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HANDWRITTEN DIGIT CLASSIFICATION

ANDREA GIULIODORI, ROSA LILLO AND DANIEL PEÑA

Abstract. Pattern recognition is one of the major challenges in statistics

framework. Its goal is the feature extraction to classify the patterns into cate-

gories. A well-known example in this field is the handwritten digit recognition
where digits have to be assigned into one of the 10 classes using some classi-

fication method. Our purpose is to present alternative classification methods

based on statistical techniques. We show a comparison between a multivariate
and a probabilistic approach, concluding that both methods provide similar

results in terms of test-error rate. Experiments are performed on the known

MNIST and USPS databases in binary-level image. Then, as an additional
contribution we introduce a novel method to binarize images, based on statis-

tical concepts associated to the written trace of the digit.

In the field of digital image processing, pattern recognition is the research area
that studies the operation and design of systems that recognize patterns in data. Its
primary goal is the classification of objects into a number of categories or classes.
Depending on the use, these objects can be images, signal waveforms or any other
type of measurements that need to be classified. Common applications of pattern
recognition are automatic speech recognition, classification of text into several cat-
egories (e.g. spam/non-spam email messages) and the automatic recognition of
handwritten postal codes on postal envelopes. Statistical approaches are one of the
most widely studied and used to perform pattern classification.

In statistical pattern recognition, an image is represented by a set of f features
which constitute a f -dimensional feature vector. A decision process (statistical
classifier) based on this vector is used to establish boundaries between image classes
and then perform the classification. Thus, the classification success depends entirely
on the set of selected features and the classification scheme.

In this paper we tackle the handwritten digit recognition problem. Our purpose
is to present alternative classification methods based on statistical techniques and
with good performance for classifying handwritten digit images. We use two differ-
ent statistical approaches. Firstly, we use a probabilistic approach assuming that
the features of images in the training set have a probability distribution in order to
use the Bayes‘s decision rule to classify images in the test set. Secondly, we conduct
a supervised classification approach (where classes of sets are known), using the K-
nearest neighbors rule to classify images in the test set. The classification scheme
is based on a set of variables (feature vector) obtained by applying structural mea-
sures to detect the shape and geometry of the numbers. Our methodology has the
advantage that is more intuitive and generalizable over other methods that require
the use of scanned digit with the same size [see Lauer et al. (2007)]. Besides, our
methodology do not need any pre-processing (as deskew, noise removal or shift the
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edges) of images from databases [see Decoste and Scholkopf (2002) and Keysers
et al. (2007)].

Experiments are performed on two databases described in Section 1. The bina-
rization of the images is required to calculate the features used in this paper. Thus,
in Section 2 we propose a new binarization method to find an optimum threshold
parameter for each image, which is based on the written trace of digit. Section 3
describes the construction of the variables proposed for the classification. Initially,
the feature vector is composed with the variables calculated in Section 3. How-
ever, the final feature vector used to classify is selected by the application of the
sequential forward selection technique. In Section 4 we present the probabilistic
approach which is performed by the application of the Bayes’s rule, disjointing the
variables into categorical and quantitative. Section 5 is devoted to describe the
application of the K-nearest method algorithm to classify the digit images. Finally,
the last Section 6 provides the conclusion of the two classification methods. Both
techniques provide similar results to handwritten digit classification, despite the
fact that in the probabilistic approach we consider the distribution of the variables,
whereas in the KNN algorithm only the distances are used in the classification.

1. Databases

The classification in this chapter is performed using two different databases con-
sisting of scanned digits, from 0 to 9. Datasets are partitioned in training and
testing sets in order to validate the technique. In general, as explained in Chapter
2, training set is used to classify the testing set, being both independent.

MNIST database. The MNIST database was constructed from National Institute
of Standards and Technology (NIST ) database of scanned handwritten digit.

NIST originally had the training set composed by a collection of digits written
by paid US census workers, while the testing set was collected from digits written
by uncooperative high-school students. This difference of origin of the data explains
why the classification errors obtained in each group were completely different with
worse performance on the test data. Therefore, the NIST database required a
reorganization in order to combine adequately training and test sets, forming the
MNIST (Modified NIST) set [LeCun et al. (1998)], which is the database that we
use in this work.

The MNIST database is composed by 60.000 handwritten digits in the training
set and 10.000 in the test set. Digits were size-normalized and centered in an
image of size 28 × 28 by computing the center of mass of pixels, and translating
the image to locate this center point at the center of the 28 × 28 field [LeCun
et al. (1998)]. The MNIST set contains gray level images as a result of the anti-
aliasing technique used by the normalization algorithm conducted by the authors
(http://yann.lecun.com/exdb/mnist/). The distribution of digits in the training
and testing sets are in Table 1.

