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Abstract

Move-to-front rule is a heuristic updating a list of n items according to requests. Items 
are required with unknown probabilities (or popularities). The induced Markov chain is 
known to be ergodic. One main problem is the study of the distribution of the search 
cost defined as the position of the required item. Here we first establish the link between 
two recent papers of Barrera and Paroissin and Lijoi and Pruenster that both extend 
results proved by Kingman on the expected stationary search cost. Combining results 
contained  in  these  papers,  we obtain  the  limiting  behavior  for  any moments  of  the 
stationary seach cost as n tends to infinity.
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1 Introduction

The heaps problem was first considered, in independent works, by Tsetlin (1963)
and McCabe (1965). Its basic description can be given as follows. Consider
a collection of n items stored into a list or heap and each of them is identi-
fied by a label. Hence, the objects can be described by the set I = {1, . . . , n}.
The probability that the i–th item is requested by a user is denoted by pi, for
i = 1, . . . , n. Hence pi > 0, for any i, and

∑n
i=1 pi = 1. At each unit of time,

an item is requested and it is searched for through the heap, starting at the
top. Once it is found, it is moved to the top of the heap. The search cost is the
position of the requested item in the heap or, equivalently, the number of items
to be removed from the heap in order to find the requested one. In this setting,
it might be of interest to determine the distribution of the search cost when the
underlying Markov chain is at equilibrium.

Kingman (1975) first studied the case of random request probabilities, or ran-
dom popularities. His paper develops two important cases where request prob-
abilities are defined in terms of: (a) the normalized increments of a γ-stable
subordinator; (b) the Dirichlet distribution on the simplex. The results con-
tained therein provide an exact analytic evaluation of the expected search cost
either for any finite n or in the limit, as the number of items n tends to infinity.
In particular, in the case of normalized γ-stable request probabilities, it is found
that the limiting expected search cost is finite if and only if γ < 1/2.

These results have been recently extended in two independent papers. Lijoi
and Pruenster (2004) studied the case of request probabilities derived from a
normalized random measures with independent increments, which generalizes
the result obtained by Kingman (1975). Barrera and Paroissin (2006) studied
the case of request probabilities based on exchangeable random partitions.

It is to be emphasized that all previous contributions on the subject is confined
to the determination of the first moment of the stationary search cost. Here
we wish to extend earlier work and determine the expression of the limiting
moments of any order in the γ–stable case. In particular, it will be shown that
the k–th moment exists if and only if γ < 1/(k + 1) which reduces to the con-
dition provided by Kingman (1975) when k = 1. See also Lijoi and Pruenster
(2004). The outline of the paper is as follows. In Section 2 we provide a concise
introduction to some basic tools and notions that will be relevant for achieving
the main result in Section 3.

2 The γ-stable model

Before stating and proving our result, it might be worth recalling the main
ingredients that define the model we are going to use. As mentioned in the
previous section, the request probabilities pi, for i = 1, . . . , n, are going to
be random. Indeed, if (wi)i≥1 is a sequence of positive independent random
variables and Wn =

∑n
i=1 wi, one can define

pi =
wi

Wn
i = 1, . . . , n

Hence, (p1, . . . , pn) is an exchangeable random partition of the unit interval.
A possible choice is wi := ξti − ξti−1

where 0 = t0 < t1 < · · · < tn = 1
and ξ = {ξt : t ∈ [0, 1]} is a subordinator that is a process with almost surely
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increasing paths and with independents increments. In this case, one can express
the the Laplace transform of wi in terms of the Lévy intensity ν of ξ. In other
words

φi(s) := E
[
e−swi

]
= exp

{
−(ti − ti−1)

∫ ∞

0

[
1− e−sy

]
ν(dy)

}
(1)

with ν such that
∫∞
0

min{1, y} ν(dy) < ∞. According to the terminology set
forth in Regazzini et al. (2003), (p1, . . . , pn) defines a normalized random
measure with independent increments (NRMI).

