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ABSTRACT

In this paper, we consider temporal aggregation of volatility models. We introduce semiparametric

volatility models, termed square-root stochastic autoregressive volatility (SR-SARV), which are

characterized by autoregressive dynamics of the stochastic variance. Our class encompasses the

usual GARCH models and various asymmetric GARCH models. Moreover, our stochastic volatility

models are characterized by multiperiod conditional moment restrictions in terms of observables.

The SR-SARV class is a natural extension of the class of weak GARCH models. This extension has

four advantages: i) we do not assume that fourth moments are �nite; ii) we allow for asymmetries

(skewness, leverage e�ect) that are excluded from weak GARCH models; iii) we derive conditional

moment restrictions; iv) our framework allows us to study temporal aggregation of IGARCH models.

Keywords: GARCH, stochastic volatility, state-space, SR-SARV, temporal aggregation, asset

returns, di�usion processes.

JEL Classi�cation: C22, C43, C50, C51.

�This is a revision of a part of Meddahi and Renault (1996), \Aggregations and Marginalization of GARCH and
Stochastic Volatility Models." Some other results of this manuscript are now included in two companion papers, Meddahi
(2002) and Meddahi and Renault (2002b) entitled \Temporal and Cross-sectional Aggregations of Volatility in Mean
Models" and \Conditioning Information in Volatility Models" respectively. The authors thank Torben Andersen, Bryan
Campbell, Marine Carrasco, Ramdan Dridi, Feike Drost, Jean-Marie Dufour, Ola Elarian, Rob Engle, Jean-Pierre
Florens, Ren�e Garcia, Ramazan Gen�cay, Christian Gouri�eroux, St�ephane Gregoir, Joanna Jasiak, Tom McCurdy,
Theo Nijman, Enrique Sentana, Neil Shephard, Jean-Michel Zakoian, a referee and the Editor, Bas Werker, and
the participants of the Econometric society meetings at Istanbul (1996) and Pasadena (1997), the Fourth Workshop
on Financial Modeling and Econometric Analysis, Tilburg, December 1996, for their helpful comments. They also
acknowledge fruitful discussions during seminars at CEMFI, CORE, CREST, North Carolina (Triangle seminar),
Montr�eal, Oxford. The authors are the only responsible for the remaining errors. The �rst author acknowledges
FCAR, MITACS and IFM2 for �nancial support.

yCorresponding author.
zD�epartement de sciences �economiques, CRDE, CIRANO, Universit�e de Montr�eal and CEPR. Address: C.P. 6128,

succursale Centre-ville, Montr�eal (Qu�ebec), H3C 3J7, Canada. E-mail: nour.meddahi@umontreal.ca.
xD�epartement de sciences �economiques, CRDE, CIRANO, Universit�e de Montr�eal and CREST-Insee. E-mail:

eric.renault@umontreal.ca.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Toulouse Capitole Publications

https://core.ac.uk/display/300443474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


R�ESUM�E

Dans cet article, nous consid�erons l'agr�egation temporelle des mod�eles de volatilit�e. Nous

introduisons une classe de mod�eles de volatilit�e semi-param�etrique d�enomm�ee SR-SARV et

caract�eris�ee par une variance stochastique ayant une dynamique autor�egressive. Notre classe contient

les mod�eles GARCH usuels ainsi que plusieurs variantes asym�etriques. De plus, nos mod�eles �a

volatilit�e stochastique sont caract�eris�es par des moments conditionnels observables et �a plusieurs

horizons. La classe des mod�eles SR-SARV est une g�en�eralisation naturelle des mod�eles GARCH

faibles. Notre extension pr�esente quatre avantages : i) nous ne supposons pas que le moment d'ordre

quatre est �ni; ii) nous permettons des asym�etries (de type skewness et e�et de levier) qui sont exclues

par les mod�eles GARCH faibles; iii) nous d�erivons des restrictions sur des moments conditionnels utiles

pour l'inf�erence non lin�eaire; iv) notre cadre de travail nous permet d'�etudier l'agr�egation temporelle

des mod�eles IGARCH.

Mot cl�es : GARCH, volatilit�e stochastique, �espace-�etat, SR-SARV, agr�egation temporelle,

rendements d'actifs, processus de di�usion.



1 Introduction

Prices of �nancial assets, such as stocks, bonds, and currencies, are available at many frequencies from

intradaily to annual. When modeling volatility of the returns on such assets, issues related to the

e�ect of temporal aggregation and the choice of the observation frequency arise naturally. Basically,

two modeling strategies can be considered: the model can be speci�ed for the observable frequency by

implicitly assuming that it is the correct model for this frequency (an assumption which is testable),

or the model can be speci�ed at a high frequency, say continuous time, where the implications for a

lower frequency are subsequently derived. Typically, models from the ARCH1 family belong to the

�rst class, while models in Drost and Nijman (1993) and Hansen and Scheinkman (1995) stem from

the second strategy.2 In general, we say that a model is closed under temporal aggregation if the

model keeps the same structure, with possibly di�erent parameter values, for any data frequency.

Drost and Nijman (1993) consider temporal aggregation of volatility models. They show that

the usual GARCH models of Bollerslev (1986) are not closed under temporal aggregation. The

main reason is that such models imply that the squared residual process is a semi-strong ARMA

(i.e., an ARMA process for which the innovations form a martingale di�erence sequence), which

is not closed under temporal aggregation. The ARMA literature teaches us that weak ARMA

models, where the innovations are serially uncorrelated (weak white noise), are closed under temporal

aggregation. Therefore, Drost and Nijman (1993) introduce the class of weak GARCH models which

are characterized by a weak ARMA structure of the squared innovations and show that this class is

closed under temporal aggregation.

However, weak GARCH models have several limitations. First, since weak GARCH models are

characterized by a weak ARMA structure of the squared innovations, Drost and Nijman (1993) assume

that the fourth moment of the innovations is �nite. This seems to be empirically violated by several

�nancial time series, especially when observed at a high frequency.3 Secondly, in the weak GARCH

setting, linear projections instead of conditional expectations are considered. This is an important

drawback if the conditional variance is considered to be the relevant measure of risk. It is also a

limitation for statistical purposes since asymptotic properties of inference procedures like QMLE are

usually based on conditional moments. Indeed, in a Monte Carlo study we show clearly that QMLE

1ARCH models were introduced by Engle (1982) and extended by Bollerslev (1986) to GARCH. For a review of the
ARCH literature, see, e.g., Bollerslev, Engle and Nelson (1994).

2Hansen and Scheinkman (1995) consider continuous time stochastic di�erential equations and derive moment
restrictions for a given data frequency. DuÆe and Glynn (1997) extend this to observations sampled at random times.
Nelson bridges the gap between discrete time ARCH models and continuous time models by taking an approximating,
�ltering, or smoothing approach: Nelson (1990, 1992, 1996), Nelson and Foster (1994).

3Recently, Davis and Mikosch (1998) show that for an ARCH(1) of Engle (1982) with in�nite fourth moment, the
standard estimator of the correlation between "2t and it lags converges to a random variable.
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is not consistent for temporally aggregated GARCH models.4 Finally, for temporal aggregation of

ow variables (e.g., returns), Drost and Nijman (1993) have to exclude asymmetries such as skewed

innovations and leverage e�ects (Black, 1976, Nelson, 1991).

In the present paper, we propose a new class of volatility models which is closed under temporal

aggregation and which avoids the limitations of the weak GARCH class. We follow the main idea of

Drost and Nijman (1993) by considering an ARMA structure for the squared innovations. However,

our approach is based on linear state-space modeling, that is, according to �nancial terminology,

stochastic volatility (SV) modeling.5 We consider the Square-Root Stochastic Autoregressive

Volatility (SR-SARV) models which are characterized by AR dynamics for the conditional variance

process. Special ARCH-type examples of SR-SARV include ARCH of Engle (1982), GARCH of

Bollerslev (1986), and the asymmetric GARCH models of Glosten, Jagannathan and Runkle (1989),

Engle and Ng (1993). Moreover, even if the variance is stochastic, we can still base inference on

some conditional moment restrictions which involve only observables. When the fourth moment of

the innovations is �nite, these moment restrictions imply that the squared innovations process is an

ARMA process. Besides, we prove that any symmetric SR-SARV model with �nite fourth moment is

weak GARCH. Hence, weak GARCH are SV processes rather than standard GARCH and our results

generalize those of Drost and Nijman (1993) and of Drost and Werker (1996). Finally, our framework

allows us to study temporal aggregation of Integrated GARCH (IGARCH).

Several models in the literature share the property of autoregression of the variance: GARCH

models, structural GARCH models of Harvey, Ruiz, and Sentana (1992), SV models of Barndor�-

Nielsen and Shephard (2001), and the SR-SARV models of Andersen (1994).6 Our class of models

is closely related to the Andersen (1994) SR-SARV and we adopt his terminology. However, while

Andersen (1994) speci�es a parametric setting, we take a semiparametric point of view avoiding

parametric assumptions on the probability distributions.7

Since Akaike (1974), it is well-known that there is an equivalence between weak ARMA and

weak state-space models. In particular, given an ARMA process with �nite variance, we can �nd a

state-space model, generally not unique, such that the restrictions implied on the observables are the

same for both models. In Meddahi and Renault (2002a), we extend this result to semi-strong models.

