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Abstract— This paper introduces a new support vector1

machine (SVM) formulation to obtain sparse solutions in the2

primal SVM parameters, providing a new method for feature3

selection based on SVMs. This new approach includes additional4

constraints to the classical ones that drop the weights associated5

to those features that are likely to be irrelevant. A ν-SVM6

formulation has been used, where ν indicates the fraction of7

features to be considered. This paper presents two versions of8

the proposed sparse classifier, a 2-norm SVM and a 1-norm SVM,9

the latter having a reduced computational burden with respect to10

the first one. Additionally, an explanation is provided about how11

the presented approach can be readily extended to multiclass12

classification or to problems where groups of features, rather13

than isolated features, need to be selected. The algorithms have14

been tested in a variety of synthetic and real data sets and they15

have been compared against other state of the art SVM-based16

linear feature selection methods, such as 1-norm SVM and doubly17

regularized SVM. The results show the good feature selection18

ability of the approaches.19

Index Terms— Feature group selection, feature selection,20

margin maximization, multiclass classification, support vector21

machines.22

I. INTRODUCTION23

SUPPORT vector machines (SVMs) [1], [2] are considered24

the state-of-art in machine learning due to their well25

known good performance in a wide range of applications26

[3]–[5]. The SVM criterion minimizes a loss term, called hinge27

loss, plus an additional quadratic penalization term which28

regularizes the solution [6]. This hinge loss minimization29

allows SVMs to approximate Bayes’ rule without estimating30

the conditional class probability [7] and makes it converge to31

a maximum margin solution [8], thus endowing SVMs with32

good generalization properties.33

In spite of the generally good performance of SVMs, in34

many practical situations, useless, redundant, or noisy features35

can degrade the attained solution. The reason for this is that36
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the SVM solution is based on a combination of all input 37

features, including the irrelevant ones. As it is stated in the 38

bet-on-sparsity principle [9], this situation is undesired and it 39

would be preferable to obtain a solution consisting only of the 40

relevant features. That way, more accurate and interpretable 41

solutions can be achieved. 42

To achieve this goal, a feature selection process [10], [11] is 43

usually applied. Classical feature selection techniques, such as 44

filtering [12] or wrapping [13], [14] approaches, are used as an 45

independent preprocessing step before the training of the final 46

classification (or regression) machine. More recent feature 47

selection methods combine the feature selection process with 48

the final predictor training. For instance, in [15]–[17] an 49

objective function that combines an accuracy prediction term 50

with a term associated to the sparsity in the number of selected 51

variables is employed. In [18]–[20] the SVM prediction output 52

is considered as a linear combination of kernel functions and 53

then, the prediction accuracy is evaluated as a function of the 54

used and discarded features. This method, known as recursive 55

feature elimination (RFE), has been widely employed for SVM 56

classification, however, recent works [21] have shown that 57

RFE is not consistent with maximum margin solutions. 58

In contrast to the approaches that include an explicit fea- 59

ture selection strategy (either independent or combined with 60

the classification step), classifiers directly providing sparse 61

solutions are usually preferred. Following this point of view, 62

the LASSO method was proposed in [15]. LASSO includes a 63

1-norm regularization term in the optimization problem. Since 64

this norm has a singularity at the origin, some coefficients of 65

the solution vector are shrunk to zero, what provides sparse 66

solutions. Since then, many researchers have focused their 67

work on minimizing 1-norm penalized functions [22]–[24]. 68

In fact [25] points out the need and usefulness of linear sparse 69

solutions in problems like functional magnetic resonance 70

imaging. 71

In [26], the classical SVM formulation is modified by 72

replacing the quadratic penalization term with a 1-norm 73

penalty, what leads to solutions with sparse coefficients. 74

Although this SVM formulation can only be used for feature 75

selection in linear classification problems, this approach has 76

nevertheless been successfully used in a large number of appli- 77

cations, such as computational biology [27], [28], drug-design 78

[17] or gene microarrays classification [29], among others. 79

Although 1-norm SVMs retain most of the desired prop- 80

erties of classical SVMs, such as margin maximization, they 81

may fail to provide good solutions in certain situations. As it is 82
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illustrated in [9], when most of the input features are relevant83

for the classification task at hand, classical 2-norm SVMs84

usually outperform their 1-norm counterparts. Furthermore, as85

it is pointed out in [30] and [31], the 1-norm SVM presents two86

additional limitations: first, when there are highly correlated87

variables, it usually removes some of them, and, second, the88

maximum number of selected features is limited by the number89

of available training data. Trying to overcome these draw-90

backs, elastic nets [32] and their particularization to SVMs91

by means of the doubly regularized support vector machine92

(Dr-SVM) [30], [31] are proposed, this new approach gener-93

alizes the LASSO and 1-norm SVM methods by keeping the94

2-norm regularization term and including an additional 1-norm95

penalty term to force sparsity. Despite common improved96

performance of Dr-SVM, both 1-norm and Dr-SVMs are not97

suitable methods when the underlying model is truly sparse,98

since they are not able to remove all unnecessary variables99

from the final classifier, this problem was already remarked100

for 1-norm SVMs in [33] and, in the experimental section of101

this paper, we will illustrate it for Dr-SVM.102

An additional limitation of 1-norm SVM and Dr-SVM, is103

that they are not well suited to multiclass classification or104

to problems where features have to be selected or removed105

using predefined groups. One possible solution could consist106

in adding a group LASSO [34] or an ∞-norm [35] penaliza-107

tion term into the SVM formulation. However, both options108

result in a more complex SVM formulation, which cannot be109

solved with standard linear programming (LP) or quadratic110

programming (QP) solvers.111

In this paper, a new SVM formulation for the linear case112

is presented that directly forces sparse solutions. Rather than113

modifying the objective function, additional constraints are114

included in the minimization task in order to identify irrelevant115

features and to drop their associated weights to values lower116

than a small parameter ε. This constant can be adjusted during117

the optimization problem resolution by predefining the number118

of relevant features to be kept in the final solution using a119

ν-SVM formulation [36]. We will show that these additional120

constraints can be incorporated to force sparsity in both121

2-norm and 1-norm SVM formulations. Our approach allows122

to overcome the limitations of 1-norm SVMs and Dr-SVMs123

in different ways. First, by properly adjusting parameter ν,124

the algorithm is able to remove all irrelevant features from125

the final model. Second, the proposed formulation can be126

applied to the selection of isolated features or predefined127

feature groups where needed. Finally, as it will be shown in128

the experiments section, more accurate solutions are usually129

achieved, particularly, when using the new constraints together130

with the 2-norm SVM.131

The rest of this paper is organized as follows. In the next132

section, we introduce our approach to force feature selection133

in SVM classifiers, explaining how it can be applied both to134

2-norm and 1-norm formulations. Section III presents some135

extensions of the method to address the selection of features136

in predefined groups of variables, as well as for multiclass137

classification problems. Section IV presents extensive simu-138

lation work to illustrate the performance of our approach,139

and its advantages with respect to previous proposals for140

feature selection in SVMs. Finally, Section V presents the 141

main conclusion of our work, and identifies some lines for 142

future research. 143

II. SVM WITH EXPLICIT CONSTRAINTS FOR 144

FEATURE SELECTION 145

A. Problem Overview 146

In this paper, we consider classification problems where 147

the representation of the input data contains some features, 148

which are irrelevant for the task at hand. This may happen 149

as a consequence of redundancy between the input variables 150

or, simply, because some of the input features do not carry 151

any valuable information for the classification. In a standard 152

machine learning setup, we are given a set of N training 153

labeled data, S = {x(l), y(l)}, l = 1, . . . , N , where x(l) ∈ 154

#d are the input vectors and y(l) are used to encode class 155

membership, from which we have to learn both the subset of 156

relevant input variables and the classification function itself. 157

Linear classifiers obtain their outputs according to a thresh- 158

olded version of the estimator 159

ŷ = wT x + b (1) 160

where ŷ is the output of the classifier for input vector x, 161

w is the vector that defines the classifier, and b is a bias 162

term. For the SVM case, the Representer’s Theorem [1], [2] 163

states that the solution vector will lie in the subspace spanned 164

by all training vectors {x(l)}. When irrelevant features are 165

present in the data we can carry out a pre-processing stage to 166

select the most informative variables or, alternatively, discard 167

the variables xi whose associated weight wi is exactly zero 168

after the optimization of the classifier. However, since noise is 169

normally present in the data, none of the components of w will 170

be exactly zero unless sparsity is included as an optimization 171

criterion during the training of the classifier. 172

A standard way to impose sparsity in w is to include 173

a regularization term in the cost function, based on the 174

1-norm of w, i.e., ‖w‖1 = ∑
i |wi |. This regularizer presents 175

singularity points whenever any of the components of w is 176

zero, what tends to nullify some of the solution weights, thus 177

favoring sparse solutions. However, this mechanism does not 178

necessarily imply that all weight components associated to 179

irrelevant variables will become zero [33]. 180

Rather than modifying the structural risk term in the SVM 181

functional, in this paper, we propose a new approach to impose 182

sparsity in the solution by introducing a set of additional 183

constraints for the optimization problem. We will see that 184

our method is able to automatically identify all irrelevant 185

features, thus constituting an effective mechanism for imple- 186

menting SVMs that incorporate a feature selection approach. 187

Furthermore, since the 2-norm regularization term can still be 188

used, this usually results in a better performance when the true 189

underlying solution is non sparse. 190

B. 2-Norm SVMs with Sparsity Constraints 191

Classical SVMs are based on the minimization of a func- 192

tional that includes two terms. The first term is the squared 193

norm of the weight vector w, which is inversely proportional 194
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to the margin of classification [1], thus, this term is related195

to the structural risk of the classifier and to its generalization196

capabilities. The second term in the objective functional, which197

is known as the empirical risk term, is a sum of errors over198

the training data. In other words, the linear SVM problem can199

be stated as200

min ‖w‖2 + C
N

N∑

l=1

ξ(l)

s.t. y(l) (
wT x(l) + b

)
≥ 1 − ξ(l); ∀l

ξ(l) ≥ 0; ∀l

(2)201

where slack variables ξ(l) are introduced to allow some of202

the training patterns to be misclassified or to lie inside the203

classifier margin, and where C is a constant that controls the204

trade-off between the structural and empirical risk terms.205

As it is well known, this optimization method provides a206

sparse solution in the sense that w is a linear combination of207

only a subset of the training data [the so-called support vectors208

(SVs)]. However, if feature selection is pursued during the209

optimization, a solution sparse in the parameters w is needed.210

In order to obtain such a solution, we will introduce some211

additional constraints in the optimization problem.212

We start by rewriting each of the weight components,213

wi , i = 1, . . . , d , as wi = ui − vi , with ui , vi ≥ 0. As214

we will explain later, our optimization problem will implicitly215

enforce that at least one of the two terms in the subtraction,216

ui or vi , is zero, depending on whether the optimal weight is217

positive (ui > 0 and vi = 0), negative (ui = 0 and vi > 0) or218

zero (ui = vi = 0). Therefore, the square norm of the weight219

vector is given, in terms of these new variables, by220

‖w‖2
2 =

d∑

i=1

u2
i + v2

i . (3)221

Furthermore, in order to obtain a sparse solution in w,222

we introduce some additional constraints to upper bound the223

absolute value of weight components by a small constant ε,224

i.e., |wi | = ui +vi < ε. Introducing (3) and the new constraints225

into (2), we get the following modified SVM formulation:226

min
d∑

i=1

(u2
i + v2

i ) + C
N

N∑

l=1

ξ(l) + C ′

d

d∑

i=1

γi

s.t. y(l)

[
d∑

i=1

(ui − vi )x (l)
i + b

]

≥ 1 − ξ(l); ∀l

ξ(l) ≥ 0; ∀l

ui + vi ≤ ε + γi ; ∀i

ui , vi ≥ 0; ∀i

γi ≥ 0; ∀i.

