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Abstract

We formulate and estimate a structural model for travel demand, in which users have hetero-

geneous preferences and make their transport decisions considering the network congestion. A

key component in the model is that users have incomplete information about the preferences of

other users in the network and they behave strategically when they make transportation decisions

(mode and number of trips). Therefore, the congestion level is endogenously determinate in the

equilibrium of the game played by users. For the estimation, we use the �rst order conditions of the

users�utility maximization problem to derive the likelihood function and apply Bayesian methods

for inference. Using data from Santiago, Chile, the estimated demand elasticities are consistent

with results reported in the literature and the parameters con�rm the e¤ect of the congestion on

the individuals�preferences. Finally, we compute optimal nonlinear prices for buses in Santiago,

Chile. As a result, the nonlinear pricing schedule produces total bene�ts slightly greater than the

linear pricing. Also, nonlinear pricing implies fewer individuals making trips by bus, but a higher

number of trips per individual.
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1 Introduction

Traditionally, congestion e¤ects have been considered explicitly in transportation analysis by means

of network equilibrium models (e.g. Beckmann et al., 1956; De Cea and Fernández, 2001). In these

models, the only e¤ect of congestion is an increase in travel time and waiting time in the case of a

bus network (e.g., Spiess, 1984; Spiess and Florian, 1989; De Cea and Fernández, 1993). Although the

congestion modeling with network assignment models has been successful, its complexity prevents its

use for the design of some transport policies. For example, to implement optimal pricing, generally

it is used simpli�ed approaches (De Borger, 2001; Van Dender and Proost, 2003; Ahn, 2009; Wang

et al., 2008). Moreover, the network equilibrium approach do not consider other e¤ects than time on

the users�utility and neglects, for instance, any innate aversion to congestion or aversion to pollution

produced by the congestion.

In this paper, we develop a methodology to estimate a travel demand model with endogenous

congestion. In doing so, we recognize that users are heterogeneous in their preferences about trans-

portation. This heterogeneity is modeled by adding an idiosyncratic parameter in the utility function,

which is private information for each agent, but its distribution is common knowledge. In addition,

we recognize that users make travel decisions considering the congestion level or the expected total

number of trips in the network. Thus, individuals behave strategically and maximize their utility.

They play an incomplete information game, in which the strategy is to decide the number of trips in

each available transportation mode. In equilibrium, individual demand depends on the price faced by

each user.

Our methodology takes into consideration two problems. First, the information asymmetry faced

by the social planner designing a pricing policy. Indeed, the planner does not know the users�charac-

teristics, which in�uence their transport preferences (e.g., income, subjective value of time, traveling

distances, intrinsic aversion to congestion, etc.). This source of asymmetric information signi�cantly

a¤ects transportation planning. Even though it has not been explicitly recognized in the practice of

transportation planning1 , modeling methods use demand segmentation according to departure time,

origin and destination, income and car ownership. This allows planners to partially control users�

preferences for these attributes.

Second, users might take into account the congestion when making transportation decisions. Indeed,

in order to decide how many trips to make, where to go, and which mode to use, users take into

account the level of congestion in the city or in the route they use. However, they do not know the

travel decisions made by other users. In that case, they play a game of incomplete information.

1For instance, Ortúzar and Willumsen (2002) do not mention problems of asymmetric information in transportation

planning.
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We apply our model to compute optimal nonlinear prices for buses in Santiago. The primary

economic motivation for introducing optimal pricing is that it enhances economic e¢ ciency. Urban

transportation is not an exception to this rule. In particular, the provision of public transportation

services also should be subject to optimal prices. Moreover, as Wilson (1993) remarks, nonlinear

pricing can be used to maximize the consumer�s net bene�ts from the �rms�operations and therefore

a nonlinear tari¤ minimizes allocative distortions caused by setting prices equal to marginal cost when

the �rm is a monopoly.

However, for many years, the economic literature has focused on how to price roads with marginal

costs and to internalize the congestion (Dupuit, 1844; Pigou, 1920; Walters, 1961; De Borger, 2001;

Lindsey and Verhoef, 2001, etc.). By contrast, since public transportation services do not exhibit this

distortion2 , the discussion on optimal fares has been centered on the size of the subsidies and policy

measures to reduce pollution and congestion (e.g., Timilsina and Dulal, 2008).

The paper is organized as follows. Section 2 presents the basic theoretical model and the required

conditions for the implementation of a nonlinear pricing scheme (Guesnerie and La¤ont, 1984). We

derive optimal prices for the general case where the user�s utility depends on the expected number of

the trips on the network.

Section 3 presents the parameterization of the utility function. We adopt a discrete/continuous

choice approach for the parameterization (Hanemann, 1984). This way, the demand functions derived

from the parameterized utility are consistent with observed behavior, such as zero demand for a number

of individuals in one or more modes of transportation. The individual heterogeneity is represented by

an idiosyncratic parameter in the utility function. In addition, the congestion level is endogenously

determinate as the equilibrium of an incomplete information game played by users. For the adopted

parameterization, such equilibrium is the solution of a �xed point equation. We prove existence and

uniqueness of the solution. The utility function also satis�es the implementability conditions for

nonlinear tari¤s (Guesnerie and La¤ont, 1984).

Section 4 describes the statistical model that can accommodate the observed discrete/continuous

choices. In order to derive the likelihood function, we use the �rst order condition of the individual�s

utility maximization problem (Kim et al., 2002). We assume random components in utility, which

are associated to quality perception of the transport modes. Then, we specify a distribution function

for these components and the corresponding likelihood function. Thus, we obtain an econometric

model which is consistent with the microeconomic model. The heterogeneity is modeled as a random

parameter and its distribution is speci�ed parametrically. Doing so, we obtain an error component

model or mixed model. The estimation procedure is based on Bayesian inference and the Markov

2 In transportation science it is recognized that in the public transportation network there is congestion due to the

limited capacity of the services (De Cea and Fernández, 1993).
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Chain Monte Carlo (MCMC) method. In particular, the Markov Chain Monte Carlo is implemented to

simulate the parameter posterior distribution. This allows us to avoid the integration of the likelihood

function. In Section 4, we also study the model identi�cation. In this respect, we conclude the model

needs the normalization of one parameter to be identi�ed.

Section 5 reports the results of the application to Santiago de Chile. We use data from Santiago to

estimate the utility function and compute optimal prices, both linear and nonlinear. Concerning the

model estimation, in line with the literature, we �nd that transportation demand exhibits low price

elasticity (see Oum and Walter, 2000) and a signi�cant congestion e¤ect (see Bousquet and Ivaldi,

2001). Regarding the nonlinear pricing schedule, we obtain a signi�cant quantity discount. The net

bene�ts derived from a nonlinear schedule are slightly higher than those obtained with a linear price.

Also, the total demand is higher under the nonlinear pricing schedule, but it exhibits a lower proportion

of user traveling by bus.