However, there is no equivalence between semi-strong ARMA models and semi-strong state-space

models. More precisely, we show that semi-strong ARMA models admit a particular semi-strong

4This is an important di�erence with Drost and Nijman (1992) who report simulation results which suggest that the
QMLE of temporally aggregated GARCH is consistent or has a very small bias. Our results are di�erent from theirs
because we aggregate over a much longer period and we take empirically more relevant low frequency parameters.

5See Ghysels, Harvey and Renault (1996) and Shephard (1996) for a review.
6Several multivariate models in factor GARCH literature also share this property: Diebold and Nerlove (1989), Engle,

Ng and Rothschild (1990), King, Sentana and Wadhwani (1994).
7Besides speci�c Gaussian models, distributional assumptions are generally not closed under temporal aggregation.
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state-space representation, but the latter amounts only to some multiperiod conditional moment

restrictions which are less restrictive than the moment conditions implied by a semi-strong ARMA

model. For instance, consider an ARMA(1,1) process zt. We show that zt admits a semi-strong

state representation if and only if there exist ! and  such that E[zt � ! � zt�1 j z� ; � � t � 2] =

0:8 It turns out that these weakened multiperiod conditional moment restrictions are closed under

temporal aggregation. In other words, this particular state-space representation of a semi-strong

ARMA(1,1) model is robust to temporal aggregation while semi-strong ARMA models in general are

not. Multiperiod conditional moment restrictions are very useful for inference and are introduced in

Hansen (1985); see Hansen and Singleton (1996) for a review. When the variance of zt is �nite, these

restrictions imply that zt is a weak and not necessarily a semi-strong ARMA: it is in between.

Starting from the SR-SARV(1) model characterized by AR(1) dynamics of the conditional variance

process, we propose several extensions. In the spirit of GARCH (p,p) modeling, we introduce the

SR-SARV(p) model: the variance process is the sum of the components (marginalization) of a positive

multivariate VAR(1) of dimension p. GARCH(p,p) models are special examples of SR-SARV(p).

When fourth moments are �nite, the squared innovations process is an ARMA(p,p). In continuous

time, all this leads up to consider a SV model in which the variance is a marginalization of a vector of

dimension p, that is a multi-factor model for the variance (e.g., Heston, 1993; DuÆe and Kan, 1996).9

The exact discretization of such models is SR-SARV(p), hence the process of squared innovations

ful�lls the above mentioned multiperiod moment restrictions.

Finally, we consider temporal aggregation of IGARCH models. In this case, we consider the ISR-

SARV class where we relax the assumption of integrability of the variance process while maintaining

the stationarity assumption. We show that this class is closed under temporal aggregation.

The rest of the paper is organized as follows. We introduce in Section 2 the SR-SARV(p) model in

discrete and continuous time. We start by showing that exact discretization of continuous time SR-

SARV models are discrete time SR-SARV models. Then, we show that the discrete time SR-SARV(p)

model is closed under temporal aggregation. After that, we derive multiperiod conditional moment

restrictions ful�lled by the squared innovations process. We also characterize the relations between

SR-SARV, semi-strong GARCH, weak GARCH, and ARMA representations for squared innovations.

Section 3 focuses more speci�cally on the SR-SARV(1) model. In particular, we characterize the

SR-SARV(1) models that are semi-strong GARCH(1,1) and we discuss asymmetry issues (leverage

e�ect and skewness). We also consider temporal aggregation of IGARCH models and show by Monte

Carlo that the Gaussian QMLE is not consistent for temporally aggregated GARCH models. We

8This restriction is less restrictive than saying that the innovation process of zt is a martingale di�erence sequence.
9Heston (1993) considers a SV model where the volatility is a Constant Elasticity of Variance (CEV) process

introduced by Cox (1975). They are characterized by a linear drift and popular in �nance for their nonnegativity.
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conclude in the last section while all the proofs of the results are provided in the Appendix.

2 SR-SARV(p) model

In this section we introduce the Square-Root Stochastic Autoregressive Volatility model of order p

(SR-SARV(p)) in discrete and continuous time. This model involves a state-space representation of

order p for the squared (innovation) process. We prove that the continuous time and discrete time

models are consistent by showing that the exact discretization of a continuous time SR-SARV(p)

model is a discrete time SR-SARV(p) model. This result suggests that the discrete time model is

closed under temporal aggregation and, hence, we prove it. Then we derive observable restrictions

of our model. These multiperiod conditional moment restrictions involve p lags and hold for the

squared process. When the fourth moment of the process is �nite, it ensures an ARMA structure for

the squared innovation process which is intermediate between weak and semi-strong. Finally we recall

the de�nitions of semi-strong GARCH and weak GARCH and their links with the ARMA structure

of the squared innovations.

2.1 The model

2.1.1 Discrete time SR-SARV(p) model

De�nition 2.1. Discrete time SR-SARV(p) model: A stationary square-integrable process

f"t; t 2 Zg is called a SR-SARV(p) process with respect to a �ltration Jt; t 2 Z, if:
i) "t is a martingale di�erence sequence w.r.t. Jt�1, that is E["t j Jt�1] = 0;

ii) the conditional variance process ft of "t+1 given Jt is a marginalization of a stationary Jt-adapted

VAR(1) of dimension p:

ft � V ar["t+1 j Jt] = e0Ft; (2.1)

Ft = 
+ �Ft�1 + Vt; with E[Vt j Jt�1] = 0; (2.2)

where e 2 IRp, 
 2 IRp and the eigenvalues of � have modulus smaller than one.

Observe that the SR-SARV process is de�ned for a given information set Jt. The information Jt

contains at least the minimal natural �ltration associated to the process "t and denoted It, that is:

It = �("� ; � � t): (2.3)

In particular, Jt may contain macroeconomic variables, information about other assets and markets,

the volume of transactions, the spread, the order book and so on.10 Indeed, we assume that the

econometrician observes It but not necessarily Jt, even if the economic agent may do. Thus, when

10Note also that �("� ; f� ; � � t) � Jt since the process ft is adapted w.r.t. Jt.
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It 6= Jt, the model is a Stochastic Volatility (SV) model since the conditional variance process is a

function of possibly latent variables.

The process of interest "t is assumed to be a martingale di�erence sequence w.r.t the large information

Jt and therefore w.r.t. It. Typically, "t could be the log-return of a given asset with a price at time

t denoted by St: "t = Log(St=St�1). This assumption of m.d.s. is widespread in �nancial economics

and related to the notion of informational eÆciency of asset markets. However, we do not preclude

predictable log-returns; in this case, our "t should be interpreted as the innovation process (see

Meddahi and Renault, 1996).

The model can be interpreted through a state-space representation of "2t since

"2t = e0Ft�1 + ("2t �E["2t j Jt�1]): (2.4)

Here, (2.4) is the measurement equation while (2.2) is the transition equation. This state-space

representation is convenient for both temporal aggregation and inference purposes. It is implicitly

assumed that the process e0Ft is non negative. A suÆcient but not necessary condition for this is that

all the components of e and Ft are nonnegative.

Note that in contrast to the weak GARCH case, we do not assume that the fourth moment of "t is

�nite. We only assume the integrability of the conditional variance process and, hence, the �niteness

of the second moment. Moreover, leverage e�ect, that is a nonzero correlation between "t and ft, is

not precluded.

This model is related to Andersen's (1994) SR-SARV and indeed we adopt his terminology.

However, Andersen (1994) considers a fully parametric model11 by specifying the complete distribution

of the process ("t; F
0
t )
0 and precludes any leverage e�ect. The temporal aggregation requirement

prevents us from completely specifying the probability distributions. Distributional assumptions or

homo-conditional moments restrictions (homoskewness, homokurtosis) are generally not closed under

temporal aggregation (see below). Actually, we do not maintain any assumption about the leverage

e�ect or about the high order moments of "t (third, fourth...) and Vt.
12 To summarize, we consider

a semiparametric SV model.

The SR-SARV class of models nests some well known examples. We list below some of them.

11Andersen (1994) considers the general class of SARV models where a function of the conditional variance process is
a polynomial of an AR(1) Markov process. When this function is the square-root, Andersen (1994) calls it Square-Root
(SR) SARV while he terms Exponential SARV when this function is the exponential one, corresponding to the Taylor
(1986) and Harvey, Ruiz and Shephard (1994) lognormal SV model.

