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Abstract. Biological processes where every gene and protein partici-
pates is an essential knowledge for designing disease treatments. Nowa-
days, these annotations are still unknown for many genes and proteins.
Since making annotations from in-vivo experiments is costly, computa-
tional predictors are needed for different kinds of annotation such as
metabolic pathway, interaction network, protein family, tissue, disease
and so on. Biological data has an intrinsic relational structure, including
genes and proteins, which can be grouped by many criteria. This hinders
the possibility of finding good hypotheses when attribute-value represen-
tation is used. Hence, we propose the generic Modular Multi-Relational
Framework (MMRF) to predict different kinds of gene and protein an-
notation using Relational Data Mining (RDM). The specific MMRF ap-
plication to annotate human protein with diseases verifies that group
knowledge (mainly protein-protein interaction pairs) improves the pre-
diction, particularly doubling the area under the precision-recall curve.
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1 Introduction

Functional annotation consists of attaching biological information to gene and
genetic product sequences. For instance, identifying whether a gene is involved
in a biological process, a regulation network or a molecular function; or assigning
to a protein its expression profile or phenotype (tissue or disease association).
Knowing the processes in which genes and proteins are involved is an essential
knowledge to design disease treatments.

Nowadays, a gene/protein appears annotated in multiple distributed reposi-
tories. However, many proteins have still few or no annotation in a large number
of species, because experimental techniques are costly in resources and time.
This process is also overwhelmed by the high amount of data that need to be ac-
quired and managed. Therefore, computational prediction methods have shown
an useful alternative in the last years [16], in order to focus the experimental
verifications on the hypotheses (predicted annotations) that are more likely to
be true.
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Many diverse prediction techniques have been proposed to solve the genome!

annotation problem. Each method uses different kind and amount of input data,
and is focused on a particular prediction goal. This variability in methods makes
difficult a comparison among them. The simplest prediction approach is based
on sequence similary, as Blast2GO [1], only useful for Gene Ontology (GO) anno-
tation. Others predictors just include sequence and structure features [13]; while
more sophisticated methods integrate heterogeneous data sources, such as Fatigo
[1] and DAVID [5]. Some techniques simplify the data representation to numeri-
cal features, applying subsymbolic machine learning algorithms [10,12]; but oth-
ers preserve the intrinsic structure of biological data, applying Multi-Relational
Data Mining (MRDM). These techniques take advantages of the interpretable
symbolic representation, such as [4,7,21] in functional annotation and [19,20] in
other related bioinformatic domains.

Despite all these efforts, the proteome annotation problem remains open. We
do not know functions and tasks for all proteins, and many annotations are
neither verified by experts nor complete in all the biological fields of interest.
Particularly, there are few specialized predictors in disease annotation, being
an essential knowledge to design new drugs. Morbid OMIM (Online Mendelian
Inheritance in Man) [2] contains information on all known mendelian disorders
and associated genes. It is the most complete and updated repository about
genetic disorders. This repository is carefully curated and frequently referenced
by biological and medical scientists. For these reasons, we decide to use OMIM
instead of other less known disease vocabulary such as eVOC pathology [11].
Most annotation methods using OMIM perform search rather than prediction.
Some approaches predict new annotation [14], but none applies MRDM.

To summarize, genome and proteome annotation prediction is still an open
problem with regard to various kind of specific annotation. Disease annotation
is one of special interest. This paper proposes applying MRDM to a relevant
annotation domain: human disease prediction. Besides, we want to verify the
relevance of biological group relations using data integrated from different data
sources. This group data is very suitable to be exploited by relational learning.
We address this problem adapting a generic and flexible framework, MMRF [6],
which can easily predict different annotations.

Several facts support this proposal. First, MRDM have been succesfully ap-
plied to other related bioinformatic domains. Second, we use up to date data from
different biological databases used in many current science projects. Finally, we
have made a special effort in data collection, selecting only experimental data,
when it is possible, in order to avoid indirect redundancies coming from internal
predictions from other applications, which can bias the results.