(4)227

Although the above optimization problem has not explicitly228

included, the constraint uivi = 0, (4) is indirectly forcing that229

either ui or vi is equal to 0. Note that among all possible pairs230

of values (ui , vi ) that are able to provide a certain value wi ,231

the pair which minimizes
∑d

i=1(u
2
i + v2

i ) has to fix either ui232

or vi to 0, for instance, for positive wi and according to its233

definition in terms of ui and vi , minimization of the functional234

in (4) will lead to vi = 0 and ui = wi . The opposite situation 235

will occur for wi < 0. 236

Note that in our redefinition of the problem we have 237

introduced new slack variables γi and those slack variables 238

associated with relevant features will be greater than zero after 239

the functional optimization. Thus, these constants need to be 240

introduced in the objective functional weighted with a trade- 241

off parameter C ′. The above minimization problem can be 242

directly solved in the primal over the variables ui , vi , b, γi , 243

and ξ(l), using standard QP algorithm. 244

We can now get some insight into the sparsity mechanism 245

that has been adopted. If irrelevant features are present in the 246

input representation space, most classification schemes would 247

still assign them a non zero weight wi due to the noise present 248

in the data. However, if a wi value greater than ε were assigned 249

in our scheme, γi would be strictly positive, increasing the 250

value of the functional. Thus, on the one hand irrelevant 251

features that do not significantly decrease the empirical error 252

term will simply be assigned weights smaller, in absolute 253

terms, than ε. On the other hand, components wi which are 254

necessary to define the SVM solution will have values larger 255

than ε. It is straightforward to use the values of slacks γi after 256

the optimization to check whether a variable has been removed 257

or incorporated into the classification model. 258

This new SVM with sparsity constraints performs feature 259

selection on the input variables, so we will hereafter refer to 260

it as sparse primal support vector machine (SP-SVM). 261

At first sight, one could think that the sparsity constraints in 262

(4) are equivalent to a 1-norm penalty term and thus algorithm 263

(4) is equivalent to Dr-SVM. Nevertheless, these constraints 264

have been introduced here through an ε-insensitive cost func- 265

tion. As we will analyze along this paper, this new formulation 266

provides two advantages: 1) the sparsity of the model can be 267

easily adjusted by the user through a ν SVM formulation, 268

and 2) extensions of this model to group feature selection and 269

multiclass problems are straightforwardly derived. 270

The computational cost of (4) is larger than that of 271

1-norm or Dr-SVMs due to the new constrains. However, an 272

efficient implementation of the problem, which exploits the 273

sparse formulation of these constrains, it results in a very 274

moderate computational increase. 275

Finally, it is important to point out that a major limitation 276

of problem (4), as well as 1-norm and Dr-SVM algorithms, is 277

their linear formulation. Note that their non linear extension 278

would provide a non linear boundary with a kernel selection 279

mechanism, instead of an automatic feature selection criterion. 280

C. 2-Norm ν-SP-SVM 281

In this section, we introduce a modification of the 282

SP-SVM formulation in (4) to automatically adjust the value 283

of ε, following the ν-SVM that was introduced in [36]. In 284

this formulation of the SVM, ε is traded off against model 285

complexity and slack variables through a constant ν ∈ (0, 1]. 286

Then, the optimization problem to solve is given by 287

min
d∑

i=1

(u2
i + v2

i ) + C
N

N∑

l=1

ξ(l) + C ′
[

νε + 1
d

d∑

i=1

γi

]

288
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s.t. y(l)

[ d∑

i=1

(ui − vi )x (l)
i + b

]

≥ 1 − ξ(l); ∀l

ξ(l) ≥ 0; ∀l

ui + vi ≤ ε + γi ; ∀i

ui , vi ≥ 0; ∀i

γi ≥ 0; ∀i

ε ≥ 0.

(5)289

As above, this optimization problem can be directly solved in290

the primal, with respect to variables ui , vi , b, γi , ξ(l), and ε.291

It is well known [36] that, when the standard ν support292

vector regression is applied resulting a non zero ε, ν is an293

upper bound on the fraction of errors and a lower bound on294

the fraction of SVs. Note that in (5), if the dual formulation of295

the problem was used and we let {βi }d
i=1 be the dual variables296

associated to the sparsity constraints, the following equalities297

had to be verified:298

d∑

i=1

βi ≤ C ′

d
ν299

0 ≤ βi ≤ C ′

d
300

what forces ν to be an upper bound of the number of dual301

variables βi taking a value of C ′/d , that is, ν is an upper302

bound over the number of slack variables γi different from 0.303

This leads to a useful result for the proposed ν-SP-SVM: ν304

is an upper bound on the fraction of components of w whose305

absolute value is less than ε. In other words, parameter ν can306

be used to control the sparsity of the solution, setting a priori307

the maximum number of features that can be selected by the308

2-norm ν-SP-SVM.309

D. 1-Norm ν-SP-SVM310

Using the 1-norm of w in the structural risk term of311

classical SVMs leads to LP problems, which have a reduced312

computational burden when compared to the QP formulation313

required for 2-norm SVMs. Similar benefits can be obtained314

for the SP-SVM proposed in the previous sections. Note that315

the constraints that were imposed in order to force sparsity316

do not affect the regularizer for w in any way, thus, in order317

to extend either (4) or (5) to the 1-norm case, it is sufficient318

to replace the structural risk term accordingly. For instance,319

for the ν-SP-SVM in its 1-norm version this leads to320

min
d∑

i=1

(ui + vi ) + C
N

N∑

l=1

ξ(l) + C ′
[

νε + 1
d

d∑

i=1

γi

]

s.t. y(l)

[
d∑

i=1

(ui − vi )x (l)
i + b

]

≥ 1 − ξ(l); ∀l

ξ(l) ≥ 0; ∀l

ui + vi ≤ ε + γi ; ∀i

ui , vi ≥ 0; ∀i

γi ≥ 0; ∀i

ε ≥ 0.

(6)321

Using LP optimization tools, this problem can be solved in 322

a more efficient way than with QP optimizers, obtaining the 323

values of ui , vi , and b that define the solution. As with the 324

2-norm formulation, the selected features will be those whose 325

corresponding slacks γi are greater than zero. 326

III. SP-SVM EXTENSIONS 327

In this section, we consider two different extensions of 328

our SVM with feature selection. First, we will consider the 329

joint selection (or removal) of features that are assigned to 330

predefined groups, second, we will study how the SP-SVM can 331

be extended to multi-class problems. During our derivations in 332

this section, we will only consider the ν-SP-SVM formulation 333

with 2-norm for the regularization term, although it would 334

be straightforward to apply similar extensions to the standard 335

SP-SVM or 1-norm ν-SP-SVM. 336

A. ν-SP-SVM with Feature Selection Over Predefined Groups 337

In some practical situations, variables can appear grouped 338

together in predefined sets that can be jointly relevant or 339

irrelevant. Then, the feature selection process must be applied 340

over these sets rather than over the isolated features. This 341

is for instance the case when encoding categorical variables 342

with binary words. Either all binary variables corresponding 343

to the same categorical feature should be selected or removed 344

together. 345

Let us assume that the input features are structured in G < d 346

disjoint groups, i.e., each input feature belongs to exactly 347

one group. Let us also denote by Sg the indexes of the g-th 348

group of variables, with g = 1, . . . , G. Then, we can modify 349

(5) by replacing the constraints over the absolute values of 350

each individual weight (i.e., ui + vi ≤ ε + γi ) by alternative 351

constraints each one consisting of the sum of absolute values 352

of all weights corresponding to the variables belonging to the 353

same group 354

min
d∑

i=1

(u2
i + v2

i ) + C
N

N∑

l=1

ξ(l) + C ′



νε + 1
G

G∑

g=1

γg





s.t. y(l)

[
d∑

i=1

(ui − vi )x (l)
i + b

]

≥ 1 − ξ(l); ∀l

ξ(l) ≥ 0; ∀l
∑

i∈Sg

ui + vi ≤ ε + γg; ∀g

ui , vi ≥ 0; ∀i

γg ≥ 0; ∀g

ε ≥ 0

(7) 355

where γg are slacks associated to each group and γg values 356

greater than 0 after optimization indicate, which groups have 357

been selected and included in the classification model. Now, 358

parameter ν can be used to a priori establish the maximum 359

number of groups that should be selected by the algorithm, 360

thus providing a control mechanism for adjusting the degree 361

of sparsity desired for the solution. 362
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Finally, it is important to point out some advantages of this363

formulation with regard to other reference methods.364

1) The standard formulation of 1-norm SVMs [26] cannot365

be used for feature selection in the setup that we have366

studied here. This is due to the fact that standard 1-norm367

SVM directly introduces term ‖w‖1 in the objective368

function to force sparsity, making it impossible to force369

all coefficients of the same group to shrink to zero at370

the same time.371

2) Forcing sparsity over groups with a group LASSO372

penalty term [34] precludes the standard SVM formu-373

lation, since it turns it out into a non linear convex374

optimization problem. Feature selection over groups375

only implies a modification of the introduced con-376

straints due to the fact that our approach forces spar-377

sity by means of additional constraints; therefore, stan-378

dard LP or QP optimizers can be used to solve the379

problem.380

3) Furthermore, if 1-norm were used to penalize weights381

coefficients in the functional of (7), not only groups382

selection would be implemented, but also sparsity within383

the groups would be favored.384

B. Multiclass ν-SP-SVM385

Here, we present the extension to multiclass classifica-386

tion problems by following the SVM multiclass approach387

from [37]. Let us consider a classification problem with388

K classes. Then, in this case we have y(l) ∈ {1, . . . , K }.389

Accordingly, the classification function for a linear classifier is390

given by391

ŷ = arg max
k=1,...,K

wT
k x + bk (8)392

i.e., K different outputs associated to each class are computed,393

and then the pattern is classified according to the largest394

output. The set of vectors and bias terms {wk, bk}, k =395

1, . . . , K , which define the classifier can be obtained as the396

solution to the following optimization problem:397

min
K∑

k=1

‖wk‖2 + C
N

N∑

l=1

ξ(l)

s.t.
[
wT

y(l)x(l) + by(l)

]
−

[
wT

mx(l) + bm
]

≥ 2 − ξ(l);
∀l; m *= y(l)

ξ (l) ≥ 0 ∀l.

(9)398

As with the binary SVM, the objective function consists of the399

sum of two terms that are related to the structural and empirical400

risks. The constraints for the minimization try to force that,401

for each training sample, the largest output of the system is402

obtained for the correct class. Otherwise, slack variable ξ(l)
403

will take a value equal to the distance between the largest404

output and the output associated to the actual class of the405

pattern [37].406

We can now introduce sparsity constraints to allow feature407

selection during the training of the multiclass SVM. A straight-408

forward extension of our strategy for the binary case would409

lead to 410

min
K∑

k=1

d∑

i=1

(u2
k,i + v2

k,i ) + C
N

N∑

l=1

ξ(l)

+ C ′
[

νε + 1
K d

K∑

k=1

d∑

i=1

γk,i

]

s.t.

[
d∑

i=1

(uy(l),i − vy(l),i )x (l)
i + by(l)

]

−
[

d∑

i=1

(um,i − vm,i )x (l)
i + bm

]

≥ 2 − ξ(l); ∀l; m *= y(l)

ξ (l) ≥ 0; ∀l

uk,i + vk,i ≤ ε + γk,i ; ∀i ; ∀k

uk,i , vk,i ≥ 0; ∀i ; ∀k

γk,i ≥ 0; ∀i ; ∀k

ε ≥ 0
(10) 411

where we have defined wk = uk − vk , and uk,i and vk,i are 412

the i -th components of uk and vk , respectively. 413

The above formulation would result in vectors wk with 414

different sparsity distributions. It should be noted, however, 415

that in order to perform a true feature selection, it would be 416

necessary that the irrelevant features are removed from all 417

wk at the same time. In other words, to discard a feature 418

xi from the final classification model, it is necessary that 419

such a feature is simultaneously ignored for the computation 420

of all K system outputs. In order to do so, we can use an 421

approach similar to that in Section III-A, including in a single 422

constraint all weights uk,i and vk,i associated to the same 423

feature. Proceeding in this way, (10) is changed into 424

min
K∑

k=1

d∑

i=1

(u2
k,i + v2

k,i ) + C
N

N∑

l=1

ξ(l)

+ C ′
[

νε + 1
d

d∑

i=1

γi

]

s.t.

[
d∑

i=1

(uy(l),i − vy(l),i )x (l)
i + by(l)

]

−
[ d∑

i=1

(um,i − vm,i )x (l)
i + bm

]

≥ 2 − ξ(l); ∀l; m *= y(l)

ξ (l) ≥ 0; ∀l
K∑

k=1

uk,i + vk,i ≤ ε + γi ; ∀i

uk,i , vk,i ≥ 0; ∀i ; ∀k

γi ≥ 0; ∀i

ε ≥ 0.
(11) 425

The above problem can be solved using QP optimizers. At 426

the solution, those features with an associated γi > 0 will be 427

selected, while all the rest are excluded from the classifier. 428
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TABLE I

CE RATES AND NUMBER OF FEATURES PROVIDED IN THE ORANGE DATA PROBLEM BY THE DIFFERENT METHODS UNDER STUDY: STANDARD 2 AND

1-NORM SVMS, Dr-SVM AND 2 AND 1-NORM ν-SP-SVMS. PARAMETERS q AND p INDICATE THE NUMBER OF RANDOM FEATURES INCLUDED IN THE

DATA SET AND THE TOTAL NUMBER OF FEATURES IN THE EXPANDED INPUT SPACE, RESPECTIVELY

q, p
Standard SVM

Dr-SVM
ν-SP-SVM

2-norm 1-norm 2-norm 1-norm

0, 5
CE 7.87(±2.15) 7.30(±1.18) 7.30(±1.08) 6.89(±1.08) 6.89(±1.07)

# feat. – 4.46(±0.93) 4.75(±0.63) 2.66(±0.94) 2.67(±0.91)

2, 14
CE 10.56(±2.50) 8.16(±1.18) 8.42(±1.39) 6.78(±1.16) 6.81(±1.15)

# feat. – 6.34(±3.40) 7.46(±3.30) 2.45(±1.28) 2.27(±0.88)

4, 27
CE 13.83(±2.88) 8.71(±1.39) 8.84(±1.60) 6.88(±1.28) 6.91(±1.36)

# feat. – 6.49(±4.65) 9.79(±3.26) 2.48(±1.35) 2.27(±0.87)

6, 44
CE 15.89(±3.01) 8.75(±1.34) 9.19(±1.61) 6.64(±1.23) 6.74(±1.34)

# feat. – 6.41(±4.93) 13.56(±3.79) 2.36(±1.65) 2.44(±1.47)

8, 65
CE 18.81(±2.92) 8.93(±1.49) 10.05(±2.07) 6.76(±1.37) 6.85(±1.47)

# feat. – 6.22(±4.21) 18.63(±5.02) 2.27(±1.21) 2.38(±1.42)

12, 119
CE 23.59(±2.83) 8.80(±1.16) 11.11(±2.94) 6.64(±1.24) 6.70(±1.22)

