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Paper No.: NIMG-10-2549R1
Paper Title: Characterization of groups using composite kernels
and multi-source fMRI analysis data: application to schizophrenia

Introduction

We would like to thank the reviewers for their useful comments and sug-
gestions. We have revised the manuscript and responded to all the points
made. One of the most evident changes has been the removal of Fig. 1, 2
and 3, as they are not fundamental to understand the validation procedure
of our method. Furthermore, test accuracy rates for single-source analyses
are already presented in Table 5, so we considered it appropriate to dispose
of them.

Please, find below our answers to your concerns and how we have addressed
each of your inquiries. The changes that have been made to the text of the
original version of the manuscript in order to attend these inquiries are dis-
played in blue.

Reply to Comments of Reviewer 1

This new version of the manuscript is much improved in terms of
data analysis, as well as clarity of exposition.
My main worry still concerns the authors’ declared improvements
in the classification accuracy of the composite kernels (CK) ap-
proach with respect to standard SVM. The results shown in Tables
5 and 6, indeed, seem to confirm that CK provides mean predic-
tions clearly comparable with the SVM ones, or even worse in the
case of multi-source data. The actual improvement is due to the
RFE procedure, which provides best results for both SVM and
CK. I would not be surprised if the Gaussian RFE-SVM algorithm
would reach the same accuracy of RCK.
At any rate, the RCK approach still presents two main advantages,
that should be stressed more by the authors: - it allows the use of
a Gaussian kernel within a RFE procedure in a reasonable compu-
tational time, which is a property not allowed by SVM; - it allows

1

*6. Response to Reviews



the detection of the most relevant ROIs for the analyzed task by al-
lowing the use of all brain voxels, thus avoiding the need to extract
only one value for each region (e.g., with a SVD procedure).

Response: We acknowledge that the recursive composite kernels (RCK) al-
gorithm does not provide a prominent improvement over linear RFE-SVM
and that it is possible for Gaussian RFE-SVM to reach the same results as
RCK. For these reasons, we have removed the statements that suggested that
RCK classification accuracy results were significantly better than the ones
achieved by RFE-SVM. In addition, we have rephrased a statement in sub-
section 3.3 which might be misinterpreted by the reader of the manuscript
as an attempt to proclaim that the composite kernels algorithm attains a
superior classification accuracy compared to standard SVMs. Finally, we
have put more emphasis on the advantages highlighted by the reviewer in
the Introduction (page 8) and Discussion (page 24) sections.

Other points: - I had some difficulty in understanding the “trans-
formation (1)” (pag.14). Where does this transformation come
from? The denominator in (1) looks like a variance, since it would
be the variance of a vector (a1,...,an) if the kernel K was defined
as K(i,j) = ai * aj. Is this an analogous form for a general Mercer
kernel? Can the authors add a suitable reference about that?

Response: Indeed, the denominator of Eq. (1) is the variance of the data
points in the feature space generated by their mapping through ϕl(·), with
associated Mercer’s kernel function kl(·, ·). The idea behind this transforma-
tion is to normalize the variance of the input vectors to be equal to 1 in each
Hilbert (feature) space where they have been mapped to. We have included
a brief explanation of this procedure in the manuscript. In addition to that,
we have added a reference that explains the proposed normalization scheme
in further detail (please refer to subsection 4.4.2 in this reference).

• Kloft, M., Brefeld, U., Sonnenburg, S., Zien, A., March 2011. lp-norm
multiple kernel learning. J. Mach. Learn. Res. 12, 953-997.

In any case, I would move equation (1) after the definition of kernel
kl, which is introduced in Sec. 2.7.1.
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Response: We have changed the location of the equation. Thank you for
your suggestion.

- The authors still do not clarify, either in the paper or in the re-
sponse to the reviewer, which specific regressors were used in the
GLM analysis (in the response to the reviewer they provided a list
of contrasts rather than regressors). At pag. 13 the authors explain
that the temporal lobe component was chosen by keeping the ICA
component whose timecourse had the best fit with the SPM design
regressors. However they do not specify which regressor(s): the
single one related to the target stimulus? A composite regressor
obtained by subtracting the standard from the target regressor?
Or, alternatively, the full set of regressors used in the GLM (stan-
dard, target, novel; motion parameters?)? Moreover how was the
”best fit” assessed? Clarifying these points is relevant in order
to elucidate what information the temporal lobe ICA component
adds up to the others data sources (DMN and GLM).

Response: There were three regressors included in the model; targets, nov-
els, and standards. We focused on the target stimuli for this work, and
thus the three regressors above were fit to each ICA timecourse yielding beta
weights for each. We then performed a one-sample t-test on the beta weights
to evaluate at the group level the degree to which each component was modu-
lated by the target stimuli. The component we selected was the one that had
the highest t-value. We also evaluated the same for targets versus standards
and this did not change the component that was selected. The following
paper provides more information regarding this topic and has been included
in the manuscript as well.

• Kim, D., Mathalon, D., Ford, J. M., Mannell, M., Turner, J., Brown,
G., Belger, A., Gollub, R. L., Lauriello, J., Wible, C. G., O’Leary, D.,
Lim, K., Potkin, S., Calhoun, V. D., 2009. Auditory Oddball Deficits
in Schizophrenia: An Independent Component Analysis of the fMRI
Multisite Function BIRN Study. Schizophr Bull 35, 67-81.
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Reply to Comments of Reviewer 2

This is a much improved version of the manuscript entitled “Char-
acterization of groups using composite kernels and multi-source
fMRI analysis data: application to schizophrenia”. As I have men-
tioned in my previous reviews, I like this paper and the proposed
methods, but it remains deficient in a few ways.
As I have mentioned before, the description of the nested cross-
validation procedure remains confusing and requires an illustra-
tion. The authors should employ a 3-level nested procedure for
their RCK algorithm. Failure to do so will result in biased esti-
mates of generalization error. There are several statements in the
document that lead to the impression that you are choosing your
optimal regions based on the validation error. For example: “The
list of 40 brain regions selected by RCK that yield the high- est
validation accuracy rate for for the ICA default mode component
data are listed in Table 3, alongside the statistics of their discrim-
inative weights.” This impression is further implied by figures 1,
2 and 3 in which validation error and test error is presented. You
should not be calculating validation error for each region. I would
like to also remind the authors that my comments in this regard
are to make the CV procedure more understandable to the reader,
not just myself.

Response: Unfortunately, we did not clarify the explanation of the vali-
dation procedure enough for it to be easily understood by the reader. In
order to avoid further confusion, we have made some major changes in the
manuscript. First of all, we no longer use the term “two-layer” when refer-
ring to the cross-validation procedure since it is imprecise. This will become
clearer after reading the new description of the validation approach, which
is included in both the answer to this inquiry and the manuscript itself. Sec-
ondly, we have eliminated the figures where we reported the average test
and validation accuracy rates. We decided to initially include them in or-
der to give an idea of the dynamics of the algorithm, but these are neither
fundamental to understand the validation procedure nor to know the test
accuracy rates for single-source analyses, which are reported in Table 5. In
fact, as mentioned by the reviewer, the reference to this figures generates fur-
ther confusion about the used validation procedure. Finally, we have added
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pseudocode of the mentioned approach in order to clarify it further.

The validation procedure consists of finding the optimal parameter pair
{σ, Iareas}, where Iareas specifies a subset of the areas indexes. If a brute-force
approach were to be used, then the validation errors obtained for all possible
values of σ and all combinations of areas would need to be calculated.

The brute-force approach is computationally intensive. For this reason, we
propose a recursive algorithm based on the calculation of discriminative
weights (please refer to previous sections). Based on this method, a grid
search can be performed by calculating the validation error and the training
discriminative weights for each value of σ and each remaining subset of areas
at each iteration of the recursive algorithm. The algorithm starts with all
brain regions, calculate the discriminative weights for each value of σ and
eliminates at each iteration the regions with least discriminative weight in
the area sets associated to each σ value. After executing the whole grid
search, the pair {σ, Iareas} that yielded the minimum validation error rate
would be selected.

The aforementioned method can be further simplified by calculating only the
training discriminative weights associated to the optimal value of σ at each
iteration of the recursive algorithm. This procedure is suboptimal compared
to the previous one, but it reduces its computational time. The following
paragraphs provide more details of the previously discussed validation pro-
cedure and the test accuracy rate calculation.

First of all, a pair of observations (one from a patient and one from a control)
is set aside to be used for test purposes and not included in the validation
procedure. The remaining data, which is called TrainV alidSet in algorithm
1, is further divided into training and validation sets, the latter one being
composed by another control/patient pair of observations, as shown in algo-
rithm 2.

The classifier is trained by using all the brain regions and all possible σ
values and the validation error rates are estimated as shown in algorithm 2.
The aforementioned process is repeated for all control/patient pairs. Next,
the value of σ that yields the minimum validation error is selected and this
error is stored. Next, the algorithm is retrained with this value of σ and the
discriminative weights are estimated, eliminating the area with minimum
associated value. This procedure is then repeated until a single brain region
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remains.

Afterwards, the pair {σ, Iareas} that achieves minimum validation error is
selected and the test error rate is estimated using the previously reserved
test set. Then, another control/patient pair is selected as the new test set
and the entire procedure is repeated for each of these test set pairs. The test
accuracy rate is then estimated by averaging the accuracy rates achieved by
each test set.

