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Abstract 
 

The analysis of short longitudinal series of circular data may be problematic and to 

some extent has not been completely developed. In this paper we present a Bayesian 

analysis of a model for such data. The model is based on a radial projection onto the 

circle of a  particular bivariate normal distribution. Inferences about the parameters of 

the model are based on samples from the corresponding joint posterior density which 

are obtained using a Metropolis-within-Gibbs scheme after the introduction of suitable 

latent variables. The procedure is illustrated both using a simulated data set and a real-

data set previously analyzed in the literature. 
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1 Introduction

Several approaches have been proposed for analyzing longitudinal data. For a review the reader

is referred, for example, to Diggle et al. (2002), Fitzmaurice et al. (2004), Hedeker and Gibbons

(2006), and Gelman and Hill (2007). These books all discuss longitudinal models for ‘scalar’ (i.e.

linear) responses as opposed to circular. In contrast, methodological proposals to describe relation-

ships within repeated measurements of circular data are rather limited. This may be due to the

difficulties in working with probability distributions commonly associated with directional data and

to the intrinsic dependency inherent to longitudinal structures.

Circular data are a particular case of directional data. Specifically, circular data represent di-

rections in two dimensions. For a survey the reader is referred to Fisher et al. (1987), Fisher

(1993), Mardia and Jupp (2000), and Jammalamadaka and SenGupta (2001). See also Arnold

and SenGupta (2006) for an overview of the applications of circular data analysis in ecological and

environmental sciences.

From a theoretical point of view, there are three basic approaches to directional statistics, which

may be called the embedding, wrapping and intrinsic approaches; see, Mardia and Jupp (2000).

Consequently, there are several ways of generating probability distributions for circular data. One

relativaly straightforward way is to radially project on the unit circle probability distributions

originally defined on the plane. In the general case, let Y be a q-dimensional random vector such

that Pr(Y = 0) = 0. Then U = ||Y ||−1Y is a random point on the q-dimensional unit sphere.

Its mean direction is the unit vector η = E(U)/ρ, where ρ = ||E(U)||, 0 ≤ ρ ≤ 1; here E(·)

represents the usual expectation for random vectors, and || · || represents the usual Euclidean norm.

The parameter ρ is called the mean resultant length and represents a measure of concentration for

directional distributions (see, for example, Mardia and Jupp, 2000, and Presnell et al., 1998).

An important instance is that in which Y has a q-variate Normal distribution, Nq(·|µ,Λ), with

mean vector µ = E(Y ) and precision matrix Λ = Var(Y )−1. In this case U is said to have a

q-dimensional projected normal distribution, here denoted by PN(·|µ,Λ). In the circular case,
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q = 2, U is a 2-dimensional unit vector, and so it can be alternatively specified by means of a single

angle Θ, say. A version of the projected normal linear model for the circular case has been analyzed

using a frequentist approach by Presnell et al. (1998). Nuñez-Antonio et al. (2011) present and

discuss a Bayesian analysis of the same model. See also Nuñez-Antonio and Gutiérrez-Peña (2005).

There exists situations involving longitudinal relationships where the response variable is circular.

However, from a theoretical point of view, there seems to be a lack of models that adequately

describe longitudinal structures for circular data, and the procedures currently available to carry

out inferences about these models are rather limited. In fact, there does not seem to be a general

framework for the analysis of longitudinal directional data. Circular data have been studied using

quasi-likelihood methods, such as the generalized estimating equations (GEE) proposed by Liang

and Zeger (1986) to analyze linear data. Specifically, Arts et al. (2000) derive estimating equations

for the parameters of a family of circular distributions with two parameters. In particular, they

exhibit a case for a mixed effects model and obtain asymptotic estimates for parameters involved.

In turn, Arts and Jφrgensen (2000) have extended GEE methods to deal with Jφrgensen’s disper-

sion models (Jφrgensen, 1997ab) and have applied their approach for modeling longitudinal circular

data. Arts and Jφrgensen (2000) also present a simulation study for a model which considers only

the mean direction and a single covariate. They note that in some situations their proposal may

have troubles with convergence, and point out that their method requires a high correlation be-

tween the longitudinal observations or large samples to achieve satisfactory performance. Recently,

Song (2007) has used a generalized linear model approach where the random component belongs to

the family of dispersion models. He suggests penalized pseudo-likelihood and restricted maximum

likelihood estimation to bypass the analytical difficulties arising from the nonlinearity of the corre-

sponding score functions. Nevertheless, in some cases it is not posible to get inferences for all the

parameters involved in the proposed models.

