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A family of kernel methods, based on the g-filter structure, is presented for non-linear system

identification and time series prediction. The kernel trick allows us to develop the natural non-linear

extension of the (linear) support vector machine (SVM) g-filter [G. Camps-Valls, M. Martı́nez-Ramón,

J.L. Rojo-Álvarez, E. Soria-Olivas, Robust g-filter using support vector machines, Neurocomput. J. 62(12)

between time-scales. Several functional analysis properties allow us to develop a full, principled family

of kernel g-filters. The improved performance in several application examples suggests that a more

appropriate representation of signal states is achieved.
1. Introduction

Inclusion of short-term memory in learning machines is
essential for processing time-varying information. A remarkable
compromise between stability and simplicity of adaptation can
be provided by the g-filter proposed in [14]. Previous works on
g-filters [14,12] claimed two main advantages: first, they provide
stable models and second, they allow us to study the memory
depth of a model. However, the original g-filter underwent some
practical problems when dealing with low number of (potentially
noisy) samples in the time series. These shortcomings were
alleviated in [2] by introducing the use of support vector
machines (SVM) to estimate the g-filter coefficients, yielding a
robust and stable filter that inherits all the good properties of the
SVM methodology.

The promising results we obtained with the linear SVM g-filter
[2] encouraged us to extend its capabilities by using non-linear
kernels, as is usual in the SVM framework in general [4], and in
the digital signal processing SVM framework in particular [17,10].
Many neural network structures with a linear memory stage
followed by a non-linear memoryless stage are commonly used in
some signal processing tasks, such as the time delay neural
network and the focused g-network [13,23]. These networks offer
good performance at the expense of increased dimensionality of
+34 963544353.
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the state vector of the linear memory stage, and hence, training
the memoryless stage involves both high computational burden
and risk of overfitting. Kernel methods in general, and SVMs in
particular, deal with this problem efficiently [4]. In this paper, we
introduce a set of kernel methods to develop non-linear g-filters in
a straightforward, principled way.
2. Non-linear g-filter with the kernel trick

Assume a standard linear g-filter structure given by yn ¼PP
i¼1wix

i
n, where xi

n ¼ xn for i ¼ 1 and xi
n ¼ ð1� mÞxi

n�1 þ mxi�1
n�1

for i ¼ 2; . . . ; P, where yn is the output signal, xn is the input signal,
xi

n is the signal present at the input of the i-th g-tap, and m is a free
parameter. For an observed time series dn, error signal en is
defined as en ¼ dn � yn. For m ¼ 1, this structure reduces to
Widrow’s adaline, whereas, for ma1, it has an IIR transfer
function. In comparison to general IIR filters, the feedback
structure in the g-filter presents two complementary conditions:
(a) locality, since the loops are kept local with respect to the taps
and (b) globality, since all the loops have the same loop-gain 1� m.
The stability is trivially obtained with 0omo1 for low-pass
transfer functions, and with 1omo2 for high-pass transfer
functions. The SVM g-filter algorithm proposed in [2] uses the
robust cost function previously presented in [19], which allows to
deal with different kinds of noise simultaneously. The SVM g-filter
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is expressed as

yn ¼
XN

s¼Pþ1

ðas � a�s Þ
XP

i¼1

xi
nxi

s, (1)

where only samples with non-zero að�Þs count in the solution, and
they are called support vectors. Note that one can identify the
cross-correlation function of gamma-filtered signals RP

x ðn; sÞ ¼PP
i¼1xi

nxi
s, which can be conveniently expressed as a dot product

involving the delayed and filtered versions of the input time-
series. This leads to easily define the natural non-linear extension
of the model by means of the ‘‘kernel trick’’ (KT), which allows us
to work in the mapped kernel space without knowing the
mapping explicitly, but only the kernel matrix formed by the
dot product of mapping functions. For this purpose, the delayed
line outputs xi

n are transformed into a high-dimensional feature
space using a non-linear mapping /. Here, RP

x ðn; sÞ ¼
PP

i¼1/ðx
i
nÞ
>

/ðxi
sÞ, and the solution becomes inherently non-linear:

yn ¼
XN

s¼Pþ1

ðas � a�s Þ
XP

i¼1

/ðxi
nÞ
>/ðxi

sÞ ¼
XN

s¼Pþ1

ðas � a�s Þ
XP

i¼1

Kðxi
n; x

i
sÞ.