The statement ”segments whole-brain fMRI data from an auditory
task experiment into functional regions” in the abstract is incor-
rect. Your algorithm doesn’t perform the segmentation; rather it
utilizes a previously defined segmentation. Additionally the AAL
atlas is not an atlas of functional regions, but rather an atlas of
anatomic regions. The careful observer will note that many of the
ROIs in the AAL atlas are functionally heterogeneous. The best
example is the ACC, which is one large ROI on the AAL atlas, but
there are at least 3 (probably more) functionally distinct regions
in the ACC.

Response: We agree with the reviewer. The text has been corrected in the
manuscript.

There remain several confusing and/or grammatically incorrect
sentences in the document. A few are listed below. I suggest
the authors perform a careful review of the text to correct these
problems.

Response: The text has been corrected by a native speaker.

The other two sources are composed by of the set of spatial maps
associated with the ICA temporal lobe and default mode networks.

Response: This phrase has been replaced by the following one: “The other
two sources come from an ICA analysis and include a temporal lobe compo-
nent and a default mode network component.”
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Demirci et al. (2008) applied a projection pursuit to reduce the di-
mensionality of fMRI data of an AOD task and to detect schizophre-
nia patients.

Response: The statement has been replaced by “Demirci et al. (2008) ap-
plied a projection pursuit algorithm to reduce the dimensionality of fMRI
data acquired during an AOD task and to classify schizophrenia patients
from healthy controls.”

The “beta”-maps related to the target vs. standard contrast that
were estimated by using both runs acquired for each subject were
retrieved. - odd sentence

Response: We have rewritten the above mentioned statement as follows:
“The β-maps associated with the target versus standard contrast were used
in our analysis. The final target versus standard contrast images were aver-
aged over two runs.”

Multiple kernel learning methods such as composite kernels and
RCK further enforced each kernel matrix to be divided by its vari-
ance. - enforced is a strange word, do you mean required?

Response: We have followed the reviewer’s suggestion and we now use the
word “required”.

The list of 40 brain regions selected by RCK that yield the highest
validation accuracy rate for for the ICA default mode component
data are listed in Table 3, alongside the statistics of their discrim-
inative weights. - for is repeated twice

Response: We have deleted the duplicate of this word.

Despite the fact that composite kernels cannot indicate which group
is more activated on a given voxel like linear SVMs do, the pro-
posed method is able to measure the degree of differential activity
between groups of interest on a specific brain region. - confusing
sentence

7



Response: We have restated this sentence. “Despite the fact that compos-
ite kernels cannot indicate which of the analyzed groups of interest is more
activated for a specific brain region like linear SVMs can potentially do, the
proposed method is still capable of measuring the degree of differential ac-
tivity between groups for each region.”

(the former analyzes task-related activity, while the latter detects
groups of voxels with temporally coherent activity) might provide
some inside of why the combination of these two sources proves to
be important together with ICA default mode data - inside should
be insight

Response: We have corrected the typo.
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Characterization of groups using composite kernels

and multi-source fMRI analysis data: application to

schizophrenia

Eduardo Castro∗,1, Manel Martínez-Ramón1,3, Godfrey Pearlson4,5, Jing
Sui2, Vince D. Calhoun1,2,5

Abstract

Pattern classi�cation of brain imaging data can enable the automatic

detection of di�erences in cognitive processes of speci�c groups of interest.

Furthermore, it can also give neuroanatomical information related to the re-

gions of the brain that are most relevant to detect these di�erences by means

of feature selection procedures, which are also well-suited to deal with the

high dimensionality of brain imaging data. This work proposes the appli-

cation of recursive feature elimination using a machine learning algorithm

based on composite kernels to the classi�cation of healthy controls and pa-

tients with schizophrenia. This framework, which evaluates nonlinear rela-
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tionships between voxels, analyzes whole-brain fMRI data from an auditory

task experiment that is segmented into anatomical regions and recursively

eliminates the uninformative ones based on their relevance estimates, thus

yielding the set of most discriminative brain areas for group classi�cation.

The collected data was processed using two analysis methods: the general

linear model (GLM) and independent component analysis (ICA). GLM spa-

tial maps as well as ICA temporal lobe and default mode component maps

were then input to the classi�er. A mean classi�cation accuracy of up to 95%

estimated with a leave-two-out cross-validation procedure was achieved by

doing multi-source data classi�cation. In addition, it is shown that the clas-

si�cation accuracy rate obtained by using multi-source data surpasses that

reached by using single-source data, hence showing that this algorithm takes

advantage of the complimentary nature of GLM and ICA.

Key words: fMRI, pattern classi�cation, composite kernels, feature

selection, recursive feature elimination, independent component analysis,

support vector machines, schizophrenia.

1. Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive tech-

nique that has been extensively used to better understand the dynamics of

brain function. In order to understand the cognitive processes associated to

certain activities, fMRI experimental designs usually present subjects both

active and control tasks and collect several scans periodically in time from

thousands of locations of the brain. One way of characterizing fMRI data

is through standard statistical techniques, which �t a general linear model
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(GLM) to each voxel's time series to see how correlated each of them is

with the experimental task. Such methods emphasize task-related activity

in each voxel separately. Another way of analyzing fMRI data is to use data-

driven methods such as independent component analysis (ICA) that search

for functional connectivity in the brain, i.e., they detect di�erent compo-

nents of voxels that have temporally coherent neural activity. GLM and ICA

approaches are complementary to each other. For this reason, it would be

sensible to devise a method that could gain more insight of the underlying

processes of brain activity by combining data from both approaches. Pat-

tern recognition techniques have been applied successfully to fMRI to detect

di�erent subject conditions. In this work, a pattern recognition system that

combines GLM and ICA data to better characterize a subject's condition is

presented.

ICA has been extensively applied to fMRI data to identify di�erences

among healthy controls and schizophrenia patients (Kim et al., 2008; Demirci

et al., 2009; Calhoun et al., 2006). Thus, Calhoun et al. (2008) showed that

the temporal lobe and the default mode components (networks) could reliably

be used together to identify patients with bipolar disorder and schizophre-

nia from each other and from healthy controls. Furthermore, Garrity et al.

(2007) demonstrated that the default mode component showed abnormal

activation and connectivity patterns in schizophrenia patients. Therefore,

there is evidence that suggest that the default mode and temporal lobe com-

ponents are disturbed in schizophrenia. Based on the reported importance of

the temporal lobe in the characterization of schizophrenia we used data from

an auditory oddball discrimination (AOD) task, which provides a consistent
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activation of this part of the brain. Three sources were extracted from fMRI

data using two analysis methods: model-based information via the GLM and

functional connectivity information retrieved by ICA. The �rst source is a

set of β-maps generated by the GLM. The other two sources come from an

ICA analysis and include a temporal lobe component and a default mode

network component.

Several works have applied pattern recognition to fMRI data for schizophre-

nia detection. Ford et al. (2003) projected fMRI statistical spatial maps to

a lower dimensional space using principal component analysis (PCA) and

then applied Fisher's linear discriminant to di�erentiate between controls

and patients with schizophrenia, Alzheimer's disease and mild traumatic

brain injury. On another approach, Shinkareva et al. (2006) used whole

brain fMRI time series and identi�ed voxels which had highly dissimilar time

courses among groups employing the RV-coe�cient. Once those voxels were

detected, their fMRI time series data were used for subject classi�cation.

Finally, Demirci et al. (2008) applied a projection pursuit algorithm to re-

duce the dimensionality of fMRI data acquired during an AOD task and

to classify schizophrenia patients from healthy controls. There have been a

number of papers published on the topic of pattern recognition applied to

fMRI which are not related to schizophrenia characterization. D.D. Cox and

R.L. Savoy (2003) applied linear discriminant analysis and a linear support

vector machine (SVM) to classify among 10-class visual patterns; LaConte

et al. (2003, 2005) presented a linear SVM for left and right motor activation;

Wang et al. (2004) used an SVM to distinguish between brain cognitive states;

Kamitani and Tong (2005) and Haynes and Rees (2005) detected di�erent
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visual stimuli; Martínez-Ramón et al. (2006a) introduced an approach which

combined SVMs and boosting for 4-class interleaved classi�cation; more re-

cently, Bayesian networks have been used to detect between various brain

states (Friston et al., 2008); in addition, a review of pattern recognition

works for fMRI was presented by Decharms (2007). All these papers used

kernel-based learning methods as base classi�ers.

One of the main di�culties of using pattern recognition in fMRI is that

each collected volume contains tens of thousands of voxels, i.e., the dimen-

sionality of each volume is very high when compared with the number of

volumes collected in an experiment, whose order of magnitude is in the order

of tens or hundreds of images. The huge di�erence between the data dimen-

sionality and the number of available observations a�ects the generalization

performance of the estimator (classi�er or regression machine) or even pre-

cludes its use due to the low average information per dimension present in the

data. Thus, it is desirable to reduce the data dimensionality with an algo-

rithm that loses the least amount of information possible with an a�ordable

computational burden.