Table 1. Distributions of MNIST sets

Digit 0 1 2 3 4 5 6 7 8 9 Total

Train 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949 60000

Test 980 1135 1032 1010 982 892 958 1028 974 1009 10000
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Some examples of MNIST are in Figure 1. As a consequence of the origin of

(a) MNIST training (b) MNIST test

Figure 1. Typical Images from MNIST sets

the MNIST database, digits in the training and testing sets seem to have the same
degree of difficulty to be recognized.

USPS database. The USPS database comes from a set of digits automatically
scanned from envelopes by the United State Postal Service. The original scanned
digits were binary and with different sizes and orientations. The segmentation
procedure performed by Postal Service caused that some digits were mis-segmented.
Thus, the database was generated with extreme difficulty to be recognized and
classify, with a human error-rate around the 2, 5% [Simard et al. (1993)]. Images
used in this work were deslanted 1 and size-normalized by LeCun et al. (1990),
resulting in 16 x 16 grayscale images. The training set is composed by 7291 images
and the testing set contains 2007 images. The distributions of digits in the training
and testing sets is showed in Table 2. Examples of this database are in Figure 2.

Table 2. Distributions of USPS sets

Digit 0 1 2 3 4 5 6 7 8 9 Total

Train 1194 1005 731 658 652 556 664 645 542 644 7291

Test 359 264 198 166 200 160 170 147 166 177 2007

(a) USPS training (b) USPS test

Figure 2. Typical Images from USPS sets

1Deslant is a term commonly used in handwritten recognition field to indicate the action of
removing the slant of the text by some specific technique.
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Although the completely set of numbers is not shown, it can be seen in the
examples of USPS presented in Figure 2 some clear differences between test and
training sets. In the testing set digits seem to be more unreadable than in the
training set. Besides, the testing has some mis-segmented digits, such as the digit
8 shown in Figure 2b. This obvious discrepancy between sets represents a difficulty
to classify both sets with the same performance in terms of classification, because
the training, set used to classify images of the testing set, has less variability in the
shape of digit.

2. Binarization

The variables proposed in this paper to make handwritten digit classification
require images in binary level. The binarization process assumes that images con-
tain two classes of pixel: the foreground (or white pixels, with maximum intensity,
i.e., equal to 1) and the background (or black pixels with minimum intensity, i.e.,
equal to 0). The goal of the method is to classify all pixels with values above of the
given threshold as white, and all other pixels as black. That is, given a threshold
value t and an image X with pixels denoted as x(i, j), the binarized image Xb with
elements xb(i, j) is obtained as follows.

If x(i, j) > t, xb(i, j) = 1 (object)
else xb(i, j) = 0 (background)

However, this version of the algorithm assumes that we are interested in light objects
on a dark background. Then, in order to obtain dark objects on a light background
we would use,

If x(i, j) < t, xb(i, j) = 1 (object)
else xb(i, j) = 0 (background)

Then, the key problem in the binarization is how to select the correct threshold
t for a given image. We observe that the shape of any object in the image is
sensitive to variations in the threshold value, and even more sensitive in the case
of handwritten digit. Therefore, we consider that a binary handwritten number is
better recognized computationally if its trace is complete and continuous, this is
the criterion that we use to the threshold, being its choice of crucial importance.

Although several methods exist for choosing a threshold, in an attempt to obtain
a threshold more adequate for digit binarization, we propose a novel method to find
an optimum threshold value. The procedure is based on statistical concepts that
consider the handwriting trace of the digit, finding an optimum threshold value
associated with each image. In the process we use the median absolute deviation2

(mad) as a robust variability measure. The algorithm to find the optimum threshold
consists of assigning an initial threshold value denoted as t and then binarize the
image X, obtaining what we call the local trace of the line in a digit. That is, for
each white pixel xijt (pixel binarized with value 1, located in row i, column j and
with a given threshold t), we find the horizontal and vertical number of contiguous
white pixels, denoted as hijt and vijt respectively. Then, we choose the minimum
of both values, indicated as Yijt. That is, Yijt is the trace of the line at point (i, j)
with threshold t. Thus, we define the median absolute deviation of the values Yijt
as the global variability of the trace of the line , denoted as gtr(X)t. The procedure

2In general, the mad of a variable X is defined as mad(X) = mediani(|Xi −medianj(Xj)|),
for i = 1, . . . , n and j = 1, . . . , n.