This paper is organized as follows: Section 2 briefly explains the Modular
Multi-Relational Framework. The human protein OMIM disease prediction do-
main is described in Section 3. Section 4 presents and analyzes the application
results. Finally, in Section 5, conclusions and future work are summarized.

! In annotation context, the terms gene and protein or genome and proteome are
indistinctly used.



2 Modular Multi-Relational Framework

Modular Multi-Relational Framework (MMRF) [6] is a system originally de-
signed for gene Group function prediction domain, facing the problem from a
relational and flexible point of view. It has been applied to predict function
for S.cerevisiae (i.e.Yeast) genes grouped by complexes [7]. Now, we adapt the
framework since we have realized that group annotation problem is very com-
plex to face in a single step [7]. The changes aim to solve gene and protein
individual function annotation prediction problem, instead of group annotation.
Nevertheless, this MMRF layout can also be considered the first phase for the
group annotation problem. The complete process could be achieved obtaining
first annotations for individual group elements using MMRF, and then combin-
ing them for group annotations using an alternative method (for example, union
or intersection of individual annotations).

MMREF preserves the same main properties as the original layout. It is de-
signed by modules for managing the high variability that the functional anno-
tation biological domain entails. This facilitates changing independiently data,
criteria and methodology. MMRF uses a multi-relational approach (in repre-
sentation and learning) for fitting the intrinsic relational structure of gene and
protein group data, and for integrating different data sources.

Figure 1 shows the new MMRF layout oriented to individual protein anno-
tation prediction. Module 2 is now called Selecting annotation where the an-
notation vocabulary is chosen and assigned to individual gene or protein. The
relational knowledge about belonging to specific biological groups (i.e.metabolic
pathways, regulation networks, etc.[6,7]) is handled in module 3.
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Fig.1. A new schema of the Modular Multi-Relational Framework (MMRF). The
rectangles represent modules and the ellipses represent data.



3 MMRF Applied to Human Protein Disease Prediction

This section describes the MMRF module instantiations for applying the frame-
work to the Human Protein OMIM Disease Prediction domain.

1.0btaining individual features. In this application, there are 7 features
derived from gene sequence (such as chromosome name and length, or transcript
count) and 27 features from protein sequence (including length, positive and neg-
ative charge from the sequence, aminoacid composition and whether the protein
contains a transmembrane, signal or coiled-coil domain). Also, 5 different kinds
of protein functional annotations are collected, related with protein family (from
Pfam), protein domain (from InterPro), biological process, cellular component
and molecular function. The last three come from Gene Ontology (GO), and
are only from experimental results, ignoring automated annotation, for avoiding
biases induced by overlaps with others annotation sources.

The numerical protein sequence features are computed with BioWeka [8] us-
ing as input the UniProt aminoacid sequences in FASTA format. Only Swiss-
Prot sequences are included, because the remainder (TrEMBL sequences) have
not been reviewed by experts. The rest of features are retrieved from FEnsembl
project, through the BioMart tool [17]. See the module 1 instantiation schema
in Supplementary Material.

2.Selecting annotation. The annotation goal is genetic disorders using
gene-disease associations from Morbid OMIM [2]. We apply a manual OMIM
disorder categorization made by experts [9]. These disease categories have been
recently used in other studies [14]. Thus, the 4,927 OMIM disorders 2 are cate-
gorized in 23 disease classes based on the affected physiological system. Some of
the classes are: neurological, cancer, cardiovascular, inmunological or endocrine
disease (see a complete list in Supplementary Material). Therefore, this MMRF
application classifies proteins in these general disease categories [9]. However, a
simple modification in MMRF module 2 could easily build a particular predictor
for diseases at lower level, for instance, knowing in which specific kind of cancer
(leukemia, melanoma, breast cancer, etc.) a protein is involved.