Two approaches to solve this problem are feature extraction and feature

selection. Feature extraction projects the data in high-dimensional space

to a space of fewer dimensions. PCA is the most representative method of

feature extraction and was used by Mourão-Miranda et al. (2005) for whole-

brain classi�cation of fMRI attention experiments. The second approach is

feature selection, which determines a subset of features that optimizes the

performance of the classi�er. The latter approach is suitable for fMRI under

the assumption that information in the brain is sparse, i.e., informative brain
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activity is concentrated in a few areas, making the rest of them irrelevant for

the classi�cation task. In addition, feature selection can improve the predic-

tion performance of a classi�er as well as provide a better understanding of

the underlying process that generated the data. Feature selection methods

can be divided into three categories: �lters, wrappers and embedded methods

(Guyon and Elissee�, 2003). Filters select a subset of features as a prepro-

cessing step to classi�cation. On the other hand, wrappers and embedded

methods use the classi�er itself to �nd the optimal feature set. The di�erence

between them is that while wrappers make use of the learning machine to

select the feature set that increases its prediction accuracy, embedded meth-

ods incorporate feature selection as part of the training phase of the learning

machine. The work presented in Mourão-Miranda et al. (2006) is an example

of a �lter approach; in this paper temporal compression and space selection

were applied to fMRI data on a visual experiment. Haynes and Rees (2005)

also applied �lter feature selection by selecting the top 100 voxels that had

the strongest activation in two di�erent visual stimuli. The aforementioned

methods apply univariate strategies to perform variable selection, thus not

accounting for the (potentially nonlinear) multivariate relationships between

voxels. De Martino et al. (2008) used a hybrid �lter/wrapper approach by

applying univariate voxel selection strategies prior to using recursive feature

elimination SVM (RFE-SVM) (Guyon et al., 2002) on both simulated and

real data. Despite its robustness, RFE-SVM is a computational intensive

method since it has been designed to eliminate features one by one at each

iteration, requiring the SVM to be retrained M times, where M is the data

dimensionality. While it is possible to remove several features at a time, this
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could come at the expense of classi�cation performance degradation (Guyon

et al., 2002). Moreover, this would add an extra parameter to be tuned,

which would be the fraction of features to be eliminated at each iteration

that degrades the classi�cation accuracy the least. An alternative approach

is the use of embedded feature selection methods such as the one presented

by Ryali et al. (2010), which has a smaller execution time since it does not

require to be repeatedly retrained. The disadvantage of this method relies on

the fact that it achieves just average classi�cation accuracy when applied to

real fMRI data. Multivariate, nonlinear feature selection is computationally

intensive, so usually only linear methods are applied to do feature selection

in fMRI due to its high dimensionality. Thus, models assume that there is an

intrinsic linear relationship between voxels. In fact, all of the previously cited

feature selection methods make use of linear methods. Models that assume

nonlinear relationships between voxels may lead to an una�ordable compu-

tational burden. A convenient tradeo� consists on assuming that there are

nonlinear relationships between voxels that are close to each other and that

are part of the same anatomical brain region, and that voxels in di�erent

brain regions are linearly related. This region-based approach resembles the

spherical multivariate searchlight technique (Kriegeskorte et al., 2006), which

moves a sphere through the brain image and measures how well the multi-

variate signal in the local spherical neighborhood di�erentiates experimental

conditions. However, our approach works with �xed regions and assumes

that long range interactions between these are linear. Another characteris-

tic shared by feature selection methods applied to fMRI is that they focus

on performing voxel-wise feature selection. We propose a nonlinear method
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based on composite kernels that achieves a reasonable classi�cation rate in

real fMRI data, speci�cally in the di�erentiation of groups of healthy con-

trols and schizophrenia patients. In this approach, RFE is implemented by

performing a ranking of anatomically de�ned brain regions instead of do-

ing it for voxels. By doing so we not only reduce the number of iterations

of our approach and thus its execution time compared to other RFE-based

approaches such as RFE-SVM, but we are also capable of reporting the rele-

vance of those brain regions in detecting group di�erences. The measurement

of the relevance of each region indicates the magnitude of di�erential activ-

ity between groups of interest. The proposed methodology also presents

two important advantages. Firstly, it allows the use of a nonlinear kernel

within a RFE procedure in a reasonable computational time, which cannot

be achieved by using conventional SVM implementations. Secondly, the de-

tection of the most relevant brain regions for a given task is developed by

including all of the voxels present in the brain, without the need to apply

data compression in these regions. Moreover, such an approach can lead to

a more robust understanding of cognitive processes compared to voxel-wise

analyses since reporting the relevance of anatomical brain areas is potentially

more meaningful than reporting the relevance of isolated voxels.

Composite kernels were �rst applied to multiple kernel learning methods

that were intended to iteratively select the best among various kernels applied

to the same data through the optimization of a linear combination of them

(Bach and Lanckriet, 2004; Sonnenburg et al., 2006). Composite kernels can

also be generated by applying kernels to di�erent subspaces of the data input

space (segments) that are linearly recombined in a higher dimensional space,
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thus assuming a linear relationship between segments. Such an approach was

followed by Martínez-Ramón et al. (2006b) and Camps-Valls et al. (2008).

As a result, the data from each segment is analyzed separately, permitting

an independent analysis of the relevance of each of the segments in the clas-

si�cation task. Speci�cally, in this work a segment represents an anatomical

brain region while activity levels in voxels are the features. Composite ker-

nels can be used to estimate the relevance of each area by computing the

squared norm of the weight vector projection onto the subspace given by

each kernel. Therefore, RFE can be applied to this nonlinear kernel-based

method to discard uninformative regions. The advantage of this approach,

which is referred to as recursive composite kernels (RCK), is based on the

fact that it does not need to use a set of regions of interest (ROIs) to run

the classi�cation algorithm; instead, it can take whole-brain data segmented

into anatomical brain regions and by applying RFE, it can automatically de-

tect the regions which are the most relevant ones for the classi�cation task.

In the present approach we hypothesized that nonlinear relationships exist

between voxels in an anatomical brain region and that relationships between

brain regions are linear, even between regions from di�erent sources. This

speci�c set of assumptions is used to balance computational complexity and

also incorporate nonlinear relationships.

Once the sources are extracted, volumes from both the GLM and ICA

sources are segmented into anatomical regions. Each of these areas is mapped

into a di�erent space using composite kernels. Then, a single classi�er (an

SVM) is used to detect controls and patients. By analyzing the classi�er

parameters related to each area separately, composite kernels are able to
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assess their relevance in the classi�cation task. Hence, RFE is applied to

composite kernels to remove uninformative areas, discarding the least infor-

mative region at each iteration. An optimal set of regions is obtained by

the proposed approach and it is composed by those regions that yield the

best validated performance across the iterations of the recursive analysis. In

all cases, the performance of the classi�er is estimated using a leave-two-

out cross-validation procedure, using the left out (test) observations only to

assess the classi�er accuracy rate and not including them for training pur-

poses. The same applies to model selection, such as parameter tuning and

the criteria to select the most relevant regions for classi�cation purposes.

2. Materials and Methods

2.1. Participants

Data were collected at the Olin Neuropsychiatric Research Center (Hart-

ford, CT) from healthy controls and patients with schizophrenia. All subjects

gave written, informed, Hartford hospital IRB approved consent. Schizophre-

nia was diagnosed according to DSM-IV-TR criteria (American Psychiatric

Association, 2000) on the basis of both a structured clinical interview (SCID)

(First et al., 1995) administered by a research nurse and the review of the

medical �le. All patients were on stable medication prior to the scan session.

Healthy participants were screened to ensure they were free from DSM-IV

Axis I or Axis II psychopathology using the SCID for non-patients (Spitzer

et al., 1996) and were also interviewed to determine that there was no history

of psychosis in any �rst-degree relatives. All participants had normal hear-

ing, and were able to perform the AOD task (see Section 2.2) successfully

10



during practice prior to the scanning session.

Data from 106 right-handed subjects were used, 54 controls aged 17

to 82 years (mean=37.1, SD=16.0) and 52 patients aged 19 to 59 years

(mean=36.7, SD=12.0). A two-sample t-test on age yielded t = 0.13

(p = 0.90). There were 29 male controls (M:F ratio=1.16) and 32 male

patients (M:F ratio=1.60). A Pearson's chi-square test yielded χ2 = 0.67

(p = 0.41).

2.2. Experimental Design

The AOD task involved subjects that were presented with three frequen-

cies of sounds: target (1200 Hz with probability, p = 0.09), novel (computer

generated complex tones, p = 0.09), and standard (1000 Hz, p = 0.82)

presented through a computer system via sound insulated, MR-compatible

earphones. Stimuli were presented sequentially in pseudorandom order for

200 ms each with inter-stimulus interval varying randomly from 500 to 2050

ms. Subjects were asked to make a quick button-press response with their

right index �nger upon each presentation of each target stimulus; no response

was required for the other two stimuli. There were two runs, each comprising

90 stimuli (3.2 minutes) (Kiehl and Liddle, 2001).

2.3. Image Acquisition

Scans were acquired at the Institute of Living, Hartford, CT on a 3T

dedicated head scanner (Siemens Allegra) equipped with 40mT/m gradients

and a standard quadrature head coil. The functional scans were acquired

using gradient-echo echo planar imaging (EPI) with the following parameters:

repeat time (TR) = 1.5 sec, echo time (TE) = 27 ms, �eld of view = 24 cm,
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acquisition matrix = 64 × 64, �ip angle = 70◦, voxel size = 3.75 × 3.75 × 4

mm3, slice thickness = 4 mm, gap = 1 mm, number of slices = 29; ascending

acquisition. Six dummy scans were carried out at the beginning to allow

for longitudinal equilibrium, after which the paradigm was automatically

triggered to start by the scanner.

