
 

 
 Abstract—Small animal PET scanners require high spatial 

resolution (< 1 mm) and good sensitivity. To obtain high 
resolution images, iterative reconstruction methods, like OSEM, 
applied to image reconstruction in three-dimensional (3D) 
positron emission tomography (PET), have superior performance 
over analytical reconstruction algorithms like FBP. However, the 
high computational cost of iterative methods remains a serious 
drawback to their development and clinical routine use. The 
increase in performance of current computers should make 
iterative image reconstruction fast enough to attain clinical 
viability. However, dealing with the large number of probability 
coefficients for the response of the system in high-resolution PET 
scanners becomes a difficult task that prevents the algorithms 
from reaching peak performance. Taking into account all possible 
axial, in-plane and other symmetries, we have  reduced the 
storage needs what allows us to store the whole response of the 
system in dynamic memory of ordinary industry standard 
computers, so that the reconstruction algorithm can achieve near 
peak performance.  

I. INTRODUCTION 
HERE is a need for fast and accurate reconstruction 
software for high resolution and high sensitivity PET 

scanners. This kind of detectors, typically employed in small 
animal PET studies, are designed with the goal of optimizing 
spatial resolution while keeping good detection sensitivity. 
They consist of several opposite scintillation detectors, each 
with an array of small crystals, arranged in a static ring or in a 
rotating device. The detector ring diameter and the size of their 
field of view (FOV) is in general less than 20 cm of diameter. 
Because spatial resolutions of the order of 1 mm are required, 
many small  crystals are required in these detectors and the 
number of lines of response (LORs) defined by a pair of 
crystals is very large. 3D acquisitions (and reconstruction) are 
mandatory due to the sensitivity requirements.  

Statistical reconstruction methods [1,9] have shown superior 
image quality to any conventional analytic reconstruction 
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techniques. Moreover, EM has some desirable properties as 
number of counts conservation, non-negativity, good linearity 
and dynamical range. 

One of their key advantages lies on the ability to incorporate 
accurate models of the PET acquisition process through use of 
the system response matrix (SRM). However, SRM for 3D 
systems are of the order of several thousands of Megabytes in 
size, and this impose serious demands for statistical iterative 
methods in terms of the time required to complete the 
reconstruction procedure and the computer memory needed for 
the storage of the SRM.  

The image process can be described as y(i) = A(i,j).x(j), 
where A(i,j) is the SRM, the vector x corresponds to the 
voxelized image and y to the measured data. Each element 
{A(i,j)} is defined as the probability of detecting an 
annihilation event emitted from image pixel j by a detector pair 
i. This depends on various factors such as the solid angle 
subtended by this voxel to the detector element, the attenuation 
and scatter in the source volume and detector response 
characteristics. In the way we have written it, the 
reconstruction method is based upon a linear model. However, 
some dependence on x(j) can be included in A(i,j), for instance 
attenuation or scatter corrections depending on x(j), and then 
the model would be  highly nonlinear. 

Forward projection is the operation that estimates the 
projection data that corresponds to a given source activity 
distribution. It is given by  the former expression: y(i) = 
A(i,j).x(j). 

Backward projection is the complementary operation to 
forward projection. It estimates  a source volume distribution 
of activity from a given projection data. Let b(j) denote the 
element of the backward projection image. This operation 
corresponds to the expression: b(j) = A(i,j).y(i).  Both the 
forward and backward projection operations require the 
knowledge of the SRM.  

Some implementations trade accuracy for speed by making 
approximations that do neglect some physical processes. All 
algorithms repeatedly use the forward and backward projection 
operations, which are the most time consuming parts of the 
iterative reconstruction programs. Many implementations 
simplify these operations to gain increments in speed, but the 
trade off is usually getting worse images.  
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Evaluation and storage of the SRM elements has been the 
main battlefield of large number of researchers in this area. 
Ideally, the SRM may be calculated somehow (e.g. using MC 
methods, or empirical data) and stored once and for all before 
the start of the reconstruction algorithm. In practice, time and 
memory requirements for doing this is prohibitive. A number  
of different methods have been proposed to create and handle a 
huge but sparse matrix like SRM. 

