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Abstract
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capacities.
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1 Introduction

This paper is in the continuation of our other paper (David, Le Breton and Merillon (2007b))

devoted to an exploration of Kolm's contributions to theoretical public economics from a

historical perspective. In contrast to the previous one which was rather general in terms of

coverage of topics and speci�cations, it concentrates on the implications of a speci�c aspect of

the economic environment often encountered by public sector managers and regulators : the

uncertainty attached to the demand of the good(s) and service(s) produced by this public

�rm or administration. Following an early paper of Boiteux, Kolm has made important

contributions to that topic. This is (we think) a perfect illustration of the themes and ideas

discussed in the �rst paper. It is clearly a real practical problem met by most public utilities

with more or less acuity and it is not obvious at all to adjust the cost marginal principle to

that situation mostly because the root of the uncertainty on demand (not the uncertainty

on primitives like preferences, of course) lies in the impossibility of organizing a complete

set of Arrow-Debreu markets. These "institutional" limits on trade opportunities and in

particular the impossibility to achieve e�cient risk sharing (i.e. equality of the marginal

rates of substitution of income across agents ans states of nature) give rise to a second best

environment where the determination of optimal public prices is likely to be sensitive to

the details of the contractual environment which is ultimately considered. Indeed as far

as we know, there are no very general results on second-best rules when the second best

nature arises from incomplete markets. The authors of this paper have examined practical

policy problems raised by the deregulation process of energy markets, with a particular

attention to natural gas. They argued that the framework of a public utility facing individual

stochastic demands is very much appropriate in the case of the public utility in charge of

the transportation of natural gas in France (Gaz de France R�eseau Transport). This utility

is under the authority and control of the French regulator in charge of these issues : the

"Commission de R�egulation de l'Energie" (CRE in short). The derivation of "optimal"

rules for investment and pricing is not a straightforward exercice. The regulator adopted

a number of resolutions which have reached, sometimes, a high degree of sophistication

and complexity. In our work, we investigate the theoretical foundations of these rules. We,

modestly, follow the tradition1 of Kolm and these "ing�enieurs �economistes" by tying to make

best use of microeconomic theory to help in formulating some of the current main pricing

and other issues faced by public utilities and in evaluating the regulatory policies which are

1Two of the authors are employees of the reseach division of Gaz de France while the other one is an
employee of a French university
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implemented to enhance e�ciency.

In the previous paper, we have discussed optimal departures from marginal cost pricing

to accomodate various second best constraints but the various uncertainties faced by the

public utility were not taken into consideration2. Such extension is worthy as such is the

world that most utilities �nd themselves in. It should be important however to distinguish

these randomness from some other features describing the variability of demand. Indeed, as

pointed out by Dr�eze (1964) "Short-run uctuations in demand occur frequently in random

as well as in periodic patterns. In the case of a non-storable commodity, the pricing problem

raised by random uctuations in demand is quite di�erent from the problem of peak-load

pricing. One might expect that when the life of the equipment is long relative to the period

over which demand exhibits signi�cant uctuations (around a known average), investment

decisions would be guided by the same principles, no matter whether the uctuations are

random or periodic. As we shall see, this is not always so. As for pricing decisions, the basic

di�erence is the following : peak load pricing calls for a known periodic schedule of prices,

whereas pricing at short-run marginal costs under stochastic demand conditions would call

for stochastic price variations".

These considerations lead to the following fundamental question : why is it the case

that the public utility is confronted to a stochastic demand ? In these introductory lines,

we would like to argue that the origin of this situation lies in the fact that there is not a

complete set of Arrow-Debreu markets to deal with the fundamental uncertainties on demand

and supply. Remember that, according to Guesnerie (1975), this is one of the main reason

(out of three) for being in a second-best environment. To explain in more details this point

and what is subsequently done in this section, we consider a simpli�ed temporal structure,

as in Green, Mas-Colell and Whinston (1995)'s textbook, in their treatment of equilibrium

under uncertainty. We consider two periods : period 0 (ex ante) and period 1(ex post)

and uncertainty is described through a set of states of the world 
 (where a state of the

world ! 2 
 is understood as a complete description of a possible outcome of uncertainty).

This uncertainty is resolved ex post. The public utility produces several physical goods (as

it has been assumed to be possibly multiproduct) and also use several physical goods as

inputs. Consider the situation of this public utility and its clients at time 0. The addition

2As noted for instance by Sherman and Visscher (1978)Ways to depart from marginal cost pricing to
increase revenue and yet minimize the resulting misallocation of resources are well-accepted members of a
growing family of constrained welfare-maximizing prescriptions. An important application is found in public
utility pricing, where optimal peak and o�-peak pricing arrangements has been modi�ed as needed to admit
second best characteristics. Second best two-part tari� schemes provide another example of pricing rules
modi�ed to satisgy budget constraints. But in all these examples, demand is assumed known with certainty.
Little attention has been given to second best solutions when demand has a random element ".
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of uncertainty creates a set of Arrow-Debreu contingent commodities : a commodity here

consists in the physical description of the output or input used by the public utility together

with the contingency (state of the world) under which delivery takes place3. From the point

of view of the public utility, a decision is then a state-contingent production plan specifying

how much of each good or service is produced and how much of each unput is used in each

contingency. From the point of view of a client, a decision is a state-contingent consumption

plan describing how much of each good or service is purchased for each contingency. Market

completeness refers to the situation where a market is opened for each contingent commodity.

To each such commodity is attached a price and clients optimize in this sophisticated market

environment : each of these clients would sign a contractual agreement with the public utility

with ex ante payments and contingent delivery. This presentation of markets arrangements

where all trade takes place simultaneouly and before the uncertainty is resolved is hardly

realistic but we can reinterpret it by means of a trading process that actually unfold through

time. For the time being, we simply note that the uncertainty has disappeared from the

perspective of the public utility. It has collected a certain amount of money ex ante from

its clients and paid a certain amount of money to its own suppliers. All the conceivable

risks of some relevance for this public utility and his clients have been insured through this

set of markets. The (Arrow-Debreu) equilibrium resulting from a competitive price taking

behavior of the clients together with appropriate marginal cost pricing rules for the utility are

optimal from a �rst-best perspective. Note �nally, that in this ideal market con�guration,

there is no need to open ex post the markets for the physical goods and services i.e. there

is no justi�cation for spots markets.

In reality, this ideal market environment rarely prevails. Many conceivable Arrow-

Debreu markets for contingent commodities do not exist4. Kolm (1971a) makes that point

explicitely5 : "Sur l'analyse et la pratique de l'�economie, l'incertitude a un impact profond.

L'extr�eme raret�e des march�es �a terme et conditionnels, l'incertitude des prix futurs, sont

l'une des plus s�erieuses limitations du r�egime de libre entreprise et de libre-�echange. Mais

des plans remplacant ce syst�eme ne se heurtent pas moins �a l'incertitude sur les facteurs qui

3Precisely, a contingent commodity is a good for which the e�ective delivery is subject to the realization
of a particular (veri�able) state of the world (contingency,....).

4It is now well accepted that, in many circumstances, the organization of such markets as well as the
design of sophisticated contracts between parties involved in such transactions is simply impossible as the
transactional costs attached to these hypothetical trading arrangements would be prohibitive. We will come
back several times on that point when discussing the second-best market environments which are conceivable
as responses to the fact that markets are incomplete..

5This has been noted also by many authors working on public utility pricing. For instance, Coate and
Panzar writes :" Such is the world that most utilities �nd themselves in, since, in general, neither 'spot
pricing" nor state-contingent contracts are possible mechanisms for the sale of their (nonstorable) services".
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d�etermineraient ces prix. L'e�et de cette ignorance est d'autant plus grave que les d�ecisions

prises hypoth�equent davantage un avenir plus lointain. Il est donc en particulier important

pour les activit�es capitalistiques �a capital illiquide....les incertitudes qui les concernent au

premier chef sont celles de leurs coûts et, souvent plus encore, de leurs demandes, futurs. Les

principales d�ecisions qui en sont a�ect�ees sont les choix des investissements et des tarifs ou

prix. La situation �nanci�ere de ces organismes, et toutes ses cons�equences institutionnelles,

en sont donc touch�ees...". In such market environments, some transactions are unfeasible

and that some gains from trade are not going to be exploited. If we consider all the physical

goods for a delivery at a speci�c time (say here t = 1), we have to de�ned what is the set of

markets or contracts that are feasible and how these exchanges are regulated through prices

and rationing. Spot markets corresponding to buying and selling the good or service at time

t = 1 once the uncertainties are resolved are very often active in contrast to the �rst-best

theory recommendation. In addition, more or less complicated contractual arrangements are

likely to be added at the ex ante stage. For instance, a client may sign a forward contract

where an immediate payment is made for an ex post delivery of some quantity of the good,

depending sometimes upon some contingencies. In this world of incomplete markets, the

public utility as well as the clients cannot eliminate uncertainty. This implies that they will

have to form expectations about all the variables which are relevant in their decision process.

For instance, if the prices are exible on the spot markets6, clients will form expectations

about these prices if these arrangements compete with some ex ante alternative contracts

and the public utility will do the same to buy ex ante the appropriate amounts of inputs. If

prices are rigid and adjustments are made through some form of rationing, then again it is

necessary, for all actors, to anticipate the outcomes of these spot markets. This mixed situ-

ation has some analogies with the simple temporal setting tyically used to model a situation

where in addition to spot transactions, we have also some asset markets. Through these

markets, the participants can proceed to the exchange of risks among themselves within the

limits permitted by the degree of openess. Economies with incomplete markets display com-

plicated features from the point of view of their welfare properties7. For instance, it can well

be the case that adding a market to an existing set of markets does not necessarily improve

welfare or that a public policy which was diregarded on the basis of �rst-best considerations

6As demonstrated by Polemarchakis (1979, in these settings involving trade under uncertainty it may be
preferable in the absence of markets for contingent commodities, for prices to be regulated and for markets
to be cleared through quantity rationing, as opposed to prices being allowed to uctualte in response to the
contingency realized.

7As pointed out by Diamond (1980) : "Economies with incomplete markets can have surprising welfare
properties. These examples, or counter-examples, bring out the need for further analysis of public policies
in the presence of uncertainty and incomplete markets."
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becomes valuable. In what follows, we are going to investigate some of these market envi-

ronments. The selection is based upon the fact that these settings are useful benchmarks

from where it is useful to start and (or) represent actual institutions or institutional reform

proposals to reorganize existing markets.

A �rst important benchmark is the case where the set of markets consists exclusively of

spot markets. Two important natural benchmarks arise. Either the price is unregulated,

and then expost the price is determined to match demand and supply. Or the price is

regulated and �xed (ex ante) and then (ex post) some form of rationing may be needed to

eliminate excess demand or supply. If some ex ante transactional opportunities are opened

on the demand side, then, clients of the public utility do nothave much to do except to

wait. In contrast, it is useful for the public utility to forecast the future in particular the

stochastic demand in order to buy (ex ante) the relevant optimal amounts of some of the

inputs. In what follows, we will often assume that that there is a unique such input : it

may receive several alternative interpretations and will correspond to a capacity limit on the

aggregate quantity of the good/service that can be delivered in the second period. Given

the anticipated behavioral response of the clients to prices, the public utility will be able to

evaluate the physical, �nancial and welfare consequences of any supply policy if prices are

rigid or any supply and pricing policy if prices are exible. On this Dr�eze (1964) writes8

"Stochastic short-run price variations are frequently ruled out on economic, administrative or

legal grounds, and such has been almost invariably been the case in the public utilities �eld.