2.4. Preprocessing

fMRI data were preprocessed using the SPM5 software package (http:

//www.�l.ion.ucl.ac.uk/spm/software/spm5/). Images were realigned using

INRIalign, a motion correction algorithm unbiased by local signal changes

(Freire et al., 2002). Data were spatially normalized into the standard Mon-

treal Neurological Institute (MNI) space (Friston et al., 1995), spatially

smoothed with a 9×9×9−mm3 full width at half-maximum Gaussian kernel.

The data (originally acquired at 3.75×3.75×4 mm3) were slightly upsampled

to 3× 3× 3 mm3, resulting in 53× 63× 46 voxels.

2.5. Creation of Spatial Maps

The GLM analysis performs a univariate multiple regression of each voxel's

timecourse with an experimental design matrix, which is generated by doing

the convolution of pulse train functions (built based on the task onset times

of the fMRI experiment) with the hemodynamic response function (Friston

et al., 2000). This results in a set of β-weight maps (or β-maps) associ-

ated with each parametric regressor. The β-maps associated with the target

versus standard contrast were used in our analysis. The �nal target versus

standard contrast images were averaged over two runs.
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In addition, group spatial ICA (Calhoun et al., 2001) was used to de-

compose all the data into 20 components using the GIFT software (http:

//icatb.sourceforge.net/) as follows. Dimension estimation, which was used

to determine the number of components, was performed using the minimum

description length criteria, modi�ed to account for spatial correlation (Li

et al., 2007). Data from all subjects were then concatenated and this aggre-

gate data set reduced to 20 temporal dimensions using PCA, followed by an

independent component estimation using the infomax algorithm (Bell and

Sejnowski, 1995). Individual subject components were back-reconstructed

from the group ICA analysis to generate their associated spatial maps (ICA

maps). Component maps from the two runs were averaged together resulting

in a single spatial map of each ICA component for each subject. It is im-

portant to mention that this averaging was performed after the spatial ICA

components were estimated. The two components of interest (temporal lobe

and default mode) were identi�ed in a fully automated manner using di�erent

approaches. The temporal lobe component was detected by temporally sort-

ing the components in GIFT based on their similarity with the SPM design

regressors and retrieving the component whose ICA timecourse had the best

�t (Kim et al., 2009). By contrast, the default mode network was identi�ed

by spatially sorting the components in GIFT using a mask derived from the

Wake Forest University pick atlas (WFU-PickAtlas) (Lancaster et al., 1997,

2000; Maldjian et al., 2003), (http://www.fmri.wfubmc.edu/download.htm).

For the default mode mask we used precuneus, posterior cingulate, and Brod-

mann areas 7, 10, and 39 (Correa et al., 2007; Franco et al., 2009). A spatial

multiple regression of this mask with each of the networks was performed,
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and the network which had the best �t was automatically selected as the

default mode component.

2.6. Data Segmentation and Normalization

The spatial maps obtained from the three available sources were seg-

mented into 116 regions according to the automated anatomical labeling

(AAL) brain parcellation (Tzourio-Mazoyer et al., 2002) using the WFU-

PickAtlas. In addition, the spatial maps were normalized by subtracting

from each voxel its mean value across subjects and dividing it by its stan-

dard deviation. Multiple kernel learning methods such as composite kernels

and RCK further required each kernel matrix to be scaled such that the vari-

ance of the training vectors in its associated feature space were equal to 1.

This procedure is explained in more detail in the next section.

2.7. Composite Kernels Method

2.7.1. Structure of the learning machine based on composite kernels

Each area from observation i is placed in a vector xi,l where i, 1 ≤ i ≤ N

is the observation index and l, 1 ≤ l ≤ L is the area index. An observation is

de�ned as either a single-source spatial map or the combination of multiple

sources spatial maps of a speci�c subject. In the particular case of our study

N = 106. For single-source analysis, composite kernels map each observation

i into L = 116 vectors xi,l; for two-source analysis, composite kernels map

each observation into L = 2× 116 = 232 vectors xi,l , and so on. Then, each

vector is mapped through a nonlinear transformation ϕl(·). These transfor-

mations produce vectors in a higher (usually in�nite) dimension Hilbert space

H provided with a kernel inner product < ϕl(xi,l), ϕl(xj,l) >= kl(xi,l,xj,l),
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where < · > is the inner product operator and kl(·, ·) is a Mercer's kernel.

In this work, kernels kl(·, ·) are de�ned to be Gaussian kernels with the same

parameter σ (see Appendix 1 for details about kernels).

When the kernel function kl(·, ·) is applied to the training vectors in the

dataset, matrix Kl is generated. Component i, j of this matrix is computed

as Kl(i, j) = kl(xi,l,xj,l). In order for training vectors transformed by ϕl(·)

to have unit variance in this Hilbert space, its matrix kernel is applied the

following transformation (Kloft et al., 2011)

Kl 7→
Kl

1
N

∑N
i=1Kl(i, i)− 1

N2

∑N
i=1

∑N
j=1Kl(i, j)

, (1)

where the denominator of Eq.1 is the variance of the observations in the

feature space.

All areas of the observation (example) can be stacked in a single vector

ϕ(xi) = [ϕT
1 (xi,1) · · ·ϕT

L(xi,L)]
T (2)

where T is the transpose operator.

The output of the learning machine can be expressed (see Appendix 2)

as a sum of learning machines

y =
L∑
l=1

wT
l ϕl(x∗,l) + b (3)

where wl is the vector of parameters of the learning machine inside each

Hilbert space and x∗ is a given test pattern.

Assuming that the set of parameters w = [wT
1 · · ·wT

L ]
T is a linear combi-
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nation of the data, the classi�er can be expressed as

y =
L∑
l=1

N∑
i=1

αiϕ
T
l (xi,l)ϕl(x∗,l) + b

=
N∑
i=1

αi

L∑
l=1

kl(xi,l,x∗,l) + b

(4)

where αi are the machine parameters that have to be optimized using a simple

least squares approach or SVMs. In this work, SVMs are used by means of the

LIBSVM software package (Chang and Lin, 2001) (http://www.csie.ntu.edu.

tw/~cjlin/libsvm). Note that the output is a linear combination of kernels,

which is called composite kernel. This speci�c kind of composite kernel is

called summation kernel (see Appendix 2).

2.7.2. Brain areas discriminative weights estimation

As it is explained in Appendix 2, if a given area l contains information

relevant for the classi�cation, its corresponding set of parameters wl will

have a high quadratic norm; otherwise the norm will be low. Usually vectors

wl are not accessible, but their quadratic norms can be computed using the

equation

||wl||2 = αTKlα (5)

where Kl is a matrix containing the kernel inner products between training

vectors corresponding to area l. For each of the sources, a map can be drawn

in which each of their correspondent brain areas l is colored proportionally

to ||wl||2. These coe�cients will be referred to as discriminative weights.

16



2.7.3. Recursive algorithm

Once the data from each observation is split into di�erent areas, each of

them is mapped to high dimensional spaces by means of composite kernels,

as it has been explained in Section 2.7.1. Since composite kernels are capable

of estimating the discriminative weights of each of these areas, RFE proce-

dures can be applied to them; the application of RFE to composite kernels

yields the RCK algorithm. This recursive algorithm trains an SVM with the

training set of observations and estimates the discriminative weights from all

the areas at its �rst iteration, after which it removes the area with smallest

associated weight from the analyzed area set (backward elimination). At

the next iteration, the SVM is trained with the data from all the areas but

the previously removed one and their discriminative weights are recalculated,

eliminating the area with current minimum weight. This procedure is ap-

plied repeatedly until a single area remains in the analyzed area set, with

the optimal area set being the one that achieved the best validation accuracy

rate across the iterations of the recursive algorithm.

2.7.4. Parameter selection, optimal area set selection and prediction accuracy

estimation

The recursive algorithm presented in Section 2.7.3 is run for both single-

source and multi-source data. There are two parameters that need to be

tuned in order to achieve the best performance of the learning machine. These

parameters are the SVM error penalty parameter C (Burges, 1998) and the

Gaussian kernel parameter σ. Based on preliminary experimentation, it was

discovered that the problem under study was rather insensitive to the value of

C, so it was �xed to C = 100. In order to select σ, a set of 10 logarithmically
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spaced values between 1 and 100 were provided to the classi�er.

The validation procedure consists of �nding the optimal parameter pair

{σ, Iareas}, where Iareas speci�es a subset of the areas indexes. If a brute-

force approach were used, then the validation errors obtained for all possible

values of σ and all combinations of areas would need to be calculated.

The previously mentioned approach is computationally intensive. For this

reason, we propose a recursive algorithm based on the calculation of discrim-

inative weights (please refer to previous sections). Based on this method,

a grid search can be performed by calculating the validation error and the

training discriminative weights for each value of σ and each remaining subset

of areas at each iteration of the recursive algorithm. The algorithm starts

with all brain regions, calculate the discriminative weights for each value of σ

and eliminates at each iteration the regions with least discriminative weight

in the area sets associated to each σ value. After executing the whole grid

search, the pair {σ, Iareas} that yielded the minimum validation error rate

would be selected.