Finally, in Section 6 we conclude and discuss limitations and possible extensions.

2 Theoretical model and optimal prices

2.1 Model and implementability conditions

Consider a pricing policy that recognizes the users are heterogeneous in their preferences. It is assumed

that the regulator (or the planner) knows only the distribution of preferences in the relevant population.

Therefore, the regulator cannot identify the characteristics of the user being served for the purpose of

optimal price discrimination. The regulator must design a price mechanism in which users self-select

according to their individual characteristics by the size of their purchase. Self-selection is induced by

means of a quantity-dependent pricing schedule o¤ered by the �rm. The user faces a nonlinear outlay

schedule P (x), where x is the quantity consumed.

Assume that users have preferences depending on a vector of trips by mode of transportation, x;

the expected total number of trips in the network (or the congestion level), X; and nonlinear outlay

schedule, P (�). Individuals have unobservable characteristics, which are private information. They

are represented by an idiosyncratic parameter, �, continuously distributed with density function f

and support [�; �] � R. The preferences are summarized by a utility function U = u(x;X; P ; �). By

assumption, the utility function is strictly increasing and concave on x, strictly decreasing on X and

increasing in �.

Consider a static framework where the user maximizes her utility choosing x during a �xed period

of time. All users behave strategically and take into account the number of trips chosen by others in

the network at the same period. They do not know the others�preferences, �, with the exception of
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the distribution. The individual�s problem is

max
x

u(x;X; P (x); �)

s.t. X =

Z �

�

x(�;X; P (�))f(�)d�

The solution is a demand function, x(�;X; P (�)), which depends on �, X, and the payment schedule

P (�). Notice that the expression for the total number of trips implies a �xed point equation. We discuss

this feature in section 3.

The choice problem for the user may be recast in the following form. Rather than o¤ering a

quantity-dependent price schedule P (x), the regulator can o¤er a quantity and payment schedule that

depends on each user�s declaration of her type, (x(�); t(�)). For any quantity-dependent schedule P (�),

it is possible to construct the equivalent revelation schedule. De�ne (x; t) by x(�) = x(�;X; P (�)) and

t(�) = P (x(�;X; P (�))). Thus, the user has the incentive to reveal correctly her type �, since (x; t) is

constructed using the demand schedule.

A schedule (x; t) for which the user reveals her type parameter � is referred to as a direct revelation

mechanism. The requirement that truth telling is optimal for users is called incentive compatibility.

Formally, consider the utility de�ned as U(x;X; t; �), where x is a vector of chosen trips, t is

a monetary transfer, and � is private information representing heterogeneity. A direct revelation

mechanism is implementable if U satis�es the following conditions (Guesnerie and La¤ont, 1984):

(M) monotonicity : U is strictly decreasing in the transfers;

(D) di¤erentiability : U is continuously di¤erentiable of C2class;

(CS) constant sign of marginal rate of substitution: the sign of the vector @
@�

�
@U=@x
@U=@t

�
remains con-

stant; and

(B) boundary behavior of the utility : for any (x; t; �) 2 X � [�; �];9K > 0 such that for t large

enough





�@U=@x@U=@t

�
(x;t;�)





 6 K jtj ; uniformly in x; �.

In addition, if the utility is quasi-linear in the monetary transfers in the form

U(x; t;X; �) = u(x;X; �)� t (1)

then the direct mechanism (x(�); t(�)) is incentive compatible if it satis�es the following constraints

(Guesnerie and La¤ont, 1984)

@u

@x
(x;X; �)

dx

d�
(�) =

dt

d�
(�) (IC1) (2)

dx

d�
(�) > 0 (IC2) (3)
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Users participating in the market must obtain positive net surplus. If the opportunity cost of

nonparticipation is normalized to zero, then the individual rationality requires (x; t) to be such that

S(�) � max
(x;t)

U(x; t;X; �) � 0

2.2 Optimal pricing schedule

In what follows, we consider that the utility function is separable in trips and expected congestion

level. Therefore

u(x;X; �) = v(x; �) + xw(X)

where w measures the impact of congestion per trip. It satis�es w(0) = 0; dw=dX � 0.

To compute optimal nonlinear pricing schedule, the criterion is the maximization of social net

bene�ts. We consider a Ramsey-type pricing schedule. The social planner obtains revenues from the

operation of the �rm and pays the production cost with costly public funds. This means government

needs to collect $(1 + �) in taxes to pay $1 to the �rm.

The aggregated consumer�s surplus is

CS =

Z �

�

S(�)f(�)d� =

Z �

�

[u(x(�); X; �)� t(�)]f(�)d�

We consider that the production cost is composed by a �xed cost, C0, and constant marginal cost,

c. Therefore the producer�s surplus is the following

PS =

Z �

�

[t(�)� cx(�)]f(�)d� � C0

With these ingredients, the social planner�s problem is given by

maxf
(x;t)

CS + (1 + �)PSg (4)

s.t:
@u

@x
(x;X; �)

dx

d�
(�) =

dt

d�
(�)

dx

d�
(�) > 0

x(�) > 0

where the constraint x(�) � 0 is a feasibility condition.

To solve the problem, we de�ne the variable �(�) =
R �
�
x(�)f(�)d�. Using the incentive compatibil-

ity condition (IC1), we eliminate the variable t in the problem (4). Then, the problem is transformed
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into

max
x

Z �

�

�
v(x(�); �) +

�

1 + �

@u

@�
(x(�); �)H(�)� cx(�)

�
f(�)d� (5)

+�(�)w(�(�))� C0

s.t.
d�

d�
(�) = x(�)f(�)

dx

d�
(�) > 0

x(�) > 0

where H(�) � (1� F (�))=f(�) is the inverse of the hazard rate of �.

Ignoring the constraint
dx

d�
(�) > 0 and considering the interior solution for x, the solution of the

problem is given by the following equation

@v

@x
(x; �)� �

1 + �

@2v

@x@�
(x; �)H(�)� c+ w(�(�)) + �(�)dw

d�
(�(�)) = 0 (6)

If the consumer does not take into account the impact of her trips on the congestion level, her

optimal choice is such that

@v

@x
(x; �) + w(X) =

dP

dx
(x) � �(x) (7)

From (6), there is a direct relationship between � and x. Let �(z) represent minf� : x(�) = zg

(Spulber, 1989). The optimal marginal prices can be expressed as

�(x) = c+
�

1 + �

@2u

@x@�
(x; �(x))H(�(x)) + �(�)

dw

dX
(�(�)) (8)

The marginal price departs from �rst best (marginal cost pricing) because of two sources of distor-

tion: asymmetric information and congestion. The second term in the RHS is the source of consumers�

informational rent. It is due to the incentive compatibility requirement. Indeed, the agent of type

�2 > �1 can always pretend his type is �1, make x(�1) trips, pay the price p(�1) and thus get a positive

utility. However, the agent of type �1 cannot gain anything by pretending to be type �2 because in

doing so he gets a negative utility. The ability of higher types to behave as lower types is responsible

for their informational rent. This rent is the price that the planner has to pay for higher types to

reveal their information (for details, see Salanie, 1997; La¤ont and Martimort, 2002). In particular,

since H(�) is decreasing, a higher � implies a lower the rent extracted by the planner. The intuition

behind such reduction is that it is more socially e¢ cient to o¤er a lower marginal price to individuals

who obtain a greater bene�t for travel (recall we assume U increasing in �). The last term in equation

(8) is the marginal e¤ect of the congestion in the utility. In other words, it is the marginal cost of

congestion. Thus, an optimal pricing schedule internalizes congestion e¤ects.