# feat. – 7.60(±3.04) 25.44(±8.41) 2.15(±1.27) 2.21(±1.32)

16, 189
CE 27.18(±2.65) 8.98(±1.40) 12.86(±3.54) 6.84(±1.30) 6.97(±1.34)

# feat. – 10.00(±4.65) 34.81(±8.49) 2.53(±2.10) 2.56(±1.80)

As before, parameter ν can be used to control the maximum429

number of features to be selected by the multiclass ν-SP-SVM.430

Similarly to what we explained for the group selection case,431

imposing sparsity through additional constraints is key in order432

to perform a common feature selection for all classification433

problems, and approaches relying on the introduction of434

1-norm penalties in the objective function would either fail to435

select the same features for all classification tasks, or preclude436

the use of standard LP or QP optimizers.437

IV. EXPERIMENTS438

In this section, we will test the performance of the proposed439

2 and 1-norm ν-SP-SVM algorithms. For this purpose, we will440

analyze both the provided classification error (CE) rate and the441

number of selected features compared to those of standard 2442

and 1-norm SVMs, as well as the Dr-SVM from [30].443

In all experiments, free SVM parameters have been opti-444

mized through a cross validation (CV) process. Parameter C445

of standard SVMs has been logarithmically swept with 10446

values from 10−2N to 106N, N being the number of training447

data. Parameter C of ν-SP-SVMs has been explored with 5448

values in the same range. For each value of C , C ′ has been449

swept in the set of values: {0.01C, 0.1C, C, 10C, 100C}. In450

order to evaluate the influence of ν in the number of selected451

features, we have considered the overall set of values ν = i/d ,452

1 ≤ i ≤ d , where d is the data dimension, when ν-SP-453

SVM is applied over a predefined feature group, parameter454

d is replaced by the number of groups G. As for Dr-SVM455

parameters, λ1 and λ2, they have been selected among the set456

of values {0.01, 0.1, 1, 10, 100}.457

In the following discussions, both results evaluating the458

evolution of the CE and the number of features when ν459

value is explored, and results achieved when ν value is cross460

validated, will be analyzed. Additionally, we will include the461

CE achieved by a new SVM retrained with only the subset of462

features selected by the ν-SP-SVM methods, in this way, we 463

will check whether the fact of pruning the weights associated 464

to irrelevant features degrades the final model performance. 465

The MOSEK library1 has been used as optimizer for all 466

algorithms under study. 467

A. Orange Data Model 468

As a first simulation problem, we have considered the 469

“orange data” model, which has been previously employed 470

in [29] to test the standard 1-norm SVM performance. In this 471

problem, two standard normal independent random variables 472

x1, x2 are generated. Negative class elements of data [x1, x2]T
473

satisfy inequality 4.5 ≤ x2
1 + x2

2 ≤ 8, whereas positive 474

elements are distributed along all space R2. Thus, negative 475

class surrounds almost all positive class patterns, like the 476

skin of an orange. Additionally, to check the feature selection 477

ability of the different algorithms, q random independent 478

standard Gaussian inputs have been included in the model. 479

Finally, this input space has been expanded with a second 480

degree polynomial function, i.e., {
√

2x j ,
√

2x j xk, x2
j , j, k = 481

1, 2, . . . , 2 + q} to create a new data set with p new input 482

features.2 483

In the experiments, the number of added random features, 484

q , has been fixed to 0, 2, 4, 6, 8, 12, and 16 generating 485

an expanded input space of 5, 14, 27, 44, 65, 119, and 189 486

features. To design the different SVM classifiers, independent 487

and balanced training, validation and test data sets have been 488

generated with 100, 500, and 1000 data, respectively, and each 489

simulation has been repeated 200 times. In this experiment, 490

1MOSEK ApS, Denmark. Available at http://www.mosek.com. The
MOSEK Optimization Tools version 6.0 (Revision 61). User’s manual and
reference, 2010.

2Note that the Bayes boundary is given by x2
1 +x2

2 = 4.5, therefore, from the
overall set of p new features, only terms x2

1 and x2
2 are useful.
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Fig. 1. Evolution of the averaged CE and the averaged number of selected features in ν-SP-SVM methods as a function of ν for orange data set. Dash-dotted
line shows the averaged CE of an SVM retrained with the features selected by ν-SP-SVM. Dotted vertical line marks the averaged cross-validated ν value.
(a) 2 norm ν-SP-SVM (q = 0). (b) 1 norm ν-SP-SVM (q = 0). (c) 2 norm µ-SP-SVM (q = 2). (d) 1 norm ν-SP-SVM (q = 2). (e) 2 norm ν-SP-SVM
(q = 4). (f) 1 norm ν-SP-SVM (q = 4). (g) 2 norm ν-SP-SVM (q = 8). (h) 1 norm ν-SP-SVM (q = 8). (i) 2 norm ν-SP-SVM (q = 12). (j) 1 norm
ν-SP-SVM (q = 12). (k) 2 norm ν-SP-SVM (q = 16). (l) 1 norm ν-SP-SVM (q = 16).

different SVM free parameters (C , C ′, and ν) have been491

optimized using the validation set.492

The MATLAB code that implements the proposed ν-SP-493

SVM algorithms and a demo, which allows us to replicate494

the results shown in this section can be downloaded from495

http://www.tsc.uc3m.es/ hmolina/paper_nu-SP-SVM/.496

Table I presents the averaged CE rates achieved by the dif- 497

ferent SVM methods under study and the number of features 498

in their models. These results show the following. 499

1) Classical SVM methods rise the CE rate and the number 500

of features in the model when q is increased, as it is 501

expected, standard 1-norm SVM and Dr-SVM provide 502
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sparser solutions than standard 2-norm SVM, even if503

some noisy features are included in the final model.504

Note that Dr-SVM, which penalizes with L1 and L2505

norms, retains more useless features than 1-norm SVM506

and, although its performance improves 2-norm SVM,507

it is not as accurate as 1-norm SVM.508

2) The proposed ν-SP-SVM approaches keep the classifi-509

cation error rates around 7%, independently of q and,510

in most cases, they only employ the useful features:511

note that the average number of selected features is512

always very close to 2. However, standard 2-norm SVM513

uses all original features and standard 1-norm SVM and514

Dr-SVM tend to include some useless features.515

3) When 2-norm and 1-norm ν-SP-SVM results are com-516

pared to each other, we do not observe relevant differ-517

ences, since they present similar CEs and similar number518

of features.519

Fig. 1 depicts the evolution of the averaged classification520

error and the averaged number of selected features as a521

function of parameter ν in the orange problem, for each value522

of ν, parameters C and C ′ have been adjusted by the validation523

process. A dotted vertical line indicates the working point524

of the results from Table I, when ν was also selected in525

the validation process. Additionally, this figure includes the526

averaged CE rate, which could be achieved by retraining a527

new standard SVM with the set of features selected by ν-528

SP-SVMs. This figure shows the following behaviors of the529

proposed methods.530

1) As it was expected, ν plays a crucial role to obtain a531

reduced number of features and an accurate solution.532

Fixing ν = 1, the provided results would be similar533

to the standard 1-norm SVM, however, reducing ν534

both performance improvements and reductions in the535

number of model parameters could be achieved, mainly536

if ν was close to 2/d .537

2) The role of ν as upper bound on the number of selected538

features is clearly seen. When ν is close to 1, the539

proposed ν-SP-SVM methods do not include all original540

features in their models, since most noisy features are541

removed. For instance, when q = 8, 12, or 16, there542

are 65, 119, and 189 original features, but ν-SP-SVMs543

employ less than 10, 12, or 14 features.544

3) Finally, it is important to point out that the model545

performance is not degraded by pruning the coefficients546

associated to irrelevant features (those whose slack vari-547

ables γi are zero). If we compare the solutions provided548

by ν-SP-SVM models with a new standard SVM trained549

with the selected set of features, slight performance550

improvements could be achieved; but, when any noisy551

feature is included in the model, the retrained SVM tends552

to overfit, whereas proposed ν-SP-SVM models provide553

accurate solutions.554

B. Benchmark Data Sets555

To test the performance of the proposed ν-SP-SVM clas-556

sifiers over real data sets, 8 benchmark binary classification557

problems have been selected from the universal communica-558

tions identifier (UCI) repository [38]: Abalone, Credit, Hand,559

TABLE II

CHARACTERISTICS OF THE BINARY DATA SETS: NUMBER OF FEATURES

AND NUMBER OF DATA BELONGING TO EACH CLASS IN TRAINING AND

TEST SETS

# Features # Train samples # Test samples
Problem

(d) (n1/n−1) (n1/n−1)

Abalone 8 1238/1269 843/827

Credit 15 215/268 92/115

Hand 62 1923/1900 906/891

Image 18 821/1027 169/293

Ionosphere 34 150/84 75/42

Pima 8 188/350 80/150

Spam 57 1218/1847 595/941

Wdbc 30 238/141 119/71

Image, Ionosphere, Pima, Spam, and Wisconsin Diagnostic 560

Breast Cancer (Wdbc). These problems have been chosen 561

because of their diversity in the number of data and dimen- 562

sions. The main characteristics of these problems are summa- 563

rized in Table II. To adjust the free parameters of the different 564

models, the parameter ranges described in the introduction of 565

the experimental section have been swept by applying a five- 566

fold CV process. 567

For this benchmark analysis we have also included, as 568

an additional reference method, the RFE method from [39]. 569

This algorithm carries out a feature selection process by 570

iteratively removing the feature with less weight in the SVM 571

solution. To fairly compare this method with proposed ν-SP- 572

SVM methods, we have implemented the linear version of 573

the RFE algorithm, additionally, the final feature subset of the 574

RFE method is selected with a CV process (note that the RFE 575

method obtains a different feature subset in each iteration) and 576

a new SVM has been trained using only the selected features. 577

Table III shows the results achieved by the different SVM 578

algorithms under study averaged over 50 runs with randomly 579

selected training/validation sets. As it can be observed, stan- 580

dard 1-norm SVM fails to remove irrelevant features in some 581

problems. For instance, in Abalone, Pima, and Spam almost 582

all original features are retained. Dr-SVM is worse than the 583

standard 1-norm SVM in this regard, and hardly removes 584

any feature in the considered problems (with the exception 585

of Credit). 586

In contrast, it is possible to perform effective feature 587

selection with the proposed ν-SP-SVMs without incurring in 588

any significant degradation in classification performance. In 589

particular, Table III shows a 25% model complexity reduction 590

in Image, Spam, and Wdbc when ν-SP-SVM, as opposed to 591

its standard counterpart, is used. This percentage is even better 592

for other problems, reaching 33.3% in Abalone and Hand and 593

50% in Ionosphere. 594

When we compare the proposed ν-SP-SVM approaches 595

with the RFE method, we observe that the automatic feature 596

selection carried out by our proposals is competitive with stan- 597

dard feature selection procedures which have to, first, select 598

the feature subset and, second, train the classifier. According to 599

Table III, results are quite similar for most problems. However, 600
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TABLE III

CE AND NUMBER OF SELECTED FEATURES PROVIDED BY STANDARD 2 AND 1-NORM SVMS, DR-SVM, THE RFE METHOD AND THE

2 AND 1-NORM ν-SP-SVMS IN THE BINARY CLASSIFICATION PROBLEMS

Standard SVM
Dr-SVM RFE

ν-SP-SVM
2-norm 1-norm 2-norm 1-norm

Abalone
CE 21.10(±0.89) 20.51(±0.11) 20.60(±0.14) 20.90(±0.58) 20.90(±0.37) 20.85(±0.34)

# feat. 8.00(±0.00) 7.96(±0.20) 8.00(±0.00) 4.34(±2.18) 5.36(±2.11) 5.80(±1.87)

Credit
CE 10.65(±0.10) 11.07(±0.13) 11.07(±0.13) 10.99(±0.21) 10.68(±0.15) 11.02(±0.19)

# feat. 15.00(±0.00) 1.16(±0.55) 2.08(±3.36) 4.32(±4.83) 7.16(±3.15) 1.36(±0.78)

H and
CE 9.17(±0.18) 9.24(±0.10) 9.20(±0.12) 9.43(±0.22) 9.15(±0.22) 9.29(±0.21)

# feat. 62.00(±0.00) 55.68(±4.20) 55.56(±4.08) 34.82(±6.04) 45.72(±4.96) 42.06(±5.67)

Image
CE 14.94(±0.95) 12.94(±0.18) 13.11(±0.23) 14.05(±1.07) 13.18(±0.43) 12.98(±0.19)

# feat. 18.00(±0.00) 13.96(±0.20) 17.24(±0.77) 16.06(±1.49) 14.38(±2.58) 13.52(±1.03)

Ionosphere
CE 11.93(±2.02) 11.73(±2.35) 12.38(±0.85) 13.76(±2.12) 11.79(±1.92) 12.27(±1.08)

# feat. 33.00(±0.00) 24.42(±7.47) 30.92(±3.29) 13.96(±5.13) 18.32(±6.55) 17.44(±3.90)

Pima
CE 23.63(±0.71) 23.29(±0.22) 23.35(±0.31) 23.78(±1.03) 23.36(±0.33) 23.00(±0.20)

# feat. 8.00(±0.00) 7.44(±0.50) 7.76(±0.43) 5.26(±2.04) 6.34(±1.14) 6.72(±1.05)

Spam
CE 6.88(±0.17) 7.15(±0.09) 7.03(±0.06) 6.78(±0.21) 6.99(±0.24) 7.09(±0.15)