5

is repeated for different threshold values and the optimum threshold (top) for an
image X is the value of t that has the minimum global variability of the trace of the
line, that is, the value that makes the trace more homogeneous. Formally,

(1) Yijt = min(hijt, vijt)

(2) gtr(X)t = mad(Yijt)

(3) top = min
t

(gtr(X)t)

Figure 3 shows the same digit with two different threshold values. In both cases the
digit is clear to be recognized as the number three by human eye. However, both
images are not clear enough for a computer to be classified in the same class. The
digit with a t = 0.001 is more difficult to recognize than the one that has top = 0.30.

(a) t = 0.001 (b) top = 0.30

Figure 3. The same digit with different threshold values

3. Features extraction

The group of features used in the classification scheme considers the shape and
some structural characteristics of the digits. Some of them are calculated through
the Hough transform and others are proposed, developed and programmed specif-
ically for this work, using the software MATLAB version 7.9 [see Gonzalez et al.
(2004)]. All the variables described in this section are obtained for every digit bi-
narized with its corresponding optimum threshold value described in the previous
section. Since some of the features are based on the Hough Transformation, we
explain it in detail in the next subsection.

3.1. Hough Transform. The Hough Transformation is a technique initially im-
plemented to the identification of lines in a binarized image. Later, it was extended
to detect arbitrary shapes, generally circles or ellipses [Ballard (1981)]. The HT, as
it is universally used today was developed by Duda and Hart (1972). However, the
name comes from its inventor Hough (1962). In this work we use the HT to detect
lines and circles in digit images.
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3.1.1. Straight lines detection. The main tenet of the HT is to detect the occurrence
of figure points (pixels for us) in an image, lying on a straight line. The equation
for a straight line is represented in the Cartesian coordinates as

(4) yi = a xi + b,

and is graphically plotted for a pair of points (x1, y1) and (x2, y2) as in Figure 4a.
The HT aims to find points with coordinates (x, y) that satisfy the equation 4.

There exist infinite lines which pass through a particular point (xi, yi) in the
Cartesian plane, but only one line satisfies the equation 4 for specific values of
parameters a and b. Moreover, points lying on the same straight line in Cartesian
plane can be represented in the space of parameters a and b as it is shown in Figure
4b. That means, two points lying on the same straight line with parameters a and

(a) Cartesian plane (b) Parameter space

Figure 4. Representation of a line

b in the Cartesian plane are represented in the parameter space as two lines with
an interception point (a, b). Then, an arbitrary straight line can be represented by
a single point in the parameter space.

A disadvantage of using the equation 4 is that the slope can be infinite if the
straight line is vertical. This problem is solved by using the so-called normal rep-
resentation of a straight line (also known as Hesse’s normal).

The general form of the linear equation 4 is

(5) Ax+By + C = 0,

and the normal representation is given by

(6) x cos θ + y sin θ − ρ = 0.

As both form represent the same line, their respected coefficients must be propor-
tional. Therefore,

cos θ = k A

sin θ = k B

−ρ = k C,

(7)

where k is a coefficient of proportionality. Squaring and summing both sides of the
first and the second equation in 7, we obtain

(8) cos2 θ + sin2 θ = k2(A2 +B2).
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Hence,

(9) k =
1

±
√
A2 +B2

.

Substituting in equation 7,

cos θ =
A

±
√
A2 +B2

,

sin θ =
B

±
√
A2 +B2

,

−ρ =
−C

±
√
A2 +B2

,

(10)

which are the coefficients of equation 6. In our case, A = a, B = −1 and C = b.
An example of a line (called `) obtained by the equation 4, with parameters a0

and b0 is represented in red color in Figure 5a. The parameter ρ is the vector that

(a) Cartesian plane (b) Parameter plane

Figure 5. Normal representation of a line.

represents the distance between the line ` and the origin, while θ is the angle that
forms the vector ρ with the X-axis.

As a consequence of this representation, each point (x,y) in the normal form
(Figure 5a) is represented as a curve in the parameter plane (Figure 5b). If we add
the restriction that θ belongs to the interval [0, π], the normal parameters for a line
are unique. With this restriction, every line in the cartesian plane corresponds to
a unique point in the parameter plane. The collinear points located in a straight
line in normal representation have a common point of intersection in the parameter
plane. The point (θ0, ρ0) in this plane defines the line passing through the collinear
points in the Cartesian plane. Thus, the problem of detecting collinear points can
be converted into a problem of finding a common point of intersection.