(2)

3. Non-linear g-filters with composite kernels

By following the previous approach, the underlying structure
of the time series has been partially obviated, given that all the
information among samples remains embedded into the kernel
matrix. The theoretical properties of kernels are well known and
extensively reviewed [6,15,21]. Note, however, that one should
first analyze the linear structure of the signal problem, and then
focus in the application and design of the most suitable kernel
functions [17]. In [10], non-linear SVM-ARMA system identifica-
tion was addressed for both the statement of the autoregressive
ARX equations in a reproducing kernel Hilbert space RKHS, and
the use of a set of composite kernels for improved flexibility. The
same methodology was recently extended to a Bayesian frame-
work in [1]. Here, we adapt this methodology for model design in
order to develop a family of non-linear g-filters.

Summation composite kernel: One can define the concatenation
of non-linear transformations of the involved counterparts xi

n�1

and xi�1
n�1 as /ðxn�1Þ � fu1ðx

i
n�1Þ;u2ðx

i�1
n�1Þg where f�; �g denotes

concatenation of (weighted) column vectors, and u1ð�Þ, u2ð�Þ are
transformations into Hilbert spaces H1 and H2. The correspond-
ing dot product between vectors (or kernel) is simply

Kðxn�1;xk�1Þ ¼ /ðxn�1Þ
>/ðxk�1Þ

¼ fu1ðx
i
n�1Þ;u2ðx

i�1
n�1Þg

> � fu1ðx
i
k�1Þ;u2ðx

i�1
k�1Þg

¼ K1ðx
i
n�1; x

i
k�1Þ þ K2ðx

i�1
n�1; x

i�1
k�1Þ, (3)

which leads to a sum of kernels, each of them being dedicated to
measure the similarity among samples at different time scales.
Clearly, if the chosen kernel is a linear transformation of
concatenation xn�1 ¼ fx

i
n�1; x

i�1
n�1g, then the solution is equivalent

to using the common KT, which is a particular case of the
proposed machine. The so-called summation kernel (SK) has been
extensively used in the literature as a straightforward way of
fusing heterogeneous information [9,8].

Tensor product composite kernel: In the latter formulation, one
only needs to make the summation of two matrices working
independently with g-filtered samples xi

n�1 and xi�1
n�1. One can also

design the non-linear SVM g-based filters by considering the
tensor product kernel, which can be expressed as:

Kðxn�1;xk�1Þ ¼ K1ðx
i
n�1; x

i
k�1Þ � K2ðx

i�1
n�1; x

i�1
k�1Þ. (4)
2

This kernel offers an easy way to modulate the similarity at
different tapped versions.

Cross-information composite kernel: Further kernel algorithms
can be developed exploiting properties of Hilbert spaces [16]. In
particular, one can build composite kernels to account for the
cross-relationship between different scales of the g-filtered
signals. Assume a non-linear mapping uð�Þ into a Hilbert space
H and three linear transformations Ak from H to Hk, for
k ¼ 1;2;3. Let us make the composite vector /ðxn�1Þ �

fA1jðxi
n�1Þ;A2jðxi�1

n�1Þ;A3ðjðxi
n�1Þ þjðxi�1

n�1ÞÞg and compute the
dot product

Kðxn�1;xk�1Þ ¼ /ðxn�1Þ
>/ðxk�1Þ

¼ /ðxi
n�1ÞR1/ðx

i
k�1Þ þ /ðxi�1

n�1ÞR2/ðx
i�1
k�1Þ

þ/ðxi
n�1ÞR3/ðx

i�1
k�1Þ þ /ðxi�1

n�1ÞR3/ðx
i
k�1Þ, (5)