The combination of short-run price rigidity and short-run uctuations in demand must then

result in a combination of (1) some form of demand rationing; and (2) short-run uctuations

in ouput, to be met either by overloading a plant of exible capacity or by building an

adequate safety margin into a plant of �xed capacity. Both of these consequences are costly

either to the consumers or to the producers. Whenever consumers can reduce the amplitude

of the short-run random uctuations of their demand, it would obviously be desirable that

8Dr�eze also writes that "a satisfactory answer to that question is still missing, for lack of a workable
extension to uncertainty situations of the theories of e�ciency and Pareto optimality. Such extension would
indeed be needed in order to specify the kind of market prices that could bring about an e�cient allocation
of resources". We presume that Dr�eze has in mind (quite ahead of his time) a complete set of markets.
Let us just mention that it is quite fascinating to learn (as reported in Dr�eze's footnote 73) that during a
workshop held in Paris in 1953, discussions around these questions and related ones, inspired by Boiteux
(1951)'s seminal contribution, that will be exposed later in this section, took place between Allais, de Fineti,
Kreweras, Marchack, Wold and Boiteux himself. Boiteux was suggesting that each customer might specify
with what probability he expects his demand to be met, and what loss would result to him from lack of
service; the producer would quote his price as a function of both the probability of service he is willing to
guarantee and the penalty he would pay in case of shortage. Interestingly enough Dr�eze writes "Why a
public utility should sell insurance as well as electricity is not altogether clear to me".
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the price structure induce them to do so. The question thus arises : Can some marginal cost

(or welfare loss) be attached to the random variations of an individual consumer's demand

? If so, can a non-stochastic form of price discrimination reect the marginal cost ?"

In this paper, we will not examine "pure" spot pricing i.e. the market environment

consisting exclusively of spot markets where prices adjust until supply and demand are

equal. Instead, as suggested by Dr�eze above, we will consider situations where prices are

regulated (ex ante) by the public utility. The menu of contractual arrangements may o�er

either a narrow or a rich set spectrum of trading opportunities. The simplest case is the

situation where no trade opportunity is opened ex ante : the public utility commits to a

price and sells its product to that price (ending up in shortage, if the planned capacity is

insu�cient or su�cient but ine�ective due to stochastic shocks, or if the demand is high as

the result, for instance, of adverse weather conditions). Sophisticated arrangements o�ered

ex ante to clients consumers will also be discussed. For instance, if the product is truly

multidimensional (this happens, for instance, when the consumption of the client over the

billing period is di�erentiated according to a partition of the period into subperiods), a

contract may consist of an ex ante commitment by the public utility on a price paid for each

unit really consumed (depending possibly upon the subperiod), a price paid for each unit

demanded ( where demand can be interpreted for instance either as a binding physical upper

bound upon consumption or an indication of the maximal ex post consumption conceivable

from the perspective of the client). A client may also be o�ered a forward contract to which is

attached a speci�c regulated price di�erent from the price that he will pay if he buys ex post.

Di�erent forms of contingent contracts can also be considered. For instance, in 1985, E.DF

decided to propose to its large customers contracts stipulating the number of days (actually

22 days) when peak-load prices will be charged, but leaving open the actual dates which are

announced by EDF on short notice, on the basis of prevailing conditions. As noted by Dr�eze

(1995), "From a theoretical point of view, these developments correspond to state-contingent

pricing, with an implicit insurance contract limiting the frequency of peak prices....However,

I am not aware of a theoretical analysis validating precisely that arrangement, as opposed to

alternative second-best candidates". Another form of contingent forward delivery contracts,

priority service (Chao and Wilson (1987)), speci�es the customer's service order of priority :

in each contingency, the public utility rations supplies by serving customers in order of their

selected priorities until the supply is exhausted or all customers are served. Other types of

contractual arrangements have been discussed by theorists and practitionners9 but as noted

by Dr�eze (1995) "These analyses are still in infancy : the papers that I know do partial

9See for instance Spulber (1992 a,b) and Wilson (1991) for more theory and examples.
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equilibrium analysis under assumptions of risk neutrality. Some day, these papers will be

viewed as early illustrations of a general equilibrium analysis that includes uncertainty and

incomplete markets". Kolm (1971a)10 o�ers a very insighful classi�cation of tari�s under

the heading "Taxonomie de la Tari�cation de l'Incertitude"; he provides a comparison of

the variety of pricing environments that could be (or are) considered/used when demand

is stochastic. He writes in particular "Il est int�eressant de noter que la nature du sujet

dont la connaissance est entach�ee de l'incertitude consid�er�ee (notamment le service ou tel

usager) n'a pas d'importance pour d�ecrire la logique de la tari�cation dans tous les cas o�u il

su�t pour cela de conside�erer des services contingents, c'est �a dire li�es dans leur d�e�nition �a

des �eventualit�es... Les objets de la tari�cation sont les quantit�es qij du service consomm�ees

par les usagers i dans les �eventualit�es j. Un tarif fonctionnel pr�esent�e �a l'usager i est une

fonction T i de ces quantit�es pour ce i, repr�esentant une somme qu'il doit payer s'il choisit

cette consommation. Mais cette tari�cation peut s'e�ectuer de di��erentes mani�eres.....". He

discusses nine di�erent schemes. The �rst one is simply an extension of a complete set of

markets �a la Arrow-Debreu allowing for personalized and non-linear prices and the three

following one are variants of these schemes. The second one forbids ex ante sales : the

e�ective payment takes place a posteriori once the real consumption qij is known but the

functions T ij can be de�ned a priori. The �fth introduces the possibility of purchasing a

speci�c quantity or an upper bound �i on that quantity regardless of the contingency that

will prevail; the tari� is then a function T i11.

Within these various market environments, the theoretical and practical literature on

public utilities has explored the principles and rules to plan optimally investments in capacity.

Indeed, ex ante, the public utility has to decide upon the level of di�erent equipments that

will determine the capacity possibilities and more generally the costs to meet the di�erent

possible realizations of demand. Given the multiproduct status of the public utility which

arises from qualitative as well as temporal, locational, and contingent characteristics, the

capacity(ies) is(are) used in the production of several (if not all) the products. The choice

of these joint inputs is a key decision. As pointed out by Kolm (1970) : "Un de nos int�erêts

essentiels sera de d�eterminer le choix optimal entre les coûts qui servent �a la production

de plusieurs vari�et�es, qui leur sont communs, et d'autres qui s'attachent sp�eci�quement �a

chacune de celles-ci........Dans l'application du mod�ele �a l'incertitude, un coût commun est un

coût choisi ante , avant que la demande soit connue, et un coût de production sp�eci�que est

un coût choisi ex post en connaissance de la demande �a servir....". Once these decisions have

10In chapter 19.
11We refer the reader to Kolm for a complete presentation of these schemes.
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been made, the situation (ex post) can be unsatisfactory either because there is an excess

capacity12 at the given price or instead because there is an excess demand imposing some

shortage on customers. Both outcomes are socially costly and it is therefore important to use

all the conceivable instruments to proceed in an optimal planning capacity. In that respect,

all price signals indicating to clients the costs of their decisions can help. In what follows,

we will assume, for the sake of simplicity, that the public utility produces a single physical

output and that the capacity is described by a single real number Z which will represent

an upper bound on production in the short run. We will further assume that operating and

capacity costs are linear; the description of the short-run total cost is provided by equation

()13. In any case, the existence of excess capacity should not be interpreted as the sign of a

poor management but instead as the optimal response by the public utility to the stochastic

demand given the constraints on its pricing instruments. Boiteux (1951) provides a very

insightful discussion of this issue after decomposing the demand into three components,

each requiring its own pricing treatment. He presents as follows the three rationales for

keeping excess capacities : " Ces assertions nous paraissent reposer sur un certain nombre de

confusions. Di��erentes raisons peuvent motiver des capacit�es de production exc�edentaires.....

Il serait absurde d'en conclure que le tarif de pointe doit être calcul�e comme si elle constituait

une capacit�e de production syst�ematiquement exc�edentaire. Nous avons, au cours de cette

rapide analyse des r�egimes de la demande, d�ecel�e trois raisons pour lesquelles des capacit�es

de production parfaitement adapt�ees �a la demande peuvent apparâ�tre comme exc�edentaires

et justi�er un coût marginal �eventuellement faible :

� p�eriodicit�e de la demande rendant exc�edentaires, hors-pointe, les investissements n�ecessit�es
par la pointe,

� trend de la demande justi�ant des investissements provisoirement exc�edentaires, soit
en attendant une expansion ult�erieure de la consommation, soit en attendant la disparition

naturelle d'investissements qu'une r�egression de la demande a rendu exc�edentaires,

� al�eas de la demande n�ecessitant des marges de s�ecurit�e qui, de par leur fonction même,
ne sont qu'exceptionnellement utilis�ees �a plein."

Thepaper is is organized as follows. In a �rst section, we will present some of the main

contributions from the American literature on public utility pricing and capacity choice

12The notion of capacity refers to the limit case where there is a tight upper bound on production. More
generally, it could consist of a park of heterogeneous equipments described by their respective sizes and
capacities (see for instance Oren, Smith and Wilson (1985) and Wilson (1991).
13This model ignores many di�culties, on top of which, economies of scale. However, we think that this

"pedestrian approach" (this expression is borrowed from Dr�eze (1964)) is rich enough and an excellent start
to formulate some basic questions. Note also that we will mostly focus on capacity pricing as the allocation
of operating (running) costs is obvious under our linear assumption.
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when the demand is stochastic but not decomposed into individual stochastic demands.

Then, in a second section, we will discuss the seminal contribution of Boiteux where the

same questions are formulated in a setting where, instead of being pooled into an aggregate

demand, the customers can be di�erentiated according to the (some) parameters of their

stochastic demand. In a third section, we will move to the contribution of Kolm which

consists mostly of a number of important extensions of Boiteux's model. In a fourth section,

we will explain how the Boiteux-Kolm prices are related to a common pricing practice known

as Hopkinson rate. Finally, in a last section, we will o�er a brief description of our own recent

work mostly motivated by some proposals made by the French regulator to price the access

to the natural gas transportation network.

2 Aggregate Stochastic Demand

Before returning to the "French" approach to this question in the next subsections, we �rst

examined how the problem was approached in the U.S. literature and what conclusions

have been derived by these authors. The two approaches are quite distinct from each other

on many grounds on top of which the modeling of demand side of the market. The U.S.

authors14 does not take into consideration the pro�le of individual stochastic demands but

simply the aggregate stochastic demand; this may be viewed as an informational assumption

on the public utility. The �rst seminal contribution to this area is due to Brown and Johnson

(1969). They consider the case of a public utility which has to determine its capacity Z and

a vector of prices p = (p1; ::::::; pt; ::::; pT ) for T consecutive periods of equal duration. These

periods correspond typically to the time partionning of of a basic time period in order to

deal with peak load issues. We denote by qt(pt; ut) the aggregate demand for period t, where

ut is a continuous random variable described by the density ft(ut).

