 + · · · + |(si−1 − ŝi−1)hi−1|2 in (7.7) is

denoted as µ̄
(1)
i . As the following subsection of examples will show, the BER is

calculated accurately by using µ̄
(1)
i . Thus, omitting its higher moments, the part

|(s1 − ŝ1)h1|2 + · · · + |(si−1 − ŝi−1)hi−1|2 in (7.7) can be approximated by its expec-

tation value µ̄
(1)
i . As κ

(1)
i = µ̄

(1)
i + σ2 is a positive constant, according to the scaling

property of Gamma distribution, SINRi

(

E
(1)
i

)

can also approximated by a Gamma

distribution

Gamma

(

nr − nt + i, λiγpi
1

ntκ
(1)
i

)

. (7.9)

Therefore the BER of ith transmit antenna with the error events E
(1)
i also can be

approximated by (7.2) with new parameters, so we have

P
(

E
(1)
i

)

≈ Am

(

1− sβi

(

E
(1)
i

))−αi

(

E
(1)
i

)

. (7.10)

Following (7.7), the parameters of the Gamma distribution of the ith transmit

antenna are

αi

(

E
(1)
i

)

= nR − nT + i, (7.11)

βi

(

E
(1)
i

)

=
λiγpi

1
nT

E(|(s1−ŝ1)h1|2)+···+E(|(si−1−ŝi−1)hi−1|2)+1

=
λiγpi

1
nT

d1λ1γp1
1

nT
+···+di−1λi−1γpi−1

1
nT

+1

, (7.12)

where di−1 = E
(

|(si−1 − ŝi−1)|2
)

can be approximated by the minimum square Eu-

clidean distance in the constellation and its value depends on the modulation type.

For the event E
(1)
i−1, the parameters of the Gamma distribution Gamma (αi−1, βi−1)

can be expressed similarly following the above analysis.

αi−1

(

E
(1)
i−1

)

= nr − nt + i− 1, (7.13)
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βi−1

(

E
(1)
i−1

)

=
λi−1γpi

1
nt

E(|(s1−ŝ1)h1|2)+···+E(|(si−2−ŝi−2)hi−2|2)+1

=
λi−1γpi

1
nt

d1λ1γp1
1
nt

+···+di−2λi−2γpi−2
1
nt

+1

, (7.14)

The parameters αi and βi of the other cases P
(

E
(1)
i

)

, 2 ≤ i ≤ i−2 can be obtained

by calculating similarly to the above (7.13) and (7.14). The probabilities of bit errors

for these cases are similar to the equation (7.10), only changing the parameters αi and

βi.

Because αi comes from 1
(

HH
−(i−1)

H−(i−1)

)† , its value is a constant for all error events.

As it does not depend on E
(1)
i , we have

αi = nR − nT + i. (7.15)

While calculating P
(

E
(2)
i

)

, since the first stage is totally detected correctly, we

have s1 − ŝ1 = 0 in (7.7) and (7.12). So we have

βi

(

E
(2)
i

)

=
λiγpi

1
nT

d2λ2γp2
1
nT

+ · · ·+ di−1λi−1γpi−1
1
nT

+ 1
. (7.16)

The parameter βi of the other cases P
(

E
(j)
i

)

, 3 ≤ j ≤ Ni−1 can be obtained by

calculating similarly to the above (7.16). The probabilities of bit errors for these cases

are similar to the equation (7.10), only changing the parameter βi.

7.1.1.2 Average bit error rate with coding

Furthermore, for M-QAM modulations in conjunction with a convolutional code of rate

rc = kc/nc and minimum distance df , the BER at the output of the decoder can be

approximated, for high SNR, as shown in (4.21).