where R1 ¼ ðA
>

1 A1 þ A>3 A3Þ, R2 ¼ ðA
>

2 A2 þ A>3 A3Þ, and R3 ¼ A>3 A3

are three independent positive definite matrices. Similarly to the
previous composite kernel, one can proof that Eq. (5) can be
expressed as a sum of positive definite matrices:

Kðxn�1;xk�1Þ ¼ K1ðx
i
n�1; x

i
k�1Þ þ K2ðx

i�1
n�1; x

i�1
k�1Þ

þ K3ðx
i
n�1; x

i�1
k�1Þ þ K3ðx

i�1
n�1; x

i
k�1Þ. (6)

The only restriction for this formulation to be valid is that xi
n�1 and

xi�1
n�1 need to have the same dimension, which can be trivially

assured by zero-padding the training patterns.
Extended composite kernels: Instead of using the proposed

algorithms for proposed algorithm for system identification
separately system identification separately, one can think of using
the aforementioned mapping functions in a collaborative way.
Two main possibilities arise:
(1)
 By using three concatenated transformations: one for xi
n�1,

one for xi�1
n�1, and one for their concatenation

zn�1 ¼ ½x
i
n�1

>
; xi�1

n�1

>
�>. The result is a combination between

the KT and the summation composite kernels described in
the preceding sections. It is straightforward to see that the
corresponding kernel is

Kðxn�1;xk�1Þ ¼ Kzzðzn�1; zk�1Þ þ K1ðx
i
n�1; x

i
k�1Þ þ K2ðx

i�1
n�1; x

i�1
k�1Þ.

(7)
(2)
 By defining a mapping that leads to the summation of the
cross-terms composite kernel and the KT matrix:

Kðxn�1;xk�1Þ ¼ Kzzðzn�1; zk�1Þ þ K1ðx
i
n�1; x

i
k�1Þ þ K2ðx

i�1
n�1; x

i�1
k�1Þ

þ K3ðx
i
n�1; x

i�1
k�1Þ þ K3ðx

i�1
n�1; x

i
k�1Þ. (8)
Note that these two models contain all the relevant model
information that can be extracted from the data by each counter-
part kernel.

Differences with previous composite kernels: Composite kernels
have been paid attention in the kernel methods literature
[6,15,21,8]. Note, however, that our emphasis is on the difference
between applying the KT and developing specific signal-based
kernels. A proper design of composite kernels that is based on the
signal structure, allows us to develop adequate signal representa-
tions in the feature spaces, which may eventually lead to
improved performance. Surprisingly, there are very few papers
proposing filter models and system identification machines from
these principles, and basically, all the previous works [5,7,22] have
directly applied the stacked (KT) approach in these scenarios,
ignoring the underlying signal relations in the model.

Remarks: In conclusion, composite kernels can be used to
provide us with model flexibility in terms of emphasized
consideration, if necessary, of the cross information among
filtered signal states. Additional advantages are the robustness
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Table 1
nMSE for the kernel g-filters in non-linear feedback system identification (NLSYS), Mackey–Glass time series prediction with D ¼ 17 and 30, and EEG prediction.