Lijoi and Pruenster (2004) considered this general construction to determine
an expression of the expected value of the search cost Sn. In the special case
where

ν(dy) =
γ

Γ(1− γ)
y−1−γ dy γ ∈ (0, 1) (2)

they recovered an expression of the limiting expected search cost, as n tends to
infinity, thus recovering a result proved by Kingman (1975). Note that if ν is
as in (2), then φi(s) = exp{−(ti − ti−1)s

γ} for any s ≥ 0.

Barrera and Paroissin (2006) have been able to determine an integral repre-
sentation for the Laplace transform φSn of the search cost Sn in terms of the
Laplace transforms φi of the single random weights wi. In doing so they rely
on results proved by Fill and Holst (1991). The expression they obtain is,
then, used to derive a formula for the first two moments. From these formulas,
they get an asymptotic equivalent for the Laplace transform of Sn and the limit
of the two first moments. Only this last point needs the assumption that the
expectation of Sn is finite. Two examples are studied: the case of determinis-
tic weight and the case of gamma weight, which corresponds to the Dirichlet
partition. Notice that, for this case, some limiting results were proved with an
alternative way in Barrera et al. (2005). The limiting distribution has been
also derived in the general iid case provided that the expectation µi of wi is
finite Barrera et al. (2006).

In the following section we will undertake the approach developed in Barrera
and Paroissin (2006) and determine the k–th moment of Sn by working directly
on φSn .

3 Moments of the stationary search cost

The main tool we are relying on for the evaluation of E[Sk
n] is the Laplace

transform of Sn as displayed in theorem 2.2 of Barrera and Paroissin (2006)
and recalled here below.

Theorem 1. For a sequence (wi)i≥1 of independent random variables

φSn(s) =

n∑
i=1

∫ ∞

0

∫ ∞

t

φ′′
i (r)

∏
j 6=i

ht,s,j(r) dr

 dt , (3)

for all s > 0, where for all j ∈ {1, . . . , n},

ht,s,j(r) = φj(r) + e−s(φj(r − t)− φj(r)) , t > 0, r > 0 .
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Using (3), we are able to compute moments of any order of the search cost
Sn. Before doing so we need to introduce the quantity

Mk,n(s) := e−ks
∑

i6=i1 6= ··· 6=ik

∫ ∞

0

∫ ∞

t

φ′′
i (r)

k∏
l=1

(φil(r − t)− φil(r))

×
∏

j 6∈{i,i1,...ik}

[φj(r) + e−s(φj(r − t)− φj(r))]drdt (4)

whose values, at s = 0, will determine the moments of Sn.

Proposition 1. If the (p1, . . . , pn) are determined by normalizing the incre-
ments of a γ-stable subordinator with ti − ti−1 = 1/n in (1) for each i ∈
{1, . . . , n}, then

lim
n→∞

Mk,n(0) =

{
(k!)2

( 1
γ −k−1)k

if γ < 1
k+1

∞ otherwise

where (a)k = Γ(a+ k)/Γ(a) is the k–th ascending factorial of a.

Proof. Note first that φi(s) = exp{−sγ/n} for any s ≥ 0. Moreover

Mk,n(0) =
∑

i6=i1 6=···6=ik

∫ ∞

0

∫ ∞

t

φ′′
i (r)

k∏
l=1

(φil(r − t)− φil(r))
∏

j 6∈{i,i1,...ik}

φj(r − t) dr dt

=
∑

i6=i1 6=···6=ik

∫ ∞

0

∫ ∞

0

φ′′
i (r + t)

k∏
l=1

(φil(r)− φil(r + t))
∏

j 6∈{i,i1,...ik}

φj(r) dr dt

=
∑

i6=i1 6=···6=ik

∫ ∞

0

∏
j 6∈{i,i1,...ik}

φj(r)

∫ ∞

0

φ′
i(r + t)

k∑
l=1

φ′
il
(r + t)

×
k∏

m=1
m6=l

(φim(r)− φim(r + t))dtdr

Taking into account the form of φi in the γ–stable case, one has

k∏
m=1
m6=l

(φim(r)− φim(r + t)) =
∑

al∈{0,1}k−1

k∏
m=1
m6=l

(−1)amφam
im

(r + t)φ1−am
im

(r)