12Andersen (1994) considers only one factor, so his model is related to a SR-SARV(1). However, he de�ned the
volatility process as a function of a polynomial, say of degree p, of an AR(1) state-variable Kt. Thus, it is a
marginalization of the vector (Kt; K

2
t ; :::; K

p
t )

0 which is indeed a VAR(1) of size p. In other words, Andersen (1994)
considers implicitly a particular SARV(p) model.
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� Example 1: GARCH(1,1). This model introduced by Bollerslev (1986) and extended by Engle

and Ng (1993) is given by

ft = !1 + �("t + �)2 + �ft�1 and Jt = It: (2.5)

Bollerslev's (1986) model corresponds to � = 0. It was extended by Engle and Ng (1993) in order to

capture the leverage e�ect. Obviously, we have

ft = !+ft�1+vt where ! = !1+��
2;  = �+�; vt = �("2t�ft)+2��"t and E[vt j Jt�1] = 0: (2.6)

Since Jt = It, this model is an ARCH-type instead of an SV one.13 Moreover, "t is a weak GARCH(1,1)

when it is assumed in addition that fourth moment of "t is �nite and the leverage e�ect is ruled out

(� = 0).

� Example 2: Quadratic process. Consider fztg an Gaussian AR(1) process given by

zt = �zt�1 + et where j � j< 1 and et i:i:d: N (0; �2);

and de�ne ft by ft � z2t . Then, we have

ft = !+ft�1+vt with ! = �2;  = �2; vt = 2�zt�1et; E[et j Jt�1] = 0 where Jt = �("� ; z� ; � � t):

� Example 3: Positive AR(1) process. Assume that fftg is de�ned by

ft = ! + ft�1 + vt where vt is i:i:d: D(0; �2) (2.7)

with a lower bounded support for vt, that is, there exists a real a such that vt � a almost surely. Then

the process ft is nonnegative when ! + a � 0.14 Such processes are considered by Barndor�-Nielsen,

Jensen and Sorensen (1998). In this case, "t is a SR-SARV(1) w.r.t. to the information Jt =

�("� ; f� ; � � t).

We now consider continuous time stochastic volatility models which are popular in �nance due to

their positivity. The exact discretization of these processes is a discrete time SR-SARV(p) process.

2.1.2 Continuous time SR-SARV(p) model

De�nition 2.2. Continuous time SR-SARV(p) model: A continuous time stationary process

fyt; t 2 IRg is called a SR-SARV(p) process with respect to a �ltration Jt; t 2 IR, if and only if there

exists a p-variate process F c
t such that yt is the stationary solution of

d(
yt
F c
t
) = (

0
K(�� F c

t )
)dt+Rt dWt; (2.8)

13We give additional ARCH-type examples in the following section.
14The reason is that ft =

P1

i=0
i(! + vt).
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where Wt is a (p + 1)-variate standard Wiener process adapted w.r.t Jt, K is a p� p positive stable

matrix 15 and Rt is a (p + 1) � (p + 1) lower triangular matrix, such that the coeÆcient r11;t is the

square-root of r211;t � �2t = e0F c
t ; with e 2 IRp

+:

The instantaneous conditional variance of (yt; F
c
t ) given Jt is RtR

0
t. The matrix Rt is lower

triangular,16 therefore the conditional variance of yt given Jt is r
2
11;t. In other words, we follow the

main idea of the discrete time SR-SARV(p) model, that is the conditional variance is a marginalization

of a p dimensional VAR(1) positive process F c
t . Note that as for the discrete time model, we have a

semiparametric SV model since we do not de�ne completely the matrix Rt. In particular, we allow for

a leverage e�ect. Of course, the matrix Rt has to ful�ll conditions ensuring existence and uniqueness

of a stationary solution of the SDE (2.8). For instance, this is consistent with the DuÆe and Kan

(1996) setting of a multivariate square-root process such that each coeÆcient of RtR
0
t is of the form

(1; F c0
t )~e with ~e 2 IRp+1.17 Again, we do not ruled out the leverage e�ect, i.e. the �rst component the

Brownian processWt may be correlated with the other components. Finally, note that the framework

allows for models where there are additional factors in Rt.

The continuous time SR-SARV class nests several well known models:

Example 4: CEV and GARCH di�usion models. Consider the one factor model where �2t is

given by:18

d�2t = k(� � �2t )dt+ Æ(�2t )
�dW2;t; with 1=2 � � � 1: (2.9)

This is the CEV process introduced by Cox (1975). When � = 1=2, the CEV process becomes the

square-root model considered by Heston (1993) while the case � = 1 corresponds to the GARCH

di�usion model of Nelson (1990). Notice that the Brownian motion processes W1;t and W2;t may be

perfectly correlated, which leads to a GARCH-type model.19

Example 5: Quadratic model. As for Example 2, assume that �2t is the square of a driftless

Ornstein-Uhlenbeck process zt, i.e. �
2
t = z2t where

dzt = �k1ztdt+ �dW2;t:

Then, by using Ito's Lemma, we get

d�2t = k(� � �2t )dt+ r22;tdW2;t where k = 2k1; � =
�2

k
and r22;t = 2�zt: (2.10)

15This means that the eigenvalues of K have positive real parts (see Horn and Johnson, 1994, Chapter 2). Indeed,
a usual assumption, see e.g. Bergstrom (1990), page 53, is that the eigenvalues of K are distinct. Therefore K is
diagonalisable, i.e. there exists a matrix H such that HKH�1 = Diag(�1; :::; �p) � �. As a consequence, for u > 0,

He�uKH�1 = e�u� = Diag(e�u�1 ; :::; e�u�p) with eZ =
P1

i=0
Zi

i!
. The positivity of the real parts of the eigenvalues

K ensures the existence of e�uK 8u > 0.
16This Gramm-Schmidt normalization rule is standard and can be maintained without loss of generality.
17See DuÆe and Kan (1996) for suÆcient conditions of existence of a stationary solution of (2.8) in this case.
18Since there is only one factor, we change the notations by taking F c

t � �2t , Wt = (W1;t;W2;t)
0.

19This model is considered by Heston and Nandi (2000) with � = 1=2.
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Example 6: Positive Ornstein-Uhlenbeck process. Recently, Barndor�-Nielsen and Shephard

(2001) have considered a new class of continuous time stochastic volatility models, termed positive

OU processes, where �2t is given by

�2t = e��t�20 +
Z t

0
e��(t�s)dz(�s) (2.11)

where �20 =
R 0
�1 esdz(s), fzt; t 2 IRg is an integrable homogenous L�evy process with positive

increments and � a positive number. Note the similarity with Example 3. Actually, positive L�evy

processes and CEV processes are two ways to get positive autoregressive processes that are appropriate

for SR-SARV.

The consistency between the notions of continuous time SR-SARV(p) and discrete time SR-SARV(p)

is ensured by the following result:

Proposition 2.1 Exact discretization of continuous time SR-SARV(p)

Let fyt; t 2 IRg be a continuous time SR-SARV(p) process with a corresponding factor process fF c
t ; t 2

IRg. Assume that the second moment of F c
t is �nite. Then, for any sampling interval h, the associated

discrete time process "
(h)
th = yth � y(t�1)h, t 2 Z, is a SR-SARV(p) process w.r.t. J

(h)
th , J

(h)
th =

�("
(h)
�h ; F

c
�h; � � t; � 2 Z). The corresponding conditional variance process f (h)(t�1)h � V ar["

(h)
th j J (h)

(t�1)h]

is given by f
(h)
th = e0F (h)

th with F
(h)
th = A(h)F c

th + B(h), where A(h) = K�1(Id � e�Kh) and B(h) =

(hId�A(h))�:

Proposition 2.1 maintains the assumption of square-integrability of F c
t to ensure that its exact

discretization is a VAR(1) process. This is why CEV processes with � > 1 are excluded. When

� < 1, the integrability assumption is ful�lled while the additional restriction �2=2k < 1 is needed

for the GARCH di�usion model of Nelson (1990) (� = 1).

The previous result suggests that the SR-SARV(p) class is closed under temporal aggregation.

This is the main focus of interest of the paper and the purpose of the next subsection.