Thus, previous procedures for analyzing longitudinal data for a circular response suffer from

flaws that render them unfeasible to carry out inferences in general situations. These limitations

include troubles for fitting, model comparison and prediction, as well as convergence problems of
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the iterative methods utilized, etc. The main goal of this paper is to introduce a Bayesian model

to describe short series of longitudinal data where the response variable is circular. The model

considers linear covariates and is based on a version of the projected bivariate normal model. In

our proposal, each of the two components from model is specified by a mixed-effect linear model.

In addition, we present a Bayesian analysis to build a convenient posterior distribution in order to

carry out joint inferences on the all parameters in the model.

The paper is organized as follows. In the next section we introduce the projected circular longitu-

dinal model, henceforth called the PCL model and describe some of its properties. In Section 3 we

discuss the Bayesian analysis of the model and derive all the full conditionals needed for a Gibbs

sampler. We also show how to generate samples from the corresponding joint posterior density using

a Metropolis-within-Gibbs scheme. In Section 4, we present some illustrative examples. Finally,

Section 5 contains some concluding remarks.

2 The PCL model

2.1 Description of the model

The aim of this work is to introduce a model to describe short series of longitudinal data, where

the response is a circular variable Θ, in terms of one or more explanatory variables or covariates

x = (x1, ..., xv)
t. Even though the results presented in this study can be extended to other cases,

only linear covariates will be considered here.

To introduce the PCL model we consider a multivariate perspective. Assume that measurements

on each occasion j (j = 1, . . . , ni) on the ith individual in the study (i = 1, . . . , N) are arranged in

a ni × 1 vector of responses θi = (θi1, . . . , θini
)t. Thus, we have a design with N individuals and ni

angular observations, θij, on each individual.

A first important step to construct the PCL model is to propose an augmented model via intro-

duction of suitable set of latent variables Rij, in such a way that
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Y ij =

 Y I
ij

Y II
ij

 = Rij ×

 cos θij

sinθij

 i = 1, · · · , N

j = 1, · · · , ni.

where Rij = ||Y ij||.

In addition, we propose the following structure for the vector of means

µij =

 µIij

µIIij

 = B′xij +Z ′bi,

where

µkij = (xkij)
′βk + (zkij)

′bki ,

∀ k ∈ {I, II},

i = 1, · · · , N, and

j = 1, · · · , ni.

Here, B = [βI ,βII ] is the matrix of coefficients of model and Z = [bI , bII ]. Note that, in practice,

each of the two components of µij may depend on different subsets of covariates, in which case the

vectors of coefficients, βI and βII , may have different dimensions (the same holds for vectors bI y

bII). We emphasize that, in the previous definition, we have a mixed effects model for each of the

two components of the PCL model. In other words,

Y I
i = XI

iβ
I +ZI

i b
I
i + εIi ,

Y II
i = XII

i β
II +ZII

i b
II
i + εIIi ,

where Y I
i and Y II

i are vectors of dimension nki , ∀ i = 1, . . . , N . Thus, the vectors bi represent

subject-specific random effects, usually assumed to be normally distributed with mean vector 0 and

covariance matrix V . From this perspective, it may now be realistic to assume that, given bi, the

components of ε are independent. This allow us to set the precision (or covariance) matrices of εk

as Λ = λIni
, as in the original paper by Laird and Ware (1982). In fact, in our approach we will

use the structure Λ = Ini
in order to appropriately arrange the construction of the PCL model.
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Recalling the previous discussion, and considering each of the two components k ∈ {I, II} sepa-

rately, the hierarchical definition of the PCL model based on the augmented-data is

• Stage-1. For each individual i,

Y k
i | βk, {bi}k ∼ Nni

(Xk
iβ

k +Zk
i b

k
i , I), i = 1, · · · , N,

which means that, given βk y {bi}k,

Y k
i = Xk

iβ
k +Zk

i b
k
i + εki . ∀ i = 1, · · · , N,

where εki ∼ Nni
(0, I).