Here, three remarks are worth making. First, in contrast to standard models of network e¤ects,

trips are consumed in variable quantities by heterogeneous users. Therefore, the magnitude of the
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network e¤ect depends on the total quantity consumed, rather than the total number of users in the

network. Second, the user�s utility due to network e¤ects depends only on the number of trips and

not on the user�s type, such as in Sundararajan (2004). Third, in contrast with telecommunication

models, the externality negatively impacts on the utility (such as Hahn, 2003).

3 Empirical model

3.1 Parameterization

In order to calculate nonlinear tari¤s with congestion e¤ects, the model needs to satisfy some conditions:

consistency and tractability of the consumer�s utility function and private information, together with

the implementability of a nonlinear pricing schedule.

Regarding the �rst condition, corner solutions should be admissible. Indeed, some individuals in

the sample choose more than one mode at day when they travel, but they do not use all available

modes. A way of capturing this feature is by specifying a nonlinear separable utility function.

Concerning the second condition, the consumer must be able to maximize her utility and determine

the (perceived) congestion level, under the assumption that the distribution of the private information

is common knowledge. In other words, there must be an equilibrium.

We build on the parametric model of Bousquet and Ivaldi�s (2001) paper. They model urban

transportation demand, where users�preferences include private information. Furthermore, the level of

utility depends on the total number of trips by car. This variable enters in the utility function through

a quality index, which depends not only on the network congestion, but also on each alternative�s

attributes. Users choose the optimal number of trips for each alternative, given the monetary costs and

quality (the congestion level). The authors obtain a closed form for demand functions and congestion.

A limitation of Bousquet and Ivaldi�s (2001) paper is that the utility function is not well de�ned

in nil consumption levels, given that it does not admit corner solutions (demand functions are positive

for all price levels). This is not consistent with the users�observed behavior.

For a set of n available modes with alternative k being the only mode producing the externality,

we de�ne the utility function as follows

U(x; z) =
nX
i=1

xi(1 +  i + �)� (xi + 1)ln(xi + 1) + 
z (9)

where

 i = �i + �iE(xk) + "i (10)

The variable x is a vector with non-negative components and represents the number of trips by

mode. Thus, xi corresponds to trips made by mode i. � represents consumers�private information
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and it has support [�; �]. 
 measures the weight of the consumption of a numeraire good z and equals

the marginal utility of income.

The quality index  i depends on observable and unobservable components. In (10), �i represents

the observable one. Typically, �i captures attributes such as comfort, safety or reliability. The

unobservable part is represented by "i and can be interpreted as taste variation across individuals

or as subjective perception of quality. The standard assumptions are that individuals observe "i, for

all i, but it is private information.

In addition, the quality index includes the e¤ect of the congestion produced by the total demand

of the alternative k, E(xk). More speci�cally, the k-th alternative is car and, therefore, the quality

index depends on the expected value of trips by car. This statistics captures externalities induced by

users choosing trips by car and endured by users of all of the other modes. Thus, it is assumed that

only cars produce congestion. The parameter �i measures the impact of such e¤ect in the utility of

the alternative i.

� can be interpreted as a measure of the intrinsic utility obtained from making a trip. Transporta-

tion demand is derived from demand for activities (Ben-Akiva and Bowman, 1998), thus individuals

choose to make a trip because they obtain a positive net utility by doing an activity at the end of the

trip. Indeed, given the price per trip, pi, the �rst order conditions of the utility maximization imply

that xi is positive only if � is greater than 
pi � i. The last term can be interpreted as a generalized

cost for making a trip. Therefore, � is a reservation utility for carrying out the activity that motivates

the trip.

Given the interpretation of �, the demand can be segmented according not only to travel modes

but also to trip purpose. That segmentation is part of standard modeling techniques in transportation

planning (Ortúzar and Willumsen, 2003) However, since we have trips data only for one day, there is

not enough variability to estimate a demand system for trips by mode and purpose, and obtain an

accurate estimation of � for each purpose.

The demand functions are as follows

xi = maxfexp (�+ i � 
pi)� 1; 0g (11)

From equation (11), E(xk) is the expectation of a truncated random variable and does not have

a closed form. The existence of equilibrium in the individual�s utility maximization problem and the

congestion term are stated in a proposition below.

In the model, private information has dimensionN+1 which is represented by the vector (�; "1; :::; "N ).

However, it can be reduced to N . To do so, the utility can be written as follows �i = �+ "i. This way,

it resembles the multiproduct nonlinear pricing model of Armstrong (1996). In general, the distribu-

tion of private information is given by the convolution of the distributions of � and "i. In particular,
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we adopt normal distributions for � and "i, for all i, therefore the distribution of � is also normal.

The most important implication of such dimension reduction is that E(xk) is the expectation of a

one-dimension random variable. Next, the proposition states the existence of an equilibrium in the

game played by users.

Proposition 1 Suppose that

a) The utility function is given by expressions (9) and (10),

b) � is distributed in [�; �] with a density function f that is common knowledge; and

c) "k distributed in ["k; "k] with a density function gk that is common knowledge, and is independent

of �

Then, if �k � � + "k and f�k denote its density with support [�k; �k], the externality term, E(xk), is

given by the solution of the equation

E(xk) = e�k+�kE(xk)�
pk

�kZ
��k

e�f�k(�)d��
�kZ
��k

f�k(�)d� (12)

where

��k = �(�k + �kE(xk)� 
pk) (13)

In addition, the solution always exists and is unique.

Proof. See Appendix A.