2.2 Temporal aggregation of SR-SARV(p) models

Let us consider a process f"t; t 2 Zg and the aggregated process f"(m)
tm ; t 2 Zg de�ned by

"
(m)
tm =

m�1X
k=0

ak"tm�k; (2.12)

with m 2 N�, a = (a0; a1; ::; am�1)
0 2 IRm. Temporal aggregation of stock variables observed at the

dates m, 2m, 3m,.., Tm, corresponds to a = (1; 0; 0:::; 0)0 , while for ow variables a = (1; ::; 1)0. This

latter case is particularly suitable for log-returns.
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Proposition 2.2 Temporal aggregation of SR-SARV(p) models

Let "t be a SR-SARV(p) process w.r.t. an increasing �ltration Jt and a conditional variance process

ft = e0Ft. For a given integer m, the process "
(m)
tm de�ned by (2.12) is a SR-SARV(p) w.r.t. J

(m)
tm =

�("
(m)
�m ; F�m; � � t). More precisely, we have:

f
(m)
tm�m � V ar["

(m)
tm j Jtm�m] = e0(A(m)Ftm�m +B(m)); (2.13)

where A(m) =
m�1X
k=0

a2k�
m�k�1 and B(m) = (

m�1X
k=0

a2k(
m�k�2X
i=0

�i))
: (2.14)

Assume that e0A(m) 6= 0, then f
(m)
tm = e(m)0F

(m)
tm with

e(m) = A(m)0e; F
(m)
tm = Ftm + e(m)(e(m)0e(m))�1e0B(m): (2.15)

As well, F
(m)
tm is a VAR(1) process with an autoregressive matrix �(m) given by

�(m) = �m: (2.16)

In other words, the assumption that the conditional variance is a marginalization of a VAR(1) process

of dimension p is robust to temporal aggregation. The intuition of this result is the following. Consider

the initial process "t with the information Jt at high frequency and de�ne the process at low frequency

"
(m)
tm by (2.12). De�ne f

(m)
tm as the conditional variance of "

(m)
(t+1)m given the information at high

frequency Jtm (�rst part of 2.13). This information is generally not observable either by the agent

or by the econometrician and thus the variance is stochastic. But by something like a Markovian

property,20 the conditional variance f
(m)
tm is a function of Ftm. By the linearity of the model, this

function is indeed aÆne (second part of (2.13)). De�ne the information at low frequency by J
(m)
tm �

�("
(m)
�m ; F

(m)
�m ; � � t). Then "

(m)
tm is still a m.d.s. with respect to J

(m)
tm since E["

(m)
tm+m j Jtm] = 0 and

J
(m)
tm � Jtm. Of course, by de�nition, the conditional variance f

(m)
tm of "

(m)
tm+m given J

(m)
tm is positive.

Then assuming that e0A(m) 6= 0,21 we can rewrite this conditional variance as a marginalization of a

new state variable F
(m)
tm . The latter is a VAR(1) since it is the sum of a VAR(1) and a constant. Thus,

"
(m)
tm is a SR-SARV(p) w.r.t. J

(m)
tm . Finally, the autoregressive parameter of the VAR(1) Fm

tm is equal

to the autoregressive parameter of the high frequency vector Ft to the power m (2.16). It means that

the persistence increases exponentially with the frequency. Conversely, conditional heteroskedasticity

vanishes when the frequency is low. This corresponds to a well-documented empirical evidence and

was pointed out by Diebold (1988), Drost and Nijman (1993) and Drost and Werker (1996).

20If one has in mind an underlying continuous time representation like (2.8), the low frequency process (y
(m)
tm ; F

(m)
tm )

is Markovian. More generally, our setting ensures that the conditional variance f
(m)
tm depends on past information only

through Ftm.
21The equality e0A(m) = 0 would mean that the process "

(m)
tm is homoskedastic which is a degenerate SR-SARV model.

In other words, temporal aggregation would cancel the volatility e�ect.
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Temporal aggregation of conditionally heteroskedastic models was already considered by Drost

and Nijman (1993) and lead to the weak GARCH paradigm while the links between continuous time

SV models and weak GARCH were put forward by Drost and Werker (1996). In the next subsection,

we will recap these results and characterize the links between weak GARCH and SR-SARV models.

2.3 Observable restrictions

2.3.1 Multiperiod conditional moment restrictions

The SR-SARV is de�ned w.r.t. an increasing �ltration Jt, which may not be observable by the

economic agent or the econometrician. However, following Meddahi and Renault (2002a), the state-

space representation of "2t allows us to derive conditional moments ful�lled by the observable process

"t given the minimal information It = �("� ; � � t). These restrictions are multiperiod ones of order

p.

Proposition 2.3 SR-SARV and multiperiod restrictions

Let f"t; t 2 Zg be a stationnary process. It admits a SR-SARV(p) representation w.r.t. an increasing

�ltration Jt if and only if there exist p+1 reals !, 1,..,p, such that the roots of 1 �Pp
i=1 iL

i are

outside the unit circle and

E["2t � ! �
pX

i=1

i"
2
t�i j "� ; � � t� p� 1] = 0: (2.17)

Therefore, when the fourth moment of "t is �nite, "
2
t is an ARMA(p,p) de�ned by (2.17), that is

an ARMA property which is intermediate between weak and semi-strong. The (semi-strong) ARMA

structure was the main idea of the ARCH models introduced by Engle (1982) and generalized by

Bollerslev (1986). Indeed, the clustering e�ect in �nancial data that these models account for is

directly related to the ARMA structure of the squared residuals.

For temporal aggregation purposes, Drost and Nijman (1993) introduce the weak GARCH models

where the squared residuals process is a weak ARMA. Following the Drost and Nijman (1993)

terminology, we precisely de�ne below the various concepts and show how they are nested.

2.3.2 GARCH(p,q)

De�nition 2.3. GARCH(p,q): Let a stationary process f"t; t 2 Zg and de�ne the processes

fht; ut; t 2 Zg by the stationary solution of

B(L)ht = ! +A(L)"2t (2.18)

and ut = "t=
p
ht, with A(L) =

Pq
i=1 �iL

i, B(L) = 1�Pp
i=1 �iL

i where the roots of B(L)�A(L) and

B(L) are assumed to be di�erent and outside the unit circle. We say that:

10



i) "t is a strong GARCH(p,q) if the process ut is i.i.d. D(0; 1);

ii) "t is a semi-strong GARCH(p,q) if the process ut is such that

E[ut j "� ; � � t� 1] = 0 and V ar[ut j "� ; � � t� 1] = 1; (2.19)

iii) "t is a weak GARCH(p,q) if

EL["t j Ht�1] = 0 and EL["2t j Ht�1] = ht; (2.20)

where EL[xt j Ht�1] denotes the best linear predictor of xt in the Hilbert space, Ht�1, spanned by

f1; "� ; "2� ; � � t� 1g, that is

E[(xt �EL[xt j Ht�1])"
r
t�i] = 0 for i � 1 and r = 0; 1; 2: (2.21)

Note that in the strong and semi-strong cases, we do not assume that the fourth moment is �nite

while the weak GARCH setting requires this assumption.

Proposition 2.4 Semi-strong GARCH and ARMA

Let f"t; t 2 Zg be a m.d.s. (E["t j "� ; � � t� 1] = 0). It is a semi-strong GARCH(p,q) if and only if

"2t is a semi-strong ARMA(maxfp; qg,p) with an innovation process which is a m.d.s. w.r.t. It.

Note that the innovation process of the squared process is assumed to be a m.d.s. w.r.t. It and

not only w.r.t. ~It = �("2� ; � � t)) since the conditional variance process is de�ned given It (and not

~It). Bollerslev (1988) already pointed out that the squared values of a strong GARCH(p,q) have

a semi-strong ARMA(maxfp; qg,p) structure. Note that strong GARCH implies only semi-strong

ARMA: when "2t =ht is i.i.d., the ARMA process "2t should in general be conditionally heteroskedastic.

Since "2t is a semi-strong ARMA, it ful�lls a multiperiod conditional moment restriction of order

max(p,q).22 Therefore, Proposition 2.3 implies that "t admits a SR-SARV(maxfp; qg) representation.
Corollary 3.1 Semi-strong GARCH and SR-SARV

Let f"tg be a semi-strong GARCH(p,q). Then f"tg is a SR-SARV(maxfp; qg) w.r.t. It.

Note that Corollary 3.1 and Proposition 2.1 put together provide a continuous time model, the

SR-SARV(p) one, which is consistent with GARCH(p,p) in discrete time. To our knowledge, the

relationship between GARCH(p,p) modeling of higher order (p > 1) and continuous time stochastic

volatility models was not clearly stated before in the literature, whatever the approach of di�usion

approximating (Nelson, 1990), �ltering (Nelson and Foster, 1994) or closing the GARCH Gap (Drost

and Werker, 1996). Finally, the temporal aggregation of a GARCH model is a SR-SARV model. In

22More precisely, a semi-strong ARMA(~q; ~p) implies a multiperiod conditional moment restrictions of order equal to
maxf~q; ~pg. Thus a semi-strong ARMA(maxfp; qg,p) implies a multiperiod restriction of order maxfp; qg.
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other words, to close the class of GARCH processes, we have to plug it into the stochastic volatility

class of models. This is not a surprising result since we know that semi-strong ARMA processes are

not closed under temporal aggregation.

In the next section, we give additional insights as to why GARCH models are not robust to

temporal aggregation. Drost and Nijman (1993) already focused on this weakness of standard GARCH

models. They give examples of strong and semi-strong GARCH which are not closed under temporal

aggregation. Then, they introduce the weak GARCH model where the squared residuals are weak

ARMA in order to bene�t from the temporal aggregation of the weak ARMA structure.

Proposition 2.5 Weak GARCH and ARMA

Let Hs
t�1 the Hilbert space spanned by f1; "2� ; � � t � 1g and fhst ; �tg the processes de�ned by hst =

EL["2t j Hs
t�1] and �t = "2t � hst . If "t is a weak GARCH(p,q) process, then ht = hst a.s. and, hence,

"2t is a weak stationary ARMA(maxfp; qg,p) process and

Cov(�t; "� ) = 0; 8� < t: (2.22)

Conversely, if "2t is a weak stationary ARMA(q,p) process and (2.22) holds, then "t is a weak

GARCH(p,q).