Some implementations compute the elements {A(i,j)} on the 
fly, only as and when they are required [5]. This avoids the 
need to store the SRM, but the computational simplicity 
required by on-the-fly calculations often overlooks important 
effects. The SRM is very sparse and by using clever storage 
schemes and symmetries of the system [6] it can be kept on 
disk. This slows down the reconstructions considerably, as 
disk access is very slow and the SRM elements are used at 
every step. Other groups factorized the SRM as a product of 
independent contributions: geometry, attenuation, and detector 
sensitivity [7]. The factorization assumption however is not 
accurate and thus the reconstructed images are not the best 
possible ones. 

We have employed a method to compress the SRM to 
allocate it in dynamical memory. This has proved to be a good 
choice as the reconstruction algorithm has achieved a sustained 
performance of around 50% of the theoretical peak computing 
capability of the processors. 

II. .SYSTEM RESPONSE MATRIX  [ SRM ] 
 

The SRM is composed of  all the nV x nL probability elements 
CVL representing the probability to detect an event coming from 
voxel V at detector LOR (Line of Response) L. Forward and 
backward projection require the knowledge of all of them. This 
matrix depends on factors such as the solid angle subtended from 
voxel to detector element,  the physics of beta decay, the 
attenuation and scatter in the source volume and detector response 
characteristics. For a reconstruction method to be accurate, these 
effects must be taken into account. 

Storing all the elements of the SRM would require more than 
104 Gbytes for a typical high resolution scanner. This exceeds the 
resources of any ordinary PC,  so we must to get rid of all 
redundant elements and makes some approximations in order of 
being able to store the SRM in memory. 

A. Sparseness of the matrix 
As most of matrix elements are null, there is no need to save 

them. This reduces considerably the storage requirements. 
Using resolutions of 177x177x60, the average number of 
voxels connected with a LOR (or CHORD [7]) is about 4000 
for a typical chord size of 150 x 7 x 4 voxels.  In this case, 
storing just the 0.2% nonzero elements requires over 100 
Gbytes, still too high.  

B. System Symmetries 
When the exact axial (translation and reflection) and in-

plane symmetries are taken into account, a reduction factor of 
approximately 40 in the number of non null SRM elements 
that need to be stored can be obtained[7]. Storage needs can  
then be reduced to a few (say 5 for typical cases) GBytes, 
small enough to fit in hard-disks, yet too much for the RAM 
amount of ordinary industry standard PCs. We aim to reduce 
the problem size so that it would fit in less than 200 Mbytes, 
thus we have to be more aggressive in the symmetries taken 
into account. 

C. Compressed SRM 
The method that we propose here is to use additional non 

exact symmetries, or quasi-symmetries in order to allow for 
additional compression of the SRM. If we allow for relatively 
small differences, we can group a priori different LOR’s 
within groups of the same quasi-symmetry class, where the 
differences in the elements of the SRM among LOR’s beloging 
to each class are much smaller than among LOR’s from 
different classes. Quasi-equivalent classes can be obtained, for 
instance, grouping together LOR’s from crystals with different, 
but  close, LOR-crystal orientations. 

 Depending on the geometry of the system, using quasi-
exact symmetries, the number of non quasi-equivalent LOR’s 
classes can be 5 to 20 times smaller  than the number of exact 
symmetries classes, if tolerances of the order of 5 to 10% 
between corresponding elements of quasi-equivalent LOR’s 
are accepted. Further reduction can be achieved if the 
relatively small differences inside the same quasi-symmetry 
class are taken into account by a factorized method inside the 
class. 

D. Resolution Independence 
We encode the SRM elements as transverse and longitudinal 

profile functions, in an almost resolution (voxel size) 
independent way, so that the same quasi-equivalent non zero 
elements can be used to build the SRM for a reasonable range 
of voxel sizes. We choose parameters so that SRM with 
resolutions varying in a factor 2 above or below   the central  
resolution  can be recovered. 

Eventually, we end up with a compressed SRM that fits in 
less than 150 Mbytes. Depending of chosen resolution and 
system size, recovery of the SRM “on–the-fly” from the 
compressed one and matching the profile functions to the 
actual voxel size employed accounts for  10% to 30% of the 
total reconstruction time. 

The compressed SRM can  be computed with any means 
and stored once and for all. MC methods are in principle the 
best theoretical way of giving realistic estimates of SRM 
elements. In our case, we use our own MC model that  
includes scatter, positron range and non-colinearity effects. 
Enough simulated events are accumulated so that an statistical 
uncertainty of less than 5% is achieved at the center of typical 
LORs. 
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III. ITERATIVE IMAGE RECONSTRUCTION 
ALGORITHMS  

 
Probably the most widely applied algorithm for finding the 

maximum-likelihood (ML) estimation of activity x given the 
projections  y, is expectation-maximization (EM), first applied 
to the emission tomographic problem by Shepp and Vardi [3], 
though ML is a general statistical method, formulated as a 
general solution to any optimization problem.  