For the sake of simpli�cation in the presentation, we assume the following multiplicative

functional form :

qt(pt; ut) = xt(pt)ut

where xt(pt) denotes the mean demand in period t, i.e. :Z 1

0
utft(ut)dut = 1

If we make the extra assumption that the mean demand Xt is linear with respect to pt,

we obtain the situation depicted on �gure 1 where it is represented for three realizations of

ut : ut � 1 � ut.

14A nice exposition is provided in Berg and Tschirthart (1988).
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Figure 1: Linear Demand Function
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Since the production capacity is decided before the resolution of uncertainty, high real-

izations of ut leads to a situation of rationing. On �gure 2, we have represented a situation of

excess demand (attached to the realization ut). If we assume that the rationing is e�cient,

the loss in aggregate surplus resulting from the rationing Xt(pt)ut � Z is measured by the

area of the triangle L.

Figure 2: Aggregate Surplus Loss
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Figure 2
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We assume that the objective of the regulator if the maximization of the expected net

social surplus E(W ) :

E(W ) = E(S � L) + E(R)� E(C)

where S;R and C denote respectively the aggregate consumer surplus, the revenues and

the costs of the public utility. For the speci�cation of cost and demand functions considered

here, we obtain :
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E(C) =
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Maximization with respect to p and Z leads to the following solution :

p�t = b pour tout t = 1; :::; T

and

z� > Sup
1�t�T

xt(b+ �)

The �rst and striking important conclusion is that the price in every period should be

equal to the short-run (i.e. operating) marginal cost, in sharp contrast with the optimal pric-

ing in the case of a riskless deterministic demand. This sounds like an important argument

in defense of the American version of marginal cost pricing and the intuition underlying the

result is simple. Consider a price larger than the short-run marginal cost. Either the capac-

ity constraint is not bidding and then reducing the price is a social improvement. Or the

capacity constraint is bidding and then reducing the price leaves the situation inchanged as

it has been assumed that rationing was e�cient. The second conclusionis that the capacity

is larger than the capacity selected in the riskless model : the peak demand when the price

is equal to the long-run marginal cost.

Although it is tempting to do so, it would be misleading to attribute the primary re-

sponsability for their conclusions to the random element in the demand. There are several

features of the model which.

Consider �rst the assumption of e�cient rationing. This assumption is not easy to defend

here as we have adopted an aggregate perspective and the informations needed to organize

e�ciently the rationing of a �xed output are individual and private. The design of such

procedure issocially costly. From a more positive perspective, we could explore alternative

rationing schemes. Visscher (1973) has demonstrated that if instead we suppse instead that

service is o�ered �rst to those claimants with the lowest wiligness to pay, then the optimal

price is equal to the long-term marginal cost and the optimal capacity can be less than the

optimal capacity in the riskless case. Similarly, in the more tenable assumption of purely

random rationing, the optimal price is now somewhere in between the two marginal costs

and the optimal capacity can as before be smaller than the riskless optimal one.

The second aspect of the model which deserves some further analysis is the ex ante

(instead of ex post) treatment of the events of large excess demands. In the Brown and
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Johnson's formulation, there is no constraint on the reliability of the system which can be

evaluated (for instance) by the probability of the event "the aggregate demand is larger

than the available capacity"15. When the public utility provides goods considered to be

necessities, this may be problematic. There are many di�erent ways to introduce constraints

that the regulator will take into consideration to ensure a reasonable reliability.

For instance, we can impose that :

P [xt(pt)ut � z] � �t pour tout t = 1; ::::; T

where the thresholds �t are exogenous. In such case, the optimal prices maximize

E(W ) +
TX
t=1

t

"Z z
xt(pt)

0
ft(ut)dut � �t

#
;

where t is the lagrange multiplier attached to the liability constraint for period t. Meyer

(1975) was among the �rst to follow that road. He obtains the following optimal prices:

p�t = b+ t
�tf(�t)

xt(p�t ) [1� It]
;

where

�t �
z

xt(p�t )
and It �

Z 1

z
xt(p

�
t
)

utft(ut)dut:

Optimal prices are now larger than those of Brown and Johnson. In fact there are two

ways to meet the reliability constraint : to built a larger capacity or to increase the price.

Meyer's prices trade between the two methods. The exact combination will depend upon

the parameters of the problem on top of which the marginal capacity cost � which inuence

the value of the prices through the value of the lagrange multipliers.

The third aspect of the Brown and Johnson's model subject to criticism is the fact

that the demand isassumed to be independent of the reliability of service. This unrealsitic

assumption needs to be recognized as a reliable product is certainly of higher quality than

an reliable product. This is important ex ante as the level of reliability will inuence the

decision to make (or not) some speci�c investments in durables or to look for commodities

which are closed substitutes. Most of the authors consider directly a reduced form of that

inuence reected into the aggregate mean demand :

xt(pt; �t)

where �t denotes the level of reliability announced by the public utility .

15We could instead introduce direct penalty costs of excess demand like in Crew and Kleindorfer (1978).
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The optimal prices are derived from the maximization of E(W ) under the following

consistency constraints.

�t � P [xt(pt; �t)ut � z]

i.e. the announced risks are never larger than the "real" risks, as experimented by the

customers. The prices have qualitative features similar to those of Meyer's.

To the best of our knowledge, only Rees(1980) and Coate et Panzar (1989) have provided

a structural model to explain why reliability is important and how it enters into the welfare

and then into the demand of the customers which could be either households or private �rms.

To ease the following discussion, let us disregard the seasonal component to focus exclusively

on the random component, i.e. we assume that T = 1. Coate and Panzar provide a model

where the uncertainty is on the supply side. The main added value of their analysis is to

assume that the demand behavior integrates reliability through rational expectations based

on the price and capacity decisions of the public utility : to each policy (p; z) corresponds a

unique level of liability � = �(p; z) meeting the rational expectations test. The optimal price

then satis�es

p� = b+ �

 
z

(1� �)x(p�; �)

!
:

It should be noted that this optimal price corresponds to the marginal cost without

degrading the quality of service. The price paid must equal marginal operating cost plus the

cost of adding enough capacity to serve an additional unit of demand without increasing the

probability of curtailment. The additional requirement of capacity required is greater than

one unit, because to add only one unit would clearly reduce the reliability of the system. It

follows that the optimal price exceeds the long-run marginal cost16.

The Brown and Johnson's model has been criticized, analysed and extended in several

directions by many authors17. Their solution leads a de�cit and adjustment of the prices are

needed under a budget constraint18. Consumers may proceed to self rationing by purchasing

equipment limiting their capacity as fuses in electricity19. Among the more important ex-

tensions appear a more complicated and sophisticated exploration of the ex ante contractual

possibilities like for instance the determination of priority orderings and interruptible rates.

To some extent, customers are free to chose their level of probability of service i.e. their

level of reliability. It should be noted that many of these authors depart from the aggre-

gate framework considered until now and consider the preferences of the consumers as the

16Note however that under constant returns to scale, the public utility exactly breaks even.
17See among others Carlton (1977), Chao (1983) and Turvey (1970).
18See Sherman and Visscher (1978).
19See panzar and Sibley (1978).
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primitives. The cost function which are considered may also be more complicated that the

one considered here in order to capture more realsitic situations. For instance, Chao and

Wilson (1987) examine where each customer demand at most one unit of the good and has

to select a rank in priority ordering to which is attached to numbers : a monetary payment

and a scond one conditional upon real delively. The technology of the public utility is made

up of several types of equipments (each described by its own capacity) that can activited in

sequence depending upon demand but are also subject to stochastic shocks. they compare

their solution to spot rpricing and stochatic rationing. These models depart signi�catively

from the "one regulated price" model considered until now.

3 The Model of Boiteux

In 1951, Boiteux has published a pioneering paper which describes a market where each

customer has a stochastic demand. This leads of course to an aggregate stochastic demand

from the perspective of the public utility, but now there is a complete decomposition of the

stochastic character of the demand across customers. He considers a model withN consumers

where each consumer select a consumption plan over a relevant time period, assumed to be

a Gaussian random variable (�i; �i). The . As noted by Boiteux himself the probabilistic

description of a random demand depends in general upon a large number of parameters and

each of them should be subject to a speci�c pricing rule depending upon its implications on

the total cost. He argues as followns in defense of his assumptions :" Il ne saurait être question

en fait de tarifer plus de deux param�etres caract�eristiques d'une même demande. L'un de ces

param�etres sera la demande moyenne, caract�eristique de l'importance de la consommation,

l'autre un param�etre d'irr�egularit�e choisi de mani�ere �a rendre compte des marges de s�ecurit�e

n�ecessit�ees par les al�eas de cette consomation. Dans le cas d'une demande collactive form�ee

d'un grand nombre de demandes individuelles ind�ependantes (en probabilit�e), nous verrons

qu'il su�t de connaitre la moyenne et l'"�ecart-type" de chaque demande individuelle pour

calculer les dimensions �a donner aux installations, marge de s�ecurit�e comprise.cette marge

de s�ecurit�e est d'autant plus petite que les �ecarts-types des demandes individuelles sont plus

plus faibles, et s'annule lorsqu'ils sont tous nuls. On est ainsi fond�e dans ce cas, et de ce

fait, dans la plupart des cas, �a consid�erer l'�ecart type d'une demande individuelle comme le

param�etre d'irr�egularit�e".

On the cost side, Boiteux also considers the cost function described by () and assumes

b = 0 as the treatment of the operating cost in this case does not raise any particular

di�culty. He also assumes that the public utility facing this stochastic demand cost must
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meet an exogenous reliability level � �xed by the regulator. We have already encountered this

approach in the previous section; it is representative of current regulatory practices in some

countries. The computation of these safety margins may be in general quite complicated.

Under the assumptions considered by Boiteux, it is easy to show that the capacity which

is necessary to serve the pro�le of demands (�i; �i)1�i�N under the reliability constraint

attached to � is equal to:

nX
i=1

�i + �(�)

vuut nX
i=1

�2i

where �(�) is a constant that can be read from a table of the standardized normal density

function. For instance :

� 0:8 0:9 0:95 0:99
�(�) 0:845 1:285 1:645 2:325

The total capacity cost is then :

C(�;�) = �

24 nX
i=1

�i + �(�)

vuut nX
i=1

�2i

35
Boiteux applies the marginal cost principle to derive the price of the mean and the price

of the standard deviation. In the case of customer i, the price of each unit of mean is equal

to � while the price of each unit of standard deviation is equal to :

�iqPn
i=1 �

2
i

��(�)

Then, the total payment made by customer i is equal to:

�

24�i + �2iqPn
i=1 �

2
i

�(�)

35
The Boiteux's prices call for several comments. First, we note that with these prices, the

public utility breaks even20. Second, the prices are personalized : the price paid by customer

i for one unit of standard deviation depends upon its own standard deviation. This should

not come as a surprise since the total cost function (where � has been deleted as it does not

play any role in that respect)

C (�1; �2; :::; �N) = ��(�)

24
vuut NX
i=1

�2i

35
20The cost function is homogeneous of degree 1.
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is not a function of
qPN

i=1 �
2
i . This means that once uncertainty has been introduced,

the commodity which was homogeneous is not homogeneous anymore. The marginal cost of

customer i is not the same as the marginal cost of customer j whenever �i 6= �j. We have

now a truly multiproduct �rm where, using the notations of the �rst section, K = N and

qk = �k : there is a one to one correspondence between each product and each customer.