Method Poly Rat Loc1 Loc2 MLP KT SK TP CT K+S K+T

Eq. (2) (3) (4) (6) (7) (8)

NLSYS �0.04 �0.11 �0.12 �0.71 �0.78 �1.23 �1.26 �1.08 �1.005 �0.72 �1.06

MG17 �1.95 �1.14 �1.48 �1.89 �2.00 �2.33 �2.35 �2.33 �2.34 �2.35 �2.35

MG30 �1.40 �1.33 �1.24 �1.42 �1.50 �1.64 �1.75 �1.68 �1.75 �1.72 �1.69

EEG �0.05 �0.13 �0.33 �0.32 �0.46 �0.49 �0.66 �0.68 �0.73 �0.73 �0.77

Bold and italics indicate the best and second best results for each problem, respectively. Results in [3] are also included for comparison.
to high dimensional input samples (high number of tapped
delays), and the efficient processing of non-linear relations
between input and output time discrete processes. It is straight-
forward to demonstrate that the proposed kernels are valid
Mercer’s kernels, constitute a convex cone, and as the radial basis
function (RBF) kernel is used in all cases, the composite kernels
are isotropic and stationary. It should be also stressed that
translation invariant kernels can be readily built for specific signal
processing applications [18,20].
1 http://www.physionet.org/physiobank/database/slpdb/slpdb.shtml
4. Experimental results

In this section, we compare the performance of the proposed
kernel algorithms for non-linear system identification and time
series prediction.

4.1. Model development

Model building requires tuning different free parameters
depending on the SVM formulation (sker , C, e), and filter
parameters (m, P). A non-exhaustive iterative search strategy (T

iterations) was used here. At each iteration, a sequential search on
each parameter domain is performed by splitting the range of the
parameter in M linearly or logarithmically equally spaced points.
Values of T ¼ 3 and M ¼ 20 exhibited good performance in our
simulations. In each iteration we performed an 8-fold cross-
validation and averaged the normalized MSE: nMSE ¼

log10ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=Nŝ2

Þ
PN

i¼1ðyi � ŷiÞ
2

q
Þ, where ŝ2 is the estimated variance

of the data; and thus it removes the dependence on the dynamic
range of the data. This normalization implies that if the estimated
mean of the data is used as predictor, nMSE ¼ 0 is obtained. In all
cases, we focus on the RBF kernel, which offers stable and fast

solutions. The kernel is defined as Kðzi; zjÞ ¼ expð�kzi � zjk
2=

ð2s2
kerÞÞ, where s2

ker 2 R
þ represents the length scale or width of

the kernel.

4.2. Numerical comparison

Non-linear feedback system: We first consider the following
synthetic system. The input DTP is generated with Lorenz
equations, given by dx=dt ¼ �rxþ ry, dy=dt ¼ �xzþ rx� y, and
dz=dt ¼ xy� bz, and using r ¼ 10, r ¼ 28, and b ¼ 8=3. Only the x

component is used as input signal to the system, and it goes
forward through an 8th-order low-pass FIR filter, HðzÞ, with
cutoff frequency on ¼ 0:5 and normalized gain of �6 dB at on.
No additive noise was introduced in this example. The output
signal goes through a feedback loop consisting of a high-pass
3

minimum-phase channel, GðzÞ ¼ ð1:00þ 2:01z�1 þ 1:46z�2þ

0:39z�3Þ
�1, with corresponding inverse time function gð�Þ, and

then distorted with non-linearity f ð�Þ ¼ logð�Þ. This system was
used to generate 10,000 input–output DTP samples fxn; f ðgðxnÞÞg,
that were split into a training set (50) and a test set (following 500
samples). The experiment was repeated 100 times with randomly
selected starting points in the DTP. Table 1 presents the average
results for all composite kernels. The best results are obtained
with the SK, followed by the KT.

The Mackey–Glass time series: Our second experiment deals
with the standard Mackey–Glass time series prediction problem,
which is well known for its strong non-linearity. This classical
high-dimensional chaotic system is generated by the delay
differential equation: dx=dt ¼ �0:1xn þ 0:2xn�D=ð1þ x10

n�DÞ, with
delays D ¼ 17 and 30, thus yielding the time series MG17 and
MG30, respectively. We considered 500 training samples and used
the next 1000 for free parameter selection (validation set),
following the same approach as in [11]. Results are presented in
Table 1 for both time series. The methods proposed here
outperform the common KT applied to the SVM linear filters,
especially significant for the MG17 time series. In the case of MG30

differences are noticeable, and the SK and the KT combined with
the cross-terms kernel performs best. This latter result suggests
that a more complex model is necessary to obtain good results in
the prediction of this time series, which holds more complex
dynamics.