# feat. 57.00(±0.00) 54.52(±1.79) 56.22(±0.79) 44.68(±3.03) 44.88(±3.21) 42.88(±3.28)

Wdbc
CE 2.97(±0.92) 4.31(±0.68) 3.19(±0.51) 3.43(±0.57) 3.28(±0.53) 3.77(±0.75)

# feat. 30.00(±0.00) 18.52(±3.25) 27.38(±3.17) 21.80(±3.59) 22.64(±2.27) 13.80(±2.70)

in the case of Image, both ν-SP-SVM proposals outperform the601

RFE method, and for Credit and Wdbc, the 1-norm ν-SP-SVM602

approach achieves the best accuracy-complexity trade-off. On603

the other hand, in problems such as Ionosphere or Hand, RFE604

presents a lower number of features, although this advantage605

is achieved at the expense of a CE increase.606

Figs. 2 and 3 show the evolution of the classification607

error and the number of selected features as a function of608

ν in the different data sets. A dashed line depicts the CE609

achieved by new standard SVMs retrained with the set of610

features selected by the proposed ν-SP-SVM models and a611

dotted vertical line points out the ν value selected in the612

validation process. These figures remark the clear trade-off613

between the model complexity and the final CE. In problems614

such as Credit, Image, Ionosphere, and Wdbc, when the615

1-norm ν-SP-SVM is applied, we could directly have fixed616

ν = 1, and most useless features would have been removed.617

However, an adequate selection of ν is crucial to obtain an618

accurate solution. The validation process has carried out a619

conservative selection of parameter ν, if, during the validation620

process, a slight performance degradation had been allowed, a621

additional features would have been removed, in fact, for all622

the problems under study but Credit, lower values of ν would623

have resulted in a lower number of features, while keeping624

similar error rates. Finally, it is important to note that the625

retraining procedure does not show any clear improvement,626

since although in some cases the final CE is slightly improved,627

in other cases it is similar or, even, slightly worse.628

C. High Dimensional Datasets629

The aim of this section is to test the performance of the630

proposed methods when we are dealing with a large number631

of input features. For this purpose, the Dexter dataset [40]632

has been considered. The goal of this problem is to classify 633

texts about “corporate acquisitions” into two categories. The 634

data set has 20 000 features, from which 9947 variables 635

correspond to a “bag-of-words” representation of several texts 636

and the remaining 10 053 features are noisy features added 637

to complicate the classification task. The different data set 638

partitions are balanced with 300 training data, 300 validation 639

patterns and 2000 test samples. 640

Due to the large number of input features, the CV of all 641

possible ν values in the ν-SP-SVM methods is not reasonable. 642

For this reason, we have followed this strategy. 643

1) We have first trained the proposed methods with ν = 1, 644

what provides a first approximation to the number of 645

useful features. In this case, 1-norm ν-SP-SVM achieves 646

a C E = 8.1% with only 150 features and 2-norm ν-SP- 647

SVM a C E = 6% with 3976 variables. 648

2) According to above number of selected features, the 649

maximum value of ν, worthy of being explored, has been 650

fixed. For instance, in 1-norm ν-SP-SVM this value has 651

been fixed to 0.01 (150 is less than the 1% of 20 000) 652

and in 2-norm ν-SP-SVM has been set to 0.2 (3976 is 653

close to the 20% of 20 000). 654

3) Then, a range of 10 linearly spaced ν values has been 655

defined. In particular, ranges {0.1%, 0.2%, . . . , 1%} and 656

{2%, 4%, . . . , 20%} have been explored by each ν-SP- 657

SVM model. 658

4) Finally, the optimum ν value has been selected as the 659

one with minimum validation error. 660

As a result of this procedure, 1-norm ν-SP-SVM has selected 661

a ν value of 0.004, achieving a C E = 7.75% with only 662

79 features, whereas 2-norm ν-SP-SVM has used a final ν 663

value of 0.1 providing a C E of 6.4% with 1487 features. 664

Reference methods, 2-norm, 1-norm, and Dr-SVMs, have 665
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Fig. 2. Evolution of CE and the number of selected features in ν-SP-SVMs as a function of ν for data sets: Abalone, Credit, Hand, Image Ionosphere,
and Pima. Dash-dotted line shows the CE of an SVM which has been retrained with the features selected by ν-SP-SVM model. Dotted vertical line marks
the cross-validated ν value. (a) 2-norm ν-SP-SVM Abalone. (b) 1-norm ν-SP-SVM Abalone. (c) 2-norm ν-SP-SVM Credit. (d) 1-norm ν-SP-SVM Credit.
(e) 2-norm ν-SP-SVM Hand. (f) 1-norm ν-SP-SVM Hand. (g) 2-norm ν-SP-SVM Image. (h) 1-norm ν-SP-SVM Image. (i) 2-norm ν-SP-SVM Ionosphere.
(j) 1-norm ν-SP-SVM Ionosphere. (k) 2-norm ν-SP-SVM Pima. (l) 1-norm ν-SP-SVM Pima.

presented C Es of 6.45%, 8.10% and 6.05%, respectively, and666

they have used 7142, 159, and 5750 features (see Table IV).667

These results show that 1-norm ν-SP-SVM outperforms668

standard 1-norm SVM by achieving a lower C E with half669

the number of features. Regarding 2-norm ν-SP-SVM and670

standard 2-norm SVM, they present similar error rates, but671

the latter is using 35% of the features instead of 7.43% used 672

by 2-norm ν-SP-SVM. Finally, Dr-SVM provides the lowest 673

C E , but the number of selected features (5750) is much higher 674

than the 1487 of the 2-norm ν-SP-SVM. 675

Besides, it is important to point out that 1-norm-based 676

algorithms (standard 1-norm SVM and 1-norm ν-SP-SVM) 677
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Fig. 3. Evolution of CE and the number of selected features in ν-SP-SVMs as a function of ν for data sets: Spam and Wdbc. Dash-dotted line shows the
CE of an SVM which has been retrained with the features selected by ν-SP-SVM model. Dotted vertical line marks the cross-validated ν value. (a) 2-norm
ν-SP-SVM Spam. (b) 1-norm ν-SP-SVM Spam. (c) 2-norm ν-SP-SVM Wdbc. (d) 1-norm ν-SP-SVM Wdbc.
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Fig. 4. CE and the number of selected features in ν-SP-SVM algorithms as a function of ν in Dexter data set. Dash-dotted line shows the CE of an SVM
which has been retrained with the features selected by ν-SP-SVM model. Dotted vertical line marks the cross-validated ν value. (a) 2-norm ν-SP-SVM.
(b) 1-norm ν-SP-SVM.
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Fig. 5. Evolution of CE and the number of selected features in ν-SP-SVMs as a function of ν for data sets: Spam and Wdbc. Dash-dotted line shows the
CE of an SVM which has been retrained with the features selected by ν-SP-SVM model. Dotted vertical line marks the cross-validated ν value. (a) 2-norm
ν-SP-SVM Spam. (b) 1-norm ν-SP-SVM Spam. (c) 2-norm ν-SP-SVM Wdbc. (d) 1-norm ν-SP-SVM Wdbc.

have selected a few number of features, prompting a per-678

formance degradation. This effect is due to the fact that the679

maximum number of features that can be selected is always680

upper bounded by the number of training data [30], [32]. For681

this reason, these approaches are working with few hundreds682

of features instead of selecting thousands as the 2-norm-based683

methods.684

Finally, Fig. 4 shows the evolution of the C E and the685

number of features in the model for the explored range of ν686

values. At first glance, it can be seen that, in the explored range687

of ν, values larger than 8% in 2-norm ν SP-SVM and 0.3% for688

1-norm ν SP-SVM are able to provide accurate results with a689

low number of features, even lower than 1-norm, 2-norm, and690

Dr-SVM methods. This figure also shows the C E achieved691

TABLE IV

CE AND NUMBER OF SELECTED FEATURES PROVIDED BY DIFFERENT

METHODS UNDER STUDY IN DEXTER DATA SETS

Standard SVM
Dr-SVM

ν-SP-SVM

2-norm 1-norm 2-norm 1-norm

Dexter
CE 6.45 8.10 6.05 6.4 7.75

# feat. 7142 159 5750 1487 79

when the SVM is retrained with the selected set of features, 692

suggesting that, in problems where the number of removed 693

features is high, the retraining process is able to provide an 694

additional advantage in terms of C E reduction. 695
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Fig. 6. Evolution of the CE and the number of selected features in ν-SP-SVM algorithms as a function of ν in multiclass problems. Dash-dotted line
shows the CE of an SVM which has been retrained with the features selected by ν-SP-SVM model and dotted vertical line marks the cross-validated ν value.
(a) 2-norm ν-SP-SVM Segmentation. (b) 1-norm ν-SP-SVM Segmentation. (c) 2-norm ν-SP-SVM Wave. (d) 1-norm ν-SP-SVM Wave.

TABLE V

PREDEFINED FEATURE GROUPS IN THE PROBLEM ADULT. CATEGORICAL

FEATURES ARE CODIFIED WITH DUMMY VARIABLES

#
Original feature

Categorical # of # of features
group / continous categories in each group

1 age continuous − 1
2 workclass categorical 8 3
3 fnlwgt continuous − 1
4 education categorical 16 4
5 education-num continuous − 1
6 marital-status categorical 7 3
7 occupation categorical 14 4
8 relationship categorical 6 3
9 race categorical 5 3

10 sex categorical 2 1
11 capital-gain continuous − 1
12 capital-loss continuous − 1
13 hours-per-week continuous − 1
14 native-country categorical 41 6

D. Selecting Feature Groups with ν-SP-SVM696

To analyze the performance of the proposed methods when697

features need to be selected according to predefined sets,698

instead of selecting isolated features, we have chosen the699

dataset Adult from [38]. The aim of this problem is to700

determine whether a person earns over 50K a year from701

several demographic characteristics from 14 original features,702

of which six are continuous and eight are categorical. Each703

categorical feature has been coded with dummy variables,704

using N indicatrix variables (0 or 1) to codify their 2N
705

possible values, in this way, each data is finally represented706

by 33 features belonging to 14 groups as it is described in707

Table V. Then, when a group selection approach is applied, the708

dummy variables representing to the same categorical feature709

will be either all selected or all removed from the final model.710

Note that only when all variables from a certain group are711

removed it is possible to skip the capture of the associated 712

categorical variable. 713

This binary data set has 30 162 training samples and 15 060 714

data to test the model. To train the different SVMs, we have 715

randomly selected a 10% of the original training data set, 716

therefore, 3016 data have been used to train the different meth- 717

ods. A 5-fold CV process has been applied to adjust the free 718

parameters of the different methods and their performances 719

have been evaluated over whole test data. The different SVMs 720

have been trained 100 times, with different randomly selected 721

training data, and their averaged results have been studied. 722

As result, standard 2 and 1-norm SVMs present an averaged 723

CE of 16.33(±0.3)% and 15.97(±0.2)% employing 14 and 724

13.9 ± 0.3 groups, respectively, whereas Dr-SVM presents 725

the same performance (both in C E and number of selected 726

features) as 1-norm SVMs. This result is a consequence of 727

standard 2-norm SVM having selected all groups and 1-norm 728

SVM and Dr-SVM having seldom discarded group 10, this 729

group is associated to original feature sex and codified with 730

only one dummy variable. 731

To compare these results with the proposed methods, Fig. 5 732

depicts the values of the CE and the number of selected 733

groups as a function of parameter ν in ν-SP-SVMs. It can 734

be seen that if ν is cross validated (see dotted vertical line), 735

ν-SP-SVMs present CE close to 16% with 12 groups, since 736

groups 3 and 10 are usually removed. However, if we had 737

wanted to select a lower number of groups, ν could have 738

been fixed around 0.3, keeping the CE lower than 17% and 739

selecting just the 4 most relevant groups: Groups associated to 740

original features education-num, relationship, and capital-gain 741

are always chosen and additionally, either group 4 (education) 742

or 7 (occupation) is included in the model. Thus, this example 743

illustrates the convenience of the ν formulation of SP-SVM for 744

allowing a more flexible selection of the number of variables 745

to be incorporated in the model. 746

Again, a retraining process (dash-dotted line in Fig. 5) 747

provides a small improvement, since for most ν values, 748

ν-SP-SVMs, and retrained SVMs achieve similar CEs. 749
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TABLE VI

