
 
Abstract Small animal positron emission tomography (PET) 

scanners are being increasingly used  as a basic measurement tool 
in modern biomedical research. The new designs and 
technologies  of these scanners and the modern reconstruction 
methods have allowed to reach high spatial resolution and 
sensitivity. Despite their successes, some important issues remain 
to be addressed in high resolution PET imaging. First, iterative 
reconstruction methods like maximum likelihood-expectation 
maximization (MLEM) are known to recover resolution, but also 
to create noisy images and edge artifacts if some kind of 
regularization is not imposed. Second, the limit of resolution 
achievable by iterative methods on high resolution scanners is not 
quantitatively understood. Third, the use of regularization 
methods like Sieves or maximum a posteriori (MAP) requires the 
determination of the optimal values of several adjustable 
parameter that may be object-dependent.  

In this work we review these problems in high resolution PET 
and establish that the origin of them is more related with the 
physical effects involved in the emission and detection of the 
radiation during the acquisition than with the kind of iterative 
reconstruction method chosen. These physical effects (positron 
range, non-collinearity, scatter inside the object and inside the 
detector materials) cause that the tube of response (TOR) that 
connects the voxels with a line of response (LOR) is rather thick. 
This implies that the higher frequencies of the patient organ 
structures are not recorded by the scanner and therefore cannot 
be recovered during the reconstruction. As iterations grow, ML-
EM algorithms try to recover higher frequencies in the image. 
Once that a certain critic frequency is reached, this only 
maximizes high frequency noise.

Using frequency response analyses techniques, we determine  
the maximum achievable resolution, before edge artifacts spoil  
the quality of the image, for a particular scanner as  
a function of the thickness of the TOR, and independently of the 
reconstruction  method employed. With the same techniques, we 
can deduce well defined stopping criteria for reconstructions 
methods. Also,  criteria for the highest number of subsets which  
should be used and how the design of the scanners can be 
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optimized when statistical reconstruction methods are employed, 
is established.
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I. INTRODUCTION 
URING the last years, dedicated small PET animal 
scanners have become one of the main tools in 

biomedical research. In this kind of studies, spatial resolutions on 
the order of 1 mm and high sensitivity are required. New 
technologies and reconstruction methods have been developed for 
reaching these goal. Iterative statistical reconstructions 
methods like ML-EM [1], [2] have shown superior image 
quality to conventional analytic reconstruction techniques, but 
despite their widespread and now conventional use, there are 
some important properties and limitations of these methods 
that have not been properly outlined so far: 

I. The reconstruction problem is said to be ill-posed, 
because the noise in the reconstructed images increases as the 
number of iterations proceeds. There exists a paradox in the 
ML-EM method, because maximizing the log-likelyhood until  
convergence is reached creates noisy images [3]. Stopping the 
iterations before convergence makes the reconstructed images 
to be biased towards the initial starting image and furthermore 
optimal resolution can not be achieved. The origin of this 
problem is not quite explained in the literature.

II. They have been proposed many different methods for  
avoiding noise as well as edge artefacts, like the method of  
Sieves [4], replacing the maximum-likelihood criterion with a  
penalized-likelihood (or MAP) objective function [5], or  
filtering the image during the iterations or post-smoothing it 
[6]. All these methods have free parameters that need to be  
determined. The optimal value of the parameters is in general  
object-dependent and this reduces the usefulness of these 
methods in clinical studies. 

III. With iterative methods, the choice of the number of  
voxels of the reconstructed images seems to be quite arbitrary,  
but in fact, there is an optimal resolution for each kind of  
scanner. 

IV. Finding the optimal number of subsets in the 
accelerated version of the algorithm and the stopping criteria 
for the iterative methods is still an open issue. 
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V. More often, scanners have been designed with analytic 
reconstruction methods in mind. This doesn’t imply that such 
designs are the best ones for statistical reconstruction of PET 
images. Now that statistical methods are being commonly used, 
new scanners, specifically designed to take advantage of these 
reconstruction methods must be thought of.  

The majority of available PET scanners are configured as 
small individual detector units in an array of scintillator 
crystals. Bearing in mind all the physical effects (positron 
range,non-collinearity, scatter of the gamma rays inside the 
object  and inside the crystals) and electronic noise that are 
involved in the data acquisition of a PET scanner, the volume 
of space from which an emitted positron can produce 
coincidence counts in a pair of crystals is rather large, 
measured in crystal units. This volume is in general  
distributed on a tube of response (TOR) along the line of 
response (LOR).  