These idiosyncratic marginal costs are responsible for this personalized tari�s.

Suppose now that instead of applying the marginal cost principle to derive the price of

standard deviation, we use it to derive the price of variance. In such case, the price per unit

of variance is equal to :
1

2
qPN

i=1 �
2
i

��(�)

The total payment made by customer i is now equal to :

�

24�i + �2i

2
qPN

i=1 �
2
i

�(�)

35
The part of his expenditures related to "irr�egularit�e" has been divided by 2 and the

public utility now experiments a budget de�cit. Using the multiproduct analogy developed

above, we note that with this change of variables i.e. qk = �2k instead of qk = �k :

C (q1; q2; :::; qN) = ��(�)

24
vuut NX
i=1

qi

35
The function is not homogeneous of degree 1 anymore but exhibits instead decreasing

returns to scale21. However, the marginal cost of each product is the same : this explains

why the prices are now anonymous.

This discussion may create some confusion about what to do. can we compare the

implications from the point of view of allocative e�ciency of two ways of pricing demand

randomness : either through the standard deviation as Boiteux did or through variance. On

this matter, Dr�eze writes " "This situation may seem to involve an element of ambiguity;

indeed it looks as if the principle of marginal cost pricing leaves room for indeterminacy when

come to applications. The ambiguity might be obviated by claiming that the combination of

marginal cost pricing and constant returns to scale should result in a break-even situation, so

that standard deviation is the right pricing formula..... Surprisingly enough, a closer look at

21These matters bring us back to the necessity of de�ning carefully the commodity space, a point discussed
extensively in the �rst part of the paper. Dr�eze (1964) o�ers a very lucid explanation along the lines
exposed here and conclude after some little algebra that "uncertainty about demand will typically transform
(technologically) constant returns to scale into (economically) increasing returns to scale.

18



the problem reveals this choice to be erroneous". A careful examination of Dr�eze's argument

shows that he rules out price discrimination as an admissible policy and derives the optimal

choices of a customer i as if this customer was confronted to the anonymous but nonlinear

(quadratic) tari� : 0@ ��(�)qPn
i=1 �

2
i

1A�2i
We conclude that both solutions are equally acceptable from the point of view of allocative

e�ciency while displaying di�erent features in terms of budget de�cit and discrimination.

We could certainly explore further solutions along these lines. For instance, dividing by two

the above quadratic tari� restores optimality while preserving anonymity. If we want to

price standard deviation under an anonymity constraint or to price variance under a budget

constraint, the application of the general principles presented in the �rst part of the paper

would lead to new set(s) of prices.

While simple, the Boiteux model is very instructive and paves the way for many use-

ful generalizations. Boiteux himself was aware of the limitations of his own work and he

suggests many interesting generalizations. We have not being very explicit about the ex

post treatment of unsatis�ed demands. As already discussed in the previous subsection, any

welfare evaluation needs to recover some information on consumer preferences to do so . In

the Boiteux model, we start from the Gaussian demands without paying attention to the

behavioral responses of the customers to variations in prices. Dr�eze (1964) points out the

necessity of this exploration. He formulates the Gaussian demand functions as fonctions

of the two prices but also of the reliability level � and writes "Questions of existence and

uniqueness of the solution remain to be examined. In principle a solution may exist for any

�, so � that must be determined on independent grounds. Indeed, a reduction in 1� � may

be viewed as an improvement of the quality of the product........A market solution would

probably exist if the probability of shortage 1 � � could be varied (together with the price

attached to variance) from one individual to the next. Short of achieving such exibility,

some estimate of the consumer's surplus associated with variations 1�� of would be needed
in order to choose a probability of shortage ".

The �rst important extension proposed by Boiteux concerns what he calls the "fourniture

non garantie". He writes "Nous avons pass�e sous silence toute une cat�egorie de consomma-

teurs, ceux qui, ne demandant pas une fourniture garantie, n'exigent pas d'être servis en

toutes circonstances. Clients particuli�erement pr�ecieux puisque prêts �a s'e�acer au moment

d'une pointe al�eatoire de la demande, ils peuvent en revanche, participer �a une meilleure
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utilisation de la marge de s�ecurit�e lorsqu'elle est partiellement inemploy�ee. On comprend

que des dispositions tarifaires particuli�erement avantageuses puissent leur être o�ertes". He

o�ers a very insightful analysis of the pricing issues raised by the introduction of this pop-

ulation of customers on order to anwer to the question : should these customers contribute

to the �nancing of the capacity cost and, if so, what is the optimal price of this new service.

He was aware of the fact that the anwer was intimely related to the intensity of the demand

for this "fourniture non garantie" but admits that "son raisonnement et son r�esultat ne sont

pas absolument rigoureux". Marchand (1974) has extended Boiteux's model in that direc-

tion. He assumes that any customer consumption plan consists of two variables : the mean

as before and the maximal consumption (instead ot the variance) but instead of a single

reliability level, he considers the more complicated situation where there is a �nite number

of such levels, ordered in sequence. This sequence describes a priority order : interruption of

service can happen but has to respect that order. Any customer can suscribe ex ante for a

maximum level of demand (say individual capacity) and an average demand. The allocation

of the capacity follows the ordering : whenever there is some available capacity, and priorities

up to the number p have been served, we move to the number p+1. The aggregate demand

at this level of priority is confronted to this residual capacity. If this capacity su�ces to

cover this demand, we proceed to the next priority. Otherwise, we proceed to shortage. Of

course, given the announced levels of reliability, the public utility invests in a capacity to

meet these conditions. Marchand determines and interpret the optimal prices.

Besides the above important and natural extension, Boiteux asserts that his results are

robust to some generalizations. On one hand, the Gaussian assumption could be relaxed

without changing substantially the calculation of the capacity. On the other hand, the

assumption that individual demands are independent (which is quite unrealistic in many

applications) can also be relaxed. However, he does not provide a detailed analysis of these

extensions. These matters are examined in the next subsections.

3.1 Kolm's Generalizations

Kolm (1970)(1971a) provides several generalizations of the Boiteux model. Like Boiteux22, he

considers the case of a �nite population of N customers where the demand qi of customer i is

22Kolm (1970) presents Boiteux (1951) as a special case of his general developments but speaks very
highly of him. On page 270, he writes" En 1950, Marcel Boiteux, l'un des tr�es grands �economistes fran�cais
de tous les temps (et dont �etant engag�e dans le processus de cr�eation de science �economique, nous ne
pouvons nous empêcher de regretter que ses talents soient maintenant consacr�es �a la production d'electricit�e
plutôt qu'�a celle de th�eorie �economique) pr�esenta un mod�ele qui est un cas particulier....". We endorse this
complimentary statement.
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a random variable described through two parameters :its mean �i and its standard deviation

�i: He defends his point of view as follows " Un producteur ne sait g�en�eralement pas quelle

demande de son produit se pr�esentera �a lui. Cette incertitude est coûteuse car elle empêche

d'ajuster au mieux les d�ecisions, et en particulier les �equipements, �a la demande qui sera

e�ectivement servie. Une tari�cation de ce produit (appel�e le service) doit donc pr�esenter

aux clients une note pour leur contribution �a cette incertitude. Ceci pose le probl�eme de

mesurer ces incertitudes des quantit�es demand�ees. Une mesure unique de l'incertitude d'une

variable incertaine est une mesure de la dispersion de ses r�ealisations �eventuelles; elle s'annule

quand cette incertitude disparâ�t et est positive sinon. En supposant que cet incertain est

probabilisable, une mesure naturelle de cette dispersion, et de cette incertitude, est l'�ecart-

type ou son carr�e, la variance. Bien sûr, les covariances entre les consommations individuelles

doivent aussi en g�en�eralintervenir, car elles inuencent la dispersion de la production globale,

qui est leur somme. En�n, le coût d�ependra �evidemment aussi des valeurs moyennes de ces

grandeurs.

Cette partie et l'interpr�etation de la pr�ec�edente pour l'incertitude di��erent du point de

vue de la tari�cation en ce que le tarif pay�e n'est plus sp�eci��e selon l'�eventualit�e mais d�epend

de l'ensemble des demandes dans toutes les �eventualit�es par certaines fonctions de cet en-

semble (ce sont des moyennes ou des dispersions) moins sp�eci�ques en g�en�eral que les de-

mandes contingentes elles-mêmes. Pratiquement, le tarif peut être �x�e selon certains types

de consommation auxquels correspondent des valeurs d�e�nies de ces fonctions. en fait nous

consid�ererons des �eventualit�es probabilisables et ces fonctions seront des des param�etres de la

distribution de probabilit�e des demandes. Souvent, alors, ces param�etres sont pratiquement

calcul�es sur des s�eries temporelles observ�ees des consommations en des dates en lesquelles

leurs distributions jointes sont suppos�ees identiques et ind�ependantes. On peut ainsi estimer

les param�etres des divers types vendus de consommation. Mais souvent ce calcul a lieu pour

les consommations qui sont tarif�ees elles-mêmes, la somme �a payer �etant calcul�ee, selon

une r�egle connue par les clients, apr�es observation de ces quantit�es; sachant que ses con-

sommations sont enregistr�ees et que sont calcul�es ces param�etres et �a partir d'eux le tarif

qu'il devra payer, tenant compte en�n de ses besoins, l'usager choisit le pro�l temporel de sa

consommation".

Quite clearly, Kolm recognizes that the market and pricing environment that he considers

is second-best as a "�rst-best" consumption plan would consist of a vector describing the

demand for each contingency i.e. "�eventualit�e" in Kolm's terminology. Subsequently, Kolm

shows that there are circumstances where it is legitimate to do so. Given an ex ante decision

z, any realization of the aggregate demand q leads to a total cost equal to C(q; z). If we
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consider the expected cost as the cost criterion to be considered by the public utility, then,

given z, the ex ante total cost is equal to

C(�;�;z) =
Z


C(

NX
i=1

qi(!); z)d!