The aforementioned method can be further simpli�ed by calculating only

the training discriminative weights associated to the optimal value of σ at

each iteration of the recursive algorithm. This procedure is suboptimal com-

pared to the previous one, but it reduces its computational time. The fol-

lowing paragraphs provide more details of the previously discussed validation

procedure and the test accuracy rate calculation.

First of all, a pair of observations (one from a patient and one from a

control) is set aside to be used for test purposes and not included in the

validation procedure. The remaining data, which is called TrainV alidSet in
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algorithm 1, is further divided into training and validation sets, the latter one

being composed by another control/patient pair of observations, as shown in

algorithm 2.

The classi�er is trained by using all the brain regions and all possible σ

values and the validation error rates are estimated as shown in algorithm 2.

The above process is repeated for all control/patient pairs. Next, the value of

σ that yields the minimum validation error is selected and this error is stored.

Next, the algorithm is retrained with this value of σ and the discriminative

weights are estimated, eliminating the area with minimum associated value.

This procedure is then repeated until a single brain region remains.

Afterwards, the pair {σ, Iareas} that achieves minimum validation error

is selected and the test error rate is estimated using the previously reserved

test set. Then, another control/patient pair is selected as the new test set

and the entire procedure is repeated for each of these test set pairs. The test

accuracy rate is then estimated by averaging the accuracy rates achieved by

each test set.

2.7.5. Comparison of composite kernels and RCK with other methods

The composite kernels algorithm allows the analysis of non-linear relation-

ships between voxels within a brain region and captures linear relationships

between those regions. We compare the performance of the proposed algo-

rithm for single-source and multi-source analyses with both a linear SVM,

which assumes linear relationships between voxels, and a Gaussian SVM,

which analyzes all possible non-linear relationships between voxels. The data

from each area, which is extracted by the segmentation process (please re-

fer to Section 2.6), is input to the aforementioned conventional kernel-based
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methods after been concatenated.

Besides analyzing the classi�cation accuracy rate obtained by our pro-

posed feature selection approach (RCK) compared to the previously men-

tioned algorithms, we are interested in evaluating the performance of RCK

by comparing it against another RFE-based procedure: RFE-SVM applied

to linear SVMs (which will be hereafter referred to as RFE-SVM).

Parameter selection for the aforementioned algorithms is performed as

follows. As stated before, the problem under study is rather insensitive to

the value of C. Therefore, its value is �xed to 100 for linear SVM, Gaussian

SVM and RFE-SVM. In addition, the Gaussian kernel parameter σ values

are retrieved from a set of 100 logarithmically spaced values between 1 and

1000.

3. Results

3.1. RCK Applied to Single Sources

This section presents the sets of most relevant areas and the test results

of RCK applied to each source.

The mean test accuracy achieved by using ICA default-mode component

data is 90%. The list of overall 40 brain regions that were selected by RCK

for the ICA default mode component data are listed in Table 3, alongside

the statistics of their discriminative weights. These regions are grouped in

macro regions to better identify their location in the brain. Furthermore,

the rate of training sets that selected each region (selection frequency) is also

speci�ed.
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Table 1: Optimal area set and associated discriminative weights for RCK

analysis applied to ICA default mode data.

When RCK is applied ICA temporal lobe component data, it achieves a

mean test accuracy rate of 85%. The optimal area set obtained by using ICA

temporal lobe data is reported in Table 2.

Table 2: Optimal area set and associated discriminative weights for RCK

analysis applied to ICA temporal lobe data.

Finally, RCK achieves a mean test accuracy rate of 86% when it is applied

to GLM data. The list of areas selected by RCK in this case is displayed in

Table 3.

Table 3: Optimal area set and associated discriminative weights for RCK

analysis applied to GLM data.

3.2. RCK Applied to Multiple Sources

All possible combinations of data sources were analyzed by RCK, and

we report the obtained results for each of them (please refer to Table 6). It

can be seen that RCK achieves its peak performance when it is applied to

all of the provided sources (95%). Due to this fact, we think that special

attention should be given to the areas retrieved by this multi-source analysis

and its characterization by means of their discriminative weights. Therefore,

we present Table 4, which displays this information. In addition, a graphical

representation of the coe�cients associated to those areas is presented in
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Fig. 1, which overlay colored regions on top of a structural brain map for

each of the three analyzed sources.

Table 4: Optimal area set and associated discriminative weights for RCK

analysis applied multi-source data.

Figure 1: Discriminative weights brain maps for multi-source analysis.

3.3. Comparison of the Performance of Composite Kernels and RCK with

Other Methods

For single-source data analysis, Table 5 shows that both Gaussian SVMs

and composite kernels exhibit an equivalent performance for all sources, while

the classi�cation accuracy achieved by linear SVMs for both ICA temporal

lobe and GLM sources are smaller than the ones attained by the aforemen-

tioned algorithms. It can also be seen that there is a moderate di�erence

between the classi�cation accuracy rates obtained by RCK and RFE-SVM

when they are applied to all data sources, except ICA default mode.

The results of multi-source analysis are shown in Table 6. In this case,

linear SVMs and Gaussian SVMs reach a similar prediction accuracy for all

multi-source analyses, except for the case when they are provided with data

from ICA temporal lobe and GLM sources. While composite kernels achieve

almost the same classi�cation accuracy as linear and Gaussian SVMs when

provided with three-sources data, its performance is reduced on the other

multi-source analyses. The di�erences between classi�cation rates for RFE-

based methods are small for multi-source data analyses, with RCK achieving

slightly better results in some cases.
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Table 5: Mean classi�cation accuracy achieved by di�erent algorithms

using single-source data.

Table 6: Mean classi�cation accuracy achieved by di�erent algorithms

using multi-source data.

4. Discussion

A classi�cation algorithm based on composite kernels that is applicable

to fMRI data has been introduced. This algorithm analyzes nonlinear re-

lationships across voxels within anatomical brain regions and combines the

information from these areas linearly, thus assuming underlying linear re-

lationships between them. By using composite kernels, the regions from

segmented whole-brain data can be ranked multivariately, thus capturing

the spatially distributed multivariate nature of fMRI data. The fact that

whole-brain data is used by the composite kernels algorithm is of special im-

portance, since the data within each region does not require any feature ex-

traction preprocessing procedure in order to reduce their dimensionality. The

application of RFE to composite kernels enables this approach to discard the

least informative brain regions and hence retrieve the brain regions that are

more relevant for class discrimination for both single-source and multi-source

data analyses. The discriminative coe�cients of each brain region indicate

the degree of di�erential activity between controls and patients. Despite the

fact that composite kernels cannot indicate which of the analyzed groups of

interest is more activated for a speci�c brain region like linear SVMs can
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potentially do, the proposed method is still capable of measuring the degree

of di�erential activity between groups for each region. Furthermore, RCK

enables the use of a nonlinear kernel within a RFE procedure, a task that can

become barely tractable with conventional SVM implementations. Another

advantage of RCK over other RFE-based procedures such as RFE-SVM is

its faster execution time; while the former takes 12 hours to be executed,

the latter takes 157 hours, achieving a 13-fold improvement. Finally, this

paper shows that the proposed algorithm is capable of taking advantage of

the complementarity of GLM and ICA by combining them to better charac-

terize groups of healthy controls and schizophrenia patients; the fact that the

classi�cation accuracy achieved by using data from three sources surpasses

that reached by using single-source data supports this claim.

The set of assumptions upon which the proposed approach is based are

the linear relationships between brain regions, the nonlinear relationships

between voxels in the same brain region and the sparsity of information in

the brain. These assumptions seem to be reasonable enough to analyze the

experimental data based on the obtained classi�cation results. This does

not imply that cognitive processes actually work in the same way as it is

stated in our assumptions, but that the complexity assumed by our method

is sensible enough to produce good results with the available data. While

composite kernels achieve classi�cation accuracy rates that are greater than

or equal to those reached by both linear and Gaussian SVMs when applied

to single-source whole-brain data, the same does not hold for multi-source
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analysis. It may be possible that composite kernels performance is precluded

when it is provided with too many areas, making it prone to over�tting.

The presented results suggest that for a given number of training data,

the trade-o� of our proposed algorithm between the low complexity of the

linear assumption, which provides the rationale of linear SVMs, and the high

complexity of the fully nonlinear approach, which motivates the application of

Gaussian SVMs, is convenient. In the case of composite kernels, they assume

linear relationships between brain regions but are �exible enough to analyze

nonlinearities within them. Nevertheless, their results are similar to the ones

of the previously mentioned approaches for single-source analysis and inferior

for multi-source analysis since they do not take advantage of information

sparsity in the brain, thus not signi�cantly reducing the classi�er complexity.

However, the accuracy rates attained by RCK are signi�cantly better than

the ones achieved by composite kernels. These results reinforce the validity of

two hypotheses: �rst, that indeed there are brain regions that are irrelevant

for the characterization of schizophrenia (information sparsity); and second,

that RCK is capable of detecting such regions, therefore being capable of

�nding the set of most informative regions for schizophrenia detection given

a speci�c data source.