CE AND NUMBER OF SELECTED FEATURES PROVIDED BY

DIFFERENT METHODS UNDER STUDY IN MULTICLASS DATA SETS

Classical SVMs
Dr-SVM

Sparse SVMs
2-norm 1-norm 2-norm 1-norm

Segmentation
CE 9.05 9.00 8.24 8.43 8.52

# feat. 18.00 13.00 15 13.00 10.00

Wave
CE 13.87 14.33 14.20 13.87 14.07

# feat. 40.00 38.00 30.00 17.00 15.00

E. Multiclass Problems750

In this section, we will test the performance of the751

ν-SP-SVMs over multiclass datasets Segmentation and Wave752

from the UCI repository [38]. The purpose of Segmentation753

problem is to classify hand-segmented images represented by754

19 features in 7 categories: brickface, sky, foliage, cement,755

window, path, and grass. The data set has 210 and 2100756

training and test data, respectively. Wave problem consists of757

3 classes of waves to be identified from 40 features, whose758

latter 19 ones are all noise, the data set has 3500 training759

samples and 1500 test data. As in the previous sections, the760

free parameters of the different methods have been adjusted761

with a 5 fold CV process.762

To train the different classifiers, proposed ν-SP-SVM meth-763

ods have solved problem (10), either in its 2-norm or in its764

1-norm version, whereas reference methods have directly used765

the multiclass problem defined by (9) with their corresponding766

penalization terms. Table VI presents the results achieved by767

both standard and proposed SVMs. As it can be observed,768

ν-SP-SVMs achieve lower error rates with lower number of769

features. In Segmentation, CE is reduced in a 0.5%, with770

respect to 1-norm and 2-norm SVMs, using only 13 and771

10 features, whereas Dr-SVM achieves a slightly lower C E772

using 15 features. In Wave, the advantages of the proposed773

SVM classifiers are clearer, since the number of features in774

the model is half the number for the reference methods and775

the CE is similar in the 2-norm models, slightly reduced in776

the 1-norm methods and Dr-SVMs are outperformed by both777

ν-SP-SVMs.778

When the evolution of CE and the number of features are779

analyzed as a function of ν (see Fig. 6), the trade-off between780

these parameters is again observed. Besides, retrained SVMs781

provide a significant CE reduction in Segmentation problem.782

V. CONCLUSION783

This paper introduced a method for feature selection based784

on a new formulation of linear SVMs that includes constraints785

additional to the classical ones. These constraints drop the786

weights associated to those features that are likely to be787

irrelevant. In order to predefine an upper bound for the number788

of relevant features, a ν-SVM formulation has been used,789

where ν is a parameter that indicates the fraction of features790

to be considered. This parameter is swept in an efficient791

way in order to find the optimal number of features over792

a validation set of data. This paper presented two versions793

of the formulation, the first one being an SVM with a 2- 794

norm regularization term. The second one uses a 1-norm 795

regularization, that has a reduced computational burden with 796

respect to the first one. Besides, this new SVM formulation 797

allows us to easily apply the feature selection process over 798

predefined feature sets. This, in turn, is useful to introduce a 799

straightforward, yet efficient way to extend the algorithms to 800

multiclass problems. 801

Experiments showed that the introduced methods present 802

advantages not only in terms of CE, but also in the ability 803

of reducing the model complexity by adequately removing 804

features during the training process, not as a preprocessing 805

stage. Also, these experiments showed that the algorithms are 806

efficient when applied to the task of feature group selection 807

and to multiclass problems. 808

Future research includes nonlinear versions of the algorithm 809

in order to take into account the nonlinear relationships 810

between features. Applications can also include extensions to 811

regression problems as well as linear model selection for signal 812

processing tasks, such as filter design or plant modeling, in 813

situations where optimal models are known to be sparse. 814
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Support Vector Machines with Constraints for
Sparsity in the Primal Parameters
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Harold Molina-Bulla, Member, IEEE

Abstract— This paper introduces a new support vector1

machine (SVM) formulation to obtain sparse solutions in the2

primal SVM parameters, providing a new method for feature3

selection based on SVMs. This new approach includes additional4

constraints to the classical ones that drop the weights associated5

to those features that are likely to be irrelevant. A ν-SVM6

formulation has been used, where ν indicates the fraction of7

features to be considered. This paper presents two versions of8

the proposed sparse classifier, a 2-norm SVM and a 1-norm SVM,9

the latter having a reduced computational burden with respect to10

the first one. Additionally, an explanation is provided about how11

the presented approach can be readily extended to multiclass12

classification or to problems where groups of features, rather13

than isolated features, need to be selected. The algorithms have14

been tested in a variety of synthetic and real data sets and they15

have been compared against other state of the art SVM-based16

linear feature selection methods, such as 1-norm SVM and doubly17

regularized SVM. The results show the good feature selection18

ability of the approaches.19

Index Terms— Feature group selection, feature selection,20

margin maximization, multiclass classification, support vector21

machines.22

I. INTRODUCTION23

SUPPORT vector machines (SVMs) [1], [2] are considered24

the state-of-art in machine learning due to their well25

known good performance in a wide range of applications26

[3]–[5]. The SVM criterion minimizes a loss term, called hinge27

loss, plus an additional quadratic penalization term which28

regularizes the solution [6]. This hinge loss minimization29

allows SVMs to approximate Bayes’ rule without estimating30

the conditional class probability [7] and makes it converge to31

a maximum margin solution [8], thus endowing SVMs with32

good generalization properties.33

In spite of the generally good performance of SVMs, in34

many practical situations, useless, redundant, or noisy features35

can degrade the attained solution. The reason for this is that36

Manuscript received June 22, 2010; revised April 11, 2011; accepted XXXX
XX, XXXX.EQ:1 This work was supported in part by the Ministry of Science and
Innovation (Spanish Goverment), under Grant TEC2008-02473.

V. Gómez-Verdejo, M. Martínez-Ramón, J. Arenas-García, and
H. Molina-Bulla are with the Department of Signal Theory and
Communications, Universidad Carlos III de Madrid, Madrid 28911, Spain
(e-mail: vanessa@tsc.uc3m.es; manel@tsc.uc3m.es; jarenas@tsc.uc3m.es;
hmolina@tsc.uc3m.es).

M. Lázaro-Gredilla is with the Department of Communication Engi-
neering, Universidad de Cantabria, Santander 39005, Spain (e-mail:
miguellg@gtas.dicom.unican.es).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2011.2148727

the SVM solution is based on a combination of all input 37

features, including the irrelevant ones. As it is stated in the 38

bet-on-sparsity principle [9], this situation is undesired and it 39

would be preferable to obtain a solution consisting only of the 40

relevant features. That way, more accurate and interpretable 41

solutions can be achieved. 42

To achieve this goal, a feature selection process [10], [11] is 43

usually applied. Classical feature selection techniques, such as 44

filtering [12] or wrapping [13], [14] approaches, are used as an 45

independent preprocessing step before the training of the final 46

classification (or regression) machine. More recent feature 47

selection methods combine the feature selection process with 48

the final predictor training. For instance, in [15]–[17] an 49

objective function that combines an accuracy prediction term 50

with a term associated to the sparsity in the number of selected 51

variables is employed. In [18]–[20] the SVM prediction output 52

is considered as a linear combination of kernel functions and 53

then, the prediction accuracy is evaluated as a function of the 54

used and discarded features. This method, known as recursive 55

feature elimination (RFE), has been widely employed for SVM 56

classification, however, recent works [21] have shown that 57

RFE is not consistent with maximum margin solutions. 58

In contrast to the approaches that include an explicit fea- 59

ture selection strategy (either independent or combined with 60

the classification step), classifiers directly providing sparse 61

solutions are usually preferred. Following this point of view, 62

the LASSO method was proposed in [15]. LASSO includes a 63

1-norm regularization term in the optimization problem. Since 64

this norm has a singularity at the origin, some coefficients of 65

the solution vector are shrunk to zero, what provides sparse 66

solutions. Since then, many researchers have focused their 67

work on minimizing 1-norm penalized functions [22]–[24]. 68

In fact [25] points out the need and usefulness of linear sparse 69

solutions in problems like functional magnetic resonance 70

imaging. 71

In [26], the classical SVM formulation is modified by 72

replacing the quadratic penalization term with a 1-norm 73

penalty, what leads to solutions with sparse coefficients. 74

Although this SVM formulation can only be used for feature 75

selection in linear classification problems, this approach has 76

nevertheless been successfully used in a large number of appli- 77

cations, such as computational biology [27], [28], drug-design 78

[17] or gene microarrays classification [29], among others. 79

Although 1-norm SVMs retain most of the desired prop- 80

erties of classical SVMs, such as margin maximization, they 81

may fail to provide good solutions in certain situations. As it is 82

1045–9227/$26.00 © 2011 IEEE
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illustrated in [9], when most of the input features are relevant83

for the classification task at hand, classical 2-norm SVMs84

usually outperform their 1-norm counterparts. Furthermore, as85

it is pointed out in [30] and [31], the 1-norm SVM presents two86

additional limitations: first, when there are highly correlated87

variables, it usually removes some of them, and, second, the88

maximum number of selected features is limited by the number89

of available training data. Trying to overcome these draw-90

backs, elastic nets [32] and their particularization to SVMs91

by means of the doubly regularized support vector machine92

(Dr-SVM) [30], [31] are proposed, this new approach gener-93

alizes the LASSO and 1-norm SVM methods by keeping the94

2-norm regularization term and including an additional 1-norm95

penalty term to force sparsity. Despite common improved96

performance of Dr-SVM, both 1-norm and Dr-SVMs are not97

suitable methods when the underlying model is truly sparse,98

since they are not able to remove all unnecessary variables99

from the final classifier, this problem was already remarked100

for 1-norm SVMs in [33] and, in the experimental section of101

this paper, we will illustrate it for Dr-SVM.102

An additional limitation of 1-norm SVM and Dr-SVM, is103

that they are not well suited to multiclass classification or104

to problems where features have to be selected or removed105

using predefined groups. One possible solution could consist106

in adding a group LASSO [34] or an ∞-norm [35] penaliza-107

tion term into the SVM formulation. However, both options108

result in a more complex SVM formulation, which cannot be109

solved with standard linear programming (LP) or quadratic110

programming (QP) solvers.111

In this paper, a new SVM formulation for the linear case112

is presented that directly forces sparse solutions. Rather than113

modifying the objective function, additional constraints are114

included in the minimization task in order to identify irrelevant115

features and to drop their associated weights to values lower116

than a small parameter ε. This constant can be adjusted during117

the optimization problem resolution by predefining the number118

of relevant features to be kept in the final solution using a119

ν-SVM formulation [36]. We will show that these additional120

constraints can be incorporated to force sparsity in both121

2-norm and 1-norm SVM formulations. Our approach allows122

to overcome the limitations of 1-norm SVMs and Dr-SVMs123

in different ways. First, by properly adjusting parameter ν,124

the algorithm is able to remove all irrelevant features from125

the final model. Second, the proposed formulation can be126

applied to the selection of isolated features or predefined127

feature groups where needed. Finally, as it will be shown in128

the experiments section, more accurate solutions are usually129

achieved, particularly, when using the new constraints together130

with the 2-norm SVM.131

The rest of this paper is organized as follows. In the next132

section, we introduce our approach to force feature selection133

in SVM classifiers, explaining how it can be applied both to134

2-norm and 1-norm formulations. Section III presents some135

extensions of the method to address the selection of features136

in predefined groups of variables, as well as for multiclass137

classification problems. Section IV presents extensive simu-138

lation work to illustrate the performance of our approach,139

and its advantages with respect to previous proposals for140

feature selection in SVMs. Finally, Section V presents the 141

main conclusion of our work, and identifies some lines for 142

future research. 143

II. SVM WITH EXPLICIT CONSTRAINTS FOR 144

FEATURE SELECTION 145

A. Problem Overview 146

In this paper, we consider classification problems where 147

the representation of the input data contains some features, 148

which are irrelevant for the task at hand. This may happen 149

as a consequence of redundancy between the input variables 150

or, simply, because some of the input features do not carry 151

any valuable information for the classification. In a standard 152

machine learning setup, we are given a set of N training 153

labeled data, S = {x(l), y(l)}, l = 1, . . . , N , where x(l) ∈ 154

#d are the input vectors and y(l) are used to encode class 155

membership, from which we have to learn both the subset of 156

relevant input variables and the classification function itself. 157

Linear classifiers obtain their outputs according to a thresh- 158

olded version of the estimator 159

ŷ = wT x + b (1) 160

where ŷ is the output of the classifier for input vector x, 161

w is the vector that defines the classifier, and b is a bias 162

term. For the SVM case, the Representer’s Theorem [1], [2] 163

states that the solution vector will lie in the subspace spanned 164

by all training vectors {x(l)}. When irrelevant features are 165

present in the data we can carry out a pre-processing stage to 166

select the most informative variables or, alternatively, discard 167

the variables xi whose associated weight wi is exactly zero 168

after the optimization of the classifier. However, since noise is 169

normally present in the data, none of the components of w will 170

be exactly zero unless sparsity is included as an optimization 171

criterion during the training of the classifier. 172

A standard way to impose sparsity in w is to include 173

a regularization term in the cost function, based on the 174

1-norm of w, i.e., ‖w‖1 = ∑
i |wi |. This regularizer presents 175

singularity points whenever any of the components of w is 176

zero, what tends to nullify some of the solution weights, thus 177

favoring sparse solutions. However, this mechanism does not 178

necessarily imply that all weight components associated to 179

irrelevant variables will become zero [33]. 180

Rather than modifying the structural risk term in the SVM 181

functional, in this paper, we propose a new approach to impose 182

sparsity in the solution by introducing a set of additional 183

constraints for the optimization problem. We will see that 184

our method is able to automatically identify all irrelevant 185

features, thus constituting an effective mechanism for imple- 186

menting SVMs that incorporate a feature selection approach. 187

Furthermore, since the 2-norm regularization term can still be 188

used, this usually results in a better performance when the true 189

underlying solution is non sparse. 190

B. 2-Norm SVMs with Sparsity Constraints 191

Classical SVMs are based on the minimization of a func- 192

tional that includes two terms. The first term is the squared 193

norm of the weight vector w, which is inversely proportional 194
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to the margin of classification [1], thus, this term is related195

to the structural risk of the classifier and to its generalization196

capabilities. The second term in the objective functional, which197

is known as the empirical risk term, is a sum of errors over198

the training data. In other words, the linear SVM problem can199

be stated as200

min ‖w‖2 + C
N

N∑

l=1

ξ(l)

s.t. y(l) (
wT x(l) + b

)
≥ 1 − ξ(l); ∀l

ξ(l) ≥ 0; ∀l

(2)201

where slack variables ξ(l) are introduced to allow some of202

the training patterns to be misclassified or to lie inside the203

classifier margin, and where C is a constant that controls the204

trade-off between the structural and empirical risk terms.205

As it is well known, this optimization method provides a206

sparse solution in the sense that w is a linear combination of207

only a subset of the training data [the so-called support vectors208

(SVs)]. However, if feature selection is pursued during the209

optimization, a solution sparse in the parameters w is needed.210

In order to obtain such a solution, we will introduce some211

additional constraints in the optimization problem.212

We start by rewriting each of the weight components,213

wi , i = 1, . . . , d , as wi = ui − vi , with ui , vi ≥ 0. As214

we will explain later, our optimization problem will implicitly215

enforce that at least one of the two terms in the subtraction,216

ui or vi , is zero, depending on whether the optimal weight is217

positive (ui > 0 and vi = 0), negative (ui = 0 and vi > 0) or218

zero (ui = vi = 0). Therefore, the square norm of the weight219

vector is given, in terms of these new variables, by220

‖w‖2
2 =

d∑

i=1

u2
i + v2

i . (3)221

Furthermore, in order to obtain a sparse solution in w,222

we introduce some additional constraints to upper bound the223

absolute value of weight components by a small constant ε,224

i.e., |wi | = ui +vi < ε. Introducing (3) and the new constraints225

into (2), we get the following modified SVM formulation:226

min
d∑

i=1

(u2
i + v2

i ) + C
N

N∑

l=1

ξ(l) + C ′

d

d∑

i=1

γi

s.t. y(l)

[
d∑

i=1

(ui − vi )x (l)
i + b

]

≥ 1 − ξ(l); ∀l

ξ(l) ≥ 0; ∀l

ui + vi ≤ ε + γi ; ∀i

ui , vi ≥ 0; ∀i

γi ≥ 0; ∀i.