The parameterization also allows for individual heterogeneity in a discrete form. In Section 5, the

model is estimated taking into account car availability as a source of heterogeneity. In that case, the

parameters associated to the modes�quality are di¤erentiated according to car availability. Thus, the

joint distribution of all sources of private information is a mixture distribution. Given equation (10),

we distinguish the j-th alternative �j between individuals with available car (�cj) and those without

car (�ncj ): The probability of being of type �, using the notation introduced in Proposition 1, is as

follows

Pr(being type �) = Pr(�j = �� �cj) � Pr(available car) + (14)

Pr(�j = �� �ncj ) � Pr(no available car)

= f�j (�� �
c
j) � q + f�j (�� �

nc
j ) � (1� q)

where q is the probability of being an individual with car. The RHS in the last line of equation (14) is

a mixture distribution. In the application presented later on, � and "j are assumed normal, therefore

the distribution of the individual type is a mixture of normal distributions.
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3.2 Optimal nonlinear price

Next, we apply the results of Section 2 to the model with utility function given by equation (9) and

considering only three alternatives: Mode 1 is car and mode 2 is bus and mode 3 is subway. In the

�rst stage, equation (6) is solved on x2(�2). Notice that we are only interested in the optimal prices

for public transportation. The optimal number of trips in that mode is given by the following equation

x2(�2)= exp

�
�2+�2 + �2E(x1)� 
c2 �

�

1 + �
H(�2)

�
� 1 (15)

where E(x1) is given by the solution of the equation (12). Notice the demand function in equation

(15) is the interior solution of the problem (5). Similarly to the demand in equation (11), the demand

function (15) allows for corner solutions. Indeed, users do not make trips by mode 2 if his type

��2 = ("2 + �)
� is such that (��2+�2 + �2E(x1)� 
c2 � �

1+�H(�
�
2)) = 0. The complete solution for the

optimal demand function is x�2(�2) = maxfx2(�2); 0g.

The result for x2 is used to obtain the marginal price, �2(�2) (given 8)

�2(x2(�2)) = c2 +
�

1 + �

H(�)



(16)

The congestion does not have any impact on the optimal marginal price, since it is the automobile

that produces the externality. This is also a result of the linearity and separability assumed in the

utility function.

x�2(�2) satis�es the monotonicity constraints (condition (IC2)), given the functional form used here.

Finally, the quasi-linear form of the utility simpli�es the computation of the nonlinear prices.

However, it rules out income e¤ects. The separability of the utility implies that the demand cross

elasticities are zero. We retain an additive utility structure under the assumption that the utility

derived from one mode is independent of others. The utility function needs to have decreasing marginal

returns to capture satiation.

4 Estimation

In this section, we specify a statistical model that can accommodate both interior and corner solutions.

To estimate the parameters, we use Bayesian inference and the Markov Chain Monte Carlo (MCMC)

method.
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4.1 Likelihood speci�cation

Given the utility function in equation (9), the �rst order conditions for the maximization problem

subject to the budget constraint, respect to the alternative i, are

@U

@xi
(x) =  i + � � ln(xi + 1) = �pi if xi > 0 (17)

@U

@xi
(x) =  i + � � ln(xi + 1) < �pi if xi = 0 (18)

where � is a Lagrange multiplier and pi is the observed price of mode i. If the numeraire good is

always consumed, � is equal to 
 (the marginal utility of income). Using the quality index given by

equation (10) and rearranging terms, we obtain

Vi � �i + �iE(xk) + � � ln(xi + 1)� 
pi = �"i if xi > 0 (19)

Vi � �i + �iE(xk) + � � ln(xi + 1)� 
pi < �"i if xi = 0 (20)

Equations (19) and (20) are similar to those appearing in standard choice models, where marginal

utility is constant and does not depend on the quantity demanded. However, here marginal utility

depends on quantities because of the non-linearity in the utility function. The goal is to derive the

distribution of observed demand, x. In order to do that, we specify a distribution for the vector of

taste variations, ". We use equations (19) and (20) to obtain the distribution of x by applying the

change-of-variable theorem.

If " follows a multivariate normal distribution with mean zero and variance 
, the likelihood

function of the data is a mixture of density ordinates (equation 19) and point masses (equation 20)

corresponding to non zero and zero demand, respectively. Suppose that there are n transportation

modes and the �rst m alternatives have non zero demand, the likelihood for one individual is given by

l(x) = Pr(xi > 0; xj = 0; i = 1; ::;m; j = m+ 1; ::; n)

=

�VnZ
�1

:::

�Vm+1Z
�1

�(�V1; ::;�Vm; "m+1; ::; "nj0;
) jJ j d"m+1; ::; d"n (21)

where � is multivariate normal density, Vi = Vi(x; p) and J is the Jacobian, that is Jij = @Vi(x; p)=@xj

with i; j = 1; :::;m, which appears because of the change of variable.

Since the multidimensional integral of the likelihood function (21) cannot be evaluated directly, it

is transformed to the product of two factors -following Kim et al. (2002). The vector of taste variations

is decomposed in "a = ("1; :::; "m)0 and "b = ("m+1; :::; "n)0, such that24"a
"b

35 � N

0@240
0

35 ;
24
aa 
ab


ba 
bb

351A
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with "a and "bj"a being normally distributed. "a � N(0;
aa) and "bj"a = Va � N(�;�) where

� = 
ba

�1
aa Va , � = 
bb � 
ba
�1aa
ab and Va = (V1; :::; Vm)0. Therefore, the likelihood function (21)

can be rewritten as

l(x) = Pr(xi > 0; xj = 0; i = 1; ::;m; j = m+ 1; ::; n) (22)

= �"a(�V1; ::;�Vmj0;
aa) jJ j

�
�VnZ
�1

:::

�Vm+1Z
�1

�"bj"a(vm+1; ::; vnj�;�) jJ j dvm+1; ::; dvn

4.2 Inference

Our interest is on the point estimation, together with the distribution of �. Remember that � and

" capture individuals�heterogeneity regarding preferences for transportation, equation (9). However,

due to identi�cation restrictions we are only able to estimate the distribution of �.

We estimate a random parameter model in which � distributes according to an unknown distribution

function, which is speci�ed parametrically.

The Bayesian approach is a natural way to estimate a random parameter model, since it considers

the parameters of interest as random variables and it investigates their posterior distributions given

prior information. Moreover, the Bayesian method avoids integrating the likelihood function. In

contrast, maximum likelihood estimation requires integrating out the likelihood function over the

distribution of the random parameters, while simulated maximum likelihood requires that the number

of simulations increases with the number of observations in order to reduce the simulation bias (Train

2003, Gourieroux and Monfort, 2003).

To this end, we formulate a Bayesian hierarchical model (Carlin and Louis, 1996; Gill, 2002) for

an individual h (h = 1; :::;H) as follows

xh � l(xhjph; �;�; �), likelihood function eq. (22)

(�;�) � N(�;�)

�h � N(��; ��)

�� � N(m; s)

�2� � IG(a; b)

where � = (�1; �1; :::; �n; �n; 
) is a vector of parameters of the structural model in equation (9) and

� is a vector with the elements of the Cholesky decomposition of 
. We also assume the random

parameter �h is normally distributed with parameters �� and ��, which are the parameters of interest.

Likewise, �� distributes normally with mean m and variance s2, and �� distributes according to an
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inverted gamma with parameters a and b. These priors for �� and �� allows to obtain closed expressions

for the posteriors, given a sample of the individual parameter, � (Train, 2003).