The Hough transform algorithm uses an array (or matrix) called accumulator, to
detect the existence of straight lines in images. The dimension of the accumulator
is given by the number of unknown parameters in the equation 6, i.e. two. The
parameters are quantized to be represented in a two-dimensional array with size
d1×d2, where d1 is the number of values of θ uniformly spaced in the interval(0, π),
and d2 is the number of values in the ρ axis also uniformly spaced in an interval
specified as (−R,R). Then, for each pixel of the image, the accumulator eventually
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records the total number of lines (with restricted parameters), passing through the
pixel. In Figure 6a is shown an example of figure points lying on the same line in
the Cartesian plane, while in ?? is the representation in parametric plane. Besides,
the representation of the accumulator array is shown in Figure ??. After all pixels

(a) (b) (c)

Figure 6. Hough Transform

are treated, the array is inspected to find cells with high counts, called peaks (p).
If the counts of a given cell is 10, then, there are precisely 10 points lying along
the line whose normal parameters are (θp, ρp). In Figure 6c there is an example
of the accumulator array (or Hough matrix) where there is a peak p = 10. Thus,
there is a line in the image composed by 10 points (or pixels) represented as in
Figure 6a. In Figure 6b, the 10 lines are represented in the space of parameter a
and b. Finally, in Figure 6c is shown the resulting accumulator array of the Hough
transform. The matrix shows the lines that can be formed in a picture, where each
cell represents the number of pixels composing them. The longest line is the one
which has 10 points (pixels). However, there is one line with 6 points and four
other lines composed by 5 points. The lines to be selected depend on the goal of
the study.

In the HT calculation, the parameters ρ and θ can be restricted to find lines
with a particular slope or position in an image. Also the minimum number of pixels
required to conform a line (the minimum value of a peak p) can be determined.
After making some analysis in our work, we consider interesting to find vertical
(90o), horizontal (0o) and diagonal (45o) lines to differentiate digits. Since images
have small size we select lines with at least two pixels. Therefore, the Hough
transform detected all possible lines with those characteristics in four stages.

(1) In the first stage the binary image is split horizontally into two rectangular
equal parts and the largest horizontal line is registered from each part of
the image.

(2) In the second stage, the binary image is divided vertically into two rectan-
gular equal parts and the largest vertical line is detected from each part of
the image.

(3) In the third stage, the image is divided by its principal diagonal and the
largest upper and lower parallel to this diagonal are found.

(4) In the four stage, the image is divided by its secondary diagonal and the
largest upper and lower parallel to this diagonal are found.
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The features considered in the classification were obtained from the information
of the selected lines. Every line has two points, the start and the end-point. The
coordinates (xi, yi) which specify the start-point and end-point of a straight line are
what we call straight (S) to specify the coordinate of lines of 0o and 90o. Besides,
we called diagonal (D) to refer the coordinates of a diagonal lines (with 45o). We
also include the length (Le) of each line as an additional variable. Therefore, we
have a total of 5 variables for every line (4 corresponding to the coordinates and 1
corresponding to the length). Since we use four straight lines and four diagonals to
defined the shape of an image, we record 40 resulting values per image. Graphically,
examples of straight and diagonal lines are depicted in Figure 7.

(a) Straight lines (b) Diagonal line

Figure 7. Examples of lines

During the calculation of the Hough transform, we observe that some digits
do not have all the lines we want to extract, that is 2 horizontal, 2 vertical, and
4 diagonal lines to define the shape of the digit. In these cases, we replace the
missing information by assigning the coordinates and length of a single point. The
coordinates of those points are determined by the location of them in the image.
Each replacement point is located in accordance with the line that is missed.

3.1.2. Circles detection. We also used the HT to detect circles in images. In an xy
Cartesian plane (see Figure 8), the circle with center coordinates (a, b) and radius
r is the set of all points (x, y) such that

(11) (x− a)2 + (y − b)2 = r2

For a circle with radius r and center in the origin (0, 0), equation 11 is rewritten
as,

x2 + y2 = r2.

Then, the coordinates (x, y) in the Cartesian plane center in this origin are equal
to

x = r cosφ

y = r sinφ,

where φ is the angle that the radius forms with the x-axis, defined in a range (0, 2π).
And, by axis translation, those coordinates center in (a, b) are equal to

x = r cosφ− a
y = r sinφ− b.
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Figure 8. Cartesian plane

Resulting that

a = r cosφ− x
b = r sinφ− y.