 
Usually, iterative algorithms obtained from the ML 

statistical model assume that the data being reconstructed 
retain  Poisson statistics. Preserving the Poisson statistical 
nature of data requires that any pre-corrections on the data 
made by the acquisition system are removed. The corrections 
for randoms, scatter and other  effects should be  incorporated 
into the reconstruction procedure itself, rather than being 
applied as pre-corrections. Uncorrected data in raw 3D-LOR 
histogram mode  preserve  Poisson statistics. 

 
The slow convergence of EM is its greatest disadvantage 

[3]. This is due to the fact that the image is updated only after 
one full iteration, that is, after having projected and back-
projected passing by all the LORs at least once. In the Ordered 
Subset EM (OSEM) algorithm, proposed by Hudson and 
Larkin [3], the image is updated more often, which has been 
proved to reduce the number of necessary iterations to achieve 
equivalent convergence to EM.   

 
EM methods have also another important difficulty:  noisy 

images are obtained from over-iterated reconstructions. This is 
due to: A) There is no stopping rule in this kind of iterative 
reconstructions. B) The statistical (noisy) nature of the 
detection process and reconstruction method.  

 
Several techniques have been proposed to remedy for this, 

like filtering the image either after the whole reconstruction or 
along or in between   iterations. Removal of  noise from the 
data using wavelets methods has  been proposed [4]. 
Maximum A Priori (MAP) algorithms are  also widely used 
[2]. MAP adds a priori information during the reconstruction 
process. Typical assumption is  that, due to the inherent finite 
resolution of the system,  “the reconstructed image doesn’t 
have any abrupt edge”. Thus MAP methods apply a penalty 
function to those voxels that differs too much and/or too 
abruptly from its neighbors.  Whether the  maximum effective 
resolution achievable is reduced by the use these methods is 
still an open issue.  

 
 
We define the following parameters and functions:  

 
XJ  - Value of voxel J (J=1..number of voxels) 
XJ

n – Expected value of voxel J at iteration n 
aIJ – Probability that a photon emitted from voxel J were 

detected at detector I 
PI – Projection from the object measured at detector I 
(Experimental Data) 
RI

n – Projection estimated  for the image reconstructed at 
iteration n  

.
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The MAP-OSEM algorithm is a modified version of EM: 
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 In order to take into account scatter, it can be incorporated 
into the MAP-OSEM algorithm as follows [8]: 
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   Simulation of scatter inside the object  reveals this to be  
important  for small animal scanners: about 30% of the data 
comes from scatter. An accurate modeling of scatter on the 
object during reconstruction will improve the image quality. In 
this work scatter in the object is evaluated assuming and 
isotropic and homogeneous model of the object. 

IV. OPTIMIZATION TECHNIQUES FOR FULL 3D 
RECONSTRUCTION 

We have designed an EM based reconstruction software 
(FIRST) looking for the maximum flexibility compatible 
with the best performance. We implemented the accelerated 
version of EM (OS-EM). In our code, the number of subsets in 
each iteration can be chosen freely, not being limited by any 
system symmetry.  Moreover, this number of subsets can be 
changed between iterations, even inside them. 

 
Parallel computing on multiple processors is an attractive 

option to reduce computational time. New software protocols 
like the Message Passing Interface (MPI) and LAM-MPI 
enable a cluster of networked, independent industry standard 
PC’s (Beowulf clusters) to be used together like a multi-
processor unit.  

   
3



 

FIRST can be run in parallel in a Beowulf clusters of 
several CPUs in a master/slave implementation.  There exists a 
Master-process and several (usually as many as CPU 
available)  Slave-processes. The Master distributes the job 
between the Slaves ones and continuously balances the 
workload  looking for the best performance taking into account 
differences in individual speed or workload for each CPU.  

  Always bearing in mind flexibility as a goal of  design, 
FIRST can  work with  variable image resolution that can 
even be changed during reconstruction, between or inside any 
iteration.  