• Stage-2. The vectors βk and bki are considered independent vectors, ∀ i = 1, · · · , N , with

bki |Ωk ∼ Nq(0,Ω
k) ∀ i = 1, · · · , N,

βk ∼ Npk(0, Ak).

• Stage-3.

Ωk ∼ Wi(vk, Bk), vk ≥ qk

where qk is dimension of vector bki . In this parametrization E(Ωk) = vk(Bk)−1

2.2 Longitudinal structures obtained from the PCL model

The PCL model is flexible enough to describe a variety of longitudinal patterns for short series.

Figure 1 exhibits some of these behaviors. It can be seen that the PCL model is able to reproduce

the structures of random intercept, random slope and random intercept-slope of a standard mixed

effects model. Furthermore, the model can also produce more general dependence patterns such as

that presented in the lower right panel of Figure 1.
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Figure 1: Some longitudinal patterns for circular data produced by the PCL model.

3 Inference via MCMC

Our approach is based on the introduction of suitable latent variables Rij to define an augmented

joint distribution for the data conditional on the matrices B y b. This joint distribution is con-

structed in such a way as to ensure that we can simulate from all the posterior conditional densities

required for a Gibbs sampler. It should be noted for each ij−th observation, Stage-1 of PCL model

can be seen as

f(yij = rij(cos θ, sin θ)t| βI ,βII , {bi}I , {bi}II ,xIij,xIIij , zIij, zIIij ) = N2(yij |µij, I).

7



In this way, if we introduce the latent variables Rij defined on (0,∞) through the transformation

Y ij = Rij(cos Θij, sinΘij)
t,

then the joint density of (Θij, Rij), denoted by f(Θij ,Rij)(θij, rij), can be obtained by letting Rij =

||Y ij|| and then transforming to polar coordinates. It follows that Θij has a projected normal

distribution with density function given by

f(θij|µij, I) =
1

2π
exp{−1

2
||µij||2} [ 1 +

v′ijµij
φ(vtijµij)

Φ(v′ijµij) ] 1(0,2π](θij) 1R2(µij)

where

µij =

 µIij

µIIij

 =

 (xIij)
tβI + (zIij)

tbIi

(xIIij )tβII + (zIIij )tbIIi

 i = 1, · · · , N,

j = 1, · · · , ni,

and vtij = (cos θij, sin θij). Here, φ(·) and Φ(·) denote the probability density function and cumula-

tive distribution function (respectively) of the standard normal distribution.

Once we have completed (augmented) the observed data, via the introduction of the latent vari-

ables Rij, in order to set up the Gibbs sampler for the PCL model we must specify the corresponding

conditional densities. These are described next.

3.1 Full conditional densities

Let Dn = {(r11, θ11), · · · , (rNni
, θNni

)} be a set of observations from the PCL model. Omiting the

superscript k for notational convenience, the posterior conditional densities for the paramaters and

latent variables of each of the components k ∈ {I, II} are given by

f(β|{bi},Ω,Dn) = Np(β|C−1

N∑
i=1

X t
iei, C).

f(bi|β,Ω,Dn) = Nq(bi|D−1
i Z

t
iẽi, Di) ∀ i = 1, · · · , N.

f(Ω|{bi},Dn) = Wi(v +N,B +
N∑
i=1

bib
t
i),
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where

C =
∑N

i=1X
t
iX i + A,

ei = Y i −Zibi,

Di = Zt
iZi + Ω,

ẽi = Y i −X iβi.

We note that the Rij are conditionally independent given the Θij. Thus, the full conditional

densities of Rij are given, up to a constant of proportionality, by

f(rij|{θij},β, bi) ∝ rij exp{−1

2
[r2
ij − 2 (vtijµij) rij] }.

Clearly, it is not difficult to sample from f(β|{bi},Ω,Dn), f(bi|β,Ω,Dn) and f(Ω|{bi},Dn). On

the other hand, we can generate Rij from f(rij|θij,µij) and in this way draw a random matrix R

from f(R|{θij},β, bi). This last step is carried out via a Metropolis-Hastings algorithm.