Similarly to the uncoded case, the total bit error rate for the ith stream in coded
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M-QAM systems is,

Pc (Ei) = Pc

(

E
(1)
i

)

Pc

(

E
(1)
i−1

)

Pc

(

E
(1)
i−2

)

· · ·Pc (E1)

+Pc

(

E
(2)
i

)

Pc

(

E
(2)
i−1

)

Pc

(

E
(2)
i−2

)

· · ·Pc

(

Ē1

)

+Pc

(

E
(3)
i

)

Pc

(

E
(3)
i

)

Pc

(

Ē
(2)
i−2

)

· · ·Pc (E1)

+Pc

(

E
(4)
i

)

Pc

(

E
(4)
i−1

)

Pc

(

Ē
(4)
i−2

)

· · ·Pc

(

Ē1

)

+ · · ·
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where in (7.17)

Pc

(

E
(1)
i

)

≈ Df

(

1− cfβi

(

E
(1)
i

))−αi

(

E
(1)
i

)

. (7.18)

and cf =
−df
2 for 2-QAM, cf =

−df
4 for 4-QAM and cf =

−3df
4(M−1) for M -QAM(M >

4). And for 2-QAM and 4-QAM Df = D, Df = 4D
log2(M) for M -QAM.

In particular, for the first stage we have

Pc (E1) ≈ Df (1− cfβ1)
−α1 , (7.19)

which is shown in [Armada et al. 2009].

7.2 Decoder ordering

Let us define the precoder

V = [v1, · · · , vj , · · · , vnT ] . (7.20)

Changing the order of vj , the total power will be different. We would like to

find an ordering Vn from the permutation of the columns vj , which can realize the

maximization of bit rate with a power limitation or minimization of power with a rate

limitation.

Once the bit distribution {b1, b2, · · · , bi, · · · , bnT } is fixed, Am and s in (7.10) can

be determined for each stage. Moreover, we define c1 = λ1p1 and it can be calculated

by solving (7.6), when i = 1. Furthermore, we define ci = λiP and it can also be
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computed one by one, by using the results of the previous steps from c1 to ci−1, Until

cnT has been solved. This set is

{c1, · · · , ci, · · · cnT } , (7.21)

and it can be sorted in ascending order as

{

c1 ≤ · · · ≤ ck ≤ · · · ≤ cnT

}

, 1 ≤ k ≤ nT . (7.22)

The mapping relationship between the unordered index i and the ordered one k is

A (i, k) . (7.23)

Because R is a positive definite matrix [Chu et al. 1997], its eigenvalues are all

positive real values, which can be sorted as

{λ1 ≤ · · · ≤ λk ≤ · · · ≤ λnT } , 1 ≤ k ≤ nT . (7.24)

To minimize the total power or maximize the rate, we propose that (7.24) is the

right order since the biggest λk should be coupled with the biggest ck.

Then, we have to go back to the original ordering of (7.21) by using (7.23), so λi

can be obtained by reordering (7.24)

{

λ1, · · · , λi, · · ·λnT
}

, (7.25)

corresponding to

Vn =
[

v1, · · · , vi, · · · , vnT
]

. (7.26)

The above proposition should be proven to be an optimal solution for power min-

imization. This means that a payoff
nT
∑

i=1
pi =

nT
∑

i=1

ci
λi can be minimized after processing

according to the above steps.

We conjecture that the above steps can minimize the payoff, then it can be seen

that the sets {c1, · · · , ci, · · · cnT } and {λ1, · · · , λj , · · ·λnT } are sorted monotonically in-

creasing to be (7.22) and (7.24). Consider any indices k and l such that k < l, and con-

sider the terms ck
λk and cl

λl . Since the sets {c1, · · · , ci, · · · cnT } and {λ1, · · · , λj , · · ·λnT }
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are sorted into monotonically increasing order and k < l, we have 0 ≤ ck ≤ cl and

0 ≤ λk ≤ λl. Since ck and cl are positive and λl − λk is nonnegative, we have

ck
λk

+
cl
λl

≤ ck
λl

+
cl
λk

. (7.27)

So far, the proof that this method yields an optimal solution is completed. Since

the order of multiplication doesn’t matter, sorting the sets {c1, · · · , ci, · · · cnT } and

{λ1, · · · , λj , · · ·λnT } into monotonically decreasing order works as well.