The Hough transform finds all circles with an specific radius r, with an angle θ
and centered in the point (a, b) (see Figure 9a). The accumulator array in this case
has 3 dimensions (Figure 9b) given by the three parameters of equation 11. Then,
each cell of the accumulator array gives the number of pixels lying in a circle with
parameters a, b and r. The cell containing a peak represents the circle with highest
number of pixels in the image. However, the existence of a peak do not imply the
presence of a circle in the image, because the number of pixels may be insufficient
to form a circle. For that reason, it is vital to specify for every radius, the number
of pixels (value of the peak) requires to get a circle. This is done in accordance
with the circumference of a circle given by

(12) c = 2 π r.

In our work, a circle is selected if at least the 80% of the points composing the
circumference are lying on pixels. For our databases, we observe that in any case
the 100% of the circle points are lying on the pixels of the digit. According to the

(a) (b)

Figure 9. Hough transform



11

size and shape of the handwritten numbers, we fix the frequent radiuses of circles
that can be formed in the digits. We also analyze the alternative locations of those
circles in order to fix the range of values of parameters a and b and select circles
with radiuses equal to 4, 5, 6, 7 and 8. Those values are chosen to capture the
possible circles contained in digits zero, six, eight and nine. In the case that a circle
with r = 4 or r = 5 is found in the upper part of the digit, another circle with
similar radius is searched in the lower part. This searching is done to find the two
circles contained in digit eight. Finally, the values of the variables selected for the
classification are given by the radius and the coordinates of the start and end-point
of the selected circle. That represents a total of 5 variables per image corresponding
to the circle detection, 4 values are the coordinates of start and end-points and 1
value is the radius. Examples of circles found in the digits are shown in Figure 10.
In those cases where the digits do not have circles, these variables assume value

(a) Radius=7 (b) Radius=4 (c) Radius=4

Figure 10. Examples of circles

zero.

3.2. Euler number. The Euler number (E) is a measure of the topology of an
image, specially used in binary representation. The Euler number of binary images
can be calculated based on local measures, i.e., from pixel neighborhood relation.
Suppose that we consider as neighbors only the four pixels that share an edge (not
a corner) with a particular pixel (x, y). The neighbors are (x + 1, y), (x − 1, y),
(x, y + 1), and (x, y − 1). In this situation we have 4-connected neighbors and
the connection is defined as 4-connectivity (see Figure 11a). An alternative is to
consider a pixel as connected not only by pixels on the same row or column, but
also by the diagonal pixels. The four 4-connected pixels plus the diagonal pixels are
called 8-connected neighbors, and the connection is defined as 8-connectivity (see
Figure 11b). The alternative calculation of Euler number based on the connectivity
is obtained differently in each case (Lin et al. (2006) and Lin et al. (2007)). Denoting
as E(4) and E(8) the euler number calculated by 4 or 8-connectivity respectively,
then

E(4) =
(S1 − S3 + 2×X)

4

E(8) =
(S1 − S3 − 2×X)

4
,

where S1 is the number of the following structures in the binary image
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(a) 4-

connectivity

(b) 8-

connectivity

Figure 11. Euler Number

the S3 is number of the following structures that are in the binary image

and the X is the number of the following structures that are in the binary image

In our work we use the pixels neighborhood to find the Euler Number in 2D images,
which is the procedure used in some computational programs. Specifically, we use
the 8-connectivity.

3.3. Holes. The variable hole(H) is specially programmed for this work. It finds
holes in the digit and its location up and/or down. If the digit does not have a
hole, the variable assumes the value zero. We also consider the case of bigger holes
which characterizes the digit zero. In 12a the number zero has a bigger hole and
in 12b the digit has two holes, up and down.

(a) Bigger hole (b) Holes
up and
down

Figure 12. Hole variable

3.4. Right and left entries. The feature right entry (R) is programmed to find
if a digit has a right entry and if it is up or down. For example, the number five
has a right up entry. The variable left entry (L) finds if a digit contains a left
entry located up, down or both, like a digit three. If there is no entry, the variable
assumes value zero. Examples of these variables are shown in 13. In 13a the digit
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has an entry left down and also an entry right up. The digit in 13b has two entry
by left (up and down) and zero entry in the right. The arrays in the figure indicate
the orientation and location of the entries.

(a) L=down,
R=up
entry

(b) L=up
and
down

Figure 13. Entry variables

3.5. Cross in the center. The variable cross in the center (C) is defined to detect
if a digit has a cross of the digit trace in its center. The shape of a digit with this
characteristic is shown in Figure 14. The number that contains exactly this shape
in the center is digit eight. However, we also consider a digit that has a middle
cross to upwards or downwards like a nine or six respectively. If the digit does not
have cross in the center such as the digit one, the variable assumes value zero.

Figure 14. Cross in the center variable

Examples of this feature are shown in Figure 15. In (a) the number has a
complete cross, in (b) the digit has a middle cross to downwards, and in (c) the
nine has a middle cross upwards.