Table 6 shows the results achieved by di�erent classi�ers using multi-

source data. It is important to notice that the results obtained by all the

classi�ers when all of the sources are combined are greater than those ob-

tained by these algorithms when they are provided with data from the ICA
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default mode component and either the ICA temporal lobe component or

GLM data. The only method for which the previous statement does not hold

is RFE-SVM. This �nding may seem counterintuitive as one may think that

both ICA temporal lobe component and GLM data are redundant, since they

are detected based on their similarity to the stimuli of the fMRI task. How-

ever, the fact that ICA and GLM characterize fMRI data in di�erent ways

(the former analyzes task-related activity, while the latter detects groups of

voxels with temporally coherent activity) might provide some insight of why

the combination of these two sources proves to be important together with

ICA default mode data.

In addition to the accuracy improvement achieved by applying feature

selection to whole-brain data classi�cation, RCK allows us to better iden-

tify the brain regions that characterize schizophrenia. The fact that several

brain regions in the ICA temporal lobe component are present in the optimal

area set is consistent with the �ndings that highlight the importance of the

temporal lobe for schizophrenia detection. It is also important to note the

presence of the anterior cingulate gyrus of the ICA default mode component

in the optimal area set, for it has been proposed that error-related activity

in the anterior cingulate cortex is impaired in patients with schizophrenia

(Carter et al., 2001). The participants of the study are subject to making

errors since the AOD task is designed in such a way that subjects have to

make a quick button-press response upon the presentation of target stimuli.

Since attention plays an important role in this fMRI task, it is sensible to
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think that consistent di�erential activation of the dorsolateral prefrontal cor-

tex (DLPFC) for controls and patients will be present (Ungar et al., 2010).

That may be the reason why the right middle frontal gyrus of the GLM is

included in the optimal area set.

Brain aging e�ects being more pronounced in individuals after age 60

(Fjell and Walhovd, 2010) raised a concern that our results may have been

in�uenced by the data collected from four healthy controls who exceeded this

age cuto� in our sample. Thus, we re-ran our analysis excluding these four

subjects. Both the resulting classi�cation accuracy rates and the optimal

area sets were consistent with the previously found ones. These �ndings

seem to indicate that the algorithm proposed in this paper is robust enough

not to be a�ected by the presence of potential outliers when provided with

consistent features within the groups of interest.

To summarize, this work extends previous studies (Calhoun et al., 2004,

2008; Garrity et al., 2007) by introducing new elements. First, the method

allows the usage of multi-source fMRI data, making it possible to combine

ICA and GLM data. And second, it can automatically identify and retrieve

regions which are relevant for the classi�cation task by using whole-brain

data without the need of selecting a subset of voxels or a set of ROIs prior

to classi�cation. Based on the aforementioned capabilities of the presented

method, it is reasonable to think that it can be applied not only to multi-

source fMRI data, but also to data from multiple imaging modalities (such

as fMRI, EEG or MEG data) for schizophrenia detection and identify the
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regions within each of the sources which di�erentiate controls and patients

better. Further work includes the modi�cation of the composite kernels for-

mulation to include scalar coe�cients associated to each kernel. By applying

new improved strategies based on optimizers that provide sparse solutions

to this formulation, a direct sparse selection of kernels would be attainable.

Such approaches are attractive because they would enable the selection of

the optimal area set without the need of using a recursive algorithm, signif-

icantly improving the execution time of the learning phase of the classi�er.

Moreover, it is possible to analyze nonlinear relationships between groups of

brain regions by using those methods, thus providing a more general setting

to characterize schizophrenia. Finally, it should be stated that even though

this approach is useful in schizophrenia detection and characterization, it is

not restricted to this disease detection and can be utilized to detect other

mental diseases.
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Appendix 1: De�nition of Mercer's Kernel

A theorem provided by Mercer (Aizerman et al., 1964) in the early 1900's

is of extreme relevance because it extends the principle of linear learning

machines to the nonlinear case. The basic idea is that vectors x in a �nite

dimension space (called input space) can be mapped to a higher (possibly

in�nite) dimension in Hilbert spaceH provided with a inner product, through

a nonlinear transformation ϕ(·). A linear machine can be constructed in

a higher dimensional space (Vapnik, 1998; Burges, 1998) (often called the

feature space) which will be nonlinear from the point of view of the input

space.

The Mercer's theorem shows that there exists a function ϕ : Rn → H and

a inner product

k(xi,xk) = ϕT (xi)ϕ(xk) (6)

if and only if k(·, ·) is a positive integral operator on a Hilbert space, i.e, if

and only if for any function g(x) for which

∫
g(x)dx <∞ (7)

the inequality ∫
k(x,y)g(x)g(y)dxdy ≥ 0 (8)

holds. Hilbert spaces provided with kernel inner products are often called

Reproducing Kernel Hilbert Spaces (RKHS). The most widely used kernel is
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the Gaussian. Its expression is

k(xi,xk) = e−
||xi−xk||

2

2σ2 (9)

It is straightforward to show that its Hilbert space has in�nite dimension.

A linear learning machine applied to these transformed data will have

nonlinear properties from the point of view of the input data x. The linear

learning machine can be expressed as

y = wTϕ(x) + b (10)

If the algorithm to optimize parameters w is linear, then they can be ex-

pressed as a linear combination of the training data

w =
N∑
i=1

αiϕ(xi) (11)

This expression, together with (10), give the result

y =
N∑
i=1

αiϕ
T (xi)ϕ(x) + b =

N∑
i=1

αik(xi,x) + b (12)

This is, the machine can be expressed as a linear combination of inner prod-

ucts between the test and training data. Also, any linear algorithm to op-

timize w in (10) can be transformed using the same technique, leading to a

linear algorithm to equivalently optimize parameters αi of expression (12).
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This technique is the so-called kernel trick.

Appendix 2: Composite Kernels

Summation Kernel

Vectors in di�erent Hilbert spaces can be combined to a higher dimension

Hilbert space. The most straightforward combination is the so-called direct

sum of Hilbert spaces (Reed and Simon, 1980). In order to construct a direct

sum of Hilbert spaces, let us assume that several nonlinear transformations

ϕl(·) to Hilbert spaces and the corresponding kernel inner products kl(·, ·)

are available.

Assume without loss of generality that a column vector in a �nite di-

mension space constructed as the concatenation of several vectors as x =

[xT
1 · · ·xT

L]
T is piecewise mapped using the nonlinear transformations

ϕ(x) = [ϕT
1 (x1) · · ·ϕT

L(xL)]
T (13)

The resulting vector is simply the concatenation of the transformations. The

inner product between vectors in this space is

< ϕ(xi), ϕ(xj) >=

=[ϕT
1 (xi,1) · · ·ϕT

L(xi,L)] · [ϕT
1 (xj,1) · · ·ϕT

L(xj,L)]
T

=
L∑
l=1

ϕT
l (xi,l)ϕl(xj,l) =

L∑
l=1

kl(xi,l,xj,l)

(14)
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The resulting kernel is also called summation kernel.

The learning machine (12) using the kernel (14) will have the expression

y =
N∑
i=1

αik(xi,x∗) + b =
N∑
i=1

αi

L∑
l=1

kl(xi,l,x∗,l) + b (15)

The technique to use a learning machine based on composite kernels consists

simply on computing the kernel inner products as in (14) and then proceed

to train it as a regular kernel learning machine with a given optimization

algorithm.

Mapping with composite kernels

Usually there is no inverse transformation to the nonlinear transforma-

tions ϕ(·). Then, the spatial information that vector w may have cannot be

retrieved. But by using composite kernels each Hilbert space will hold all the

properties of its particular region of the input space. That way, a straight-

forward analysis can provide information about that region. If a particular

region of the input space contains no information relevant for the classi�-

cation or regression task, then vector w will tend to be orthogonal to these

space. If there is relevant information, then the vector will tend to be parallel

to the space.

Then, it may be useful to compute the projection of w to all spaces. But

this parameter vector is not accessible, so we need to make use of the kernel

trick. Combining equations (11) and (13), the expression of the parameter

32



vector is

w =
N∑
i=1

αi[ϕ
T
1 (xi,1) · · ·ϕT

L(xi,L)]
T (16)

From this, one can see that the projection of w over space l is simply wl =∑N
i=1 αiϕl(xi,l), and its quadratic norm will be

||wl||2 = wT
l wl =

=
N∑
i=1

αiϕ
T
l (xi,l)

N∑
j=1

ϕl(xj,l)αj

=
N∑
i=1

N∑
j=1

αikl(xi,l,xj,l)αj

(17)

which can be expressed in matrix version as ||wl||2 = αTKlα, where α is a

vector containing all parameters αi and Kl is a matrix containing all kernel

inner products kl(xi,l,xj,l).
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Figures and Tables Legends

Fig. 1: Discriminative weights brain maps for multi-source analysis. The

brain maps of each of these sources highlight the brain regions associated to

each of them that were present in the optimal area set for this multi-source

data classi�cation. These areas are color-coded according to their associated

discriminative coe�cients.

Table 1: Optimal area set and associated discriminative weights for RCK

analysis applied to ICA default mode data. The most informative anatomical

regions retrieved by RCK when applied to ICA default mode data are grouped

in macro brain regions to give a better idea of their location in the brain.