Thus, the weak GARCH property is slightly more restrictive than the weak ARMA assumption for

the squared residuals. In particular, (2.22) is like a symmetry assumption, which is implied by the

maintained m.d.s. condition for "t when assuming semi-strong GARCH. In fact, Drost and Nijman

(1993) take a \coherent" de�nition in the sense that they project both the residual and its square onto

the same space Ht�1. However, using the ARMA structure of the squared residuals is the main idea

of weak GARCH.23 As we can already see, the class of weak ARMA processes strictly contains the

class of ARMA models with a semi-strong state-space representation and �nite variance. Therefore,

weak GARCH processes are in fact Stochastic Volatility models, i.e., Drost and Nijman (1993)

plug also the class of GARCH models into the SV one.24

However, to show that weak GARCH class is closed under temporal aggregation for ow variables,

Drost and Nijman (1993) maintain at least one of the following symmetry assumptions:

8h 2 N�;8(ak)1�k�h 2 f�1; 1gh; ("t+k)1�k�h = (ak"t+k)1�k�h in distribution; or (2.23)

80 � i � j E["t"t�i"t�j ] = 0 and 8 0 � i � j � k; i 6= 0 or j 6= k E["t"t�i"t�j"t�k] = 0: (2.24)

23When Nijman and Sentana (1996) and Drost and Weker (1996) prove respectively that a marginalization of a
multivariate GARCH and that the discretization of (2.8) for p=1 under (2.9) are weak GARCH, they only deal with
the ARMA property of squared residuals.

24See the following section where we establish the exact links between SR-SARV and weak GARCH.
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Such symmetry restrictions are indeed quite restrictive both on theoretical and empirical grounds.

They preclude two types of asymmetry which appear relevant for �nancial data. First, even in the

strong GARCH setting, the probability distribution of the standardized innovations "t=
p
ht may

be skewed. Second, since the weak GARCH models are SV ones (outside the standard GARCH

class), another type of asymmetry (termed the leverage e�ect by Black, 1976, and popularized by

Nelson, 1991) may matter. A clear distinction between these two types of asymmetric behavior of a

general SR-SARV(1) process will be made in Section 3 below. Equivalently, the leverage e�ect can

be introduced in the continuous time setting by allowing the volatility matrix Rt to be non-diagonal,

unlike the case considered by Drost and Werker (1996) and Andersen and Bollerslev (1998). Finally,

note that our results concerning temporal aggregation and exact discretization are consistent with

those of Drost and Nijman (1993) and Drost and Werker (1996).25 In particular, the restrictions on

the persistence parameters are the same (�(m) = �m).26

3 SR-SARV(1)

3.1 SR-SARV(1) and GARCH(1,1)

The GARCH(1,1) model is nowadays dominant w.r.t. any other ARCH or GARCH type model in the

empirical �nance literature. We discuss in more detail its relationship with the general SR-SARV(1).

In the previous section, we proved that a semi-strong GARCH(p,q) is also a SR-SARV(maxfp; qg).
We �rst characterize those SR-SARV(1) processes which are also semi-strong GARCH(1,1). The

general notations of De�nition 2.1 are adapted in the case p = 1 by ft = Ft and  = � with j  j< 1.

Proposition 3.1 Semi-strong GARCH(1,1) and SR-SARV(1)

Let f"t; t 2 Zg be a SR-SARV(1) process with a conditional variance process ft and a positive

persistence parameter . Then, "t is a semi-strong GARCH(1,1) with � > 0 and � � 0 if and

only if: i) "2t and ft are conditionally perfectly linearly and positively correlated given Jt�1; ii) the

ratio V ar[ft j Jt�1]=V ar["
2
t j Jt�1] is constant and smaller or equal to 2. In this case: ht+1 = ft,

Jt = It and � =  � � with � =
q
V ar[ft j Jt�1]=V ar["

2
t j Jt�1].

For all practical purposes, the �rst condition implies that ft is adapted to It, i.e. there are no

exogenous sources of randomness in the conditional variance. Actually, this is the case for the

GARCH(1,1) model and also for more general ARCH-type models as ones listed below in (3.1), (3.2)

(3.3), (3.4) and (3.5). But perfect linear conditional correlation between ft and "2t is a speci�cation

of the GARCH model. The second condition is less known even though it was already coined by

Nelson and Foster (1994). They observed that the most commonly used ARCH models assume that

25Nevertheless, Drost and Werker (1993) consider only the one factor case.
26For more details, see Meddahi and Renault (1996).
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the variance of the variance rises linearly with the square of the variance, which is the main drawback

of GARCH models in approximating SV models in continuous time. Thus, the semi-strong GARCH

setting imposes nontrivial restrictions on the dynamics of the conditional kurtosis.

Nelson (1991) stressed that one limitation of GARCH models is that only the magnitude

and not the sign of unanticipated excess returns a�ects the conditional variance. Therefore,

alternative asymmetric GARCH models have been introduced in the literature. For instance, Glosten,

Jagannathan and Runkle (1989, GJR) introduce a model based on a GARCH formulation but

accounting for the sign of the past residuals. More generally, asymmetric models have been studied

and compared by Engle and Ng (1993) who consider the following models:

GJR : ht = !1 + �"2t�1 + �ht�1 + � St�1"
2
t�1; where St = 1 if "t < 0; St = 0 otherwise (3.1)

Asymmetric GARCH : ht = !1 + �("t�1 + �)2 + �ht�1; (3.2)

Nonlinear Asymmetric GARCH : ht = !1 + �("t�1 + �
q
ht�1)

2 + �ht�1; (3.3)

VGARCH : ht = !1 + �("t�1=
q
ht�1 + �)2 + �ht�1; (3.4)

Let us also consider a related model considered by Heston and Nandi (1999):

Heston and Nandi : ht = !1 + �("t�1=
q
ht�1 � �

q
ht�1)

2 + �ht�1: (3.5)

Actually, we show that all these models are in the SR-SARV(1) class.27

Proposition 3.2 Asymmetric GARCH and SR-SARV(1)

Let f"t; t 2 Zg be a m.d.s. and de�ne ht the conditional variance of "t, i.e. ht � V ar["t j "� ; � � t�1].
Assume that ht is given by (3.2), (3.3), (3.4), or by (3.5), then "t is a SR-SARV(1) process. If

ut = "t=
p
ht is i.i.d., then the GJR model de�ned by (3.1) is also a SR-SARV(1) process.

3.2 SR-SARV(1) and weak GARCH(1,1)

We will now focus on the relationships between SR-SARV and weak GARCH. As already mentioned,

Drost and Nijman (1993) prove the temporal aggregation property of symmetric weak GARCH

(assuming (2.23) or (2.24)) which excludes the leverage e�ect and all the asymmetric models

considered in Proposition 3.2 We specify two kinds of asymmetries for the SR-SARV model:

De�nition 3.1. Leverage e�ect and skewness: Let f"t; t 2 Zg be a SR-SARV(1) process w.r.t.

a �ltration Jt with corresponding processes fft; ut; �tg where ft = ! + ft�1 + �t and ut = "t=
p
ft�1.

We say that:

27Finally, Drost (1993) shows that symmetric QARCH of Sentana (1995) are weak GARCH. Indeed, it is easy to show
that any QARCH is a SR-SARV model. This is also the case of the HARCH model of Muller and al. (1997) since this
model is a restricted QARCH.
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i) "t does not possess a (conditional) leverage e�ect w.r.t. Jt if and only if

E[ut�t j Jt�1] = 0 or equivalently E["t"
2
t+1 j Jt�1] = 0; (3.6)

ii) "t does not possess a (conditional) skewness w.r.t. Jt if and only if

E[u3t j Jt�1] = 0 or equivalently E["3t j Jt�1] = 0: (3.7)

We show in the appendix that the two conditions of (3.6) (and (3.7)) are equivalent. Now we can

show that a SR-SARV model without leverage e�ect and skewness is a weak GARCH.

Proposition 3.3 Weak GARCH(1,1) and SR-SARV(1)

If "t is a SR-SARV(1) process with �nite fourth moment and without leverage e�ect or skewness, that

is if (3.6) and (3.7) hold, then "t is a weak GARCH(1,1) process.

Therefore, there is no major di�erence between symmetric weak GARCH and symmetric SR-SARV.

However, we do not prove an equivalence result, and it is clear that the class of symmetric weak

GARCH is larger than one of symmetric SR-SARV. Indeed, one can interpret the weak GARCH

model as a SV model, but not endowed with a suÆciently rich speci�cation for statistical inference

and economic interpretation. In addition, we have proved in Section 2 that this weakness is not

needed to close the GARCH gap with continuous time as in Drost and Werker (1996). In a sense, by

introducing the SR-SARV, we have restricted the weak GARCH models by adding useful restrictions

for �nancial and statistical interpretations. Furthermore, SR-SARV allows for asymmetries like the

leverage e�ect and skewness. Indeed, the corresponding symmetry assumptions are closed under

temporal aggregation.