3.6. Extremes. The variable extreme (E) tries to define the contour of a digit by
identifying four extreme black pixels of it: the northernmost (En) , the southern-
most (Es), the easternmost (Ee) and the westernmost (Ew) pixel. If there are more
than one pixel occupying one of these extreme location, the pixel situated nearest
the central part of the image is chosen. The values of the variable extreme are the
coordinates of the extreme pixels. As the extreme pixels are four, this variable is
characterized by eight values. Examples of this variable are shown in Figure 16
where the extreme pixels are depicted in red color.
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(a) Cross
in the

center

(b) Mid-
dle

cross

down

(c) Middle cross up

Figure 15. Examples of cross in the center variable

(a) (b)

Figure 16. Examples of extremes variable

3.7. Intersections. The variable intersections (I) is obtained considering the ex-
treme pixels En, Es, Ee, and Ew, previously defined. These pixels help to draw two
imaginary lines in the image. One of them goes from En to Es and the other line
goes from Ee to Ew. Therefore, the intersections variable counts the number of
times that each imaginary line is intercepted for the trace of the digit (continues
trace that define the digit).

Due to we have two imaginary lines, the variable intersections has two values,
that is the number of intersections of each line. In the example (a) of Figure 17
the variable has values (0, 0) for both lines, while in example (b) the variable has
values (1, 1). In Figure 17c the values of the variable are (0, 1).

(a) I= (0,0) (b) I= (1,1) (c) I= (0,1)

Figure 17. Examples of intersection variable
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3.8. Distance. The distance variable is obtained by black pixels located as near
as possible to the corners of the image. The corner pixels are the black pixels of the
digit located at the northwest corner (coNW ), southwest corner (coSW ), northeast
corner (coNE) and southeast corner(coSE). Two distances are obtained from the co-
ordinates of those pixels, the distance between the northeast and southwest corner
pixels, denoted as dEW , and the distance between the northwest and southeast cor-
ner pixels denoted as dWE . The distance used is the Euclidean. As results, two val-
ues per image are obtained, i.e. dEW = d(coNE , coSW ) and dWE = d(coNW , coSE).

4. Probabilistic classification approach

Once the features that we use in the classification scheme are introduced, we
give some details of the two statistical approaches developed in this paper.

In the first approach the classification is performed by the application of the
Bayes’ Theorem. Being X the feature vector extracted of an image, the decision
rule is stated by deciding that an image belongs to the class ck if p(ck/X) >
p(cj/X) for all k 6= j. The posterior probability p(ck/X) is calculated using
Bayes’ Theorem, as follows

(13) p(ck/X) =
p(X/ck)p(ck)

p(X)
.

Given that the ten classes of digits have almost the same proportion inside the
databases, in this paper we consider the same prior probability p(ck). Then, the
posterior probability can be expressed as

(14) p(ck/X) ∝ p(X/ck) ,

where p(X/ck) is the class-conditioned probability of a feature vector X. This
probability is used to find p(ck/X), i.e., the membership probability to a class
ck of an image in the testing set with feature vector Xtest. In order to develop
an appropriate probabilistic background to find this probabilities, the variables
involved in the classification are divided in categorical and quantitative, since we
consider that each group requires different technique to be statistically modelled.
In the first group we include the variables cross in the center (C), euler (E), hole
(H), right entry (R) and left entry (L), forming the feature vector called Xcat. In
the second group, we consider the variables straight line coordinates (S), diagonal
line coordinates (D), straight and diagonal line length (Le), horizontal and vertical
intersections (I) and extreme (Ex), composing the feature vector denoted as Xquant.
The training set is used to find the probability of categorical and quantitative
variables of each class expressed in equation 15. After analyzing the data in training
set we can conclude that each group of variables can be treated as independent.
In symbols, the probability that an image from training set with feature vector X
belongs to a class ck, is given by

(15) P (X/ck) ∝ P (Xcat/ck)× P (Xquant/ck).

To obtain the class-conditioned probabilities of the categorical feature vector we
calculate the join probabilities of occurrence of the five variables (C,E,H,R,L) for
a given class ck, using a frequentist procedure through the training set. Sometimes,
this way of calculation causes a problem due to the lack of observations in the
combinations. Besides, the analysis of data suggests that there exists dependence
only among some variables. To solve those troubles, we state by cross-validation
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that the best joint dependence structure for categorical data can be defined by the
specific scheme showed in the following equation.