7.3 Bit loading and power allocation

Consider that Mi is the cardinality of the modulation applied to the ith eigenvector of

V, Pei its average BER, and BER is the target average bit error rate.

With the relations between these parameters and the power matrix P for differ-

ent modulation schemes, and considering Vn (Section 7.2), the optimization problems

(4.27) and (4.28) can be solved.

The method of Section 7.2 can not only be applied to power minimization (4.28),

but also to bit rate maximization (4.27), because the total power is limited.

The optimization is conducted by searching for the best combinations of bit (i.e.,

constellation cardinalities) and power loads. For each possible bit allocation, and using

the approximations in (7.6) and (7.17) that relate the BER with the power matrix

P= diag [p1p2 · · · pnT ], the appropriate constraints can be enforced.

For (4.28), given (6.48) and Rtot, the minimum power can be obtained by comparing

the exhaustive search results calculated when the constrains (6.48) and Rtot are all

satisfied.

For problem A, the complexity of exhaustive search is exponential, so some con-

straint should be added to simplify the exhaustive search.

Checking (20) in [XU et al. 2008], a BER relationship among the perfect ZF-SIC

(ZF-PSIC), ZF-SIC and ZF is given, in which the perfect ZF-SIC refers to the ZF-SIC

without considering error propagation and channel correlation, while utilizing the same

detection order for ZF-PSIC and ZF-SIC. From figure 2 of [XU et al. 2008], it can be

seen that the upper bound and lower bound of the average BER over all antennas are

tight.
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7.3 Bit loading and power allocation

Following [XU et al. 2008], the Gamma distribution is available to calculate the

BER for ZF-PSIC, which can be approximated for any ith stage by

PZF−PSIC ≈ Am (1− sβZF−PSIC)
−αZF−PSIC , (7.28)

with the parameters

αZF−PSIC = nR − nT + i

βZF−PSIC = λiγpi
1
nT

. (7.29)

Since each stage of ZF-PSIC does not contain the coupling effect of the transmitted

power, which is caused by the error propagation, the Levin-Campello algorithm is still

valid for the bit loading and power allocation with this receiver. Thus, by utilizing the

Levin-Campello algorithm for bit and power optimization with ZF and ZF-SIC, their

total number of bits can be individually calculated.

Therefore, for ZF-SIC, we conjecture that its total number of bits RZF−SIC is

bounded by

RZF ≤ RZF−SIC ≤ RZF−PSIC. (7.30)

If utilizing (7.30) as a constraint, the exhaustive search can be more simplified and

efficient. So (7.30) should be proved.

For the ith stage, observing (7.4) and (7.28),

PZF−PSIC = P
(

Ēi

∣

∣Ēi−1 ∩ Ēi−2 · · · Ē2 ∩ Ē1

)

. (7.31)

Obviously, we have

P
(

Ēi

∣

∣Ēi−1 ∩ Ēi−2 · · · Ē2 ∩ Ē1

)

≤ P (Ei |Ei−1 ∩ Ei−2 · · ·E2 ∩ E1 )

P
(

Ēi

∣

∣Ēi−1 ∩ Ēi−2 · · · Ē2 ∩ Ē1

)

≤ P
(

Ei

∣

∣Ei−1 ∩ Ei−2 · · ·E2 ∩ Ē1

)

· · ·
P
(

Ēi

∣

∣Ēi−1 ∩ Ēi−2 · · · Ē2 ∩ Ē1

)

≤ P
(

Ei

∣

∣Ei−1 ∩ Ēi−2 · · · Ē2 ∩ Ē1

)

. (7.32)
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Combining (7.4) and (7.32),

PZF−SIC = P (Ei)

= P (Ei |Ei−1 ∩ Ei−2 · · ·E2 ∩ E1 )P (Ei−1 ∩ Ei−2 · · ·E2 ∩ E1)

+ · · ·+ P
(

Ēi

∣

∣Ēi−1 ∩ Ēi−2 · · · Ē2 ∩ Ē1

)

P
(

Ēi−1 ∩ Ēi−2 · · · Ē2 ∩ Ē1

)

≥ P
(

Ēi

∣

∣Ēi−1 ∩ Ēi−2 · · · Ē2 ∩ Ē1

)

P (Ei−1 ∩ Ei−2 · · ·E2 ∩ E1)

+ · · ·+ P
(

Ēi

∣

∣Ēi−1 ∩ Ēi−2 · · · Ē2 ∩ Ē1

)

P
(

Ēi−1 ∩ Ēi−2 · · · Ē2 ∩ Ē1

)

= P
(

Ēi

∣

∣Ēi−1 ∩ Ēi−2 · · · Ē2 ∩ Ē1

)

.