The posterior distribution of the parameters is obtained by the Markov Chain Monte Carlo method.

In particular, we use a Gibbs sampling method with a Metropolis step to infer the posterior distribution

of the model�s parameters (Geweke, 2005). An advantage of the MCMC method is that it allows us to

obtain individual-level estimates for �h. Indeed, with the MCMC method we can draw a sample from

the posterior distribution of �h conditional on (x1; p1; �;�; ��; ��). Then, according to Von-Mises�s

theorem, the mean of this sample is a consistent estimator of �h, in the sense of classical estimation

(see Train 2003).

We summarize the simulation procedure, for details see Kim et al. (2002). First, choose initial

parameters �0, �0�, �
0
� , �

0 and hyper-parameters �0, ��0 , m, s, a, and b. Compute de congestion e¤ect,

E(xk), for all h, given the initial parameters. Then, repeat for t = 1; :::; (T0 + T1) the following

1. Draw �th, h = 1; :::;H, according to random walk Metropolis-Hasting sampling, and using the

individual likelihood, l(xhjph; �t�1;�t�1; �t�1h ), given �t�1h , �t�1 and �t�1

2. Compute �t� accorging to the posterior distribution given the sample �
t
h, h = 1; :::;H, �

t�1
� , and

the prior N(m; s)

3. Compute �t� accorging to the posterior distribution given the sample �
t
h, h = 1; :::;H, �t�, and

the prior IG(a; b)

4. Draw (�t;�t) according to random walk Metropolis-Hasting sampling, and using the total likeli-

hood,
Q
h l(xhjph; �

t�1;�t�1; �th), given �
t�1
h , �t�1 and �t�1

5. Compute the congestion efect, E(xhkjph; �t;�t; �th; �t�; �t�), solving the equation (12) for h =

1; :::;H

6. Update t = t+ 1 and go to step 1.

Finally, the estimators are computed as the means and variances of the last T1 drawn parameters.

4.3 Identi�cation

To verify our model is identi�ed we consider only two available alternatives: mode 1 is car and mode 2 is

bus. Trips by car are the only ones producing congestion. Individuals travelling by car or bus undergo

the e¤ects of congestion. In addition, we consider that the vector components of taste variations are

independent, although they have di¤erent variance, denoted by �"i . We do not loss generality using

two alternatives because the in case with more modes, which do not produce congestion, we can identify

the especi�c parameters similarly to the bus parameters.
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The identi�cation is not clear from the frequentist point of view. The problem arise because the

congestion measure, E(x1)3 , is not only a nonlinear function of some structural parameters (�1; �1)

and the price p1, but also it is a function of the parameters of the random component distributions

(�"1 ; ��; ��). By contrast, according to the Bayesian approach, the model is identi�ed. In fact, Kass

et al. (1998) asserts there is no identi�cation problem for MCMC methods, provide the posterior

is proper. In turn, Geweke (2005) states if the parameter is identi�ed, its mean and variance are

identi�ed. However, these assertions are not free of controversy (for example, see San Martin and

González, 2010). We argue the model is identi�ed because the MCMC method focuses in the data

generating process not marginalized with respect to �h (San Martin and González, 2010). Therefore,

we can introduce additional conditions on the parameters which allow us to identify the model.

Considering the model as a system of equations where the depended variable is yi � ln(xi + 1) ,

i = 1; 2, and the independent variables are pi and E(x1) in equation (19). Therefore, under the

distributional assumptions of the previous sections, the statistical model conditional on �h for an

individual h choosing both modes is given by

P (yhjph; �; �h; �"1 ; �"2 ; ��; ��) =
1

�"1
�

�
yh1 � (�1 + �h + �1E(x1)� 
ph1)

�"1

�
� (23)

1

�"2
�

�
yh2 � (�2 + �h + �2E(x1)� 
ph2)

�"2

�

E(�hj��; ��) = �� (24)

V ar(�hj��; ��) = �2� (25)

where � is the standard normal density function.

We say the model is identi�ed if for two vectors (�; �h; �"1 ; �"2 ; ��; ��) and (e�;e�h; e�"1 ; e�"2 ; e��; e��)
such that

P (yhjph; �; �h; �"1 ; �"2 ; ��; ��) = P (yhjph;e�;e�h; e�"1 ; e�"2 ; e��; e��) (26)

for all (yh; ph), then

(�; �h; �"1 ; �"2 ; ��; ��) = (
e�;e�h; e�"1 ; e�"2 ; e��; e��)

Since the model is parametric and similar to a linear regression, it is straightforward to verify the

identi�ed parameters are 
, �2, �2, �"1 , and �"2 . We cannot identify �1 and �h separately, thus we

normalize �1 = 1. This normalization is also useful to identify the remaining parameters. Identi�cation

of �� and �� is due to the indeti�cation of �h for all h. In fact, using the conditions (24) and (25) we

3For the sake of exposition we do not write the conditioning variables of the expectation of x. Hereafter, it should

bear in mind this notation.
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have

�� = E(�hj��; ��) = E(�hje��; e��) = e��
�2� = V ar(�hj��; ��) = V ar(�hje��; e��) = e�2�

Therefore, we identify �1 from the following equation

�1E(x1jph1;�1; ��; ��; �"1) = e�1E(x1jph1; e�1; ��; ��; �"1)
As E(x1) is a monotone function of �1 (we prove this in appendix), the last equation implies

�1 =
e�1.

These results impose a requirement on the data. Indeed, to identify the parameters, it is necessary

that all travelling alternatives are chosen by a subset of individuals in the sample. This does not mean

that individuals have to make trips in all available modes. However, it implies that the likelihood

function should not be only composed by point masses for any alternative. This enables us to apply

eq. (19). Finally, for identi�cation, the individuals�choice set should include an alternative una¤ected

by the congestion and with a price ticket varying across the sample.

Finally, we need to impose some restrictions on the original parameters in order to obtain the-

oretically consistent estimates (Train and Sonnier, 2003). These restrictions may be seen as prior

information coming from the theory. The transformations are

�i < 0) �i = � exp(�i) (27)


 > 0) 
 = exp(
) (28)

�"i > 0) �"i= exp(�"i) (29)

There are no requirements on �i, therefore �i = �i. Condition (27) implies that the congestion has

a negative e¤ect in the utility. Equation (28) comes from the fact that 
 represents the marginal utility

of income, which is positive. Finally, condition (29) is required because �"i is the standard deviation

of "i. Then, the vector � distributes according to a normal with mean �0 and variance matrix ��0 .

4.4 Alternative estimation approaches

Bousquet and Ivaldi (2001) assume that there are two types of simultaneous individual decisions.

Given the congestion level and the travel cost, the user chooses the number of trips in each mode of

transportation. The optimal number of trips is used to obtain the conditional indirect utility function.