Proposition 3.4 Temporal aggregation, leverage e�ect and skewness

Let f"t; t 2 Zg be a SR-SARV process w.r.t. an increasing �ltration Jt with corresponding processes

fft; ut; �t; t 2 Zg. De�ne "
(m)
tm by (2.12) and the corresponding SR-SARV(1) representation of

Proposition 3.2, J
(m)
tm , ff (m)

tm ; u
(m)
tm ; �

(m)
tm ; g. Then the symmetric SR-SARV class is closed under

temporal aggregation. More precisely, we have:

E[ut�t j Jt�1] = 0 =) E[u
(m)
tm �

(m)
tm j J (m)

(t�1)m] = 0; and (3.8)

E[ut�t j Jt�1] = E[u3t j Jt�1] = 0 =) E[u
(m)
tm �

(m)
tm j J (m)

(t�1)m] = E[(u
(m)
tm )3 j J (m)

(t�1)m] = 0: (3.9)

This proposition means that our results are tightly related to those of Drost and Nijman (1993) and

Drost and Werker (1996), since symmetric SR-SARV are weak GARCH and are closed under temporal

aggregation. Besides, the relationship between parameters at various frequencies, already stressed

by these authors (particularly the persistence parameter) are maintained in our SR-SARV setting.
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Furthermore, a symmetry assumption about the standardized innovation cannot be maintained for

various frequencies without precluding leverage e�ect as well. It is easy to see that when leverage

e�ect is present, the symmetry condition (3.7) is not robust to temporal aggregation. Therefore, when

one observes signi�cant skewness at a low frequency, it may be due either to genuine skewness or to

leverage e�ect at higher frequency, while the presence of leverage e�ect at a low frequency implies the

same feature at higher frequencies.

Proposition 3.5 Observable restrictions of leverage e�ect and skewness

Let "t be a SR-SARV(1) w.r.t. a �ltration Jt.

i) If "t is without leverage e�ect ((3.6) holds), then

E["t"
2
t+1 j It�1] = 0: (3.10)

ii) If "t is without skewness ((3.7) holds), then

E["3t j It�1] = 0: (3.11)

Therefore we can derive moments restrictions based on observable data which can be used to test

the absence of leverage e�ect or skewness. Moreover, usual GARCH allows for a leverage e�ect as

soon as there is skewness since the conditions (3.6) and (3.7) are equivalent in this case. Indeed, in

the introduction of his EGARCH paper, Nelson (1991) explicitly mentions that symmetric GARCH

models do not take into account the leverage e�ect.

3.3 Temporal aggregation of IGARCH(1,1) models

Until now, we have considered temporal aggregation of volatility models with integrable volatility.

However, some empirical evidence supports the Integrated GARCH model introduced by Engle and

Bollerslev (1986). This process is not second-order stationary, since the second moment is in�nite.

This evidence is even more pronounced for high frequency data (5 and 10 minutes returns); see for

instance Andersen and Bollerslev (1997a) and Gen�cay et al. (1998). While the second moment of the

residuals is not �nite, the notion of conditional variance is valid since the squared residual process

is nonnegative and hence its possibly in�nite conditional expectation is well de�ned. Moreover, we

know that the GARCH(1,1) process is strictly stationary when E[ln(� + �u2t )] < 0 (and ! > 0) with

i.i.d. standardized residuals (see Nelson, 1990). This condition is ensured when � + � = 1,28 that is

for IGARCH(1,1). Therefore we can extend our notion of SR-SARV to nest the IGARCH class.

28By Jensen's inequality, we have E[ln(� + �u2t )] < lnE[� + �u2t ] = ln(�+ �) = 0.
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De�nition 5.1. Integrated SR-SARV(1) model: A strictly stationary process f"t; t 2 Zg is

called an ISR-SARV(1) process w.r.t. Jt if:

i) "t is a martingale di�erence sequence w.r.t. Jt�1, that is E["t j Jt�1] = 0;

ii) the conditional variance process ft�1 of "t given Jt�1 is such that:

E[ft j Jt�1] = ! + ft�1: (3.12)

Obviously an IGARCH(1,1) is an ISR-SARV(1). Note that strict stationarity is not important for

modeling purposes since we can remove it in the de�nition of an ISR-SARV. However, it is useful for

inference. We now consider temporal aggregation of ISR-SARV:

Proposition 3.6 Temporal aggregation of ISR-SARV(1)

Let "t be an ISR-SARV(1) process w.r.t. an increasing �ltration Jt and a conditional variance

process ft�1. The process "
(m)
tm de�ned by "

(m)
tm � Pm�1

k=0 ak"tm�k is an ISR-SARV(1) w.r.t. J
(m)
tm =

�("
(m)
�m ; f�m; � � t):

As a consequence, a temporally aggregated IGARCH process is also an integrated process but of SV

type.29 Empirically, the IGARCH model is rejected at low frequencies, e.g. monthly. Therefore by the

aggregation result, one should conclude that the model at high frequency is not an integrated one. A

potential explanation of this is long memory in the volatility. For instance, Bollerslev and Mikkelsen

(1998) (resp Comte and Renault, 1998) show via a Monte Carlo study that when the true model

is FIGARCH (resp long memory continuous time SV), estimation of a GARCH model by QMLE

suggests an IGARCH model. Temporal aggregation of long memory volatility models is beyond the

scope of this paper; see Andersen and Bollerslev (1997b).

3.4 QMLE is not consistent for temporally aggregated GARCH(1,1) models

The main objective of this section is to show that the Gaussian QMLE is not consistent for aggregated

strong GARCH processes. Drost and Nijman (1992) provided some Monte Carlo results that suggested

that the QMLE is consistent or at least have a small bias. More precisely, they generated several

strong GARCH(1,1) processes, then aggregated them. Note that these authors consider a very long

sample size (80000) after aggregation in order to study the consistency of the QMLE. Then, these

authors estimated the weak GARCH(1,1) model by using the QML method and concluded that this

method work well. In contrast, Nijman and Sentana (1996) showed in a Monte Carlo study, with the

same sample size, that the QMLE is not consistent when one aggregates two independent GARCH

processes. Therefore, the Monte Carlo results of Drost and Nijman (1992) are puzzling.

29Engle and Bollerslev (1986) consider temporal aggregation of IGARCH model with ! = 0 which is not, however, a
strictly stationary process. Moreover, the variance process converges a.s. to a constant (Nelson, 1991).
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Francq and Zakoian (2000) consider also the estimation of weak GARCH models. In particular,

they propose a Yule-Walker based two-step method to estimate weak GARCH models. Note however

that the de�nition of weak GARCH adopted by Francq and Zakoian (2000) is di�erent from one of

Drost and Nijman (1993). The di�erence is that Francq and Zakoian (2000) de�ned the variance

process ht as the best linear projection of "2t given the Hilbert space generated by f1; "2� ; � � t� 1g
and not f1; "� ; "2� ; � � t � 1g. Indeed, as pointed out by Francq and Zakoian (2000), their weak

GARCH models are not closed under temporal aggregation. Finally, it is worth noting that Francq

and Zakoian (2000) study the consitency of the Gaussian QMLE of aggregated strong GARCH models

in a Monte Carlo experiment. They reach the same conclusion as Drost and Nijman (1992).

We consider a Gaussian GARCH model at high frequency, that is

yt = �1 + "t = �1 +
p
htut; with ht = !1 + �1"2t�1 + �1ht�1 (3.1)

where ut is i.i.d. N (0; 1) with (�1; !1; �1; �1; 1) = (0; 2:8E-06; :0225; :9770; :9995) where 1 = �1+�1.

We choose these parameters such that after aggregation as ow over m periods with m=400, we

obtain a weak GARCH model with the coeÆcients (�0; !0; �0; �0) = (0; 0:4; 0:206; 0:594; 0:8). The

persistence parameter at the high frequency, 1, is conformable to the empirical study of Andersen

and Bollerslev (1997a). �1 and �1 are chosen such that after temporal aggregation, �0 and �0 are

close to those of a speci�cation considered by Nijman and Sentana (1996).

The aggregated model we consider is very di�erent from ones considered by Drost and Nijman

(1992) (and Francq and Zakoian, 2000, as well). The �rst di�erence is that we aggregate more than

Drost and Nijman (1992) since we consider m = 400 while these authors considered m = 2; 4; 8; 16.

Moreover, the implied parameters after aggregation are more realistic in our case. For instance, the

volatility persistence parameter is .663 with m=8 and .44 with m=16, while we consider persistence

parameters equal to .8.