(7.33)

Plugging (7.31) into (7.33),

PZF−SIC ≥ PZF−PSIC. (7.34)

For the ith stream, the relationship between PZF−SIC and PZF−SIC can be known

from [Wang and Blostein 2007],

PZF ≥ PZF−SIC. (7.35)

So far, it can be seen that the relationship (7.30) holds true.

7.4 Search procedure and its complexity

It is interesting to analyze the complexity of the proposed approach.

From Chapter VI, it is known that the complexity of complete exhaustive search is

(q + 1)nT .

In (4.28), for the target number of total allocated bits Rtot, the number of different

bit combinations is extremely limited. That is the reason why the complexity of (4.27)

is the main concern.

Utilizing the proposed method, the complexity of exhaustive search can be decreased

noticeably. By adding the constraint (7.30), the calculations of exhaustive search can

be reduced efficiently.

In Table 7.1, there is a comparison of the search limitation of bit rate for (4.27), at

a typical value ρ = 0.5 and BER = 10−2, and Mi takes values in the set {0, 2, 4, 8,
16, 32, 64}. When SNR is varying from 0 dB to 30 dB, from the simulation results,
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we found that the maximum number of trials is required at an SNR of around 15 dB.

From Table 7.1, it can be observed that the convergence of the process is much faster

with (7.30).

nT × nR RZF−SIC Limitation of bit rate for exhaustive search Limitation of bit rate for ex-

haustive search with (7.30)

3× 4 7 0 ≤ RZF−SIC ≤ 73 5 ≤ RZF−SIC ≤ 8

8× 10 20 0 ≤ RZF−SIC ≤ 78 13 ≤ RZF−SIC ≤ 22

Table 7.1: RZF−SIC and limitation of bit rate for search.

Since ci = λiP , Tr [R] = nT and Tr [P] ≤ nT , there is

ci ≤ n2
T . (7.36)

From Table 7.1, it can be seen that the exhaustive search with (7.30) is still not

efficient enough. Because the BER of any stage depends on the BER of its prior stages,

a tree search with (7.30) can facilitate the computation.

For the first stage, if the maximum number of bits of each channel is limited to

B = max {log2Mi}, there are B + 1 possible bits loaded, which are selected from 0 to

B. Checking among all these B possibilities of c1, which ones satisfies (7.30), then the

second stage can start with these ones, which are also B +1 possible numbers for each

one.

This search loop can proceed until the last stage. Finally the ultimate assigned

powers are calculated, as it was mentioned in the Section 7.2.

7.5 Numerical examples

The transmit covariance matrix R and the three evaluation scenarios are the same as

in Chapter IV.

7.5.1 BER of ZF-SIC

The numerical results of our developed expressions and the equations of reference

[Paulraj 2003] are compared to Monte Carlo simulation results in a MIMO system

with ZF-SIC receiver.

95



7. OPTIMIZATION OF A MIMO SYSTEM WITH ZF-SIC RECEIVER

Figure 7.1: Average BER vs. SNR - QPSK modulation with nT = 4, nR = 4 and

ρ = 0.9; Order 1.
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Figure 7.2: Average BER vs. SNR - QPSK modulation with nT = 4, nR = 4 and

ρ = 0.9; Order 2.
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Figure 7.1 shows the average BER of each transmitted stream with QPSK modula-

tion when the detection order follows the sort order of the eigenvalues λ1 ≤ λ2 ≤ · · · ≤
λnT , which is denoted as Order 1. Here ρ = 0.9 and SNR is varied between 0 dB and

30 dB, when nT = 4, nR = 4. It can be seen that our analytical expressions give a

very good fit for all values of SNR. The results of [XU et al. 2008] ([X08]) exhibit more

estimation errors for higher stage streams in the high SNR regime.