Optimization with respect to z leads to a function C(�;�). This function can be ex-

pressed as a function c(�; �) where � and � are respectively the mean and the standard

deviation of the aggregate demand if for instance C is quadratic or if the aggregate demand

depends upon two parameters. Then � and � depends exclusively upon � and � if the the

random variables qi are independent or perfectly correlated. The �rst situation was the one

considered by Boiteux. Under the above conditions, the notions of marginal cost of mean

and marginal cost of standard deviation(or variance) are well de�ned. For instance, when :

C(q; z) = C(q) = k0 + k1q + k2q
2

where k0, k1 and k2 are parameters with k2 > 0, we obtain :

@C

@�
(�; �) = k1 + 2k2�;

@C

@�
(�; �) = 2k2� and

@C

@�2
(�; �) = k2

When instead, we consider, almost as in Boiteux :

C(q; z) =

(
bq + �z if q � z

bq + �z + k (q � z) if q > z

where k is positive parameter assumed to be very large, we obtain :

C(�; �; z) = b�+ �z + k
Z +1

z
(q � z) dq

where �(z) is the probability of the event f! 2 
 : q(!) > zg. Optimization with respect
to z leads to :

C(�; �) = b�+ �z(�; �) + k
Z +1

z(�;�)
(q � z(�; �)) dq

where z = z(�; �) is determined by the following equation :

1� �(z) = �

k
� 1� �

We almost obtain Boiteux, as the third term does not appear in his model; the di�erence

between this model and Boiteux is that Boiteux does not optimize with respect to z and

does not assume that the demand must be served ex post. Instead, the value of z(�; �) is
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deduced from an exogenous �. Kolm does not consider the above cost function but alludes

to the following variant :

C(q; z) =

(
bq + �z if q � z

bq + �z + k if q > z

where again k is positive parameter assumed to be very large. We obtain :

C(�; �; z) = b�+ �z + k(1� �(z))

Optimization with respect to z leads to :

C(�; �) = b�+ �z(�; �) + k(1� �(z(�; �)))

where z = z(�; �) is determined by the following equation :

�(z) =
�

k

where is the density of the aggregate random demand. In the Gaussian case we, obtain

after straightforward computations :

z(�; �) = �+ �

s
Log

1

2�2�2�

Once the cost function C(�; �) is determined, the application of marginal cost pricing

only requires the knowledge of the quantities @�
@�i
; @�
@�i

and @�2

@�2i
. Of course, @�

@�i
= 1. In the

case of independence considered by Boiteux, we obtain :

@�

@�i
=
�i
�
and

@�2

@�2i
= 1

In the case of perfect correlation, since :

� =
NX
i=1

�i

we obtain instead :

@�

@�i
= 1 and

@�2

@�2i
=
�

�i

Once all these informations have been collected, we derive the optimal (unit) prices for

customer i of mean, standard deviation and variance :

23



p�i =
@C

@�
(�; �); p�i =

@C

@�
(�; �)

@�

@�i
and p�2i =

@C

@�2
(�; �)

@�2

@�2i
=
1

2�

@C

@�
(�; �)

@�2

@�2i

We note immediately that there is no discrimination when we price uncertainty through

standard deviation in the case of independence and through variance in the case of perfect

correlation. Kolm should be credited for being the �rst to make that important observation.

Further, as cleverly observed by Kolm, the payment of any customer for uncertainty through

variance pricing is equal to half the payment through standard deviation pricing. Customer

i pays �i
�
less when demands are independent as opposed to correlated. We deduce that

the revenues of the public utility corresponding to uncertainty when standard deviation

pricing is used are twice the revenues raised when variance pricing is used. From that

it is easy to deduce some results on the budget of the public utility when these pricing

policies are considered. Kolm derives from these considerations general results when the

cost function exhibits contant returns to scale : when standard deviation pricing is used the

public utility breaks even while when variance pricing is used, only half of the total cost

resulting from uncertainty is recovered. He also provides exact calculation of the budget in

the quadratic case and some insights in the case where the uncertainty is moderate. In such

case, he consider a Taylor development of C(q)at the second order around the mean �, as

an approximation of C(q). He deduces :

C(�; �) = C 0(�) +
1

2
C 00(�)�2

from which the prices derived from marginal cost follow immediately.

Kolm (1971a) also contains further developments on public utility pricing when demand

is stochastic. Chapter 7 examines one such environment under the heading "encombrement

stochastique" while chapters 19, 20 and 21 contain a more detailed presentation and inter-

pretation of the environment considered in Kolm (1970) and that has just been presented. I

would like to conclude this section by some brief comments on these related contributions.

The environment that he calls "encombrement stochastique" is a special case of his gen-

eral theory, discussed extensively in the �rst part of the paper, and calls for the explicit

construction of the "fonction d'encombrement". The quality of the service w is there mea-

sured by the reliability level but it is now assumed that the mean and dispersion parameters

of the individual demands are identical and �xed and therefore beyong the scope of analysis.

It is as if, once a customer gets access to the service, it is known that his behavior is random

with �xed parameters of randomness. Here, the question is not to price uncertainty, but,
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instead, to price access to the service. Consider the case where q is a the continuous size

of the where each customer is characterized by a Gaussian demand (�; �). The aggregate

demand is then a Gaussian random variable with mean �q and standard deviation s equal

to �q in case of perfect correlation and to �
p
q in case of independence. The "fonction

d'encombrement" is then:

w(q; z) = �
�
z � q�

s

�
where as before �(�) is a constant that can be read from a table of the standardized

normal density function. It follows immediately that in the case of perfect correlation, the

"fonction d'encombrement" exhibits constant qualitative returns. The situation is more

contrasted in the case of independence. Straightforward calculations lead to :

@w
@q
(q; z)

@w
@z
(q; z)

= �1
2

 
z

q
+ �

!

Given the realistic presumption that z > �q, we deduce that in the case of independence,

the qualitative returns are likely to be increasing. These calculations together with the

general results obtained by Kolm and presented in the �rst half of the paper provide very

sharp predictions concerning the budget of the public utility. If the marginal cost of z

is constant, then a public utility using optimal pricing breaks even in the case of perfect

correlation and experiments a de�cit equal to half of the cost of the capacity safety margin.

Boiteux-Dr�eze-Kolm's ideas can certainly be extended in various other directions. We

have already alluded to the work of Marchand where the public utility o�ers di�erent levels

of liability. We could also consider the case of a public utility which is not risk neutral and

derive the optimal prices of the �rst two moments in this new context.

4 Implementation : Hopkinson's Tari�s and Related

Matters

While citing Boiteux, we have been very careful in making a distinction between the uc-

tuations considered here and the seasonal (or daily) periodic uctuations which motivate

traditionnal peak load pricing and usually takes the form of TOU (time-of-use pricing)23.

The implementation of the pricing formulas discussed by Boiteux, Dr�eze and Kolm need as

inputs the �rst two moments of the random demand of each customer over a given period of

23See for instance : Seeto, Woo and Horowitz (1997), Woo,Orans, Horii and Chow (1995), Woo, Chow
and Horowitz (1996), and Woo, Horii and I. Horowitz (2002).
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time. We could consider that this period (say a month) is divided into T very small intervals

(say a quarter-hour) and that the real consumption of each customer is registered for each

of these T subperiods24. Regarding the optimal capacity, Veall makes also the important

observation that using the Gaussian distribution when the Gumbel distribution would be

more appropriate leads the facility to construct insu�cient capacity; this is so because it has

not allowed for skewness of the peak demand. For each i, let us assume that the consump-

tions qit in each subperiod t = 1; :::; T are identically distributed and independent Gaussian

random variables with parameters (�i; �i). Then, the �rst two empirical moments consitute

good estimates of the true ones. In practice, this raises a number of questions.

First, we must be able to evaluate the quantities which are used in the calculation of

these parameters and later on in the determination of the bill. As noted by Dr�eze (1995),

"Implementation of e�cient economic shemes sometimes require sophisticated technology.

This can require unique ways of taking tolls in subways, metering industrial electricity,

or charging for road use.Although some of these di�culties have been addressed, research

and development in the area has been pursued erratically ......". Boiteux (1951) himself was

pointing out that the solution could depend upon the type of commodity which is considered

; "Certains march�es comme l'�electricit�e, se prêtent assez ais�ement �a une di��erentiation tr�es

pouss�ee de la facturation suivant le niveau d'irr�egularit�e de chaque demande individuelle :

des compteurs enregistrant le carr�e de la puissance appel�ee d'instant en instant, fournissent

l'�ecart-type, tandis que les compteurs ordinaires indiquent la puissance moyenne. C'est l�a

cependant un cas assez exceptionnel. La plupart des march�es ne se prêteront, en g�en�eral

qu'�a une distinction entre quelques cat�egories d'abonnement, et le tarif ordinaire"

Second, instead of considering the standard deviation or the variance of consumption,

we could consider the maximal 15-minute consumption i.e. the individual peak during

the month. The relationship between this approach is investigated by Veall (1983) in

a remarkable contribution. Consider the sequence of 15-minutes aggregate consumptions

(q1; q2; ::::; qT ) :Then, it can demonstrated that the limiting distribution of q
max � Max

1�t�T
qt for

large T is described by the cumulative G25 :

G(q) = e�e
�
�
q�lT
sT

�

where :

24De la Vall�ee Poussin (1968) adopts that framework and examines the allocation problem where, despite
the existence of T di�erent Arrow-Debreu commodities, there are only two prices to decentralize the decisions
of the customers. He derives and interprets the solution of this second-best market environment.
25This distribution is called the double exponential, or Gumbel distribution.
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lT = �+ bT� with bT �
q
2LogT � Log(LogT ) + Log4�

2
p
2LogT

sT = aT� with aT �
1p

2LogT

Given an exogenous level of reliability �, we deduce from G(z) = � the capacity

z = �+ k� where k � bT � aTLog(� log �)

This capacity26 is di�erent from the mathematical expectation of the peak:

E (qmax) = �+ ke� where ke � bT + aT

with  ' 0:577 being the Euler's constant. If we take into account a possible correlation
� across individual demands, the Boiteux-Kolm prices of customer i are :

p�i = � and p�i = �k
(�i + ���i)

�

where ��i �
P
j 6=i �j. Veal characterizes the optimal prices when q

max
i is used instead of

�i. Precisely, he derives the price pqmaxi
to be paid for the peak consumption and the price

pi to be paid for mean consumption :

pqmaxi
= �

k

ke
(�i + ���i)

�
and pi =

� � pqmaxi

T

Up to a change in variables, these prices are those derived from the marginal cost pricing

principle by Boiteux and Kolm. The key observation is that the pair of Boiteux-Kolm

prices resulting from this change of variables corresponds to a rate, the so-called Hopkinson

rate, which is almost universally used by electric and gas utilities for large-volume sales

to wholesales and also for their industrial clients. How can we explain that popularity ?

Veall suggests that " ...the most likely answer is that it seemed to be a simple method of

dividing the capacity costs according to one view of each customer's capacity requirement.

The problem, of course, is that the maximum demand charge is based on individual peak

demand, which may not be related to the peak system. For instance, consider a user whose

peak demand is normally at 7:00 a.m. when the system peak is at 7:00 p.m. This user faces

an incorrect incentive to use less electricity when there is iddle generation capacity, but has

26About the optimal capacity, Veall makes also the important observation that using the Gaussian distri-
bution when the Gumbel distribution would be more appropriate leads the facility to construct insu�cient
capacity; this is so because it has not allowed for skewness of the peak demand.
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no special incentive to reduce usage during the peak period when capacity may be strained".

Suppose, however, that coincident demand (consumption at the time of the sytem peak)

and customer's peak demand are both outcomes of the same stochastic process. Then, since

individual peak demand is a function of customer variance demand, the Hopkinson's rate

maximum demand charge could then be a variance charge used to price each marginal user's

e�ect on system variance and hence on optimal capacity. As noted by Veall27 "Although this

argument does not provide convincing support for the Hopkinson rate as commonly applied, it

may justify its use in combination with TOU rates when the demand charge is for maximum

quarter-hour usage during the on-peak period".

The Hopkinson rate has been named after the pioneering work of this British engineer

in 1892. He was the very �rst one to articulate the distinction between �xed and operating

costs and to state explicitely that a customer must pay for both his share of �xed costs and

for the actual consumption. Charges for �xed costs in his scheme, were assessed according

to "connected load", the amount of equipment that the customer had connected. But Hop-

kinson's de�nition of maximum demand as the connected load discouraged customers from

installing more lamps than aboslutely necessary, since they would be forced to pay for this

load even if using it rarely. Therefore, managers turned their attention to the Wright's rate

according to which maximal demand is de�ned as the actual maximum during the billing

period and provides a special meter to measure this maximum28.