        
Fig. 1.  Squematic drawing of a Tube of Response (TOR) 

In small PET animal scanners, the size of the TORs  
determines their main properties, like maximum resolution 
or the signal to noise ratio achievable, to a much larger extent 
than the number of LORs or the distance among them.  

II. FREQUENCY ANALYSIS OF PET DATA

The sizeable width of the TOR causes the scanner to be 
blind to high frequency components of the object [3], even if 
the sampling is increased by using a very large number of 
crystals. The FWHM of the TOR can be compared to the 
Modulation Transfer Function [7] employed for characterizing 
optical systems such as video cameras or film scanners.  

One can define the maximum system frequency (MSF) as 
the highest frequency of the object that the scanner can record 
for the ideal case of a noise-free acquisition. When noise is 
present, the maximum effective system frequency (MESF) can 
also be defined, as the highest frequency of the object that can 
be recorded above the noise. Analytical estimates of the MSF 
can be obtained to determine the maximum resolution 
achievable by any means, from a particular acquisition. 

The average of the data in a LOR Y with sinogram 
coordinates ( ),  is: 

( ) ( ) ( )
( ),

, , ;
V TOR

Y C V X V=  (1) 

C(r,q;V) = System response matrix (SRM) [In simple 2-D 
cases, the dependence on the distance from the line that 
connects two crystals can be assumed to be Gaussian].      
X(V) = Reconstructed Image at voxel V 

For an ideal noise-free acquisition, if we assume that every 

TORs has a transversal gaussian shape with the same FWHM, 
the MSF of the scanner is given by: 

1 2· 2· 10( )
· ( )

Ln LnMSF mm
FWHM mmπ

− =  (2) 

PROOF:  For the sake of simplicity only the 1-Dimension case 
is discussed here, naming   the x coordinate. The SRM can 
then be assumed of the form: C(ρ) = g(x) = exp(-(x/a)2) and 
its Fourier transform as G(ω)=exp(-(aω/2)2). Using the 
relation ω=2πf, one has G(f)=exp(-(πaf)2) (Fig. 2 in red). The 
Half Width Tenth Maximum of G(f) is what we have been 
called MSF.  

FREQUENCIES
NON

REGISTRABLE

MAXIMUM EFFECTIVE
SYSTEM FREQUENCY

MAXIMUM SYSTEM
FREQUENCY

FREQUENCY

Registered
Frequencies of

the Object

NOISE 
LEVEL

FREQUENCIES
NON

REGISTRABLE

MAXIMUM EFFECTIVE
SYSTEM FREQUENCY

MAXIMUM SYSTEM
FREQUENCY

FREQUENCY

Registered
Frequencies of

the Object

NOISE 
LEVEL

Fig. 2.  Schematic drawing of the effect of the width of the TORs on the 
frequencies registered by a PET scanner. 

   In small animal PET scanners, the MSF usually lies far 
below the sampling frequency (FNYQUIST) so that, contrarily to 
analytical methods, aliasing is not the main limitation factor 
for resolution recovery in the case of iterative algorithms. 

The best resolution achievable for a given MSF is: 

1

1( ) 0.62 ( )
2 ( )

x mm FWHM mm
MSF mm−Δ = ⋅

⋅
(3) 

For example, in an ideal scanner with TORs of 1.5 mm 
(FWHM) the best achievable resolution, by ANY algorithm
would be 0.93 mm. This also implies that the reconstructed 
images should have voxels of 0.46 mm in order to avoid grid 
aliasing. 

Fig. 3Fig. 3

Fig. 3.  Profile of reconstructed images of a capilar with background 
activity from simulated data (top) and a real acquisition (bottom). 

  The loss of higher frequencies of the object due to physical 
effects can be easily observed. Using a phantom with sharp 
edges, the reconstructed image will exhibit the ‘Gibbs’ 
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phenomena, or ringing artifacts. Fig. 3 shows the 
reconstruction from a simulation (left) and a real acquisition 
(right) of a capilar with background activity. It corresponds to 
the response of a low-pass filtered delta function rather than to 
a gaussian.  