In order to verify the accuracy of the developed expressions, a detection order

different from Order 1 is used. Figure 7.2 shows the average BER of each transmitted

stream with QPSK modulation when the detection order is completely reversed, which

is denoted as Order 2, where ρ = 0.9 and SNR is varied between 0 dB and 30 dB

in 4 × 4 MIMO system. It also demonstrates a good fit of the results between the

developed expressions and Monte Carlo simulations for all values of SNR. Although

the results of [XU et al. 2008] ([X08]) have less estimation errors for this new detection

order, they are still worse than our analytical results. These comparisons also verify

that the developed expressions are accurate for different detection orders. Since the

optimal ordering in [XU et al. 2008] ([X08]) corresponds to Order 2, the results of

[HAN et al. 2009] ([H09]) are more accurate than those of [XU et al. 2008] ([X08]).

However, the results of our proposed expression are more accurate if we consider all

antennas and SNRs, even though it may outperform ours in some special SNR regimes,

and this is only for that particular given decoding order.

7.5.2 Bit Rate Maximization

The following three scenarios, in terms of modulation and coding schemes available at

the transmitter, are considered.

• 6 uncoded bit rates: Mi takes values in the set {0, 2, 4, 8, 16, 32, 64}. This is a
realistic uncoded scenario.

• 12 bit rates with convolutional coding: Mi takes values in the set {0, 2, 4, 8, 16,
32, 64}. Each of the signals will either be uncoded or coded with a rate - 1/2

convolutional code of generator polynomials (133, 171) and df = 10.

• 16 bit rates with convolutional coding: Mi takes values in the set {0, 2, 4, 8, 16,
32, 64, 128, 256}, to compare with capacity. Each of the signals will either be
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uncoded or coded with a rate - 1/2 convolutional code of generator polynomials

(133, 171) and df = 10.

Figure 7.3: Bit rate vs. SNR - 6 uncoded bit rates with nT = 3, nR = 4 and

BER = 10−2.

Fig. 7.3 shows the achievable bit rate R with optimized power allocation. Two

typical values of the correlation parameter ρ are chosen, nT is 3, nR is 4 and BER =

10−2. Here, the scenario is the first one (6 uncoded bit rates). Bit rates of ZF and

MMSE are obtained in previous chapters. In Fig. 7.4, it can be checked the same

dependence with correlation as in the previous chapters: with high channel correlation,

the bit loading algorithm works better for low SNR regimes, while for low correlation,

the performance is much better for high SNR values. Apart from that, the performance

at low SNR of receivers ZF-SIC and ZF is more similar, due to the propagation of a

high number of errors, so the curves tend to converge in that regime. At high SNR, a

considerably higher bit rate can be achieved by the optimized systems with the ZF-SIC

receiver.
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Figure 7.4: Bit rate vs. SNR - 12 coded bit rates with nT = 3, nR = 4 and BER =

10−2.
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Figure 7.5: Bit rate vs. SNR - 16 coded bit rates with nT = 3, nR = 4 and BER =

10−2.
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Figure 7.6: Bit rate vs. SNR - 6 uncoded bit rates with nT = 8, nR = 10 and

BER = 10−2.
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The results for the scenario with 12 convolutional codes are shown in Fig. 7.4. the

results for the third scenario with 16 convolutional codes are compared with the CDIT

capacity in Fig. 7.5. We can see that the difference between capacity and ZF-SIC is

about 3-4 bits, at 25 dB of SNR, which shows that the percentage of rate of ZF-SIC

compared to capacity is at the region 80%-86.5%.

In Fig. 7.6, the first scenario, in this case with a configuration of nT = 8, nR = 10,

is simulated, showing the applicability of the proposed optimization even under such

extreme dimensions.