3. Retrieving group data. Two sources of group data are included, though it
could be easily increased with others, as protein complexes or co-expresion data.
The first data source consist of protein-protein interaction pairs, retrieved from
BioGRID repository (2.0.59 Release) [18], which integrates important interaction
databases as MINT, IntAct or HPRD. We select BioGRID pairs from real binary
relations identified by evidences codes Co-crystal structure, Far Western, FRET,
PCA and Two-Hybrid. These interactions do not include pairs split off from
N-ary relations. It results in 21,687 proteins with 229,407 interactions among
them. The second data source comprises metabolic pathways, which correspond
to the 52 top-level human Reactome [15] pathways including 5,128 proteins, on
average 159.85 proteins per pathway. See the module 3 instantiation schema in
Supplementary Material.

2 From OMIM Morbid Map on November 17th, 2009.



Data sources collected in modules 1 to 3 use different gene or protein identi-
fiers. The original identifiers are all mapped to Ensembl (gene or protein) IDs
using the cross-references from BioMart [17] queries.

4. Transforming to representation language. The knowledge represen-
tation language is a subset of first-order logic. All the collected data previously
described is represented as predicates in Prolog syntax (see Figure 2). Since for
humans, we can not assume the simplification 1-gene:1-protein, as simpler or-
ganism does, the representation language has to handle information level with
regard to gene and protein. These levels are related by the 1-gene:N-proteins re-
lation (represented as N binary predicates protein gene/2 per gene). Thus, the
different features are separately associated to genes (predicates with genelD as
key) or to proteins (predicates with protID as key) (see Figure 2). Moreover, the
group data has a different representation depending on the number of elements in
the group. Binary relations are represented as pairs (i.e. ppinteracion pair/2).
N-ary relations are represented with one group identifier plus N binary predi-
cates (i.e. protein in pathway/2), where each predicate relates a group element
with the group identifier.

gene (genelD,name,length,strand, trCount) . gene biotype(genelD,bioType) .
protein(protID,length,posCharge,negCharge) . protein class(protID,omimID) .
aa composition(protID,aalD,proportionAA). protein gene(protID,genelD).
go annotation bioProcess(protID,goID). transmembrane domain(protID).
ppinteraction pair(protID,protID). ncoils domain(protID).

protein in pathway(groupID,protID). pfam domain(protID,pfamID) .

Fig. 2. Fragment of the knowledge representation language in proteome disease pre-
diction domain

The instantiation of module 5.Relational Learning consist of applying the
algorithm TILDE [3], implemented in the ACE tool, using a multi-class and
multi-label learning, inspired by other works [21]. The instantiation of module
6.Interpretation and Analysis consist of evaluating the result with Precision-
Recall curves (PRC). For more details, see a previous MMRF application [7],
which shares the same instantiations of modules 5 and 6.

4 Results and Discussion

This section describes the results of predicting human protein diseases with
MMRF. The whole data set comprises 6,958 protein-disease annotations, for
5,640 different proteins (examples) and 21 diseases (classes). Each protein can
be associated with more than one disease, ranged from 1 to 5, in this set. On
average, there are 331.3 annotations per disease. There are at least 40 proteins
per class (the two classes with less than this minimum have been ignored).
On average, there are around 5% positive vs 95% negative examples per class,
although the protein class distribution is not equitable (see Supplementary Ma-
terial). Each of the four majority classes has more than 10% of all annotations.



The background knowledge also includes related proteins without disease asso-
ciations, but belonging to a metabolic pathway or having an interaction with a
disease protein.

We compare two configurations, which differ in module 3 instantiation, it
means on group relational data used for learning. The first one (a.- Without
groups) does not included neither pathway nor protein-protein interaction data.
The second configuration (b.-With groups) includes both kind of data from
biological groups. In addition, we analize the learning implications of relational
knowledge representation for groups.

The results shown in Table 1 and Figure 3 come from three folds cross vali-
dation experiments. Table 1 shows several quantitative measures and Precision-
Recall curves appear in Figure 3 for the two configurations. All of them are the
average results about overall 21 classes.

Table 1. Quantitative results from human
protein disease prediction with MMRF.
AU(PRC): Area Under Precision-Recall
Curve. MSE: Mean Squared Error.