It should be noted that, in both the Boiteux-Kolm-Hopkinson and the "demand" settings,

the customers are "invited" to send a signal to the public utility concerning their real or

potential "needs". The ack of coincidence between the two quantities lies in the fact

that uncertainty has not been resolved when the question is raised. Along these directions,

quite sophisticated pricing methods have been proposed29. For the sake of illustration, we

conclude this subsection byone such pricing device which has implemented by the French

agency which regulates energy markets. This price is the "tarif d'utilisation des r�eseaux de

distribution de gaz naturel" where "r�eseau de distribution" refers to a local transportation

27Interestingly, this remark appears already in Boiteux (1951) as he points out in concluding his paper
that "..l'extension des r�esultats qui pr�ec�edent au cas de demandes al�eatoires p�eriodiques n'o�re que des
di�cult�es d'exposition. Les marges de s�ecurit�e n'�etant n�ecessaires, en tant que telles, qu'au moment des
pointes de la demande, ce qui vient d'être dit �a propos des demandes al�eatoires constantes n'est plus valable
qu'au voisinage des pointes, moyennant quelques pr�ecautions".
28We refer the reader to the fascinating paper of Yakubovich, Granevotter and Mc Guire (2005) which

provides an historical perspective on the development of pricing systems for electricity. The alternative to
the Hopkinson-Wright's system was the Bartow's system which is a TOU rate. It is quite interesting to
observe that rapidely the Wright's system was widely adopted at the expense of the Bartow's system.
29The reader will �nd in Energy and Environmental Economics, Inc (2006) an interesting overview of the

current pricing practices in the context of electricity.
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network (there are several such local networks but only one global transportation network.

These networks are used by large end-users which may get direct access or operators which

need to use it to deliver the energy to their clients connected in that area. There is a menu

of several tari�s30. Most of them are traditional two-part tari�s but one is a three-part tari�

("de type trinôme"). The last term of these three part tari� is a quantity which de�nes

the daily capacity subscribed by the client over a year ("terme de souscription annuelle de

capacit�e journali�ere". The payment is proportional to the quantity subscribed. However,

things get more complicated as a client is not limited in this consumption by its subscription.

Each month, the operator of the distribution network (the public utility) registers the daily

di�erential between the real consumption and the amount which has been subscribed. A daily

di�erential is recorded if it exceeds 5% of the subscribed capacity. The daily di�erential for

the month is calculated as the sum of the maximal daily di�erential and 10% of the sum

of recorded daily di�erentials during the month. The operator will impose a penalty on the

client as soon as this number exceeds 5% of the subscribed daily capacity. this penalty is

calculated as follows. For the part of the di�erential in between 5% and 15% of the subscribed

capacity, the unit penalty per unit is equal to two times the monthly subscription31 of

capacity. Finally, for the part of the di�erential above 15% of the subscribed capacity, the

unit penalty per unit is equal to four times the monthly subscription of capacity.

5 Advance-Purchase and Spot markets with an Appli-

cation to the Regulation of Natural Gas Transporta-

tion Networks

This last subsection is devoted to the exploration of an imperfect market environment which

provides a useful description of many existing (regulated or not) industries. In this setting

a client will be o�ered two transactional opportunities : to buy some quantity on the good

at time t = 0 at some unit price p or(and) to buy some extra quantity of the good at time

t = 1 at some unit price p. We will assume here that both prices are regulated which implies

as in the case of a unique regulated price that ex post, clearing the market may call for some

30The tari� proposals of the French regulator (in short CRE, for Commission de R�egulation de l'Energie)
have been approved in December 2005 by the French government.
31Monthly subscription ("souscription mensuelle de capacit�e journali�ere") refers to the situation where

the client makes reservation for a month instead of a year. The regulator has �xed di�erent prices for these
shorter periods. the rationale for these di�erences in prices is explored in the next subsection. In the case
of our network, the price for a month reservation vary with the month and is typically higher than 1

12 times
the price for a year reservation. For instance in december, the factor is 4

12 .
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rationing. A customer may prefer to buy ex ante part (if not all ) of his total consumption at

time 1. One one hand, the price may be smaller than the price. On the other hand, we could

also imagine that the regulator o�ers service priority to those who made advance purchases.

Hereafter, we will ignore this di�erentiation dimension as we will more generally ignore the

risk of rationing in the behavioral response of the clients. Given a pair of prices
�
p; p

�
, we

will develop a structural model to derive the demand behavior in this pricing environment.

Unless p < p; there is no reason for a client to proceed in advance purchases and to make

reservations. When p < p , the trade-o� for any client is pretty straightforward : he must

balance the �nancial gain attached to reservation and the informational gain from delaying

his decision. The consumption plan of client i at t = 0 consists of two quantities : a quantity

bought in advance q
i
we will often refer to this market as the forward market) and a quantity

qi bought later on the spot market when the needs will be properly estimated. From the ex

ante perspective, this second quantity is a random variable. Hereafter, we will assume that

the public utility forms perfect expectations about demand.

The market environment considered32 here could be augmented in several directions. If

we consider for instance airline reservations, a large spectrum of options is typically o�ered to

clients beyond the simple binary choice considered here. This speci�c market incompleteness

and all sorts of issues raised by the assumption that the demand is stochastic have received

a lot of attention in the industrial literature. For the case where the environment consists of

spot markets with many suppliers facing stochastic demand but forced to precommit on a

price and capacity33, several notions of competitive equilibrium have been developed where

price dispersion is an equilibrium prediction : �rms with high prices selling their capacity only

in the event of large demand together with �rms with lower prices selling their capacity in

any circumstance34. The same environment has been analysed under various assumptions of

imperfect competition including the limit case of a monopoly35. Finally, the consequences of

permitting advance purchase discounts in such market environment have also been examined

in situations of perfect and imperfect competition36.

In this subsection, we will examine this market environment from a normative perspective

32In his analysis of the institutions which might improve the situation of ine�ciency resulting from the
fact that trades are not contingent on the state of nature, Diamond (1980) mentions the use of a futures
market.
33Precommitment to prices and capacities and demand uncertainty are central features of many industries,

besides the regulated industries considered in this paper.
34The key equilibrium concept is due to Prescott (1976). For further analysis the reader may consult, for

instance, Carlton (1978, 1979, 1991), Dana (1999) and Eden (1990).
35See for instance, Baron (1971), Dana (2001), Deneckere and Peck (1995) and Wilson (1988).
36See for instance, Dana (1998) and Gale and Holmes ((1992), (1993)).
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under the assumption that the prices on both markets are regulated. We develop a simple

model to derive the behavior of consumers in such environment and then we derive the

prices maximizing the aggregate net social surplus. These prices have de�nitively the avor

of the Boiteux-Kolm prices discussed above : the discount o�ered here to those proceeding

to advance purchases is analogous to the premium o�ered in their setting to less volatile

consumers. Our model is however fully speci�ed as the preferences and informations of

consumers are the basic primitives of the model. We conclude the subsection with more

practical matters describing why and how these theoretical developments may be useful to

analyse the policy implemented by the French regulator to regulate the access to the natural

gas pipelines network.

5.1 Demand Behavior

In this section, we o�er a simple model explaining how a client37 reacts to the pair of prices

(p; p) i.e. plans its gas consumption for the period t = 1. This simple model aims not only

to explain what will be the volume of gas consumed bay this client in reaction to the menu

of prices but also how it will share this total consumption between an advance-purchase

and the spot market. This will depends of course upon its need/preference/value for gas

consumption in contrast to other commodities. The key assumption is that the valuation of

this client depends upon informations which are not all disclosed at time t = 0. Precisely,

we assume that the preference of a generic household for gas consumption at time t = 1 is

described by the quasi-linear utility function38

V (q; !) +M (1)

where x denotes its consumption at t = 1, ! is a real number and M denotes the other

consumption expenditures. We denote by R the consumption budget of this household. As

explained above, at time t� = 0, this household is o�ered the possibility of ordering some
gas at a unitary price p. Then at time t = 1, he can always proceeds to some ultimate

arrangements (if needed) once the all relevant information will have been conciled. It is

assumed here that the real parameter ! is random and that its realization will take place

at time t. This implies that any household planning to order some gas at time t� = 0

faces some uncertainty. The expression in (1) describes, in monetary units, the value of the

37The model below applies in fact exclusively to households. A di�erent model is needed to model natural
gas demand by �rms. The reader is refered to David, Le Breton and Merillon (2007a) for this extension.
38In order make meaningful our partial equilibrium approach.
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consumption plan (q;M) when the realization of the random variable e! is !. To evaluate
ex ante, i.e. at time t = 0, the value of this plan, we need to introduce the von Neuman-

Morgenstern utility U of this household which reects its attitude towards risk. The value

of the consumption plan (q;M) is then :

U (V (q; !) +M)

In the contractual environment considered here, a consumption plan at t=0 is a vector

(q, q(!);M) where x represents its advance purchase at time t�� and q(!) represents its

spot purchase at time t = 1 when uncertainty has been resolved : q(!) denotes its purchase

when the realization of the random variable is !. When the range of the random variablee! consists of a �nite set 
 and �(!) is the probability of the event fe! = !g, the expected
utility derived from the purchase plan (q, q(!);M) is :

X
!2


�(!)U(V (q + q(!); !)� pq � pq(!) +R) (2)

The �rst order conditions are :

X
!2


�(!)U 0(V (q + q(!); !)� qx� pq(!) +R)

"
@V

@x
(q + q(!); !)� p

#
= 0 si q > 0

(3)

and

@V

@x
(q + q(!); !)� p = 0 si q(!) > 0 (4)

Without any further assumption on the primitives, equations (3)and (4) are not easy to

solve in full generality. For instance, when U is of the CARA type i.e. U(z) = �e��z where
� is a positive parameter, equation (3) simpli�es to :X

!2

�(!)e��(V (q+q(!);!)�pq(!))

"
@V

@x
(q + q(!); !)� p

#
= 0

Note however that U does not play any role in equations (4) which is fairly natural as they

describe optimal supplementary purchase of gas once uncertainty has totally disappeared.

Hereafter, we limit our attention to the case where clients are risk neutral. In this case,

equation (3) simpli�es to :

X
!2


�(!)