7.5.3 Power Minimization

Figure 7.7: ZF-SIC power gain vs. ρ - 6 uncoded bit rates with nT = 3, nR = 4 and

BER = 10−2.

The power gain in Fig. 7.7 and Fig. 7.8 compares the optimized P of the proposed

approach (using the optimum Vn) with respect to the ZF power allocated by using the

Levin-Campello algorithm (Chapter IV). We can see that the difference of power gain
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Figure 7.8: ZF-SIC power gain vs. ρ - 6 uncoded bit rates with nT = 3, nR = 4 and

BER = 10−4.
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between ZF-SIC and ZF is varying from 0 dB to 4.3 dB in Fig. 7.7 and the gain is

within the range 1-8.5 dB in Fig. 7.8. In these two figures, for high SNR, the power

gain is increasing with ρ, but for low SNR, the power gain between ZF-SIC and ZF is

small, as the error propagation is large. For low SNR, with high correlation (ρ = 0.9),

the performance of ZF-SIC is sharply deteriorated to be close to ZF.

7.6 Conclusion

Analytical approximations for the BER of MIMO systems in transmit-correlated Rayleigh

flat-fading channels with ZF-SIC receiver are obtained, taking into account the decod-

ing order. These approximations can be used to optimize the transmitter for a given

target BER, following a decoding order, or in general, for the system design. Their

accuracy has been shown by comparison with numerical results.

From these BER approximations, a method is proposed for solving the two dual op-

timization problems, bit rate maximization and power minimization. As shown by the

simulations, lower power cost and higher bit rates are achieved with this optimization

scheme compared to ZF or MMSE approaches.
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8

Conclusions

For a single user MIMO system, the BER of three typical receivers, ZF, MMSE and

ZF-SIC, has been estimated and simplified, when possible, to convenient closed-form

approximations, by using the statistical information of the channel matrix with corre-

lation at the transmitter side. Numerical results show the accuracy of the developed

expressions.

By utilizing these BER approximations, two dual optimization problems, bit rate

maximization and power minimization, are solved for the practical case of statistical

channel knowledge at the transmitter side and discrete constellations.

The comparison of the power gain of the three mentioned types of receivers rel-

ative to a non-optimized transmission explicitly shows the performance gains of the

proposed methods in this Thesis. As it happens without optimization, ZF performs

close to MMSE at high SNR while ZF-SIC approaches ZF at low SNR. Otherwise, the

performance of ZF-SIC is the best of the three considered schemes while MMSE gives

intermediate rates or power requirements with a lower complexity.

8.1 Future work

This Thesis focuses on the flat fading Rayleigh channel model with correlation only at

the transmitter side. Following the proposed method in this Thesis, the way of solving

the two optimization problems could be considered for other kinds of channel models,

or even considering correlation at both sides, that is, not only at the transmitter side,

but also at the receiver side. The extension to frequency selective fading seems quite
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straightforward with the use of multicarrier modulation to create a set of parallel flat

fading channels. However, with the new frequency dimension the complexity of the

system may grow in such a way that possibly more efficient algorithms will be needed.

In particular, for MMSE and ZF-SIC receivers, although the proposed algorithms

in this Thesis are accurate and efficient, more efficient algorithms could be considered

and developed in future work. Moreover, other different types of receivers, modulation,

and coding schemes may also be considered and analyzed.

The focus of this Thesis is on single-user systems. This work paves the way to

developing optimization algorithms for multi-user systems, where the same obtained

BER formulations can be leveraged and the problem formulation must include the

interaction of several users and contemplate a particular access scheme.

Finally, in this Thesis we have optimized the power allocation matrix, considering a

known precoding matrix that actually achieves capacity for Gaussian inputs. It remains

to find if this precoder is also optimum for discrete constellations or, otherwise, find

some guidelines to construct the optimum precoder for these conditions.
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[Armada et al. 2009] Ana Garćıa Armada, L. Hong and A. Lozano, “Bit loading for

MIMO with statistical channel information at the transmitter and ZF receiver,”

Proc. Int’l Conf. on Communications (ICC’09), June 2009.
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