We can now use all the previous full conditionals in a Gibbs sampler to get a sample from the

joint posterior density

f(βI ,βII , {bi}I , {bi}II , ΩI ,ΩII ,R| {θij}). (3.1)

Unfortunately, direct implementation of the previous MCMC scheme will typically lead to a slow-

mixing chain and potential convergence problems. This is due in part to the structure of the

mixed effects models within each component of the projected normal distribution and to the high

dimension of the hierarchical model. In the particular case of mixed effects models for longitudinal

scalar data, several methods have been proposed in the literature in order to improve the efficiency

of MCMC methods. See, for example, Gelfand et al. (1995), Vines et al. (1996), Gilks and Roberts

(1996), Gelfand y Sahu (1999), Chib and Carlin (1999). Here, we employe a method proposed by

Chib and Carlin (1999) to simulate the fixed effects β and all random effects bi in a single block

within each component of the PCL model.

Specifically, our algorithm to sample from the posterior distribution of all the parameters of the

PCL models is the following.
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• For each component k, k ∈ {I, II},

1. Sample βk and {bki } from f(βk, {bi}k|ΩI ,ΩII ,Dn) = f(βk, {bi}k|Ωk,Dn) by sampling

1.1 βk from f(βk|ΩI ,ΩII ,Dn) = f(βk|Ωk,Dn).

1.2 bki from f(bki |βI ,βII ,ΩI ,ΩII ,Dn) = f(bki |βk,Ωk,Dn),

for each i = 1, . . . , N.

2. Sample Ωk from f(Ωk|βI ,βII , {bi}I , {bi}II ,Dn) = f(Ωk|{bi}k,Dn).

• Sample Rij from f(rij|βI ,βII , {bi}I , {bi}II , ΩI , ΩII , {θij})

for each i = 1, . . . , N and each j = 1, . . . , ni.

• Repeat until convergence is achieved.

In 1.1 above, the conditional densities of βk, k ∈ {I, II}, are given by

f(βk|Ωk,Dn) = Npk(βk|µkβ,Λk
β),

where

µkβ = (Λk
β)−1{

∑N
i=1(Xk

i )
t(V k

i )
−1Y k

i },

Λk
β = ( Ak +

∑N
i=1(Xk

i )
t(V k

i )
−1Xk

i );

see, for example, Chib and Carlin (1999).

The previous algorithm with blocking improves the mixing of the chain, and thus its convergence,

especially when the blocking is applied separately to each component of the PCL model.

4 Examples

We used the R language and environment (R Development Core Team, 2011) to simulate the data

set for Example 1, and to carry out all of the proposed analyses in this section.

10



Example 1. In this example, a longitudinal sample of size N = 60 was simulated. This sample

represents five repeated measurements on each of N = 60 individuals. The data was obtained using

the next specification of the PCL model:

Y I
i | βI , ∼ N5(XI

iβ
I , I),

Y II
i | βII , {bi}II ∼ N5(XII

i β
II +ZII

i b
II
i , I), i = 1, · · · , 60,

where

βI =

 100

−4

 , βII =

 200

−10

 ,

bIIi |ΩII ∼ N2(0,ΩII) i = 1, · · · , 60

with

(ΩII)−1 =

 0.0001 0

0 5

 ,

and

XI
i = XII

i = ZII
i =



Time

1 0

1 1

1 2

1 3

1 4


, i = 1, · · · , 60.

Figure 2 shows the corresponding data set. For the analysis of these data, we used a vague prior

distribution with AI = 0 = AII = 0, vI = vII = 2 and BI = BII = Diag(0.001, 0.001).

The resulting component-wise marginal distributions for the vectors βI and βII are presented in

Figure 3. Likewise, the marginal distributions for the components of the covariance matrix (ΩII)−1

are shown in Figure 4; that is, for the elements of the matrix

(ΩII)−1 =

 (σ2
1)II σII12

σII12 (σ2
2)II

 .
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Figure 2: Longitudinal circular data from the PCL model.
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Figure 3: Posterior densities of the elements of βI and βII for Example 1.

In addition, the 95% posterior credible intervals for the main parameters of PCL model are pre-

sented in Table 1. It can be seen that the proposed methodology yields appropriate inferences for

all parameters involved. Particularly, note that the true value of each of the parameters is well

inside the highest posterior density region of the corresponding posterior density.