=
∑

al∈{0,1}k−1

(−1)|al|e−
(r+t)γ

n |al| e−
rγ

n (k−1−|al|)

where al = (a1, . . . , al−1, al+1, . . . , ak) and |al| =
∑

m6=l am. Summing up, in
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the γ–stable case one has

Mk,n(0) =
γ2

n2

∑
i6=i1 6=···6=ik

k∑
l=1

∑
al∈{0,1}k−1

(−1)|al|
∫ ∞

0

e−rγ(1− 1
n− k

n )

×
∫ ∞

0

(r + t)2γ−2 e−
(r+t)γ

n (2+|al|) e−
rγ

n (k−1−|al|) dt dr

=
γ2

n2

∑
i6=i1 6=···6=ik

k∑
l=1

∑
al∈{0,1}k−1

(−1)|al|
∫ ∞

0

e−rγ(1− 2
n− |al|

n )

×
∫ ∞

0

(r + t)2γ−2e−
(r+t)γ

n (|al|+2) dt dr

The change of variable (x, y) = ((r + t)γ , rγ) yields

Mk,n(0) =
1

n2

∑
i6=i1 6=···6=ik

k∑
l=1

∑
al∈{0,1}k−1

(−1)|al|
∫ ∞

0

y
1
γ −1e−y(1− 2

n− 1
n |al|)

×
∫ ∞

y

x1− 1
γ e−

x
n (2+|al|) dxdy

Using formula (3.381.6) in Gradshtein and Rizhik (2007), one finds out that

Mk,n(0) =
1

n2

∑
i6=i1 6=···6=ik

k∑
l=1

∑
al∈{0,1}k−1

(−1)|al|
∫ ∞

0

y
1
2γ − 1

2 (n−1(|al|+ 2))−
3
2+

1
2γ

× e−y(1− 1
n− 1

2n |al|) W 1
2−

1
2γ ,1− 1

2γ

(
y
|al|+ 2

n

)
dy

where Wa,b is the Whittaker function. Then using (7.621.3) in Gradshtein and
Rizhik (2007), it follows that

Mk,n(0) =
γ

n2

∑
i6=i1 6=···6=ik

k∑
l=1

∑
al∈{0,1}k−1

(−1)|al|
2F1

(
2, 1;

1

γ
+ 1; 1− 2 + |al|

n

)

=
γ

n2

∑
i6=i1 6=···6=ik

k∑
l=1

k−1∑
r=0

(−1)r
(
k − 1

r

)
2F1

(
2, 1;

1

γ
+ 1; 1− 2 + r

n

)

=
γk(n− 1)(n− 2) · · · (n− k)

n

k−1∑
r=0

(−1)r
(
k − 1

r

)
2F1

(
2, 1;

1

γ
+ 1; 1− 2 + r

n

)
Since the Gauss hypergeometric function 2F1 can be rewritten as

2F1

(
2, 1;

1

γ
+ 1; 1− 2 + r

n

)
=

∞∑
l=0

(2)l(1)l

l!(1 + 1
γ )l

l∑
j=0

(−1)j
(
l

j

)(
2 + r

n

)j
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the expression of Mk,n(0) can be further simplified as follows

Mk,n(0) =
γk(n− 1)(n− 2) · · · (n− k)

n

k−1∑
r=0

(−1)r
(
k − 1

r

)

×
∞∑
j=0

∞∑
l=j

(2)l(1)l

l!(1 + 1
γ )l

(−1)j
(
l

j

)(
2 + r

n

)j

=
γk(n− 1)(n− 2) · · · (n− k)

n

k−1∑
r=0

(−1)r
(
k − 1

r

) ∞∑
j=0

(−1)jaj

(
2 + r

n

)j

where

aj =

∞∑
l=j

(2)l(1)l

l!(1 + 1
γ )l

(
l

j

)
A simple change of variable m = l − j leads to write aj as

aj =

∞∑
m=0

(2)m+j(1)m+j

(m+ j)!(1 + 1
γ )m+j

(
m+ j

j

)

=
∞∑

m=0

(m+ j + 1)!(m+ j)!

j!(1 + 1
γ )m+j

1

m!