III. SIMULATIONS 
Simulations have been performed to test the predictions of 

the frequency analysis for iterative reconstructions. Fig. 4 
presents a 2-Dimensional cosine phantom (above) which 
contains only one single frequency component, beyond the 
MSF limit. It can be seen that the system is blind to this 
frequency and completely fails to reconstruct the phantom 
(below). 

Fig.4.  Cosine Phantom. Proyected phantom (top) and reconstructed image 
(bottom). The cosine frequency can’t be recovered as it was not registered by 
the scanner. 

IV. ORIGIN OF  NOISE IN EM-ML RECONSTRUCTIONS 

  EM-ML is said to be ill-posed because by maximizing the 
Log-likelihood (5.f), the noise in the reconstructed image 
increases as the number of iterations progress (5.i). This 
problem is studied here with the help of simulated 
acquisitions, including Poisson noise, of a cold-rod phantom 
(Fig. 5).  The images reconstructed after 20 iterations (Iter.20) 
exhibit the lowest noise level and after 200 iterations 
(Iter.200), the best contrast recovery.  

As the iteration number progress, statistical methods like 
ML-EM try to recover higher and higher frequencies (see the 
Power Spectrum 5.g, 5.h), even after the MSF is reached. 
Recovery of frequencies larger than the MSF can only be 
achieved by amplifying the higher frequency components of 
the acquisition (noise), because these components of the object 
will hardly be recorded by the scanner, as they are filtered by 
the convolution with the gaussian shape of the TOR during the 
forward projection. Only the noise contribution to the image 
increases.   

Fig. 5
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 Fig. 5.  Results from a cold rod phantom simulation. Reconstructed 
images and its profile (top), Power Spectrum of these images (middle) and 
Power Spectrum of the projected data and the Forward Projection (bottom).  

V. SAMPLING CONSIDERATIONS  
As sampling is not the main limitation in iterative 

reconstruction methods, there exists a need for a quantitative 
determination of the minimal number of LORs needed for an 
optimal reconstruction.  

Some simulations have been done in order to estimate the 
minimum number of LORs required. First, an ideal noise-free 
case where the data was obtained forward-projecting the cold-
rod phantom with the SRM was considered. To analyze the 
effect of noise, the same study was applied to a case with 
Poisson noise added to data. 

Performance was evaluated by means of two figures of 
merit:  A) Cold Contrast Recovery (CCR) in a Region of 
Interest (ROI), in this case, the cold rods: CCR = 
(Reconstructed(Cold ROI)-Mean(Cold ROI)) / Mean(BG) B)
Background Noise: Standard Deviation (SD) from the BG 
normalized to the BG mean. 

In Fig. 6 we show the main results of this optimal sampling 
study. Higher sampling doesn’t improve the quality of the 
image reconstructed from noiseless data and reducing the 
number of radial bins worsens the image more than reducing 
the number of projections. An optimal value for the number of 
radial bins and projection can be considered: 
nr=na=FOV/Pixel Size. 

As can be seen in Fig. 6, the conclusions about the optimal 
sampling obtained in an ideal case, can not be easily 
extrapolated to realistic data, as they will be noise-dependent. 
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Fig. 6

Fig. 6. Contrast recovery versus Noise for reconstructions of the above 
cold rods phantom with noiseless data (left) and data with Poisson noise 
(right). The number of projections (na) and radial bins (nr) of a sinogram are 
varied. The number of emitted counts was the same in all the simulations. 

VI. OTHER PARAMETERS OF THE RECONSTRUCTION
Not only the optimal resolution can be determined by this 

analytical formulation. In this kind of scanners, resolution is 
more constrained by the form of the matrix of response of the 
system than by sampling. Filtered Back-Projection (FBP) 
method has better results when sampling is improved, using 
more LORs, as it avoids aliasing [8]. On the contrary, in 
MLEM, aliasing is not a main limitation, as the width of the 
TORs is a much more important factor. This is what allows 
reconstructing iteratively using N subsets of data. In each  
subset, the sampling is decreased by a factor N, and the signal  
to noise level is decreased. The maximum number of Subsets  
that can be chosen without compromising the quality of the  
image can be determined using this kind of analysis.  

From this framework, regulatization and stopping rule 
problems can also be dealt with. The knowledge of the higher 
recoverable frequency can also allow to create well defined  
regularization methods. 