12



βI βII (ΩII)−1

(98.872, 119.515) (198.826, 240.078) ( 0.0000, 0.445)

( -8.404 , -0.920 ) ( -18.399, -3.643 ) ( 2.358, 6.318 )

- - ( -0.681, 1.519 )

Table 1: 95% posterior credibility intervals for the parameters of the PCL model (Example 1).

Example 2. For this illustration we use the proposed PCL model to analyze a real data set concerning

the orientation of sandhoppers (talitrus saltators) escaping towards the sea in order to avoid the

risk of high dehydratation. It is believed that sandhoppers will escape towards the sea, taking a

course known as the theoretical escape direction.

Borgioli et al. (1999) and D’Elia et al. (2001) reported a longitudinal study whose aim was

to help understand the escaping mechanism of sandhoppers. In this study, 65 sandhoppers were

released sequentially on five occasions. Each of their escape directions was recorded, along with
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Figure 4: Posterior densities of the elements of (ΩII)−1 for Example 1.
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other covariates. The covariates included wind speed, azimuth direction for the sun (Sun), and

eye measurements, which were used to construct an eye asymmetry index (Eye). The wind speeds

were split into four categories (OS for offshore, LSE for longshore-east, LSW for longshore-west and

Onshore), with Onshore taken as the reference category. Figure 5 shows the 65 short time series of

angular responses, the escape directions.
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50
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0

15
0

20
0

25
0

30
0

35
0

Release

ΘΘ

Figure 5: Longitudinal plot of escape directions (in degrees) for sandhoppers over five consecutive

releases.

The main objective, as in Borgioli et al. (1999), D’Elia et al. (2001), and Song (2007), is to

examine which covariates would significantly affect the escape direction of sandhoppers. D’Elia et

al. (2001) and Song (2007) employed a generalized linear model approach and considered a von

Mises distribution for the random component. Nevertheless, none of them offered inferences for all

the parameters involved.

To analyze the sandhoppers data, here we consider a PCL model formulated as

µIij = βI0 + βI1Sun+ βI2Eye+ βI3OS + βI4LSW + βI5LSE + βI6Time (4.1)

µIIij = βII0 + βII1 Sun+ βII2 Eye+ βII3 OS + βII4 LSW + βII5 LSE + βII6 Time+ b0i

i = 1, · · · , 65.

We used a vague prior distribution with AI = 0, AII = 0, vII = 2 and BII = 0.001. Figures 6 and
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Figure 6: Posterior distributions for the parameters of component I (sandhoppers data).

7 show the posterior distribution of all the parameters for components I and II, respectively. In

addition, Table 2 presents the corresponding 95% credibility intervals for each component of the

PCL model.

This analysis suggests that {Sun} and {Eye,OS, LSW} are not relevant for µI and µII , respec-

tively. Moreover, the inclusion of the random effects is necessary, as the variance parameter (σ2)II

is significantly different from zero.
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5 Concluding remarks

In this paper, we have introduced the PCL model, based on a projected normal distribution, for

analyzing short longitudinal series of circular data. Although the PCL model assumes a conditional

independence structure on each of its components, it is quite flexible and can describe several

distinct longitudinal patterns. It may also provide the basis for the analysis of long (time) series of

circular data. Furthermore, unlike currently available analyses of models for longitudinal circular
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Figure 7: Posterior distributions for the parameters of component II (sandhoppers data).
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Component I Component II

β0 (-1.7041 , -0.2797) (3.5300 , 6.4445)

β1(Sun) (-0.0069 , 0.0002) (-0.0326 , -0.0167)

β2(Eye) (0.5108 , 3.1228 ) (-0.2894 , 6.1439)

β3(OS ) (-4.0097 , -1.6492) (-0.5842 , 2.4310)

β4(LSW ) (1.2645 , 2.2534) (-0.6257 , 1.5565)

β5(LSE ) (0.6042 , 1.6781) (0.9985 , 3.4888)

β6(Time) (-0.2260 , -0.0277) (-0.3420 , -0.1565)

σ2 - ( 0.9825 , 2.4505 )

Table 2: 95% credible intervals for the parameters of the PCL model (sandhoppers data).

data, our proposal can be implemented by means of a relatively simple Gibbs sampler and can

produce inferences on a variety of quantities of interest, including those related with alternative

parametrizations or with prediction. An extension of this work to the analysis of time series of

circular data is currently being investigated.
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