We follow Drost and Nijman (1992) and Nijman and Sentana (1996) by considering very long

samples. We consider sample sizes equal to 80000 and 150000. For the �rst sample, our results

provided in Table 1 are based on 100 replications while they are based on 50 replications for the second

sample size. From Table 1, it is clear that the QMLE is not consistent for temporally aggregated

GARCH models. Therefore, one has to consider a consistent method as the one developed in Francq

and Zakoian (2000) or a method based on the multiperiod conditional moment restrictions.30

30See the previous version of this paper, Meddahi and Renault (2000).
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4 Conclusion

In this paper, we have considered temporal aggregation of volatility models. We introduce a

semiparametric class of volatility models termed square-root stochastic autoregressive volatility

(SR-SARV) characterized by an autoregressive dynamic of the stochastic variance. Our class

encompasses the usual GARCH models of Bollerslev (1986), the asymmetric GARCH models of

Glosten, Jagannathan and Runkle (1989) and Engle and Ng (1993). Moreover, even if the volatility is

stochastic, that is may involve a second source of randomness, the considered models are characterized

by observable multiperiod conditional moment restrictions (Hansen, 1985). The SR-SARV class is a

natural extension of the weak GARCH models of Drost and Nijman (1993) in discrete time and Drost

and Werker (1996) in continuous time. The SR-SARV class extends the weak GARCH class since it

does not assume that the fourth moment is �nite and, moreover, allows for asymmetries (skewness,

leverage e�ects). On the other hand, it provides a statistical structure which remains true to the

concept of conditional variance, and maintains the validity of conditional moment restrictions, which

are useful for inference. Finally we also consider temporal aggregation of IGARCH models.
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Table 1. QML estimation of temporally aggregated GARCH models
Sample size �0 = 0 !0 = :4 �0 = :206 �0 = :504 0 = :8

80000
0:0004368
(0:005546)

0:4629
(0:02318)

0:1963
(0:006935)

0:5688
(0:01547)

0:7651
(0:01219)

150000
0:000246
(0:003856)

0:4618
(0:01238)

0:1959
(0:004394)

0:5695
(0:008015)

0:7654
(0:006655)

NOTE. The reported statistics are based on 100 replications for the �rst sample size and 50 replications for the second

one. For each cell, the �rst number shows the mean and the second the standard deviation (in parentheses).
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APPENDIX

Proof of Proposition 2.1. From (2.8), we have dyt =
p
e0F c

t dW1t where W1t is the �rst component

of Wt. Therefore "
(h)
th =

R th
th�h

p
e0F c

udW1u and f
(h)
(t�1)h � V ar["

(h)
th j J (h)

(t�1)h] = E[
R th
th�h e

0F c
udu j

J
(h)
(t�1)h] = e0

R th
th�hE[F

c
u j J (h)

(t�1)h]du:

Consider the equation (2.8), then we have dF c
t = K(��F c

t )dt+M22 RtdWt whereM22 is the p�(p+1)
matrix de�ned by M22 = (0; Ip). Therefore, we have

8h > 0; F c
t+h = (Id� e�Kh)� + e�KhF c

t + e�Kh
Z t+h

t
eK(u�t)M22RtdWu: (A.1)

Hence, f
(h)
th�h = e0F (h)

th�h with

F
(h)
th�h =

R t
th�h

n
(Id� e�K[u�(th�h])� + e�K[u�(th�h]F c

th�h
o
du = A(h)F c

th�h + B(h) where A(h) =

K�1(Id � e�Kh) and B(h) = (hId � A(h))�: Since fF c
th; t 2 Zg is a VAR(1) due to (A.1) and

since A(h) is non singular, fF (h)
th ; t 2 Zg is also a VAR(1) with the same autoregressive matrix than

fF c
thg that is e�Kh.2

Proof of Proposition 2.2. We show that the points of the De�nition 2.1 are ful�lled: i) by de�nition

of J
(m)
tm ; ii) we have J

(m)
tm � Jtm. Hence, E["

(m)
tm j J (m)

tm�m] =
Pm�1

i=0 aiE[E["tm�i j Jtm�i�1 j J (m)
tm�m] = 0,

that is "
(m)
tm is a m.d.s. w.r.t. J

(m)
tm�m; iii) we have: V ar["

(m)
tm j J (m)

tm�m] = E[("
(m)
tm )2 j J (m)

tm�m] =Pm�1
i=0 a2iE["

2
tm�i j J (m)

tm�m] + 2
P

0�i<j�m�1 aiajE["tm�i"tm�j j J (m)
tm�m]

=
Pm�1

i=0 a2iE[E["
2
tm�i j Jtm�i�1] j J (m)

tm�m] + 2
P

0�i<j�m�1 aiajE["tm�jE["tm�i j Jtm�i�1] j J (m)
tm�m]

= E[
Pm�1

i=0 a2i ftm�i�1 j J (m)
tm�m]: Since ft is a marginalization of a the VAR(1) process Ft, one

easily gets (see the proof of Proposition 2.3 of Meddahi and Renault, 2002a) V ar["
(m)
tm j J (m)

tm�m] =

E[e0(A(m)Ftm�m+B(m)) j J (m)
tm�m] where A

(m) and B(m) are de�ned by (2.14). By de�nition of J
(m)
tm�m,

F
(m)
tm�m is adapted w.r.t. J

(m)
tm�m. Hence, V ar["

(m)
tm j J (m)

tm�m] = e0(A(m)Ftm�m + B(m)) = e(m)0F
(m)
tm�m

where e(m) and F
(m)
tm�m are de�ned by (2.15). Besides, F

(m)
tm�m is a VAR(1) with autoregressive matrix

�m.2

Proof of Proposition 2.3. Consider f"t; t 2 Zg a SR-SARV(p). Hence "2t = ft�1 + �t: where fftg
admits a state-space representation fFt; �tg w.r.t Jt: We have Ft = 
+�Ft�1 + Vt ) (Id� �L)Ft =


+Vt ) Det(Id��L)Ft = (Id��L)�(
+Vt) where L is the Lag Operator, Det(:) is the determinant

function and (Id � �L)� is the adjoint matrix of (Id � �L). Hence : Det(Id � �L)ft = Det(Id �
�L)e0Ft = e0(Id � �)�
 + e0(Id � �L)�Vt We have: Deg(e0(Id � �L)�) � p � 1 where Deg(:) is the

maximal degree of the lag polynomials, coeÆcients of the matrix. Hence E[Det(Id��L)ft� e0(Id�
�)�
 j Jt�p] = 0: Thus E[Det(Id� �L)"2t+1 � e0(Id� �)�
 j Jt�p] = 0 since "2t+1 = ft + �t+1 and the

(maximal) degree of Det(Id � �L) is p. De�ne a1; ::; ap by 1 �Pp
i=1 aiL

i = Det(Id � �L) and the

real ! by ! = e0(Id� �)�
. By de�nition 2.1, the eigenvalues of � are smaller than one in modulus.
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Therefore the roots of 1 �Pp
i=1 aiL

i are outside the unit circle. Finally, �("� ; � � t � p) � Jt�p.

Hence E["2t+1 � ! �Pp
i=1 ai"

2
t+1�i j z� ; � � t� p] = 0, that is (2.17).

Conversely, consider a process "t such that (2.17). De�ne Ft�1 by Ft�1 = (E["2t+p�1 j It�1]; E["
2
t+p�2 j

It�1]; :::; E["
2
t j It�1])

0. Thus "2t = (0; 0; :::; 0; 1)Ft�1 + vt with E[vt j It�1] = 0.

For i = 2; :::; p, we have again E[Ft(i) j It�1] = E["2t+p+1�i j It�1] = Ft�1(i� 1):

E[Ft(1) j It�1] = E["2t+p j It�1] = E[("2t+p � ! �Pp
i=1 ai"

2
t+p�i) + ! +

Pp
i=1 ai"

2
t+p�i j It�1]

= !+
Pp

i=1 aiE["
2
t+p�i j It�1] = !+

Pp
i=1 aiFt�1(i): Hence, E[Ft j It�1] = 
+�Ft�1. As a conclusion,

f"2t g has a state space representation fFt; vtg w.r.t. It. On the other hand, " is a m.d.s. w.r.t. It.

Thus, "t is a SR-SARV(p) w.r.t. It.2

Proof of Proposition 2.4. Let "t be a semi-strong GARCH(p,q) de�ned by (2.18) and (2.19).

Then (B(L) � A(L))"2t = ! + B(L)�t with �t = "2t � ht. By assumption, the roots B(L) � A(L)

and B(L) are not common and are outside the unit circle. Finally, �t is a m.d.s. w.r.t. It since

E[�t j It�1] = E["2t j It�1]�ht = 0. Conversely, consider a m.d.s. f"tg such that Q(L)"2t = !+P (L)�t

where Q(L) = 1 � Pq
i=1 aiL

i, P (L) = 1 � Pp
i=1 biL

i, aq 6= 0, bp 6= 0 and p � q. Assume that

E[�t j It�1] = 0. De�ne ht by ht � E["2t j It�1]. Hence ht = ! + (1 � Q(L))"2t + (P (L) � 1)�t and

�t = "2t �ht. Thus ht = !+(P (L)�Q(L))"2t +(1�P (L))ht and P (L)ht = !+(P (L)�Q(L))"2t . By

assumption, the roots of P (L) and P (L) � (Q(L) � P (L)), i.e. Q(L), are not common and outside

the unit circle. De�ne ut by ut � "t=
p
ht. We have E[ut j It�1] = 0 since "t is a m.d.s.; moreover,

V ar[ut j It�1] = E["2t j It�1]=ht = 1, i.e. (2.19).2

Proof of Proposition 2.5. Since Hs
t � Ht, EL[ht j Hs

t�1] = hst . But ht = !=B(1) +B(L)�1A(L)"2t

and hence ht 2 Hs
t�1. Thus ht = hst . Therefore "2t is a weak ARMA (since B(L)hst = ! + A(L)"2t )

and cov(�t; "� ) = 0 8� < t.