"
@V

@x
(x+ x(!); !)� p

#
= 0 if x > 0 (5)
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5.2 Aggregate Demand under Further Speci�cations

We now consider a population of N clients where the behavior of each client i = 1; :::; N

is described as in the above subsection39. We introduce some further speci�cations on the

primitives in order to derive a simpler description of the aggregate behavior. This is mostly

done by describing the inuence of uncertainty on the value of gas consumption. The key

assumption is the binomial character of the stochastic inuence of the state of the world

!: for each client i either the state of the world is favorable to gas consumption xi or it

is not. Moreover, the states of the world favorable to gas consumption may di�er sharply

accross clients. A state of the world is a vector describing the population of clients receiving

a favorable signal. Precisely :


 =
I1Y
i=1

f!i; !ig

where for all i = 1; 2; :::; N , !i et !i are two real numbers such that : !i < !i. Without

loss of generality, we suppose hereafter that !i = 0; !i refers to circumstances unfavorable

to gas consumption from the perspective of client i. We denote �i the probability of the

event f!i(t) = 0g.
Finally, we assume that for all i = 1; :::; N :

Vi(qi; !) = vi(qi + !i)

where vi is an increasing and strictly concave continuously di�erentiable function. In

this simpli�ed setting, a consumption purchase plan is a three dimensional vector (q
i
,

qi(!i); qi (!i)) = (qi, qi(0); qi (!i)). The expected utility of client i for such plan becomes :

�ivi(qi + qi(!i)) + (1� �i)vi(qi + qi(!i) + !i)� pq
i
� p(�iqi(0) + (1� �i)qi(!i))

Equations (4) simpli�es to :

(
v0i(qi + qi(0)) = p i� v0i(qi) � p

v0i(qi + xi(!i) + !i) = p i� v0i(qi + !i) � p
(6)

If v0i(qi) < p (respectively v0i(qi+!i) < p), then qi(0) = 0 (respectively qi(!i) = 0). Since

vi has been assumed to be strictly concave, we deduce that if v
0
i(qi) < p then v0i(qi�!i) < p.

39The parameters and variables will be subsequently indexed with i : Vi;
i; �i and Ri. Heterogeneity
across households can be (at this stage) multidimensional. Under quasi linearity, income �ects are eliminated.
We are left with two channels : the impact of q for a given ! and the impact of ! for a given q.
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Therefore, from (6), if qi(!i) > 0, then qi(0) > 0. On the other hand, equation (18) simpli�es

to :

�iv
0
i(qi + qi(0)) + (1� �i) v

0
i(qi + qi(!i) + !i) = p si q

i
> 0 (7)

We deduce from equations (6) et (7) that necessarily :

qi(!i) = 0

Indeed, if on the contrary qi(!i) > 0; since qi(0) > 0, we deduce from (6) :

�iv
0
i(qi + qi(0)) + (1� �i) v

0
i(qi + qi(!i) + !i) = p

which contradicts (7) since p > p. The intuition driving this result is fairly simple. Here,

a circumstance which is adverse to gas consumption leads to a decrease of the marginal utility

of gas with respect to a reference consumption. In our binary setting, this happens when

!i = !i and in such case, it is optimal to purchase the contingent optimal quantity of gas at

the lowest possible price i.e. in advance. If in contrast, circumstances turn to be favorable,

then the spot market will be (likely) used to proceed to some additional purchases. An

immediate implication of this observation is that a purchase plan of client i reduces to a two

dimensional vector (q
i
; qi(0)); that we will denote simply (qi; qi). The �rst order conditions

become :

�iv
0
i(qi + qi) + (1� �i) v

0
i(qi + !i) = p if q

i
> 0 (8)

and

v0i(qi + qi) = p si qi > 0

Client i �nds optimal to purchase its gas in advance if the unique solution q
i
of the

following equation :

�iv
0
i(qi) + (1� �i) v

0
i(qi + !i) = p (9)

satis�es

34



v0i(qi) � p (10)

Similarly, client i �nds optimal to purchase all its gas on the spot market if :

�iv
0
i(qi) + (1� �i) v

0
i(!i) � p (11)

where qi is the unique solution of the equation:

v0i(qi) = p (12)

This happens if and only if the following inequality holds true :

v0i(!i) �
p� �ip

1� �i

For instance when p is smaller than �ip, we conclude that this cannot happen. The

inequality is less likely to hold true when p is small, p is large and v0i(!i) is large. In

contrast, the e�ect of �i is ambiguous.

Finally, client i will not purchase gas (at all) if :

�iv
0
i(0) + (1� �i) v

0
i(!i) � p et v0i(0) � p

Let q
i
(p) be the unique solution to equation (9). Inequality (10) becomes :

p �
p� (1� �i) v

0
i(qi(p) + !i)

�i
� 'i

�
p
�

From the implicit function theorem, we deduce :

x0i(p) =
1

�iv00i (qi) + (1� �i) v00i (qi + !i)

and then :

'0i
�
p
�
=
1� (1��i)v0i"(qi+!i)

�iv00i (qi)+(1��i)v
0
i"(qi

+!i)

�i
=

v00i (qi)

�iv00i (qi) + (1� �i) v00i (qi + !i)

It should be noted that as soon as v0i(x) tends to 0 when x tends to +1, 'i
�
p
�
tends to

0 when p tends to 0. Moreover, combining (11) and (12) leads to the inequality :
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p �
p� (1� �i) v

0
i(!i)

�i
�  i(p)

The functions 'i et  i make the identi�cation of the four potential groups of households in

the population easier : those who do consume gas, those who purchase their gas exclusively in

advance, those who purchase their gas exclusively on the spot market and those who mix with

the both. It is useful to note that the functions intersect at p = �iv
0
i(0) + (1� �i) v

0
i(!i) and

'i
�
p
�
=  i

�
p
�
= v0i(0). The curvature of the function 'i depends upon the monotonicity

of the coe�cient �v00i (x)
v00i (x)

. The derivation of the functions 'i and  i is straighforward. For

instance, when vi(x) = �e��ix where �i is a positive parameter, we obtain :

'i
�
p
�
=

p

�i + (1� �i)e��ix
and  i(p) =

p� (1� �i)�ie
��ix

�i

At time t = 1, the total gas consumption of household i is the realization of a Bernouilli

random variable with mean q
i

�
p; p

�
+�iqi

�
p; p

�
and standard deviation

q
�i(1� �i)qi

�
p; p

�
.

If the client is "interior" i.e. if he purchases natural gas on both markets, then the determi-

nation of his demands uses simply the inverse function of v0i denoted hereafter by 	i.

To obtain a complete description of the aggregate demand behavior, it remains to de-

scribe the structure of the uncertainty. We have assumed that each client i is described

by a Bernouilli model totally summarized by a single number �i representing the marginal

distribution attached to this client. The aggregate behavior will depend upon the joint dis-

tribution accross clients. For instance, in the case of two clients i.e. when N = 2, a state of

the world is described by a vector ! 2 f0; !1g � f0; !2g. the joint distribution is de�ned by
the following contingency table40 :

0 !2

0 ��1�2 �1 (1� ��2) �1
!1 �2 (1� ��1) 1� �1 � �2 + ��1�2 1� �1

�2 1� �2

The last row and last colum correspond to the marginals. All the information about the

correlation accross states is contained in the coe�cient �. The circumstances inuencing the

40An alternative way to model simply the correlation would consist in adding an extra component in the
product space

QN
i=1 f!i; !ig, say 
 =

�
�; �
	
�
QN
i=1 f!i; !ig and assuming the joint distribution as the

product of the marginals. In such setting, the uncertainty a�ecting client i would consist of two terms : a
macroeconomic or climatic term � together with an idiosyncratic term !i. The analysis of the demand of gas
by households and �rms could be conducted as before, under the asssumption that Vi(qi; !) = vi(qi+�+!i).
However, there are four distinct states of the world for each client and the analytics become more tedious.
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gas demand of the two clients are independent when � = 1. This is the Boiteux's case. In

contrast, they are perfectly correlated when � = 1
�1
= 1

�2
. This is the Kolm's case.

Hereafter , we limit our attention to the case of independence i.e. only the idiosyncratic

risk is taken into consideration. From the perspective of the public utility serving this

population of clients, the stochastic demand of gas for consumption at time t = 1 is therefore

a sum of independent (but not identically distributed) Bernouilli random variables eqi where
eqi =

8<: q
i

�
p; p

�
+ qi

�
p; p

�
with probability �i

q
i

�
p; p

�
with probability 1� �i

The aggregate demand consists of a deterministic term
PN
i=1 qi

�
p; p

�
and a random termPN

i=1 qi
�
p; p

�
. The �rst term is the aggregate advance purchase while the second terme is

the aggregate purchase on the spot market. Both are inuenced by the two dimensional

price policy
�
p; p

�
.

Hereafter, under the assumption that N is a large number, we will replace the exact

aggregate demand by its Gaussian approximation. If for some � > 0 :PN
i=1 �i (1� �i) (�

1+�
i + (1� �i)

1+�)(qi(!i))
2+�

(
qPN

i=1 �
2
i )
2+�

!
N!1

0

we deduce from the Lyapounov 's central limit theorem that if N is large enough,

q
�
p; p

�
� PN

i=1

�
xi
�
p; p

�
+ xi

�
p; p

��
behaves approximatively as a Gaussian random vari-

able N(�; �) where

� =
NX
i=1

�i with �i = q
i

�
p; p

�
+ �iqi

�
p; p

�
for all i = 1; :::; N

� =

vuut NX
i=1

�2i with �i =
q
�i(1� �i)qi

�
p; p

�
for all i = 1; :::; N

5.3 Optimal Public Utility Pricing

We are now in position to derive the optimal "Gaussian" prices. By optimal, we mean here

prices that maximize the social objective de�ned as the sum of the aggregate net surplus of

clients and the bene�t(or loss) of the �rm. We will not pay attention here to the issue of

budget de�cit and the cost of public funds41. On the cost side, we will proceed as in Boiteux

41The calculation of Ramsey-Boiteux's prices in this context can be obtained from the authors upon
request.
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i.e. we assume that there is an exogenous level of reliability � and that the capacity z

determined to meet this quality of service. As already shown, while presenting the Boiteux's

model, the total capacity cost is as follows:

�

24 I1X
i=1

�
xi
�
p; p

�
+ �ixi

�
p; p

��
+

I2X
j=1

�
xj
�
p; p

�
+ �jxj

�
p; p

��

+�(�)

vuuut I1X
i=1

�i(1� �i)x2i
�
p; p

�
+

I2X
j=1

�j(1� �j)x2j
�
p; p

�375 :
The optimization problem is then formulated as follows :

max
p;p

"
NX
i=1

�ivi(qi

�
p; p

�
+ qi

�
p; p

�
) + (1� �i)vi(qi

�
p; p

�
+ !i)

#

��
"
NX
i=1

�
q
i

�
p; p

�
+ �iqi

�
p; p

��#
� ��(�)

24
vuut NX
i=1

�i(1� �i)q2i
�
p; p

�35 :
Under the symmetry assumption �i = � for all i = 1; :::N , it can be demonstrated42

that the optimal pricing policy (p�; p�) is solution of the following pair of equations :

p� � � = (1� �) (p� � �)� ��(�)
q
�(1� �)

A(p; p)

B(p; p)
qPN

i=1(qi(!i)(p; p))
2

(13)

and

p� = � +
���(�)q
�(1� �)

C(p�; p�)

D(p�; p�)
qPN

i=1(qi(!i)(p
�; p�))2

(14)

where :

A(p; p) �
NX
i=1

	0i(
p� (1� �)p

�
)qi(!i)(p; p)

B(p; p) �
NX
i=1

	0i(
p� (1� �)p

�
)

42The details of the proof are available from the authors upon request.
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C(p; p) �
NX
i=1

	0i(p)qi(!i)(p; p)

and

D(p; p) �
NX
i=1

	0i(p)

These price equations are complicated and not easy to interpret in this general framework

where no limits on the heterogeneity across consumers have been imposed

In the fully symmetric case, i.e. under the extra assumption

	0i(p) = 	
0
j(p) and !i = !j for all i; j = 1; :::N and all p > 0

we obtain the following simple formulas for the optimal prices :

p� = � +

p
���(�)

p
N
q
(1� �)

(15)

and

p� = � (16)

Formula (16) is transparent : the capacity component of the price of gas on the forward

market is exactly equal to the marginal cost of capacity. Formula (15) asserts therefore that

the price di�erential satis�es :

p�

p�
= 1 +

�(�)p
N

s
�

1� �

The second term reects the premium o�ered to a consumer who buy his gas43 on the

forward market : the magnitude of this premium declines with the the population size, which

is not surprising, since in the independence case considered here, the uncertainty tends to

collapse when the population becomes large. Otherwise the premium increases with the

safety margin and the probability �.