The choice of transportation modes, x, is determined by this conditional maximum level of utility.

The authors also assume that the number of trips distributes double Poisson and the indirect utility

functions are observed with a certain degree of error, which distributes according to an Extreme Value
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distribution Type I, producing choice probabilities with a multinomial logit form. This approach

corresponds to the discrete/continuous demand modeling (Hanemann, 1984). However, it does not

take into account the relationship between the distribution of the error term in the utility function (in

the discrete choice level) and the distribution of the quantity consumed (in the continuous decision

level), in contrast to Hanemann (1984), and Dubin and McFadden (1984).

Nevertheless, a correctly speci�ed discrete/continuous model according to Hanemann (1984) is not

useful because the modes are not perfect substitutes. Indeed, there are individuals in the sample

who choose simultaneously two or more transportation modes, but the Hanemann�s models consider

situations where only one alternative is chosen.

Finally, another equivalent approach is the estimation of a system of demands with truncated

regression. However, two remarks should be made. On the one hand, if the utility function speci�cation

does not allow for an analytic expression of the demand function, the approach is not useful. On the

other hand, a �exible demand function may not be totally, theoretically consistent with the underlying

utility function. By contrast, the approach adopted in this paper satis�es theoretical consistency.

5 Application to Santiago

This section presents the estimation results using data from Santiago de Chile and the computation

of nonlinear prices. We assume that there are three available transportation modes: car, bus, and

subway. Cars are supposed to produce congestion in the road network, which is undergone by both

car and bus users. The optimal nonlinear prices are calculated for public transportation applying the

results of Section 4.

5.1 Data

We use data provided by the travel survey "Encuesta Origen-Destino de Viajes de Santiago" ("Origin

and Destination Travel Survey of Santiago"), carried out by the National Agency of Transportation

Planning (Sectra, 2002). A total of 15,537 households were surveyed, out of which 12,346 correspond

to surveys conducted during the normal season and 3,191 to the summer season. The survey gathers

information about households (e.g. number of individuals in the household, total income, number of

vehicles, etc.), household�s members (e.g. age, type of job or study, driving license, etc.), and trips

made during a day by each member of the household (departure time, arrival time, origin, destination,

mode, price ticket, parking cost, walking time and distance, etc.). Some descriptive statistics for the

sample are provided in Tables 1 and 2.

Table 1
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Characteristics of households and persons

in the survey

Households 14,152

Mean household size 4.0 pers/hh

Mean household income 515.9 Ch$ �103

Mean income per capita 128.9 Ch$ �103

Households with car 33 %

Mean cars per household 0.4 car/hh

Persons 43,692

Workers 44.9 %

Students 29.6 %

With driving license 26.0 %

Table 2

Characteristics of the trips in the sample

Trips Trips/person Mean travel time Mean distance

(min.) (km.)

All modes 147,872 3.39 26.5 4.7

Car 20,345 3.67 27.3 6.4

Bus 40,244 2.12 45.7 8.4

Subway 4,805 1.75 43.1 9.5

Walking 56,573 2.94 11.1 0.8

Bicycle 3,343 2.44 18.7 2.3

To estimate, we consider only information gathered in the normal season from individuals making

at least one trip by car, bus, or subway, except students. In addition, we exclude all information coming

from combining modes. This results in a sample of 10,866 individuals and 36,613 trips, from which

10,245 are made by car, 16,907 by bus, 2,034 by subway, and 6,579 by non-motorized modes (walking

and/or bicycle). For estimation, we also use expansion factors in order to represent the population.

The expanded sample represents 1,693,591 individuals.

The price of a car trip is calculated as a function of travel distance, gasoline consumption per

kilometre and fuel price. For individuals in the sample making trips by car, the price of a trip was

calculated as the average cost. For those who do not report trips by car, the price is estimated as a

function of the average travel distance by bus.
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The price of the bus ticket is included in the data for those individuals that report travelling by

bus. For individuals that declare not to travel by bus, the price ticket was imputed.4

5.2 Parameter estimation

In addition to the heterogeneity represented by � and ", the model includes a discrete source of

heterogeneity to capture di¤erences between individuals with availability of car or not. Individuals with

di¤erent choice sets value the alternatives in a di¤erent scale. Typically, the transportation demand

analysis has segmented the demand according to car ownership or availability (Ortúzar and Willumsen,

2003; Ben-Akiva and Lerman, 1985), which implies estimating a model for each segment and assuming

that the social planner (who uses the model for policy design) is able to segment the population. The

approach adopted here does not need to segment the population because car availability is private

information and its distribution is estimated only.

The set of parameters of the utility function di¤ers if the individual has an available car or not.

Consider the dichotomous variable �car 2 f0; 1g, which takes value one for individuals with available

car and zero otherwise. The models to estimate are re�ected on the following equations

U(x; z) =
nX
i=1

xi(1 +  i + �)� (xi + 1)ln(xi + 1) + 
z

Model 1 :  i = �i + "i (30)

Model 2 :  i = �car(�
c
i + �

c
iE(xk)) + (1� �car)(�nci + �nci E(xk)) + "i (31)

Thus, the model is estimated with di¤erent quality indexes for bus and subway according to car

availability.

The distribution of car availability in the population is not estimated simultaneously with the

parameters of the model, but it is estimated from a sample of individuals. Since the distribution of

such a variable is given by the fraction of individuals with car in the population, the same fraction in

the sample is a consistent estimator.

As a �rst analysis, we especify a general variance matrix for ", but the Markov chain did not

converge. This is due to the data do not allow us to indentify all the parameters in the matrix, mainly

because there is no individual choosing the three availables modes. Similar fails in identi�cation occur

with error component logit-mixture models (Walker et al., 2007). Thus, we normalize the variance

matrix of " with the restriction �"1 = 1.

The results for the two models are presented in Table 3. Model 1, in the �rst two columns, does not

include the congestion e¤ect, but it includes discrete heterogeneity due to car availability. Therefore,

the parameters of the quality index are di¤erentiated with respect to that characteristic. In the third

4This price is �at (it does not vary with distance nor with time schedules) and only unitary tickets are charged.
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and fourth columns, Model 2 considers the discrete heterogeneity and congestion e¤ects. Table 3 also

includes the likelihood ratio tests under the null hypotheses: (H10) no congestion e¤ects (Model 1 vs.

Model 2). Regarding the �nal value of the likelihood function, Model 2 is better than Model 1. The

likelihood ratio tests reject both null hypotheses with high con�dence level.

The standard errors of the parameters � con�rm the hypothesis that individuals take into ac-

count congestion when making their decisions. The same is true with the likelihood ratio test for the

hypothesis H10.

Table 3

Estimated parameters of utility function

Model 1 Model 2

Param. Std. err. Param. Std. err.