EEG prediction: The third (and real-life) experiment deals with
the EEG signal prediction four-samples ahead. This is a very
challenging non-linear problem with high levels of noise and
uncertainty. We used file ‘‘SLP01A’’ from the MIT-BIH Polysomno-
graphic Database.1 The file contains 10,000 samples. We used 100
training samples, the next 1000 samples were used for free
parameter selection (validation set), and the rest for testing. The
experiment was repeated at 100 randomly selected starting
points. Average test results are presented in Table 1. It is observed
that the KT combined with the summation or cross-terms kernel
perform best, thus suggesting that the high complexity of the
underlying signal model has been captured by the model.

4.3. On model complexity and non-linear time-scales

Attending to the numerical results (nMSE) in Table 1, one could
identify EEG and NLSYS as high complexity problems, and MG17/
30 as moderate complexity problems. However, different kernel
structures may accomodate problem difficulty better than others.
Certainly, characterizing model complexity and versatility is an
important aspect in time series analysis. In this sense, Fig. 1
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Fig. 1. Machine complexity (SVs [%]), tap delays (P), memory requirements (m), and memory depth (M ¼ P=m) for all kernel methods and problems.
reports the results for the four non-linear time-series problems in
terms of machine complexity (SVs [%]), needed tap delays (P),
memory requirements (m), and its attendant the memory depth
(M ¼ P=m), which quantifies the past information retained and it
has units of time samples [14]. Problems NLSYS and MG30 need
475% of SVs to attain significant results, while o40% of SVs are
needed for the MG17 and EEG problems. Besides, it is observed a
clear trade-off between SVs and P. Interestingly, in the most
complex problem (EEG), the KT needs almost twice the number of
tap delays than the best model in terms of accuracy (K+T).
A similar balance is also observed between SVs and m. This
suggests that kernels model different time-scales either with
more SVs or by reducing the value of m.

The memory depth M serves to uncover the efficiency in
modeling the (non-linear) time-scales. On the one hand, it is
worth to note that in complex problems (NLSYS and EEG) the KT
yields slightly higher values of M at the expense of poor numerical
results (cf. Table 1). In these cases, a much better tradeoff is
reported by using the proposed SK. On the other hand, in
problems of moderate complexity (MG17 and MG30), the
summation and the cross-terms kernels clearly yield better
time-scales modeling along with improved accuracies. We should
finally state that the tensor product offers, in general, uneven
results, probably due to a poor modeling of the problem non-
4

linear time-scales (either high m or low P values are selected).
Similarly, the use of highly complex models (K+S and K+T) do not
necessarily imply improved performance or higher memory
capabilities in the tested problems.
5. Conclusions

In this paper, we introduced a general class of non-linear
g-based filters based on kernel methods for non-linear system
identification, which include the SVR case as a particular case.
Given that the robustness capabilities for the linear SVM g-filter in
[2] are a direct consequence of the use of the SVM methodology
(regularization and loss function), they also hold in the non-linear
versions. This is why we focused on how the proper design of the
kernel leads to an improved modeling of the non-linear time-
scales. Experiments show that the application of the introduced
composite kernels provide a substantial improvement with
respect to the straightforward extension of the linear g-filter
based on the kernel trick, not only in terms of prediction
accuracies but also in better compromise with memory depth
and model complexity. The results confirm that the proposed
methods fit the non-linear time-scales of the problem much
better than by using the kernel trick, which merely operates with
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local (consecutive) samples. These results encourage the devel-
opment of kernel versions of other filter structures.
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