(16) P (Xcat/ck) ≈ P (L/ck)× P (H/L, ck)× P (C/L, ck)× P (R/C, ck)× P (E/R, ck)

The probability density function of quantitative data (S, D, Le, I, Ex) is modelled by
parametric estimation, assuming the multivariate normal distribution to calculate the
density inside each class, commonly used for integer-valued features [see Jain et al. (2000)].
The density of an image with a feature quantitative vector Xquant given a class ck, is
obtained as follows

(17) f(Xquant, µ,Σ/ck) =
1√

|Σck |(2π)d
exp

− 1
2

(x−µck
)Σ−1

ck
(x−µck

)′
,

where the mean µ and covariance matrix Σ are estimated from training set in the refer-
ence class (equation 17). The probability density function of each class is valued at the
quantitative feature vector for every image in the test set. Moreover, the posterior prob-
ability for categorical data in the test set is obtained by equation 16. Lastly, assuming
independence between quantitative and categorical data, the final posterior probability
that an image in the test set belongs to a class ck is given by equation 15.

The classification process is performed in two stages. In the first stage, we find by
cross-validation a cutting point (denoted as p) to classify a subset of the test set. The
cutting point value obtained is 0.999. That is, an image with a class probability greater
or equal to the cutting point is classified into this class. Otherwise, if none class achieves
the 0.999 of probability or more, the image is submitted to a second stage.

In the second stage we have a subgroup of images (called test2) that represents the
16,29% of the test set. The procedure in this stage is similar to the previous one. However,
in this case we consider as possible outcomes of each digit in test2, only a pair of classes.
These classes, denoted as ci and cj , are those that have the greatest probabilities of occur-
rence in the first stage. Thus, we perform the application of Bayesian rule by considering
a particular feature vector with the variables considered more discriminant between the
classes ci and cj in each case. After the process is finished, a digit is classified to a class
with greater probability of both. Finally, the test-error rate is calculated achieving a 4, 3%
for MNIST database and a test-error rate of 9, 7% in USPS dataset. Table 3 shows the
classification rates for every number.

Table 3. Probabilistic approach results

database 0 1 2 3 4 5 6 7 8 9

MNIST 3.57% 2.82% 5.43% 5.05% 6.62% 4.82% 3.86% 7.78% 5.54% 7.53%

USPS 7.0% 8.0% 8.1% 14.5% 18.1% 11.1% 10.3% 9.5% 9.4% 4.0%

According with the results, the procedure has better performance in MNIST database
than in USPS. This behavior could be a consequence of the difficulty of digits in USPS to
be recognized. The results show that the digits with worse error rate are the seven and
nine in MNIST dataset and the digit three and four in the USPS dataset.

5. K nearest neighbor classification approach

In this approach, the classification is performed by the nearest neighbor method [Cover
(1968)], using the variables specially proposed in Section 3 for this kind of problems 3.

By means of k-nearest-neighbor algorithm, the training set feature vectors are used
to classify the test set. An image is classified by a majority vote of its neighbors, i.e.,

3LeCun et al. (1998) and Smith et al. (1994) used all pixels of the image as feature vector,
requiring more computer memory and running time
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it is assigned to the class most common among its k nearest neighbors (majority rule).
The distance city-block, calculated as the sum of absolute differences, is chosen because
it provides better performance with integer variables. With respect to the value of the
parameter k, there is no consensus in the bibliography in defining the adequate number
of k in nearest neighbor classification. Previous works [Hall et al. (2008)] on nearest-
neighbor classifiers held the value of k by cross-validation which is the method that we
use. Specifically, we choose 5 neighbors. The algorithm is applied to the features defined
in Section 3 following the sequential forward selection [also known as wrapping procedures,
see Karegowda et al. (2010) and Kohavi and John (1997)], in order to eliminate possible
redundant information. We choose the forward selection in order to include the minimum
number of variables in the classification4. This technique, widely used in regression prob-
lems [see Hastie et al. (2009)], permits to find the subset of variables that minimize the
error rate (percentage of misclassified images in the test set). The selection of features is
done sequentially [see Kohavi and John (1997), John et al. (1994) and Karegowda et al.
(2010)], by adding features to the model one at a time. The procedure begins with an
empty feature set and sequentially adds features. The first feature included in the model
is the one which individually has the lowest error-rate. The next feature that enters the
model is the one that, jointly with the first variable, has the greatest reduction in the
error-rate. The process of adding features continues until including a new one does not
decrease the error-rate. The resulting subset of features is the ones used to discriminate
both classes.