The mean and the standard deviation of the discriminative weights of each

area are listed in this table. In addition the rate of training sets in the

cross-validation procedure that selected each area (selection frequency) is

also reported in order to measure the validity of the inclusion of each region

in the optimal area set.

Table 2: Optimal area set and associated discriminative weights for RCK

analysis applied to ICA temporal lobe data. The most informative anatom-

ical regions retrieved by RCK when applied to ICA temporal lobe data are

grouped in macro brain regions to give a better idea of their location in the

brain. The mean and the standard deviation of the discriminative weights

of each area are listed in this table. In addition the rate of training sets in
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the cross-validation procedure that selected each area (selection frequency) is

also reported in order to measure the validity of the inclusion of each region

in the optimal area set.

Table 3: Optimal area set and associated discriminative weights for RCK

analysis applied to GLM data. The most informative anatomical regions

retrieved by RCK when applied to GLM data are grouped in macro brain

regions to give a better idea of their location in the brain. The mean and

the standard deviation of the discriminative weights of each area are listed

in this table. In addition the rate of training sets in the cross-validation

procedure that selected each area (selection frequency) is also reported in

order to measure the validity of the inclusion of each region in the optimal

area set.

Table 4: Optimal area set and associated discriminative weights for RCK

analysis applied multi-source data. The most informative anatomical regions

retrieved by RCK when applied to 3 data sources are grouped in macro brain

regions to give a better idea of their location in the brain. The mean and

the standard deviation of the discriminative weights of each area are listed

in this table. In addition the rate of training sets in the cross-validation

procedure that selected each area (selection frequency) is also reported in

order to measure the validity of the inclusion of each region in the optimal

area set.

Table 5: Mean classi�cation accuracy achieved by di�erent algorithms
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using single-source data. The reported results indicate the mean classi�cation

rate attained by di�erent algorithms for each data source using the data from

all the brain regions included in the AAL brain parcellation.

Table 6: Mean classi�cation accuracy achieved by di�erent algorithms

using multi-source data. The reported results indicate the mean classi�cation

rate attained by di�erent algorithms provided with all possible combinations

of data sources. The analysis is performed using all brain regions included

in the AAL brain parcellation.
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Figure 1: Discriminative weights brain maps for multi-source analysis. The brain maps
of each of these sources highlight the brain regions associated to each of them that were
present in the optimal area set for this multi-source data classi�cation. These areas are
color-coded according to their associated discriminative weights.

Algorithm 1 Train and Validate
1: Inputs: TrainV alSet
2: Outputs: SigmaOpt, Iopt and SVMparameters
3: De�ne I(1): indexes for all areas
4: De�ne P : number of areas
5: for p = 1 to P − 1 do
6: Validate sigma with LTO(TrainV alSet,I(p)) ⇒ Sigma(p) and

E(p)
7: Train with TrainV alSet, Sigma(p) and I(p)
8: Compute discriminative weights
9: Remove area with lowest weight
10: Store indexes of remaining areas ⇒ I(p+ 1)
11: end for

12: Find p that minimizes E(p) ⇒ pmin

13: Sigma(pmin)⇒ SigmaOpt, I(pmin)⇒ Iopt
14: Train with TrainV alSet, SigmaOpt and Iopt⇒ SVMparameters
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Algorithm 2 Validate sigma with LTO
1: Inputs: TrainV alSet and I(p)
2: Outputs: Sigma(p) and E(p)
3: De�ne N : number of subject pairs in TrainV alSet
4: De�ne L: Number of possible values for sigma
5: for j = 1 to N do

6: Extract Train(j) from TrainV alSet
7: Extract V al(j) from TrainV alSet
8: for k = 1 to L do

9: Train with Train(j), sigma(k) and I(p)⇒ SVMparameters
10: Test with V al(j), sigma(k), I(p) and SVMparameters
11: Store error ⇒ e(j, k)
12: end for

13: end for

14: Average e(j, k) over j ⇒ e(k)
15: Find k that minimizes e(k) ⇒ E(p)
16: sigma(k)⇒ Sigma(p)
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Table 1: Optimal area set and associated discriminative weights for RCK analysis applied
to ICA default mode data. The most informative anatomical regions retrieved by RCK
when applied to ICA default mode data are grouped in macro brain regions to give a
better idea of their location in the brain. The mean and the standard deviation of the
discriminative weights of each area are listed in this table. In addition the rate of training
sets in the cross-validation procedure that selected each area (selection frequency) is also
reported in order to measure the validity of the inclusion of each region in the optimal
area set.

Source

Areas and Discriminative Weights

Macro Regions Regions
Discriminative Weights

Mean Std. Dev. Sel. Freq.

ICA default mode

Central Region

Right Precentral Gyrus 2.32 0.06 1.00

Left Precentral Gyrus 2.31 0.04 1.00

Left Postcentral Gyrus 2.22 0.03 1.00

Right Postcentral Gyrus 2.21 0.02 1.00

Frontal lobe

Right Paracentral Lobule 3.44 0.16 1.00

Left Superior Frontal Gyrus, Medial 2.97 0.15 1.00

Left Middle Frontal Gyrus, Orbital Part 1 2.52 0.15 1.00

Right Superior Frontal Gyrus, Medial 2.51 0.10 1.00

Left Superior Frontal Gyrus 2.28 0.09 1.00

Right Superior Frontal Gyrus 2.27 0.06 1.00

Left Inferior Frontal Gyrus, Triangular Part 2.24 0.04 1.00

Right Middle Frontal Gyrus 2.21 0.04 0.94

Right Inferior Frontal Gyrus, Opercular Part 2.19 0.08 0.79

Left Inferior Frontal Gyrus, Orbital Part 2.16 0.08 0.55

Right Gyrus Rectus 2.38 0.21 0.94

Temporal lobe
Left Middle Temporal Gyrus 2.27 0.03 1.00

Right Middle Temporal Gyrus 2.22 0.05 1.00

Parietal lobe

Left Angular Gyrus 2.72 0.11 1.00

Left Supramarginal Gyrus 2.45 0.11 1.00

Right Cuneus 2.72 0.08 1.00

Right Superior Parietal Gyrus 2.31 0.06 1.00

Left Superior Parietal Gyrus 2.25 0.08 0.96

Occipital lobe

Right Superior Occipital Gyrus 2.94 0.13 1.00

Left Superior Occipital Gyrus 2.88 0.09 1.00

Left Middle Occipital Gyrus 2.58 0.07 1.00

Right Inferior Occipital Gyrus 2.50 0.14 1.00

Left Cuneus 2.38 0.07 1.00

Left Fusiform Gyrus 2.31 0.05 1.00

Limbic lobe

Left Anterior Cingulate Gyrus 3.33 0.10 1.00

Right Anterior Cingulate Gyrus 2.71 0.09 1.00

Right Middle Cingulate Gyrus 2.46 0.06 1.00

Left Middle Cingulate Gyrus 2.41 0.06 1.00

Left Temporal Pole: Middle Temporal Gyrus 2.40 0.13 1.00

Right Temporal Pole: Superior Temporal Gyrus 2.36 0.10 0.96

Left Parahippocampal Gyrus 2.27 0.11 0.87

Insula Right Insular Cortex 2.25 0.07 0.98

Sub cortical gray cortex Left Thalamus 2.53 0.12 1.00

Cerebellum

Right Inferior Posterior Lobe of Cerebellum 3.83 0.19 1.00

Left Anterior Lobe of Cerebellum 2.35 0.07 1.00

Left Superior Posterior Lobe of Cerebellum 2.32 0.07 1.0048



Table 2: Optimal area set and associated discriminative weights for RCK analysis applied
to ICA temporal lobe data. The most informative anatomical regions retrieved by RCK
when applied to ICA temporal lobe data are grouped in macro brain regions to give a
better idea of their location in the brain. The mean and the standard deviation of the
discriminative weights of each area are listed in this table. In addition the rate of training
sets in the cross-validation procedure that selected each area (selection frequency) is also
reported in order to measure the validity of the inclusion of each region in the optimal
area set.

Source

Areas and Discriminative Weights

Macro Regions Regions
Discriminative Weights

Mean Std. Dev. Sel. Freq.

ICA temporal lobe

Central region
Right Rolandic Operculum 8.63 0.25 1.00

Left Precentral Gyrus 7.70 0.09 1.00

Frontal lobe

Left Inferior Frontal Gyrus, Orbital Part 7.79 0.21 1.00

Right Superior Frontal Gyrus, Medial 7.58 0.10 0.96

Right Superior Frontal Gyrus 7.56 0.05 1.00

Temporal lobe Right Middle Temporal Gyrus 7.39 0.04 0.81

Occipital lobe

Right Middle Occipital Gyrus 7.97 0.09 1.00

Left Middle Occipital Gyrus 7.67 0.15 1.00

Right Fusiform Gyrus 7.57 0.12 0.98

Right Calcarine Fissure 7.46 0.11 0.83

Limbic lobe Left Middle Cingulate Gyrus 7.67 0.11 1.00

Insula Left Insular Cortex 7.64 0.12 1.00

Cerebellum Right Inferior Posterior Lobe of Cerebellum 7.36 0.25 0.42
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Table 3: Optimal area set and associated discriminative weights for RCK analysis applied
to GLM data. The most informative anatomical regions retrieved by RCK when applied
to GLM data are grouped in macro brain regions to give a better idea of their location
in the brain. The mean and the standard deviation of the discriminative weights of each
area are listed in this table. In addition the rate of training sets in the cross-validation
procedure that selected each area (selection frequency) is also reported in order to measure
the validity of the inclusion of each region in the optimal area set.