Relational knowledge
a) without groups b) with groups

AU(PRC): 0.282 0.625
Correlation: 0.290 0.599
MSE: 0.049 0.034

Fig. 3. Precision-Recall curves from
human protein disease prediction with
MMRF, in different configurations

Table 1 and Figure 3 point out that prediction with group data (configuration
“b”, on the right) improves the double upon without groups (configuration “a”,
on the left), in both AU(PRC) and correlation. Hence, this comparison asserts
that knowledge about proteins belonging to a biological group is very relevant
in disease annotation prediction.

Figure 4 presents a fragment of a relational decision tree from configuration
with group data (b). The first tree node (see line 3) determines that
ppinteraction pair/2 (a protein-protein interaction relation) is the most dis-
criminative predicate. This fact confirms the relevance of group knowledge to
predict annotations. Moreover, in the first ’yes’-branch (line 4), the second node
includes a typical feature in protein function prediction: the positive charge of
protein sequence [12] (variable Y'), partially supporting the model reliability.
Besides, in the first 'no’-branch (line 11), the most relevant query includes a
N:1 relation (predicate protein gene/2 relates a protein with the gene it comes
from), emphasizing the high influence of relational knowledge on the prediction.



1: class(-A,-B,-C,-D,-E,-F,-G,-H,-I,-J,-K,-L,-M,-N,-0,-P,-Q,-R,-S,-T,-U,-V)
2: [0.011436170212766] 3760.0

3: ppinteraction_pair(A,-W),not(W=4) ?

4: +--yes: [0.0188476036618201] 1857.0

5: | protein(W,-X,-Y,-Z),Y>=0.107506 ?

6: | +--yes: [0.0219123505976096] 1004.0

7: | | ppinteraction_pair(W,W) ?

8: | | +--yes: [0.0569948186528497] 386.0

9: | | | transmembrane_domain(W) 7

10:...

11:+--no: [0.00420388859695218] 1903.0

12: protein_gene(A,-M26) ,gene (M26,-N26,-026,-P26,-Q26) ,026>=84418 ?
13: +--yes: [0.00981996726677578] 611.0

14: .

Fig. 4. Fragment of a relation decision tree in configuration with groups

Therefore, the importance of protein-protein interaction and protein-gene re-
lations indicates that Relational Data Mining is essential in this domain. This is
because to propositionalize this kind of data would be very complex or resulting
in having redundant data. For instance, for protein binary relations, the single
attribute-value table should have thousands of Boolean attributes, one per each
protein. In addition, it should repeat all the gene features as attributes for all
proteins that come from the same gene. Furthermore, attribute-value learning
can not represent knowledge or retrieve hypotheses about features of related
genes and proteins, as tree fragment in Figure 4 shows.

5 Conclusions and Further Work

This work highlights the relevance of biological group data for annotation pre-
diction, particularly in proteome disease association. Since the most efficient
and viable representation of this group knowledge is with relations, relational
learning and the Modular Multi-Relational Framework are confirmed as very
suitable for solving the proteome annotation problem. This is particularly rele-
vant since the data comes from the integration of multiple up to date biological
databases. Besides, the hypotheses learned through Relational Data Mining are
mostly unfeasible to achieve in attribute-value learning and it holds the advan-
tage of being readable for biology experts. This work has two main differences
from a previous MMRF application [7]. For the annotation goal, diseases from
OMIM morbid are used instead of general functions of GO Slim. Moreover the
organism has been changed from yeast to human, which is more complex but
more interesting. Thus, the obtained predictor let us select a subset of unknown
protein-disease association (the most likely predictions) to be verified by in-vivo
experiments.

As further work, many alternatives appear. It would be interesting to make
a comparison between this overall classes predictor and 21 independent predic-
tors, one per each disease class. Other possibilities would be related to biological
MMRF applications. For instance, including new group data, such as protein



complexes or co-expression data; applying the predictor to annotate unknown
proteins; or changing the prediction goal to a different annotation field, as pre-
dicting if a protein belongs to a metabolic pathway.
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Supplementary Materials (for online version). They include two schemas
about obtaining individual features and retrieving group data, the complete list
of 23 disease categories and a figure showing the protein per disease distribution.
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