VII. REAL DATA 
   Statistical algorithms can be considered as a method of 

deconvolution of projected data. The width of the TOR used 
for the reconstruction determines the maximum frequency that 
will be recovered. Wide TORs will yield poor resolution 
reconstructions, but with low noise levels. On the other hand, 
thin TORs (the usual choice when a simplified response of the 
system is employed) will force the reconstruction to try to 
recover higher frequencies, resulting in an increase of the 
noise level.  

   The effect of the width of the TOR used for the 
reconstruction was studied (see Figs. 7 and 8) for an 

acquisition obtained from a commercially available GE 
eXplore Vista scanner, at Johns Hopkins University.  A Micro 
Ultra Resolution Phantom was acquired with 200 counts per 
LOR and coincidence events within a 400-650 keV energy 
window were accepted.  

a = 0.5a = 0.5a = 0.5a = 0.5 a = 0.75a = 0.75a = 0.75a = 0.75 a = a = 1.0a = a = 1.0

      a  1.a = 1.25a  1.a = 1.25   a = 1.5  a = 1.5

Fig. 7.    Images of the Ultra Micro Resolution Phantom reconstructed with 
FIRST® [9], using different width of the TORs. The diameters of the  rods are 
0.8, 1.0, 1.2, 1.4, 1.6 and 1.8 mm. Separation  twice diameter. The results for 
one of the 61 slices through the axial FOV are shown. 

   The System Response Matrix employed for the 
reconstruction is obtained from a realistic MonteCarlo 
simulation which includes geometry, positron range, non 
collinearity and scatter in the detector crystals. Furthermore, 
reconstructions obtained with a modified SRM (scaling the 
FWHM of the TORs by a factor “a”, corresponding a=1 to the 
realistic SRM) are also displayed. 

   With a=0.5 or lower, i.e. using TORs much thinner than 
the realistic ones, aliasing artifacts appear. It is also worth to 
point out that a = 0.75 yields better image quality (measured 
both in s/n ratio and resolution) than the realistic width a = 
1.0.

Fig. 8Fig. 8

Fig. 8.   Profiles of the reconstructed images of the Ultra Micro Resolution 
Phantom acquisition with different TOR widths. 
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Fig. 9 presents the Power Spectrum of a projection for this 
phantom. Note that the only strength at high frequencies is due 
to the noise in the acquisition. Orange, Blue and Brown lines 
represent the limit of frequency recoverable with each SRM. 

Fig. 9
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Fig. 9. Power Spectrum of the projected real data and noise level  (in green) 
The different frequency regions that EM ML tries to recover as a function of 
the FWHM of the TORs are displayed in brown (a 0.75, Thin TORs), blue 
(a 1, Realistic TOR) and orange  (a 1.5, Wide TORs). In this last case, a 
quasi noise free image is yielded, but with poor resolution. 

VIII. CONSIDERATIONS FOR THE DESIGN OF PET 
SCANERS 

   Pet Scanners are designed bearing in mind analytical 
reconstruction methods. For example, high sampling is one of 
the main design goals. On the other hand, iterative methods 
are not so sensitive to the sampling employed, because of the 
width of the TORs. Specific design strategies must be used in 
order to get optimal results with iterative methods. Reducing 
the size of the crystals beyond certain point will not further 
reduce the width of the TORS, while, as the number of counts 
in a LOR n is decreased, the relative importance of noise 
(√n/n) will be larger (Fig. 10). This implies that the MSF will 
not be improved significantly, but the MESF will start to 
worsen beyond certain minimum crystal section. 

Fig.10.  FWHM and Noise of a TOR as a function of the crystal size (in 
mm)  It can be noticed that below certain size, it is not worth using smaller 
crystals, as it will not improve the MESF. 

IX. CONCLUSIONS

   The size of the TORs determines, to a much larger extent 
than the number of LORs or the distance among them, the 
main properties of small animal PET scanners, like best 
resolution or the signal to noise ratio achievable.  

   An analysis of the frequency components found on the 
projection data and on the reconstructed images provides 
useful information in order to tune statistical methods. 

   A quantitative estimate of the effective limiting system 
frequency is made that is DIFFERENT and more restrictive 
than the sampling (Nyquist related) frequency limitation. The 
MSF of any particular system can be estimated a priori, and 
this estimate can be used to determine the optimal stopping 
point for the iterative reconstruction method and the maximum 
achievable resolution from eq. (3). 

   The most accurate SRM is not necessarily the best choice 
when iterative reconstruction methods are employed. 
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