43We could also interpret this premium in the context of the pricing of transport services ( like airlines or
railways) as the discount o�ered to a customer buying his ticket long in advance in constrast to a customer
buying his ticket in the last moment.
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These second best prices inherate some of the features of the marginal cost pricing. In

fact, they are not so distant from the Boiteux-Kolm prices. To some extent, p� stands for the

price of average consumption while p�� p� would represent the price of dispersion. The gen-
eral formulas have been derived under a weak symmetry assumption in order to eliminate the

ex ante di�erences across clients other than their tastes. The fact that the pricing formulas

does not exhibit simplicity, despite this step in direction of more population homogeneity, is

due to the existence of idiosyncratic impacts on the cost. Since by assumption, the price p

is uniform, it cannot accomodate the di�erences in costs, resulting from these di�erences44.

Except for this aggregation operation, the capacity component of the price of gas on the

spot market is higher that the corresponding price on the forward market by an amount

��(�)

D(p�; p�)
qPN

i=1(qi(!i)(p
�; p�))2

24
q
�(1� �)A(p�; p�)

B(p�; p�)
+

�2C(p�; p�)

D(p�; p�)
q
�(1� �)

35
To get a better understanding of the parameters which will have an inuence on the

determination of these prices, consider the following simple asymmetric setting. The popu-

lation is composed of two classes of clients : there are N l (l = 1; 2) identical clients in each

group i.e.

�i � �1, v1 � v1; !i � !1 pour i = 1; ::::; N1:

�j � �2, vj � v2; !j � !2 pour j = 1; ::::; N2:

If the solution is interior, the �rst order conditions lead to the equations :�
p� �

� h
e1 + e2

i
� (p� �)

h
�1e1 + �2e2

i
= ���(�)

24 2�1I2(1� �1)�1e
1 + �2�2I

1(1� �2)e2q
I1 (I2)2 �1(1� �1) (�1)

2 2 + I2 (I2)2 �2 (�2)
2 (1� �2)

35

= ���(�)

2664 2�1(1��1)�1e1
I1

+ �2�2(1��2)e2
I2r

�1(1��1)(�1)22
I1

+ �2(�2)
2(1��2)
I2

3775 ;
44This uniformity or non discrimination constraint is a second best-best constraint that has been analysed

by several authors including Kolm. The optimal price results from the minimization of a weighted average
of the distorsions.
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et �
p� �

� h
f 1 + f 2

i
+ (p� �)

h
�1�1g

1 + �2�2g
2
i

= ��(�)

24 N2�1(1� �1) (�1)
2 g1 + �2N1(1� �2) (�2)

2 g2q
N1 (N2)2 �1(1� �1) (�1)

2 2 +N2 (N2)2 �2 (�2)
2 (1� �2)

35

= ��(�)

2664 
2�1(1��1)(�1)2g1

N1 + �2(�2)
2(1��2)g2
N2r

�1(1��1)(�1)22
N1 + �2(�2)

2(1��2)
N2

3775 ;
where for i = 1; 2

 �
I1q1

�
p; p

�
I2q2

�
p; p

� , �i � qi
�
p; p

�
qi
�
p; p

� , ei � @di
�
p; p

�
@p

p

qi
�
p; p

�
f i �

@qi
�
p; p

�
@p

p

qi
�
p; p

�@p et gi � @qi
�
p; p

�
@p

p

qi
�
p; p

�@p
David, Le Breton and Merillon (2007) refer to these equations as the fundamental price

equations as they provide the optimal second-best distorsions between the prices and the

marginal capacity cost and highlight the relevant parameters.

- The parameter  � N1q1
�
p; p

�
=N2q2

�
p; p

�
measuring the market shares of the two

groups.

- The parameters �1and �2 measuring the ratio of the volumes of transactions on the

two markets.

- The di�erent cross and direct price elasticities: e1; e2; f 1; f 2; g1 et g2;

- The volatility of the two groups evaluated through the parameters �1 et �2.

It is important to observe that the parameters which appear in these equations are not

all logically independent as they are related through the �rst order conditions of the clients.

For instance, we always have :

f i = ��iei for i = 1; 2:

It is also important to remark that these equations does not provide a closed form analytic

solution as (like in Ramsey-Boiteux's equations) the parameters may depend upon the prices

p and p. These non linear equations may be quite complicated.

If �1 = �2 � �, �1 = �2 � �, e1 = e2 � e et g1 = g2 � g i.e. if the unuque asymmetry

is about the scale or market shares of the two groups, the system of equations simpli�es as
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follows :  
e ( + 1) ��e ( + 1)
��e ( + 1) ��g ( + 1)

! 
p� �
p� �

!

= ��(�)

0BBBBB@
�
q
�(1� �)e

2

N1
+ 1
N2q

2

N1
+ 1
N2

�
q
�(1� �)g

2

N1
+ 1
N2q

2

N1
+ 1
N2

1CCCCCA ;

from which we obtain :

p = � et p = � + ��(�)

s
(1� �)

�

q
2

N1 +
1
N2

( + 1)
:

which could be alternatively expressed as follows, with the parameter E � q1
�
p; p

�
=q2

�
p; p

�
i.e. the ratio of mean consumptions instead of the ratio  of aggregate consumptions between

the two groups

p = � + ��(�)

s
(1� �)

�

q
N1 + (E)2N2

N1 + E2N2
:

The second-best environment considered here is complicated. Some contingent markets

are missing and the impossibility to practice price discrimination among clients adds itself as

a second constraint on the regulator. As a consequence of the general second best principle, it

may then be optimal to create more distorsions. Then, the derived departures from marginal

cost pricing should not come as a surprise.

5.4 Some Lessons for the Regulation of the Natural Gas Trans-

portation Industry

In this paper, in several occasions, we have pointed out the practical concerns and isues which

motivated the theoretical developments on public utility pricing and regulation. We would

like to conclude this paper by explaining our personal interest in the market environment

developed above.

A marked transformation of the natural gas industry has ocurred all over the world in

recent decades towards the liberalization of these markets. According to Doane, McAfee and

Williams (2004), in the United States45, this process has been primarily facilitated by the

45The U.S. regulatory policy of natural gas pipelines companies has already been explored by several
authors in the sixties and seventies ( Callen (1978), MacAvoy and Noll (1973) and Wellisz (1963)). Among
other things, under the Natural Gas Act of 1938, the sales to public utilities are treated di�erently from the
industrial sales. The regulation policy calls for an allocation of the overhead cost among these two categories.
The behavioral implications on operators of the empirical rule which has been selected to do so (known as
the Atlantic Seaboard Formula) has been studied by these authors.

42



issuance of two orders from the FERC (Federal Energy Regulatory Commission). FERC

Order N� 436, released in 1985, encouraged pipeline companies to separate their sales and

transportation functions; the order also established rules governing open access. FERC

Order N� 636, released in 1992, required interstate pipelines to unbundle their gas and

transportation functions, to cease selling bundled gas supplies, and to provide comparable

transportation to all shippers regardless of whether or not the shipper had also purchased

gas from that pipeline. In the European Union, following the 1998 directive, a similar dereg-

ulation process46 is at works47 and unsurprisingly the issues of accounting separation and

access to the network of pipelines have also attracted most of the attention of the regulators.

Most prominent are the questions of pricing and investment decisions in capacities. While

not speci�c to that industry, the determination of the structure of prices imposed by the

regulator to the "authorized" operators in order to get access to the network of pipelines

raises some speci�c di�culties that call for an appropriate analysis.

One of our main concern was to provide a normative framework to evaluate some features

of the policy implemented by the French regulator to allocate and price the access to48

the existing pipeline capacities across the di�erent �rms which have been agreed to deliver

natural gas to clients located on the French territory. This policy has many dimensions and

we will just examine one aspect of it related to the theoretical framework. Hereafter, we

will abusively identify capacity with transportation capacity ("capacit�e de liaison" in the

French terminology) ignoring for the moment, entry, exchange, exit and storage capacities

and consider the case of a unique section in the all network49. Any operator which want to

use this capacity is o�ered a menu of options. One important aspect of the decision of any

operator consists in a capacity reservation : how much daily capacity is "needed" to deliver

the natural gas to its clients ? Besides the volume part, the operator may opt for annual,

monthly or daily reservations. There are some sophisticated rules to allocate sequentially the

existing capacities given the reservations which have been made and the (regulated) prices

46In contrast to the regulatory policy of the United States, no market-based rate proposals submitted by
natural gas pipelines is considered at the moment. For an analysis of the theoretical consequences of the
role of excess capacity in such regulatory setting, see McAfee and Reny (2006).
47The market is active : the growth rate in consumption is about 2% per year and the total consumption

in the European Union was about 493 Gm3 in 2005. More �gures about the relative weight of this energy in
aggregate energy consumption by either residential, commercial or industrial clients, trends for the coming
decade and policy statements about the e�ectiveness of the current regulation can be found e.g. on the web
site of the various regulators..
48The reader who wish to know more details about the �nancial and institutionnal aspects of the current

system is invited to consult the web sites of the regulator (www.cre.fr) as well as the web site of the public
utility which is here the main operator of the network (www.gazdefrance-reseau-transport.com)
49We refer the reader to the the annual report of the French regulator for a detailed description of the

regulatory process and its evolutions.
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di�er according to the type of reservation which is selected. An operator may be reluctant

to make advance reservations when the consumption of many of its clients exhibits a great

votality and may prefer to delay reservation and wait for the exact demand emanating from

them. The trade-o� between the forward and spot contractual arrangements is the one

described in the above theoretical model except for the fact that there are three markets

instead of two (without accounting for contracts with the possibility of interruption). The

di�erentials in prices according to the time of reservaton are as follows. The tari� for a

monthly subscription is equal to 1=8 of the corresponding tari� for an annual reservation.

Similarly, the tari� for a daily reservation is equal to 1=20 of the corresponding tari� for a

monthly reservation. In both cases, the price has been increased by 50 % i.e. with our above

notations :

p

p
=
3

2

It would be interesting to contrast this choice with the optimal prices derived from our

theoretical normative approach. This calls for an estimation of the main parameters which

appear in these formulas. However, it should be recognized that the all theory is based upon

a competitive price-taking behavior of the users of this networks. The current context would

suggest that the market is imperfectly competitive and that the regulated access prices to

the transportatio network act as costs for operators delivering natural gas to end users.

Understanding the consequences of the market power of these operators on �nal prices is

important to derive optimal prices that would accont for these extra distorsions with respect

to competitive markets.
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