(4)227

Although the above optimization problem has not explicitly228

included, the constraint uivi = 0, (4) is indirectly forcing that229

either ui or vi is equal to 0. Note that among all possible pairs230

of values (ui , vi ) that are able to provide a certain value wi ,231

the pair which minimizes
∑d

i=1(u
2
i + v2

i ) has to fix either ui232

or vi to 0, for instance, for positive wi and according to its233

definition in terms of ui and vi , minimization of the functional234

in (4) will lead to vi = 0 and ui = wi . The opposite situation 235

will occur for wi < 0. 236

Note that in our redefinition of the problem we have 237

introduced new slack variables γi and those slack variables 238

associated with relevant features will be greater than zero after 239

the functional optimization. Thus, these constants need to be 240

introduced in the objective functional weighted with a trade- 241

off parameter C ′. The above minimization problem can be 242

directly solved in the primal over the variables ui , vi , b, γi , 243

and ξ(l), using standard QP algorithm. 244

We can now get some insight into the sparsity mechanism 245

that has been adopted. If irrelevant features are present in the 246

input representation space, most classification schemes would 247

still assign them a non zero weight wi due to the noise present 248

in the data. However, if a wi value greater than ε were assigned 249

in our scheme, γi would be strictly positive, increasing the 250

value of the functional. Thus, on the one hand irrelevant 251

features that do not significantly decrease the empirical error 252

term will simply be assigned weights smaller, in absolute 253

terms, than ε. On the other hand, components wi which are 254

necessary to define the SVM solution will have values larger 255

than ε. It is straightforward to use the values of slacks γi after 256

the optimization to check whether a variable has been removed 257

or incorporated into the classification model. 258

This new SVM with sparsity constraints performs feature 259

selection on the input variables, so we will hereafter refer to 260

it as sparse primal support vector machine (SP-SVM). 261

At first sight, one could think that the sparsity constraints in 262

(4) are equivalent to a 1-norm penalty term and thus algorithm 263

(4) is equivalent to Dr-SVM. Nevertheless, these constraints 264

have been introduced here through an ε-insensitive cost func- 265

tion. As we will analyze along this paper, this new formulation 266

provides two advantages: 1) the sparsity of the model can be 267

easily adjusted by the user through a ν SVM formulation, 268

and 2) extensions of this model to group feature selection and 269

multiclass problems are straightforwardly derived. 270

The computational cost of (4) is larger than that of 271

1-norm or Dr-SVMs due to the new constrains. However, an 272

efficient implementation of the problem, which exploits the 273

sparse formulation of these constrains, it results in a very 274

moderate computational increase. 275

Finally, it is important to point out that a major limitation 276

of problem (4), as well as 1-norm and Dr-SVM algorithms, is 277

their linear formulation. Note that their non linear extension 278

would provide a non linear boundary with a kernel selection 279

mechanism, instead of an automatic feature selection criterion. 280

C. 2-Norm ν-SP-SVM 281

In this section, we introduce a modification of the 282

SP-SVM formulation in (4) to automatically adjust the value 283

of ε, following the ν-SVM that was introduced in [36]. In 284

this formulation of the SVM, ε is traded off against model 285

complexity and slack variables through a constant ν ∈ (0, 1]. 286

Then, the optimization problem to solve is given by 287

min
d∑

i=1

(u2
i + v2

i ) + C
N

N∑

l=1

ξ(l) + C ′
[

νε + 1
d

d∑

i=1

γi

]

288
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s.t. y(l)

[ d∑

i=1

(ui − vi )x (l)
i + b

]

≥ 1 − ξ(l); ∀l

ξ(l) ≥ 0; ∀l

ui + vi ≤ ε + γi ; ∀i

ui , vi ≥ 0; ∀i

γi ≥ 0; ∀i

ε ≥ 0.

(5)289

As above, this optimization problem can be directly solved in290

the primal, with respect to variables ui , vi , b, γi , ξ(l), and ε.291

It is well known [36] that, when the standard ν support292

vector regression is applied resulting a non zero ε, ν is an293

upper bound on the fraction of errors and a lower bound on294

the fraction of SVs. Note that in (5), if the dual formulation of295

the problem was used and we let {βi }d
i=1 be the dual variables296

associated to the sparsity constraints, the following equalities297

had to be verified:298

d∑

i=1

βi ≤ C ′

d
ν299

0 ≤ βi ≤ C ′

d
300

what forces ν to be an upper bound of the number of dual301

variables βi taking a value of C ′/d , that is, ν is an upper302

bound over the number of slack variables γi different from 0.303

This leads to a useful result for the proposed ν-SP-SVM: ν304

is an upper bound on the fraction of components of w whose305

absolute value is less than ε. In other words, parameter ν can306

be used to control the sparsity of the solution, setting a priori307

the maximum number of features that can be selected by the308

2-norm ν-SP-SVM.309

D. 1-Norm ν-SP-SVM310

Using the 1-norm of w in the structural risk term of311

classical SVMs leads to LP problems, which have a reduced312

computational burden when compared to the QP formulation313

required for 2-norm SVMs. Similar benefits can be obtained314

for the SP-SVM proposed in the previous sections. Note that315

the constraints that were imposed in order to force sparsity316

do not affect the regularizer for w in any way, thus, in order317

to extend either (4) or (5) to the 1-norm case, it is sufficient318

to replace the structural risk term accordingly. For instance,319

for the ν-SP-SVM in its 1-norm version this leads to320

min
d∑

i=1

(ui + vi ) + C
N

N∑

l=1

ξ(l) + C ′
[

νε + 1
d

d∑

i=1

γi

]

s.t. y(l)

[
d∑

i=1

(ui − vi )x (l)
i + b

]

≥ 1 − ξ(l); ∀l

ξ(l) ≥ 0; ∀l

ui + vi ≤ ε + γi ; ∀i

ui , vi ≥ 0; ∀i

γi ≥ 0; ∀i

ε ≥ 0.

(6)321

Using LP optimization tools, this problem can be solved in 322

a more efficient way than with QP optimizers, obtaining the 323

values of ui , vi , and b that define the solution. As with the 324

2-norm formulation, the selected features will be those whose 325

corresponding slacks γi are greater than zero. 326

III. SP-SVM EXTENSIONS 327

In this section, we consider two different extensions of 328

our SVM with feature selection. First, we will consider the 329

joint selection (or removal) of features that are assigned to 330

predefined groups, second, we will study how the SP-SVM can 331

be extended to multi-class problems. During our derivations in 332

this section, we will only consider the ν-SP-SVM formulation 333

with 2-norm for the regularization term, although it would 334

be straightforward to apply similar extensions to the standard 335

SP-SVM or 1-norm ν-SP-SVM. 336

A. ν-SP-SVM with Feature Selection Over Predefined Groups 337

In some practical situations, variables can appear grouped 338

together in predefined sets that can be jointly relevant or 339

irrelevant. Then, the feature selection process must be applied 340

over these sets rather than over the isolated features. This 341

is for instance the case when encoding categorical variables 342

with binary words. Either all binary variables corresponding 343

to the same categorical feature should be selected or removed 344

together. 345

Let us assume that the input features are structured in G < d 346

disjoint groups, i.e., each input feature belongs to exactly 347

one group. Let us also denote by Sg the indexes of the g-th 348

group of variables, with g = 1, . . . , G. Then, we can modify 349

(5) by replacing the constraints over the absolute values of 350

each individual weight (i.e., ui + vi ≤ ε + γi ) by alternative 351

constraints each one consisting of the sum of absolute values 352

of all weights corresponding to the variables belonging to the 353

same group 354

min
d∑

i=1

(u2
i + v2

i ) + C
N

N∑

l=1

ξ(l) + C ′



νε + 1
G

G∑

g=1

γg





s.t. y(l)

[
d∑

i=1

(ui − vi )x (l)
i + b

]

≥ 1 − ξ(l); ∀l

ξ(l) ≥ 0; ∀l
∑

i∈Sg

ui + vi ≤ ε + γg; ∀g

ui , vi ≥ 0; ∀i

γg ≥ 0; ∀g

ε ≥ 0

(7) 355

where γg are slacks associated to each group and γg values 356

greater than 0 after optimization indicate, which groups have 357

been selected and included in the classification model. Now, 358

parameter ν can be used to a priori establish the maximum 359

number of groups that should be selected by the algorithm, 360

thus providing a control mechanism for adjusting the degree 361

of sparsity desired for the solution. 362
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Finally, it is important to point out some advantages of this363

formulation with regard to other reference methods.364

1) The standard formulation of 1-norm SVMs [26] cannot365

be used for feature selection in the setup that we have366

studied here. This is due to the fact that standard 1-norm367

SVM directly introduces term ‖w‖1 in the objective368

function to force sparsity, making it impossible to force369

all coefficients of the same group to shrink to zero at370

the same time.371

2) Forcing sparsity over groups with a group LASSO372

penalty term [34] precludes the standard SVM formu-373

lation, since it turns it out into a non linear convex374

optimization problem. Feature selection over groups375

only implies a modification of the introduced con-376

straints due to the fact that our approach forces spar-377

sity by means of additional constraints; therefore, stan-378

dard LP or QP optimizers can be used to solve the379

problem.380

3) Furthermore, if 1-norm were used to penalize weights381

coefficients in the functional of (7), not only groups382

selection would be implemented, but also sparsity within383

the groups would be favored.384

B. Multiclass ν-SP-SVM385

Here, we present the extension to multiclass classifica-386

tion problems by following the SVM multiclass approach387

from [37]. Let us consider a classification problem with388

K classes. Then, in this case we have y(l) ∈ {1, . . . , K }.389

Accordingly, the classification function for a linear classifier is390

given by391

ŷ = arg max
k=1,...,K

wT
k x + bk (8)392

i.e., K different outputs associated to each class are computed,393

and then the pattern is classified according to the largest394

output. The set of vectors and bias terms {wk, bk}, k =395

1, . . . , K , which define the classifier can be obtained as the396

solution to the following optimization problem:397

min
K∑

k=1

‖wk‖2 + C
N

N∑

l=1

ξ(l)

s.t.
[
wT

y(l)x(l) + by(l)

]
−

[
wT

mx(l) + bm
]

≥ 2 − ξ(l);
∀l; m *= y(l)

ξ (l) ≥ 0 ∀l.

(9)398

As with the binary SVM, the objective function consists of the399

sum of two terms that are related to the structural and empirical400

risks. The constraints for the minimization try to force that,401

for each training sample, the largest output of the system is402

obtained for the correct class. Otherwise, slack variable ξ(l)
403

will take a value equal to the distance between the largest404

output and the output associated to the actual class of the405

pattern [37].406

We can now introduce sparsity constraints to allow feature407

selection during the training of the multiclass SVM. A straight-408

forward extension of our strategy for the binary case would409

lead to 410

min
K∑

k=1

d∑

i=1

(u2
k,i + v2

k,i ) + C
N

N∑

l=1

ξ(l)

+ C ′
[

νε + 1
K d

K∑

k=1

d∑

i=1

γk,i

]

s.t.

[
d∑

i=1

(uy(l),i − vy(l),i )x (l)
i + by(l)

]

−
[

d∑

i=1

(um,i − vm,i )x (l)
i + bm

]

≥ 2 − ξ(l); ∀l; m *= y(l)

ξ (l) ≥ 0; ∀l

uk,i + vk,i ≤ ε + γk,i ; ∀i ; ∀k

uk,i , vk,i ≥ 0; ∀i ; ∀k

γk,i ≥ 0; ∀i ; ∀k

ε ≥ 0
(10) 411

where we have defined wk = uk − vk , and uk,i and vk,i are 412

the i -th components of uk and vk , respectively. 413

The above formulation would result in vectors wk with 414

different sparsity distributions. It should be noted, however, 415

that in order to perform a true feature selection, it would be 416

necessary that the irrelevant features are removed from all 417

wk at the same time. In other words, to discard a feature 418

xi from the final classification model, it is necessary that 419

such a feature is simultaneously ignored for the computation 420

of all K system outputs. In order to do so, we can use an 421

approach similar to that in Section III-A, including in a single 422

constraint all weights uk,i and vk,i associated to the same 423

feature. Proceeding in this way, (10) is changed into 424

min
K∑

k=1

d∑

i=1

(u2
k,i + v2

k,i ) + C
N

N∑

l=1

ξ(l)

+ C ′
[

νε + 1
d

d∑

i=1

γi

]

s.t.