Conversely, assume that "2t is a weak ARMA and (2.22). We have: ht = EL["2t j Ht�1] = hst +EL[�t j
Ht�1]. By de�nition of �t, 8� < t, cov("2� ; �t) = 0. Therefore, by combination with (2.22), 8z 2 Ht�1,

cov(z; �t) = 0. Thus EL[�t j Ht�1] and ht = hst and "t is a weak GARCH.2

Proof of Proposition 3.1. Let us consider "t a GARCH(1,1). Let ft�1 = ht = E["2t j It�1]

and ut =
"tp
ht
. By de�nition, E[ut j It�1] = 0 and E[u2t j It�1] = 1. while ft is an It-adapted AR(1)

process. with an innovation process: �t = �ft�1(u
2
t �1). Then, given It�1, "

2
t and �t = �ft�1(

"2t
ft�1

�1)
are conditionally perfectly positively correlated (since � > 0). Thus, this is also the case for "2t

and ft = ! + ft�1 + �t: Moreover: V ar[ft j Jt�1] = V ar[�t j Jt�1] = �2V ar["2t j Jt�1] with

�2 � 2 = (� + �)2 since � � 0.

Conversely, let us now consider a SR-SARV(1) process "t which ful�lls the two restrictions of

Proposition 3.1. By the �rst restriction, we know that: ft = at"
2
t + bt; at; bt 2 Jt�1; with (V ar[ft j

Jt�1])
1=2 = at(V ar["

2
t j Jt�1])

1=2:
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Thus, by the second restriction, we know that at is a positive constant � smaller or equal to .

Therefore: ft = �"2t +bt and E[ft j Jt�1] = �ft�1+bt: By identi�cation with the AR(1) representation

of ft, we conclude that: bt = ! + �ft�1 where � =  � � � 0. Thus: ft = ! + �"2t + �ft�1, which

proves that ft is also It-adapted (see 0 < � �  < 1). Then we know by Proposition 2.1 that "t is also

a SR-SARV(1) process w.r.t. It and ft = V ar["t+1 j It]. Therefore, with: ht = ft�1 = V ar["t j It�1]

we do get the GARCH(1,1) representation: ht = ! + �"2t�1 + �ht�1:2

Proof of Proposition 3.2. De�ne ut as the standardized residuals (ut = "t=
p
ht). Straightforward

calculus show that all the models can be rewritten as ht = ! + ht�1 + �t�1 with:

GJR: ! = !1,  = �+�+�S, �t�1 = �("2t�1�ht�1)+�(St�1"
2
t�1�Sht�1); where S = E[Stu

2
t j It�1].

Asymmetric GARCH: ! = !1 + ��2,  = �+ �, �t�1 = �("2t�1 � ht�1) + 2��"t�1:

Nonlinear Asymmetric GARCH: ! = !1,  = �(1 + �2) + �, �t�1 = �ht�1(u
2
t�1 � 1 + 2�ut�1):

VGARCH: ! = !1 + �(1 + �2),  = �, �t�1 = �(u2t�1 � 1 + 2�ut�1):

Heston-Nandi: ! = !1 + �,  = ��2 + �, �t�1 = �(u2t�1 � 1� 2�"t�1):

By the restrictions E["t�1 j It�2] = E[ut�1 j It�2] = 0, E["2t�1 j It�2] = ht�1 and E[u2t�1 j It�2] = 1,

we have E[�t�1 j It�2] = 0, that is "t is a SR-SARV(1).2

Proof of the equivalence of the two conditions of (3.6) and (3.7). i) We have: E["t"
2
t+1 j

Jt�1] =
p
ft�1E[utE["

2
t+1 j Jt] j Jt�1] =

p
ft�1E[utft j Jt�1] =

p
ft�1E[ut(! + ft�1 + �t) j Jt�1] =p

ft�1E[ut�t j Jt�1]: Hence E[ut�t j Jt�1] = 0() E["t"
2
t+1 j Jt�1] = 0 since ft 6= 0 almost surely.

ii) We have: E["3t j Jt�1] = (ft�1)
3=2E[u3t j Jt�1]. Hence E[u

3
t j Jt�1] = 0() E["3t j Jt�1] = 0.2

Proof of Proposition 3.3. The SR-SARV(1) property implies, by Proposition 2.3, that "2t ful�ll the

multiperiod restrictions (2.17) with p = 1. De�ne !t by !t = "2t � ! � "2t . We have E[!t j It�2] = 0

and !t is a square integrable process since "t has a �nite fourth moment. Therefore !t is a weak

MA(1) and hence "2t is a weak ARMA(1,1). Therefore, by Proposition 2.5, "t is a weak GARCH(1,1)

if and only if (2.22) is ful�lled. But, since by the ARMA representation of "2t , the Hilbert space

Hs
t coincides with the Hilbert space spanned by 1; �� ; � � t, the condition (2.22) is implied by the

following symmetry property of the process ": Cov("t0 ; "
2
t ) = 0 8 t; t0 that is E("t0"2t ) = 0 8 t; t0: Thus,

we are going to prove this symmetry property. Indeed, we will prove the stronger result (which will

be useful in the following):

E["t0"
2
t j J� ] = 0 8 t; t0 and � =Min(t; t0)� 1 (A.5)

If t0 > t, then E["t0"
2
t j Jt�1] = E["2tE["t0 j Jt0�1] j Jt�1] = 0 since "t0 is an m.d.s. w.r.t. Jt0�1.

If t0 = t, then E["t0"
2
t j Jt�1] = E["3t j Jt�1] = f

3
2
t�1E[u

3
t j Jt�1] = 0 by (3.7).

If t0 < t, then E["t0"
2
t j Jt0�1] = E["t0ft�1E[u

2
t j Jt�1] j Jt0�1] = E["t0ft�1 j Jt0�1]. Since ft is an

AR(1), we have ft�1 =
P1

i=0 
i�t�1�i+E[ft�1]: Hence E["t0ft�1 j Jt0�1] =

P1
i=0 

iE[�t�1�i"t0 j Jt0�1]:
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But: if i � t � t0, then E[�t�1�i"t0 j Jt0�1] = �t�1�iE["t0 j Jt0�1]] = 0; if i = t � t0 � 1, then

E[�t�1�i"t0 j Jt0�1] = E[�t0"t0 j Jt0�1] =
p
ft0�1E[ut0�t0 j Jt0�1] = 0 by (3.6); �nally, if i < t � t0 � 1,

then E[�t�1�i"t0 j Jt0�1] = E["t0E[�t�1�i j Jt�i�2] j Jt0�1] = 0 since �t is an m.d.s. w.r.t. Jt. Hence,

E["t0ft�1 j Jt0�1] = 0, which achieves the proof of Proposition 3.3.2

Proof of Proposition 3.4. E[u
(m)
tm �

(m)
tm j J

(m)
tm�m] = a(m)q

f
(m)
tm�m

E[
P

0�i;j�m�1 aim
j"tm�i�tm�j j

J
(m)
tm�m]: But (see third case of the proof of Proposition 2.3), (3.6) implies that E["tm�i�tm�j j
Jtm�m] = 0 for i; j = 0; 1; :::;m � 1: Thus, E["tm�i�tm�j j J (m)

tm�m] = 0 and hence E[u
(m)
tm �

(m)
tm j

J
(m)
tm�m] = 0, i.e. (3.8).

E[(u
(m)
tm )3 j J (m)

tm�m] =
1

(f
(m)
tm�m)

3
2
E[
P

0�i;j;k�m�1 aimajmakm"tm�i"tm�j"tm�k j J (m)
tm�m]: Let (i; j; k) as

i � j � k � m � 1. If i < j � k, then E["tm�i"tm�j"tm�k j J (m)
tm�m] = E["tm�j"tm�kE["tm�i j

Jtm�i�1] j J (m)
tm�m] = 0: If i = j = k, then E["tm�i"tm�j"tm�k j J (m)

tm�m] = E[(ftm�i�1)
3
2E[(utm�i)3 j

Jtm�i�1] j J (m)
tm�m] = 0: If i = j < k, then E["tm�i"tm�j"tm�k j J (m)

tm�m] = E[E["tm�k("tm�i)2 j
Jtm�m] j J (m)

tm�m] = 0 by (A.5). So we have: E[(u
(m)
tm )3 j J (m)

tm�m] = 0:2

Proof of Proposition 3.5. The second part of (3.6) implies (3.10). The second part of (3.7) implies

(3.11).2

Proof of Proposition 3.6. This is exactly the same proof as for Proposition 2.2 by taking � = 1.
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