The sequential forward selection technique requires the application of cross-validation
method in order to avoid the overfitting of the error-rate. Cross-validation is used to assess
how the results of a statistical analysis (in our case, KNN and LDC) will generalize to
an independent data set. One round of cross-validation involves the partition of the data
into subsets, performing the analysis on one subset (i.e., training set), and validating this
analysis on the other subset (i.e., testing set). To reduce variability, multiple rounds of
cross-validation (called K-fold cross-validation) are performed using different partitions,
and the validation results are averaged over the rounds. Otherwise stated, we divide the
data into K roughly equals parts and for each k = 1, . . . ,K we apply the classification
method using a subset of p features Z = (Z1, Z2, . . . , Zp). Then, we compute the error
rate for each k-fold as

Ek(Z) =
nEk
nk

,

where nEk is the number of misclassified observations (images) in the kth part (fold) and
nk is the size of the kth fold. Hence, the overall cross-validation rate is

(18) CVE(Z) =
1

K

K∑
k=1

Ek(Z).

The procedure repeats the cross-validation for different subset of features and selects the
combination of them that minimize the CVE(Z). For this work we choose the commonly
used 10-fold cross-validation.

As a results of the sequential selection, 21 variables are included in the classification
of USPS database and 27 (5 additional different) variables in the MNIST database. The
excluded features are refereed to redundance information about coordinates of straight and
diagonal lines, coordinates of the extreme variable and the information about circles in the
image. The five additional variables included in the classification of MNIST dataset are
some coordinates of the extreme variable. One possible reason to this discrepancy in the
number of variables selected could be the fact that the USPS set has more heterogeneity
in digit shape. Thus, the extremes used in the variable do not work as well as in MNIST

4We also perform the feature selection by backward elimination and some variables were re-
tained unnecessarily making the model less efficient.
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dataset. The total error rate obtained for the MNIST database is 3, 65% and 4, 39% for
the USPS dataset. The outcomes for each database are shown in Table 4.

Table 4. K- nearest neighbors results

database 0 1 2 3 4 5 6 7 8 9

MNIST 1.33% 0.79% 3.20% 5.64% 4.07% 4.15% 1.77% 3.40% 7.08% 5.25%

USPS 0.75% 1.52% 5.9% 6.3% 6.54% 3.91% 4.63% 1.36% 7.66% 4.2%

The results show that the digits with worse error rate in both databases are the three
and the eight. It is interesting to observe that in k-nearest neighbor the digits seven and
nine have much better error rates than digit eight, while in the probabilistic approach
occurs the opposite. This behavior may show a future line of investigation combining
both approaches in order to improve results.

6. Conclusions and contributions

In general, previous work in handwritten digit recognition contemplate neural network
classifiers to perform the classification. In this paper we propose a method based in a
multivariate statistical approach. Our study is less sophisticated and obtain competitive
results in this area. Other authors work on this database usesing a baseline nearest
neighbor algorithm [see LeCun et al. (1998) and Smith et al. (1994)] to classify the digits
directly by the pixels value (784 values per image). We perform the k nearest neighbors
technique on the feature vectors of the images (27 values per image) which provides good
results on the same dataset and requires less computer memory and recognition time.
The proposed variables were specially programmed for this work and they can be easily
generalized to be use in any digit database. As the variables are calculated in binary image,
we propose a novel method to binarize an image through an optimization procedure that
finds the best trace. In addition, we propose an alternative probabilistic approach with
similar results than the k nearest rule. Differ from other methods [see Bottou et al. (1994)],
the proposed techniques permit to quantify the individual contribution of the variables.
They can also be applied easily to different datasets and no changes in the values of the
variables are observed by resizing the image.

7. Future works

There are some natural extensions to this work that would help expand and strengthen
the results.

Firstly, we aim to combine the binarization method proposed in this work with other
methods. We observe that our procedure is based on the trace of the digit, while, for
instance, the Otsu’ method [see Otsu (1979)] is based on minimizing the variances between
the blacks and white pixels. We are interested in setting out the binarization problem in
terms of a family of thresholds.

Secondly, we aim to analyzed the inclusion of different coefficients of weight for each
variable, in accordance with their contribution in the classification process.

Finally, we are concerned about studying the combination of the classification proce-
dures proposed in section 4 and 5. We think that the performance of K-nearest neighbor
technique could be improved, may be by adding some information about the nearest neigh-
bors [see Domeniconi et al. (2005), Han et al. (2001), Hastie and Tibshirani (1996), Dudani
(1976) and Bailey and Jain (1978)].

One extension that would be interesting is to estimate the posterior probability by the
application of the K-nearest neighbor classifier [Atiya (2005) and Fukunaga and Hostetler
(1975)]. In this regard, we already initiated some studies but without concluding results.
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