�� 1.2747 0.00041 1.8546 0.00062

�� 0.0304 0.00004 0.0286 0.00004


 0.0027 0.00000 0.0057 0.00001

�1 0 - 0 -

�car2 -0.6753 0.00063 -0.4935 0.00079

�nocar2 -0.1331 0.00051 -0.4002 0.00047

�car3 -3.3873 0.00187 -3.8893 0.00076

�nocar3 -2.7897 0.00155 -3.3368 0.00152

�1 -0.3390 0.00029

�car2 -0.4778 0.00064

�nocar2 -0.1548 0.00016

�11 1 - 1 -

�21 -0.1564 0.00017 -0.1518 0.00015

�22 0.4217 0.00014 0.4228 0.00014

�31 -0.9378 0.00081 -0.9902 0.00073

�32 -1.1795 0.00065 -1.2101 0.00047

�33 0.1981 0.00036 0.2292 0.00028

Sim. log-lik. -132,013 -131,866

LRT(H10) (Model 1/Model 2) 293

Table 4 shows the variance matrix of " in the case of Model 2. This matrix is computed with the

estimates of the Cholesky decomposition, �.

Model 2 has a marginal utility of income (parameter 
) consistent with the literature. Indeed,

according to this speci�cation, the demand price elasticities (in absolute value) are 0.211, 0.165, and
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0.171 for car, bus and subway, respectively. They are calculated using 
 and the sample mean of the

prices, since the elasticities are linear in such variables. Oum and Waters (2000) summarize demand

elasticities for transport of passengers estimated in several studies. They report demand elasticities

for trips by automobile in the range of (in absolute value) 0.00-0.52 and for trips by bus in the range

of 0.01-0.96.

The estimation results are in line with what is expected ex ante. For example, the values of the

parameters �, which represent the perceived quality of each alternative, imply that car is the best

quality mode and subway is the worst mode. However, note that these parameters take into account

access time as part of the unobservable quality. Since the subway network is small with respect to

the bus network, the subway access time negatively a¤ects the quality of the service. This feature

is present in the two models. Regarding the value of � in Model 2, the congestion matters more for

individuals with available car.

Heterogeneity is statistically signi�cant (see the value of standard error of ��). However, the value

of the coe¢ cient estimated is very small. This may be due to the fact that we have �xed the variance

of "1 equal to one. The consequence of such a parameterization is that we impose a total variance

equal to (1 + �2�)
5 . The estimated �� may imply that the heterogeneity in the population is less or

equal to one.

Finally, we compute the correlation between the observed trips and the modeled ones. In the case

of trips by car, the correlation is 0.64. For bus trips the correlation is 0.43. Figures 1 and 2 show the

observed and modeled trips for car and bus, respectively.

Table 4

Variance matrix of "

"1 "2 "3

"1 1.000

"2 -0.152 0.202

"3 -0.990 -0.361 2.497

5.3 Optimal prices

Nonlinear prices for public transportation are calculated based on the former Model 2. Given that the

selected model includes three sources of private information, the distribution of an arbitrary type, �,

in the population is given by the mixture distribution in equation (14).

Since the parameters � and "2 are assumed normally distributed with support on R, � -which

represents private information- is also distributed on R. The numerical solution of equations (15) and
5Recall that the heterogeneity is represented by the parameters � and ".
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(16) are badly behaved in the tail of the distribution, which results in the need to de�ne a closed interval

for the support of �. Based on some robustness tests, we de�ne the support as [�� � 3:5(�� + �"2);

�� + 3:5(�� + �"2)]. This interval leaves out only 0.1% of individuals. Thus, we neglect the impact of

changing the support of �.

The planner�s problem requires knowing the marginal cost of a trip by public transportation in

Santiago. According to the National Agency of Transportation Planning, the average cost per trip is

Ch$2156 (Sectra, 2002). If we consider that the capacity of the system is constant, the marginal cost

per passenger is small compared to �xed costs (capital cost of the vehicle, fuel cost, driver�s wage).

We assume a marginal cost equal to 20% of the average cost. We also need to assume a cost of public

funds, (1 + �), which is set in 1.5.

In order for (15) to satisfy the non negativity constraint in the planner�s problem (5), we need to

�nd �� such that x(��) = 0.7 We de�ne the solution ~x(�) = max(0; x(��)). In this case, �� = 0:69.

Implementing optimal nonlinear tari¤s requires taking into account that trips are discrete. There-

fore, the optimal price is estimated for a menu of bus tickets. Table 5 presents the �nal optimal menu.

The actual price ticket in the bus system of Santiago is approximately 290 (Ch$). Therefore, the

optimal nonlinear prices are far higher than the fare actually charged. The optimal linear prices is 433

(Ch$). These pricing schedules seem to be politically infeasible.

Table 5

Optimal menu of bus tickets (� = 0:5)

Ticket Price (Ch$)

1 trip 820

2 trips 1,250

3 trips 1,550

4 trips 1,780

Daily 1,970

We compare the bene�ts of actual and optimal pricing schedules, both linear and nonlinear. Table

6 shows the mean of the expected bene�ts, consumer surplus and net revenues. Regarding total

bene�ts, nonlinear prices are better with respect to actual ones. However, regarding consumer surplus,

the results are reversed. The actual linear price is better. This reveals that the high total bene�ts

obtained with nonlinear prices are mainly due to the net revenues from the operation of the �rm.

Under a public �nancing scheme, having positive net revenues is equivalent to collecting public

funds using the transit system. Therefore, the pricing schedule becomes a tax, which is not designed
6Ch$ denotes the Chilean currency, Peso. In 2001, 1 US$ = 630 Ch$
7 In the genal case, this require solving an optimal control problem with bounded control (Kamien and Schwartz,

1991)
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for that purpose. From a mathematical point of view, it is inconsistent that the planner�s budget

constraint does not bind and the Lagrange�s multiplier, �, is di¤erent from zero. Therefore, in the

planner�s problem, the net revenues have a weight higher than the optimal one. In order to overcome

this inconsistency, we solve the planner�s problem (4) considering � as a variable. In the optimum, �

should be non zero and the budget constraint should be binding.

Table 6

Bene�ts under di¤erent pricing schedules (� = 0:5)

Pricing schedule Total bene�ts (Ch$) Consumer surplus (Ch$) Net revenues (Ch$)

Marginal-cost price 2,197 2,635 -292

Actual linear price 2,413 2,028 257

Optimal linear price 2,443 1,727 477

Optimal nonlinear prices 2,563 1,497 711

In this case, the non negativity constraint implies that the �� = 0:32, such that x(��) = 0. The

Lagrange multiplier is � = 0:036. Figure 3 in the upper panel shows the optimal number of trips as a

function of the individual�s type, together with di¤erent pricing schedules as a function of number of

trips (lower panel). Table 7 shows the menu of optimal prices.