V. SIMULATION  RESULTS 

A. Test sets for evaluating  the method 
In order to test our implementation, before applying it on 

acquisitions from real scanners cases, we have reconstructed 
images from simulated projections  using different phantoms 
(from uniform cylinders to more sophisticated test sets as the 
“Spiral-phantom”) as original activity images. Events were 
generated from these tests sets  using a MC method. Positron 
range and non-colinearity was taken into account for the 
emission.  Nor attenuation neither scatter within the object was 
included. The response of the detector was also simulated 
considering the main physical effects. For each study 10 
billion events were simulated and stored as projection data. 

The scanner parameters chosen for these simulations were 
the ones of the ARGUS-drT small animal PET scanner [10]. It 
is a ring-type scanner with an 11.8 cm ring diameter, a 
transverse FOV of 6.8 cm and an axial FOV of 4.6 cm. It is 
based on a phoswhich scintillator  depth-of-interaction 
technology with detector modules arranged in single/double rings 
12. cm in diameter. The detector modules are comprised of a 13 x 
13 array of crystals with 1.50 mm pitch size. The number of 
LORs in this scanner is over  2.8x107.    

 
The images reconstructed from these simulations have a 

resolution of 175 x 175 x 60 voxels. The size of the phantoms 
and the images were chosen to be the same as the FOV of 
ARGUS-drT. 

B. Evaluation of the method 
 

As a first test, we have verified that using the compressed 
SRM and the uncompressed one produces images of the same 
quality and introduces no artifacts. 

 
Secondly, an estimate  of the PSF is obtained by using a 

phantom consisting of an array of small sources, located at 
different radial and axial positions (10 mm  between them) 
were simulated.  FWHM resolutions of 0.8 mm (at center of 
the scanner) to 1.0 mm (2.0 cm off axis) were obtained. 

 
 

In order to study the linearity of the reconstruction method 
as well as, conservation of the number of counts and noise 
properties, the “Spiral phantom” was designed (Figure 1). It is 
comprised of three cylinders (background) each one with two 
spirals inside: a hot one (activity 4 times greater than the 
background) and a cold one (activity 4 times smaller ). 

 

 
 
Fig. 1. Spiral-Phantom (left) and reconstructed image: MAP-OS-EM [3 

Iterations, 50+50+50 Subsets] (right). 
 

 
 
Fig. 2. 3D representation of a transverse section of the “Spiral- Phantom” 

and its reconstructed images. Z-Axis represents emitter activity. From left to 
right: True Spiral phantom, OS-EM 3 iterations (100 + 100 + 50 subsets) and  
MAP-OS-EM 3 iterations [100 + 100 + 50 subsets]. 

 
 
 
Figures 1-3 show the “Spiral-Phantom” and the 

reconstructed (OS-EM) and (MAP-OS-EM) images.  MAP-
OS-EM reconstructions have less noise and show no resolution 
degradation. In these figures the very linear response of the 
reconstruction method is noticed. 
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Fig. 3. Traces through the same “Spiral-phantom” study. Shown is emitter 

activity: True Phantom (solid line); OS-EM (circles) and MAP-OS-EM 
(triangles). 

VI. RESULTS ON REAL DATA 
 

               
Fig. 5. Reconstructed images of 18-F (left) and FDG (right) injected mice 

body data acquired with an ARGUS [10] PET scanner. 
 
Our reconstruction software was applied to real data.  18-F   

and FDG injected mice whole-body data were acquired with an 
ARGUS [10] PET scanner. Figure 5 shows the reconstructed 
images obtained using the OS-EM algorithm: 3 Iterations 
[50+50+50 SubSets]. The number of voxels is 175x175x168. 
Resolution  obtained from real acquisition is around 1 mm 
what can be clearly appreciated in the images shown. 

Typical reconstruction time from real data is 1 hour for a 
full iteration using 1 CPU (Opteron Dual 244, 1800 GHz, 2Gb 
RAM). Reconstruction time nearly scales with the product of 
the number of LORs [2.8x107] times the number of voxels in a 
LOR [4000]. The parallel version of FIRST reduces this time 
by the number of CPUs available. 

VII. DISCUSSION & CONCLUSIONS 
We have implemented FIRST, a fully 3D-OS-EM and 3D-

OS-EM-MAP with a compressed SRM with all the resolution 
recovery properties of EM. Its flexibility, reconstruction time 

and the accuracy and resolution of  reconstructed images can 
make FIRST to become an important tool in real clinical 
studies of  high resolution small animal PET scanners.  
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