=
(j + 1)!

(1 + 1
γ )j

∞∑
m=0

(j + 2)m(j + 1)m

(j + 1 + 1
γ )m

(1)m

m!

=
(j + 1)!

(1 + 1
γ )j

2F1(j + 2, j + 1, j + 1 +
1

γ
, 1)

and, consequently,

Mk,n(0) =
γk(n− 1)(n− 2) · · · (n− k)

n

k−1∑
r=0

(−1)r
(
k − 1

r

) ∞∑
j=0

(−1)j
(j + 1)!

(1 + 1
γ )j

× 2F1(j + 2, j + 1, j + 1 +
1

γ
, 1)

(
2 + r

n

)j

If one resorts to identity (0.154.6) in Gradshtein and Rizhik (2007), it follows
that

Mk,n(0) =
γk(n− 1)(n− 2) · · · (n− k)

n

∞∑
j=k−1

(−1)j
(j + 1)!

(1 + 1
γ )j

× 2F1(j + 2, j + 1, j + 1 +
1

γ
, 1)

k−1∑
r=0

(−1)r
(
k − 1

r

)(
2 + r

n

)j
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Finally, using formula (0.154.5) in Gradshtein and Rizhik (2007) one has

Mk,n(0) =
γk(n− 1)(n− 2) · · · (n− k)

n

[
1

nk−1

k!(k − 1)!

(1 + 1
γ )k−1

2F1(k + 1, k, k +
1

γ
, 1)

+o(
1

nk−1
)

]

as n → ∞. If γ < 1
k+1 then 2F1(k+1, k, k+ 1

γ , 1) =
Γ(k+ 1

γ )Γ( 1
γ −k−1)

Γ( 1
γ −1)Γ( 1

γ )
. Otherwise

the Gauss hypergeometric function diverges (see paragraph 9.102 in Gradshtein
and Rizhik (2007)). After some little algebra the result is proved.

The study of the limiting behavior of Mk,n(0) is crucial for understanding
the limiting behavior of the moments. Indeed,

E(Sk
n) = (−1)k φ

(k)
Sn

(s)
∣∣∣
s=0

In particular, we have:

E(Sn) = M1,n(0)

E(S2
n) = M1,n(0) +M2,n(0)

E(S3
n) = M1,n(0) + 3M2,n(0) +M3,n(0)

E(S4
n) = M1,n(0) + 7M2,n(0) + 6M3,n(0) +M4,n(0)

E(S5
n) = M1,n(0) + 15M2,n(0) + 25M3,n(0) + 10M4,n(0) +M5,n(0)
· · ·

In general

E(Sk
n) = a

(k)
1 M1,n(0) + · · ·+ a

(k)
k Mk,n(0) (5)

where
a
(k)
1 = 1

a
(k)
l = a

(k−1)
l−1 + la

(k−1)
l l = 2, . . . , k − 1

a
(k)
k = 1

(6)

The last recursion follows from the fact that

M ′
k,n(s) = −kMk,n(s)−Mk+1,n(s)

From proposition 1 and equation (5), we have the following theorem.

Theorem 2. If the (p1, . . . , pn) are determined by normalizing the increments
of a γ-stable subordinator with ti − ti−1 = 1/n in (1) for each i ∈ {1, . . . , n},
then

lim
n→∞

E(Sk
n) =

{ ∑k
l=1

(l!)2

( 1
γ −l−1)l

a
(k)
l if γ < 1

k+1

∞ otherwise
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The previous theorem allows to calculate all the moments of the limiting
search cost distribution in the stable case. For example the second moment is

lim
n→∞

E(S2
n) =

{
γ(1+γ)

(1−3γ)(1−2γ) if γ < 1
3

∞ otherwise

and the third moment

lim
n→∞

E(S3
n) =

{
γ(1+5γ)

(1−4γ)(1−3γ)(1−2γ) if γ < 1
4

∞ otherwise
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