Table 7

Optimal menu of bus tickets (� = 0:036)

Ticket Price (Ch$)

1 trip 280

2 trips 390

3 trips 460

4 trips 530

Daily 690

We solve the planner�s problem for a linear price. The optimal price in this case is 162 (Ch$) and

the Lagrange�s multiplier is � = 0:105.

Again, we compare total bene�ts, consumer surplus, and net revenues for both the optimal nonlinear

and linear pricing schedule (see Table 8). Nonlinear prices are slightly better with respect to linear

ones. Even though both nonlinear and linear pricing produce total bene�ts similar to marginal cost

pricing, they do not require subsidies. However, if we consider the value of public funds is 1.5, in the

case of marginal cost pricing, the total bene�ts reduce to 2,194 (Ch$). This implies that with optimal

pricing schedules we obtain total bene�ts 6% higher. Moreover, with optimal pricing the consumers�

surplus is 15% higher than the actual pricing.
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In addition, we compare the total demand under di¤erent pricing schedules, taking into account

the demand for public transportation and the number of individuals choosing public transportation.

Table 9 shows the demands under linear and nonlinear pricing.

There is a trade-o¤ between economic e¢ ciency and exclusion of the market. Indeed, the optimal

nonlinear price exhibits the highest bene�ts and the lowest participation. Despite the fact that demand

in the linear pricing schedule is lower than in the nonlinear one, the exclusion is higher in the latter

case. This means there are more trips per user under the nonlinear pricing.

Table 8

Bene�ts under di¤erent pricing schedules and � is optimally determined

Pricing schedule Total bene�ts (Ch$) Consumer surplus (Ch$) Net revenues (Ch$)

Marginal-cost price 2,330 2,632 -292

Actual linear price 2,291 2,023 256

Optimal linear price 2,326 2,326 0

Optimal nonlinear prices 2,336 2,336 0

Table 9

Demand under di¤erent pricing schedules and � is optimally determined

Pricing schedule Mean of trips Individuals choosing bus (%)

Marginal-cost price 2.70 100

Actual linear price 2.22 99

Optimal linear price 2.46 99

Optimal nonlinear prices 2.62 98

6 Final comments

This methodology to model transportation demand with endogenous congestion should be considered

as a �rst step in this type of models. It may be extended to consider more complex behavior. For

instance, it is possible to model mode and destination choice under a discrete choice framework with

endogenous congestion. This way, the model would be in line with traditional transportation demand

modeling. Also, departure time choice is an interesting problem to consider endogenous congestion

e¤ects.

Even though our results depend on the parametric assumtions adopted, it is possible to extend

some of them to more general settings. In particular, we have preliminary the results concerning to

equlibrium existence with more general utility functions. However, model identi�cation is strongly

dependent on the parameterization and it requires speci�c analysis.
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To our knowledge, no study has used a similar approach to compute optimal nonlinear prices for

bus services. There exist two main approaches to compute optimal prices in transportation services:

the demand-based and the network equilibrium-based approach. Our methodology belongs to the �rst

group. However, it has the advantage that it takes into account congestion e¤ect, which makes it more

general (as in the second group). Although, such network models can take into account the congestion

e¤ects, the computation of optimal prices requires solving a mathematical program with equilibrium

constraints. Thus, such an approach seems to be unfeasible in a city as big as Santiago.

Our model makes some simplifying assumptions to compute optimal prices. One of them is utility

separability, which implies a negligible substitutability between modes. Nevertheless, transportation

demand analysis recognizes that di¤erent modes are indeed substitutes and that cross price elasticities

are signi�cant. If this is the case, the demand for public transportation depends on the demand for

trips by car. Then, optimal bus fares have an indirect e¤ect through the congestion level. This is an

issue for research in a next stage.

Linearity in the utility of the numeraire good implies a nil income e¤ect. Such an e¤ect may

be relevant for individuals with low income, for whom transportation expenditure represents a high

proportion of their budget. However, this assumption simpli�es the computation of nonlinear prices.

Finally, frurther analysis has to be done on the estimation of marginal costs. Here, we use an

existing estimation of the average cost. Indeed, a deeper analysis of such a variable exceeds the scope

of this work.
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Appendix A

Proof of Proposition 1.

Consider the function g(z), z 2 R+, de�ned by

g(z) = ea+
z
�Z

�(a+
z)

e�f(�)d��
�Z

�(a+
z)

f(�)d�

where f is a density function with support [�; �], � < �a < � and 
 < 0.

From the de�nition follows that g is a continuous function and is also monotonically decreasing.

Indeed

g0(z) = 
ea+
z
�Z

�(a+
z)

e�f(�)d� < 0 8z

To prove the existence of a solution of the �xed point equation given by (12) it su¢ ce show that

g(0) > 0 and there exists z > 0 such that g(z) = 0. Indeed,

g(0) = ea
�Z

�a

e�f(�)d��
�Z

�a

f(�)d�

=

�Z
�a

�
ea+��1

�
f(�)d�

> 0

since ea+��1 is positive for all � > �a.

Now, consider z = �(� + a)=
 > 0 then

g(z) = ea+
z
�Z

�(a+
z)

e�f(�)d��
�Z

�(a+
z)

f(�)d�

= e��
�Z
�

e�f(�)d��
�Z
�

f(�)d�

= 0

The uniqueness of the solution results from monotonicity of g.
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Appendix B

Derivatives of congestion with respect to the parameters of the model

Consider the function z : Rd � R+ ! R+, such that (x; �) ! z(x), de�ned implicitly by the

equation

z = eg(x;z)
�Z

�g(x;z)

e�f(�j�)d��
�Z

�g(x;z)

f(�j�)d� (A.1)

where f is a density function conditional in � with support [�; �] and g is a continuous real-valued

function de�ned over X � R+, with X � Rd

Consider that the function g is such that eq. (A.1) there exist a solution for all x � X. We can

apply implicit derivation and the Leibniz�s rule for di¤erentiation under the integral sign. Then, the

derivative of z with respecto to xi is given by

@z

@xi
(x) =

@g

@xi
(x; z)F (g(x; z); �)

�
1� @g

@z
(x; z)F (g(x; z); �)

��1
(A.2)

where

F (y; �) = ey
�Z

�y

e�f(�j�)d�

Consider x = (�1; �1; 
; p1), z = X1 and g(x; z) = �1 + �1X1 � 
p1, with � < 0. Then, applying

eq. (A.2), it follows

@X1
@�1

= F (�1 + �1X1 � 
p1; �) [1� �F (�1 + �1X1 � 
p1; �)]
�1

> 0

@X1
@�1

= X1F (�1 + �1X1 � 
p1; �) [1� �F (�1 + �1X1 � 
p1; �)]
�1

> 0
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Figure 1: Comparison of real and modeled trips by car
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Figure 2: Comparison of real and modeled trips by bus
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Figure 3: Trips as a function of individual�s type (upper panel) and pricing schedules (lower panel)
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