[
d∑

i=1

(uy(l),i − vy(l),i )x (l)
i + by(l)

]

−
[ d∑

i=1

(um,i − vm,i )x (l)
i + bm

]

≥ 2 − ξ(l); ∀l; m *= y(l)

ξ (l) ≥ 0; ∀l
K∑

k=1

uk,i + vk,i ≤ ε + γi ; ∀i

uk,i , vk,i ≥ 0; ∀i ; ∀k

γi ≥ 0; ∀i

ε ≥ 0.
(11) 425

The above problem can be solved using QP optimizers. At 426

the solution, those features with an associated γi > 0 will be 427

selected, while all the rest are excluded from the classifier. 428
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TABLE I

CE RATES AND NUMBER OF FEATURES PROVIDED IN THE ORANGE DATA PROBLEM BY THE DIFFERENT METHODS UNDER STUDY: STANDARD 2 AND

1-NORM SVMS, Dr-SVM AND 2 AND 1-NORM ν-SP-SVMS. PARAMETERS q AND p INDICATE THE NUMBER OF RANDOM FEATURES INCLUDED IN THE

DATA SET AND THE TOTAL NUMBER OF FEATURES IN THE EXPANDED INPUT SPACE, RESPECTIVELY

q, p
Standard SVM

Dr-SVM
ν-SP-SVM

2-norm 1-norm 2-norm 1-norm

0, 5
CE 7.87(±2.15) 7.30(±1.18) 7.30(±1.08) 6.89(±1.08) 6.89(±1.07)

# feat. – 4.46(±0.93) 4.75(±0.63) 2.66(±0.94) 2.67(±0.91)

2, 14
CE 10.56(±2.50) 8.16(±1.18) 8.42(±1.39) 6.78(±1.16) 6.81(±1.15)

# feat. – 6.34(±3.40) 7.46(±3.30) 2.45(±1.28) 2.27(±0.88)

4, 27
CE 13.83(±2.88) 8.71(±1.39) 8.84(±1.60) 6.88(±1.28) 6.91(±1.36)

# feat. – 6.49(±4.65) 9.79(±3.26) 2.48(±1.35) 2.27(±0.87)

6, 44
CE 15.89(±3.01) 8.75(±1.34) 9.19(±1.61) 6.64(±1.23) 6.74(±1.34)

# feat. – 6.41(±4.93) 13.56(±3.79) 2.36(±1.65) 2.44(±1.47)

8, 65
CE 18.81(±2.92) 8.93(±1.49) 10.05(±2.07) 6.76(±1.37) 6.85(±1.47)

# feat. – 6.22(±4.21) 18.63(±5.02) 2.27(±1.21) 2.38(±1.42)

12, 119
CE 23.59(±2.83) 8.80(±1.16) 11.11(±2.94) 6.64(±1.24) 6.70(±1.22)

# feat. – 7.60(±3.04) 25.44(±8.41) 2.15(±1.27) 2.21(±1.32)

16, 189
CE 27.18(±2.65) 8.98(±1.40) 12.86(±3.54) 6.84(±1.30) 6.97(±1.34)

# feat. – 10.00(±4.65) 34.81(±8.49) 2.53(±2.10) 2.56(±1.80)

As before, parameter ν can be used to control the maximum429

number of features to be selected by the multiclass ν-SP-SVM.430

Similarly to what we explained for the group selection case,431

imposing sparsity through additional constraints is key in order432

to perform a common feature selection for all classification433

problems, and approaches relying on the introduction of434

1-norm penalties in the objective function would either fail to435

select the same features for all classification tasks, or preclude436

the use of standard LP or QP optimizers.437

IV. EXPERIMENTS438

In this section, we will test the performance of the proposed439

2 and 1-norm ν-SP-SVM algorithms. For this purpose, we will440

analyze both the provided classification error (CE) rate and the441

number of selected features compared to those of standard 2442

and 1-norm SVMs, as well as the Dr-SVM from [30].443

In all experiments, free SVM parameters have been opti-444

mized through a cross validation (CV) process. Parameter C445

of standard SVMs has been logarithmically swept with 10446

values from 10−2N to 106N, N being the number of training447

data. Parameter C of ν-SP-SVMs has been explored with 5448

values in the same range. For each value of C , C ′ has been449

swept in the set of values: {0.01C, 0.1C, C, 10C, 100C}. In450

order to evaluate the influence of ν in the number of selected451

features, we have considered the overall set of values ν = i/d ,452

1 ≤ i ≤ d , where d is the data dimension, when ν-SP-453

SVM is applied over a predefined feature group, parameter454

d is replaced by the number of groups G. As for Dr-SVM455

parameters, λ1 and λ2, they have been selected among the set456

of values {0.01, 0.1, 1, 10, 100}.457

In the following discussions, both results evaluating the458

evolution of the CE and the number of features when ν459

value is explored, and results achieved when ν value is cross460

validated, will be analyzed. Additionally, we will include the461

CE achieved by a new SVM retrained with only the subset of462

features selected by the ν-SP-SVM methods, in this way, we 463

will check whether the fact of pruning the weights associated 464

to irrelevant features degrades the final model performance. 465

The MOSEK library1 has been used as optimizer for all 466

algorithms under study. 467

A. Orange Data Model 468

As a first simulation problem, we have considered the 469

“orange data” model, which has been previously employed 470

in [29] to test the standard 1-norm SVM performance. In this 471

problem, two standard normal independent random variables 472

x1, x2 are generated. Negative class elements of data [x1, x2]T
473

satisfy inequality 4.5 ≤ x2
1 + x2

2 ≤ 8, whereas positive 474

elements are distributed along all space R2. Thus, negative 475

class surrounds almost all positive class patterns, like the 476

skin of an orange. Additionally, to check the feature selection 477

ability of the different algorithms, q random independent 478

standard Gaussian inputs have been included in the model. 479

Finally, this input space has been expanded with a second 480

degree polynomial function, i.e., {
√

2x j ,
√

2x j xk, x2
j , j, k = 481

1, 2, . . . , 2 + q} to create a new data set with p new input 482

features.2 483

In the experiments, the number of added random features, 484

q , has been fixed to 0, 2, 4, 6, 8, 12, and 16 generating 485

an expanded input space of 5, 14, 27, 44, 65, 119, and 189 486

features. To design the different SVM classifiers, independent 487

and balanced training, validation and test data sets have been 488

generated with 100, 500, and 1000 data, respectively, and each 489

simulation has been repeated 200 times. In this experiment, 490

1MOSEK ApS, Denmark. Available at http://www.mosek.com. The
MOSEK Optimization Tools version 6.0 (Revision 61). User’s manual and
reference, 2010.

2Note that the Bayes boundary is given by x2
1 +x2

2 = 4.5, therefore, from the
overall set of p new features, only terms x2

1 and x2
2 are useful.
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Fig. 1. Evolution of the averaged CE and the averaged number of selected features in ν-SP-SVM methods as a function of ν for orange data set. Dash-dotted
line shows the averaged CE of an SVM retrained with the features selected by ν-SP-SVM. Dotted vertical line marks the averaged cross-validated ν value.
(a) 2 norm ν-SP-SVM (q = 0). (b) 1 norm ν-SP-SVM (q = 0). (c) 2 norm µ-SP-SVM (q = 2). (d) 1 norm ν-SP-SVM (q = 2). (e) 2 norm ν-SP-SVM
(q = 4). (f) 1 norm ν-SP-SVM (q = 4). (g) 2 norm ν-SP-SVM (q = 8). (h) 1 norm ν-SP-SVM (q = 8). (i) 2 norm ν-SP-SVM (q = 12). (j) 1 norm
ν-SP-SVM (q = 12). (k) 2 norm ν-SP-SVM (q = 16). (l) 1 norm ν-SP-SVM (q = 16).

different SVM free parameters (C , C ′, and ν) have been491

optimized using the validation set.492

The MATLAB code that implements the proposed ν-SP-493

SVM algorithms and a demo, which allows us to replicate494

the results shown in this section can be downloaded from495

http://www.tsc.uc3m.es/ hmolina/paper_nu-SP-SVM/.496

Table I presents the averaged CE rates achieved by the dif- 497

ferent SVM methods under study and the number of features 498

in their models. These results show the following. 499

1) Classical SVM methods rise the CE rate and the number 500

of features in the model when q is increased, as it is 501

expected, standard 1-norm SVM and Dr-SVM provide 502
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sparser solutions than standard 2-norm SVM, even if503

some noisy features are included in the final model.504

Note that Dr-SVM, which penalizes with L1 and L2505

norms, retains more useless features than 1-norm SVM506

and, although its performance improves 2-norm SVM,507

it is not as accurate as 1-norm SVM.508

2) The proposed ν-SP-SVM approaches keep the classifi-509

cation error rates around 7%, independently of q and,510

in most cases, they only employ the useful features:511

note that the average number of selected features is512

always very close to 2. However, standard 2-norm SVM513

uses all original features and standard 1-norm SVM and514

Dr-SVM tend to include some useless features.515

3) When 2-norm and 1-norm ν-SP-SVM results are com-516

pared to each other, we do not observe relevant differ-517

ences, since they present similar CEs and similar number518

of features.519

Fig. 1 depicts the evolution of the averaged classification520

error and the averaged number of selected features as a521

function of parameter ν in the orange problem, for each value522

of ν, parameters C and C ′ have been adjusted by the validation523

process. A dotted vertical line indicates the working point524

of the results from Table I, when ν was also selected in525

the validation process. Additionally, this figure includes the526

averaged CE rate, which could be achieved by retraining a527

new standard SVM with the set of features selected by ν-528

SP-SVMs. This figure shows the following behaviors of the529

proposed methods.530

1) As it was expected, ν plays a crucial role to obtain a531

reduced number of features and an accurate solution.532

Fixing ν = 1, the provided results would be similar533

to the standard 1-norm SVM, however, reducing ν534

both performance improvements and reductions in the535

number of model parameters could be achieved, mainly536

if ν was close to 2/d .537

2) The role of ν as upper bound on the number of selected538

features is clearly seen. When ν is close to 1, the539

proposed ν-SP-SVM methods do not include all original540

features in their models, since most noisy features are541

removed. For instance, when q = 8, 12, or 16, there542

are 65, 119, and 189 original features, but ν-SP-SVMs543

employ less than 10, 12, or 14 features.544

3) Finally, it is important to point out that the model545

performance is not degraded by pruning the coefficients546

associated to irrelevant features (those whose slack vari-547

ables γi are zero). If we compare the solutions provided548

by ν-SP-SVM models with a new standard SVM trained549

with the selected set of features, slight performance550

improvements could be achieved; but, when any noisy551

feature is included in the model, the retrained SVM tends552

to overfit, whereas proposed ν-SP-SVM models provide553

accurate solutions.554

B. Benchmark Data Sets555

To test the performance of the proposed ν-SP-SVM clas-556

sifiers over real data sets, 8 benchmark binary classification557

problems have been selected from the universal communica-558

tions identifier (UCI) repository [38]: Abalone, Credit, Hand,559

TABLE II

CHARACTERISTICS OF THE BINARY DATA SETS: NUMBER OF FEATURES

AND NUMBER OF DATA BELONGING TO EACH CLASS IN TRAINING AND

TEST SETS

# Features # Train samples # Test samples
Problem

(d) (n1/n−1) (n1/n−1)

Abalone 8 1238/1269 843/827

Credit 15 215/268 92/115

Hand 62 1923/1900 906/891

Image 18 821/1027 169/293

Ionosphere 34 150/84 75/42

Pima 8 188/350 80/150

Spam 57 1218/1847 595/941

Wdbc 30 238/141 119/71

Image, Ionosphere, Pima, Spam, and Wisconsin Diagnostic 560

Breast Cancer (Wdbc). These problems have been chosen 561

because of their diversity in the number of data and dimen- 562

sions. The main characteristics of these problems are summa- 563

rized in Table II. To adjust the free parameters of the different 564

models, the parameter ranges described in the introduction of 565

the experimental section have been swept by applying a five- 566

fold CV process. 567

For this benchmark analysis we have also included, as 568

an additional reference method, the RFE method from [39]. 569

This algorithm carries out a feature selection process by 570

iteratively removing the feature with less weight in the SVM 571

solution. To fairly compare this method with proposed ν-SP- 572

SVM methods, we have implemented the linear version of 573

the RFE algorithm, additionally, the final feature subset of the 574

RFE method is selected with a CV process (note that the RFE 575

method obtains a different feature subset in each iteration) and 576

a new SVM has been trained using only the selected features. 577

Table III shows the results achieved by the different SVM 578

algorithms under study averaged over 50 runs with randomly 579

selected training/validation sets. As it can be observed, stan- 580

dard 1-norm SVM fails to remove irrelevant features in some 581

problems. For instance, in Abalone, Pima, and Spam almost 582

all original features are retained. Dr-SVM is worse than the 583

standard 1-norm SVM in this regard, and hardly removes 584

any feature in the considered problems (with the exception 585

of Credit). 586

In contrast, it is possible to perform effective feature 587

selection with the proposed ν-SP-SVMs without incurring in 588

any significant degradation in classification performance. In 589

particular, Table III shows a 25% model complexity reduction 590

in Image, Spam, and Wdbc when ν-SP-SVM, as opposed to 591

its standard counterpart, is used. This percentage is even better 592

for other problems, reaching 33.3% in Abalone and Hand and 593

50% in Ionosphere. 594

When we compare the proposed ν-SP-SVM approaches 595

with the RFE method, we observe that the automatic feature 596

selection carried out by our proposals is competitive with stan- 597

dard feature selection procedures which have to, first, select 598

the feature subset and, second, train the classifier. According to 599

Table III, results are quite similar for most problems. However, 600
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TABLE III