Source

Areas and Discriminative Weights

Macro Regions Regions
Discriminative Weights

Mean Std. Dev. Sel. Freq.

GLM

Central region

Left Postcentral Gyrus 3.12 0.16 1.00

Right Precentral Gyrus 2.78 0.12 1.00

Left Precentral Gyrus 2.67 0.09 1.00

Right Postcentral Gyrus 2.64 0.12 1.00

Frontal lobe

Left Superior Frontal Gyrus 4.12 0.12 1.00

Right Middle Frontal Gyrus 4.02 0.14 1.00

Left Inferior Frontal Gyrus, Triangular Part 3.64 0.19 1.00

Left Middle Frontal Gyrus 3.45 0.12 1.00

Left Middle Frontal Gyrus, Orbital Part 2 3.15 0.17 1.00

Right Superior Frontal Gyrus 2.71 0.10 1.00

Left Middle Frontal Gyrus, Orbital Part 1 2.59 0.17 1.00

Left Supplementary Motor Area 2.48 0.12 1.00

Left Superior Frontal Gyrus, Medial 2.43 0.10 1.00

Right Inferior Frontal Gyrus, Orbital Part 2.31 0.16 0.96

Right Superior Frontal Gyrus, Medial 2.23 0.11 1.00

Left Inferior Frontal Gyrus, Opercular Part 2.15 0.12 0.98

Left Inferior Frontal Gyrus, Orbital Part 2.10 0.11 0.92

Right Paracentral Lobule 2.07 0.16 0.83
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Table 3: (Cont'd) Optimal area set and associated discriminative weights for RCK analysis
applied to GLM data. The most informative anatomical regions retrieved by RCK when
applied to GLM data are grouped in macro brain regions to give a better idea of their
location in the brain. The mean and the standard deviation of the discriminative weights
of each area are listed in this table. In addition the rate of training sets in the cross-
validation procedure that selected each area (selection frequency) is also reported in order
to measure the validity of the inclusion of each region in the optimal area set.

Source

Areas and Discriminative Weights

Macro Regions Regions
Discriminative Weights

Mean Std. Dev. Sel. Freq.

GLM

Temporal lobe

Right Middle Temporal Gyrus 3.87 0.13 1.00

Left Superior Temporal Gyrus 2.79 0.15 1.00

Right Superior Temporal Gyrus 2.37 0.12 1.00

Left Middle Temporal Gyrus 2.30 0.07 1.00

Left Inferior Temporal Gyrus 2.28 0.14 1.00

Right Inferior Temporal Gyrus 2.14 0.08 0.98

Parietal lobe
Right Precuneus 2.35 0.10 1.00

Left Inferior Parietal Gyrus 2.18 0.17 0.96

Occipital lobe

Left Calcarine Fissure 3.00 0.19 1.00

Right Fusiform Gyrus 2.55 0.13 1.00

Right Middle Occipital Gyrus 2.50 0.11 1.00

Limbic lobe

Right Hippocampus 2.27 0.12 1.00

Right Middle Cingulate Gyrus 2.24 0.08 1.00

Right Anterior Cingulate Gyrus 2.21 0.12 0.98

Insula Left Insular Cortex 1.96 0.07 0.42

Sub cortical gray nuclei
Right Caudate Nucleus 2.30 0.14 1.00

Right Amygdala 2.26 0.15 0.98

Cerebellum

Anterior Lobe of Vermis 2.83 0.21 1.00

Posterior Lobe of Vermis 2.67 0.22 1.00

Right Inferior Posterior Lobe of Cerebellum 2.30 0.16 0.98

51



Table 4: Optimal area set and associated discriminative weights for RCK analysis applied
multi-source data. The most informative anatomical regions retrieved by RCK when
applied to 3 data sources are grouped in macro brain regions to give a better idea of
their location in the brain. The mean and the standard deviation of the discriminative
weights of each area are listed in this table. In addition the rate of training sets in the
cross-validation procedure that selected each area (selection frequency) is also reported in
order to measure the validity of the inclusion of each region in the optimal area set.

Source

Areas and Discriminative Weights

Macro Regions Regions
Discriminative Weights

Mean Std. Dev. Sel. Freq.

ICA default mode

Central region

Right Precentral Gyrus 3.10 0.13 1.00

Left Precentral Gyrus 2.49 0.08 1.00

Left Rolandic Operculum 2.18 0.15 0.89

Frontal lobe

Left Superior Frontal Gyrus 3.06 0.11 1.00

Left Superior Frontal Gyrus, Medial 3.05 0.15 1.00

Right Paracentral Lobule 2.94 0.16 1.00

Right Gyrus Rectus 2.66 0.20 1.00

Right Superior Frontal Gyrus, Medial 2.50 0.10 1.00

Temporal lobe
Right Middle Temporal Gyrus 2.30 0.08 1.00

Left Middle Temporal Gyrus 2.09 0.11 0.74

Parietal lobe Left Angular Gyrus 3.44 0.22 1.00

Occipital lobe

Left Superior Occipital Gyrus 2.62 0.15 1.00

Left Middle Occipital Gyrus 2.59 0.15 1.00

Left Fusiform Gyrus 2.55 0.12 1.00

Right Cuneus 2.35 0.14 0.98

Left Cuneus 2.30 0.12 1.00

Limbic lobe

Parahippocampal Gyrus 2.45 0.14 0.98

Left Middle Cingulate Gyrus 2.36 0.11 1.00

Left Anterior Cingulate Gyrus 2.29 0.11 1.00

Cerebellum

Right Inferior Posterior Lobe of Cerebellum 2.93 0.20 1.00

Left Superior Posterior Lobe of Cerebellum 2.58 0.13 1.00

Left Anterior Lobe of Cerebellum 2.37 0.14 0.98

ICA temporal lobe

Central region Right Rolandic Operculum 2.33 0.13 0.98

Frontal lobe
Right Inferior Frontal Gyrus, Triangular Part 2.77 0.13 1.00

Right Superior Frontal Gyrus 2.55 0.11 1.00

Temporal lobe

Left Heschl gyrus 2.54 0.17 1.00

Left Middle Temporal Gyrus 2.28 0.12 1.00

Right Inferior Temporal Gyrus 2.24 0.11 0.98

Right Middle Temporal Gyrus 2.18 0.09 0.98

Occipital lobe
Right Middle Occipital Gyrus 2.44 0.11 1.00

Left Middle Occipital Gyrus 2.16 0.11 0.94

Limbic lobe Left Middle Cingulate Gyrus 2.38 0.13 1.00

Sub cortical gray nuclei Left Caudate Nucleus 2.52 0.13 1.00

Cerebellum

Left Anterior Lobe of Cerebellum 2.47 0.16 1.00

Right Cerebellar Tonsil 2.25 0.19 0.98

Right Posterior Lobe of Cerebellum 2.08 0.15 0.58
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Table 4: (Cont'd) Optimal area set and associated discriminative weights for RCK analysis
applied multi-source data. The most informative anatomical regions retrieved by RCK
when applied to 3 data sources are grouped in macro brain regions to give a better idea
of their location in the brain. The mean and the standard deviation of the discriminative
weights of each area are listed in this table. In addition the rate of training sets in the
cross-validation procedure that selected each area (selection frequency) is also reported in
order to measure the validity of the inclusion of each region in the optimal area set.

Source

Areas and Discriminative Weights

Macro Regions Regions
Discriminative Weights

Mean Std. Dev. Sel. Freq.

GLM

Frontal lobe
Left Middle Frontal Gyrus, Orbital Part 2.36 0.16 1.00

Right Middle Frontal Gyrus 2.23 0.13 0.98

Limbic lobe Right Hippocampus 2.44 0.14 1.00

Cerebellum Posterior Lobe of Vermis 2.56 0.18 1.00

Table 5: Mean classi�cation accuracy achieved by di�erent algorithms using single-source
data. The reported results indicate the mean classi�cation rate attained by di�erent
algorithms for each data source using the data from all the brain regions included in the
AAL brain parcellation.

Default Mode Temporal Lobe GLM

Composite Kernels 0.75 0.64 0.74
Linear SVM 0.75 0.54 0.67
Gaussian SVM 0.75 0.62 0.75
RFE-SVM 0.87 0.75 0.71
RCK 0.90 0.85 0.86
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Table 6: Mean classi�cation accuracy achieved by di�erent algorithms using multi-source
data. The reported results indicate the mean classi�cation rate attained by di�erent algo-
rithms provided with all possible combinations of data sources. The analysis is performed
using all brain regions included in the AAL brain parcellation.

Two Sources
All Sources

Default & Temporal Default & GLM Temporal & GLM

Composite Kernels 0.70 0.70 0.69 0.79
Linear SVM 0.79 0.78 0.62 0.80
Gaussian SVM 0.76 0.77 0.70 0.80
RFE-SVM 0.92 0.90 0.84 0.90
RCK 0.92 0.93 0.85 0.95
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