CE AND NUMBER OF SELECTED FEATURES PROVIDED BY STANDARD 2 AND 1-NORM SVMS, DR-SVM, THE RFE METHOD AND THE

2 AND 1-NORM ν-SP-SVMS IN THE BINARY CLASSIFICATION PROBLEMS

Standard SVM
Dr-SVM RFE

ν-SP-SVM
2-norm 1-norm 2-norm 1-norm

Abalone
CE 21.10(±0.89) 20.51(±0.11) 20.60(±0.14) 20.90(±0.58) 20.90(±0.37) 20.85(±0.34)

# feat. 8.00(±0.00) 7.96(±0.20) 8.00(±0.00) 4.34(±2.18) 5.36(±2.11) 5.80(±1.87)

Credit
CE 10.65(±0.10) 11.07(±0.13) 11.07(±0.13) 10.99(±0.21) 10.68(±0.15) 11.02(±0.19)

# feat. 15.00(±0.00) 1.16(±0.55) 2.08(±3.36) 4.32(±4.83) 7.16(±3.15) 1.36(±0.78)

H and
CE 9.17(±0.18) 9.24(±0.10) 9.20(±0.12) 9.43(±0.22) 9.15(±0.22) 9.29(±0.21)

# feat. 62.00(±0.00) 55.68(±4.20) 55.56(±4.08) 34.82(±6.04) 45.72(±4.96) 42.06(±5.67)

Image
CE 14.94(±0.95) 12.94(±0.18) 13.11(±0.23) 14.05(±1.07) 13.18(±0.43) 12.98(±0.19)

# feat. 18.00(±0.00) 13.96(±0.20) 17.24(±0.77) 16.06(±1.49) 14.38(±2.58) 13.52(±1.03)

Ionosphere
CE 11.93(±2.02) 11.73(±2.35) 12.38(±0.85) 13.76(±2.12) 11.79(±1.92) 12.27(±1.08)

# feat. 33.00(±0.00) 24.42(±7.47) 30.92(±3.29) 13.96(±5.13) 18.32(±6.55) 17.44(±3.90)

Pima
CE 23.63(±0.71) 23.29(±0.22) 23.35(±0.31) 23.78(±1.03) 23.36(±0.33) 23.00(±0.20)

# feat. 8.00(±0.00) 7.44(±0.50) 7.76(±0.43) 5.26(±2.04) 6.34(±1.14) 6.72(±1.05)

Spam
CE 6.88(±0.17) 7.15(±0.09) 7.03(±0.06) 6.78(±0.21) 6.99(±0.24) 7.09(±0.15)

# feat. 57.00(±0.00) 54.52(±1.79) 56.22(±0.79) 44.68(±3.03) 44.88(±3.21) 42.88(±3.28)

Wdbc
CE 2.97(±0.92) 4.31(±0.68) 3.19(±0.51) 3.43(±0.57) 3.28(±0.53) 3.77(±0.75)

# feat. 30.00(±0.00) 18.52(±3.25) 27.38(±3.17) 21.80(±3.59) 22.64(±2.27) 13.80(±2.70)

in the case of Image, both ν-SP-SVM proposals outperform the601

RFE method, and for Credit and Wdbc, the 1-norm ν-SP-SVM602

approach achieves the best accuracy-complexity trade-off. On603

the other hand, in problems such as Ionosphere or Hand, RFE604

presents a lower number of features, although this advantage605

is achieved at the expense of a CE increase.606

Figs. 2 and 3 show the evolution of the classification607

error and the number of selected features as a function of608

ν in the different data sets. A dashed line depicts the CE609

achieved by new standard SVMs retrained with the set of610

features selected by the proposed ν-SP-SVM models and a611

dotted vertical line points out the ν value selected in the612

validation process. These figures remark the clear trade-off613

between the model complexity and the final CE. In problems614

such as Credit, Image, Ionosphere, and Wdbc, when the615

1-norm ν-SP-SVM is applied, we could directly have fixed616

ν = 1, and most useless features would have been removed.617

However, an adequate selection of ν is crucial to obtain an618

accurate solution. The validation process has carried out a619

conservative selection of parameter ν, if, during the validation620

process, a slight performance degradation had been allowed, a621

additional features would have been removed, in fact, for all622

the problems under study but Credit, lower values of ν would623

have resulted in a lower number of features, while keeping624

similar error rates. Finally, it is important to note that the625

retraining procedure does not show any clear improvement,626

since although in some cases the final CE is slightly improved,627

in other cases it is similar or, even, slightly worse.628

C. High Dimensional Datasets629

The aim of this section is to test the performance of the630

proposed methods when we are dealing with a large number631

of input features. For this purpose, the Dexter dataset [40]632

has been considered. The goal of this problem is to classify 633

texts about “corporate acquisitions” into two categories. The 634

data set has 20 000 features, from which 9947 variables 635

correspond to a “bag-of-words” representation of several texts 636

and the remaining 10 053 features are noisy features added 637

to complicate the classification task. The different data set 638

partitions are balanced with 300 training data, 300 validation 639

patterns and 2000 test samples. 640

Due to the large number of input features, the CV of all 641

possible ν values in the ν-SP-SVM methods is not reasonable. 642

For this reason, we have followed this strategy. 643

1) We have first trained the proposed methods with ν = 1, 644

what provides a first approximation to the number of 645

useful features. In this case, 1-norm ν-SP-SVM achieves 646

a C E = 8.1% with only 150 features and 2-norm ν-SP- 647

SVM a C E = 6% with 3976 variables. 648

2) According to above number of selected features, the 649

maximum value of ν, worthy of being explored, has been 650

fixed. For instance, in 1-norm ν-SP-SVM this value has 651

been fixed to 0.01 (150 is less than the 1% of 20 000) 652

and in 2-norm ν-SP-SVM has been set to 0.2 (3976 is 653

close to the 20% of 20 000). 654

3) Then, a range of 10 linearly spaced ν values has been 655

defined. In particular, ranges {0.1%, 0.2%, . . . , 1%} and 656

{2%, 4%, . . . , 20%} have been explored by each ν-SP- 657

SVM model. 658

4) Finally, the optimum ν value has been selected as the 659

one with minimum validation error. 660

As a result of this procedure, 1-norm ν-SP-SVM has selected 661

a ν value of 0.004, achieving a C E = 7.75% with only 662

79 features, whereas 2-norm ν-SP-SVM has used a final ν 663

value of 0.1 providing a C E of 6.4% with 1487 features. 664

Reference methods, 2-norm, 1-norm, and Dr-SVMs, have 665
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Fig. 2. Evolution of CE and the number of selected features in ν-SP-SVMs as a function of ν for data sets: Abalone, Credit, Hand, Image Ionosphere,
and Pima. Dash-dotted line shows the CE of an SVM which has been retrained with the features selected by ν-SP-SVM model. Dotted vertical line marks
the cross-validated ν value. (a) 2-norm ν-SP-SVM Abalone. (b) 1-norm ν-SP-SVM Abalone. (c) 2-norm ν-SP-SVM Credit. (d) 1-norm ν-SP-SVM Credit.
(e) 2-norm ν-SP-SVM Hand. (f) 1-norm ν-SP-SVM Hand. (g) 2-norm ν-SP-SVM Image. (h) 1-norm ν-SP-SVM Image. (i) 2-norm ν-SP-SVM Ionosphere.
(j) 1-norm ν-SP-SVM Ionosphere. (k) 2-norm ν-SP-SVM Pima. (l) 1-norm ν-SP-SVM Pima.

presented C Es of 6.45%, 8.10% and 6.05%, respectively, and666

they have used 7142, 159, and 5750 features (see Table IV).667

These results show that 1-norm ν-SP-SVM outperforms668

standard 1-norm SVM by achieving a lower C E with half669

the number of features. Regarding 2-norm ν-SP-SVM and670

standard 2-norm SVM, they present similar error rates, but671

the latter is using 35% of the features instead of 7.43% used 672

by 2-norm ν-SP-SVM. Finally, Dr-SVM provides the lowest 673

C E , but the number of selected features (5750) is much higher 674

than the 1487 of the 2-norm ν-SP-SVM. 675

Besides, it is important to point out that 1-norm-based 676

algorithms (standard 1-norm SVM and 1-norm ν-SP-SVM) 677
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Fig. 3. Evolution of CE and the number of selected features in ν-SP-SVMs as a function of ν for data sets: Spam and Wdbc. Dash-dotted line shows the
CE of an SVM which has been retrained with the features selected by ν-SP-SVM model. Dotted vertical line marks the cross-validated ν value. (a) 2-norm
ν-SP-SVM Spam. (b) 1-norm ν-SP-SVM Spam. (c) 2-norm ν-SP-SVM Wdbc. (d) 1-norm ν-SP-SVM Wdbc.
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Fig. 5. Evolution of CE and the number of selected features in ν-SP-SVMs as a function of ν for data sets: Spam and Wdbc. Dash-dotted line shows the
CE of an SVM which has been retrained with the features selected by ν-SP-SVM model. Dotted vertical line marks the cross-validated ν value. (a) 2-norm
ν-SP-SVM Spam. (b) 1-norm ν-SP-SVM Spam. (c) 2-norm ν-SP-SVM Wdbc. (d) 1-norm ν-SP-SVM Wdbc.

have selected a few number of features, prompting a per-678

formance degradation. This effect is due to the fact that the679

maximum number of features that can be selected is always680

upper bounded by the number of training data [30], [32]. For681

this reason, these approaches are working with few hundreds682

of features instead of selecting thousands as the 2-norm-based683

methods.684

Finally, Fig. 4 shows the evolution of the C E and the685

number of features in the model for the explored range of ν686

values. At first glance, it can be seen that, in the explored range687

of ν, values larger than 8% in 2-norm ν SP-SVM and 0.3% for688

1-norm ν SP-SVM are able to provide accurate results with a689

low number of features, even lower than 1-norm, 2-norm, and690

Dr-SVM methods. This figure also shows the C E achieved691

TABLE IV

CE AND NUMBER OF SELECTED FEATURES PROVIDED BY DIFFERENT

METHODS UNDER STUDY IN DEXTER DATA SETS

Standard SVM
Dr-SVM

ν-SP-SVM

2-norm 1-norm 2-norm 1-norm

Dexter
CE 6.45 8.10 6.05 6.4 7.75

# feat. 7142 159 5750 1487 79

when the SVM is retrained with the selected set of features, 692

suggesting that, in problems where the number of removed 693

features is high, the retraining process is able to provide an 694

additional advantage in terms of C E reduction. 695
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Fig. 6. Evolution of the CE and the number of selected features in ν-SP-SVM algorithms as a function of ν in multiclass problems. Dash-dotted line
shows the CE of an SVM which has been retrained with the features selected by ν-SP-SVM model and dotted vertical line marks the cross-validated ν value.
(a) 2-norm ν-SP-SVM Segmentation. (b) 1-norm ν-SP-SVM Segmentation. (c) 2-norm ν-SP-SVM Wave. (d) 1-norm ν-SP-SVM Wave.

TABLE V

PREDEFINED FEATURE GROUPS IN THE PROBLEM ADULT. CATEGORICAL

FEATURES ARE CODIFIED WITH DUMMY VARIABLES

#
Original feature

Categorical # of # of features
group / continous categories in each group

1 age continuous − 1
2 workclass categorical 8 3
3 fnlwgt continuous − 1
4 education categorical 16 4
5 education-num continuous − 1
6 marital-status categorical 7 3
7 occupation categorical 14 4
8 relationship categorical 6 3
9 race categorical 5 3

10 sex categorical 2 1
11 capital-gain continuous − 1
12 capital-loss continuous − 1
13 hours-per-week continuous − 1
14 native-country categorical 41 6

D. Selecting Feature Groups with ν-SP-SVM696

To analyze the performance of the proposed methods when697

features need to be selected according to predefined sets,698

instead of selecting isolated features, we have chosen the699

dataset Adult from [38]. The aim of this problem is to700

determine whether a person earns over 50K a year from701

several demographic characteristics from 14 original features,702

of which six are continuous and eight are categorical. Each703

categorical feature has been coded with dummy variables,704

using N indicatrix variables (0 or 1) to codify their 2N
705

possible values, in this way, each data is finally represented706

by 33 features belonging to 14 groups as it is described in707

Table V. Then, when a group selection approach is applied, the708

dummy variables representing to the same categorical feature709

will be either all selected or all removed from the final model.710

Note that only when all variables from a certain group are711

removed it is possible to skip the capture of the associated 712

categorical variable. 713

This binary data set has 30 162 training samples and 15 060 714

data to test the model. To train the different SVMs, we have 715

randomly selected a 10% of the original training data set, 716

therefore, 3016 data have been used to train the different meth- 717

ods. A 5-fold CV process has been applied to adjust the free 718

parameters of the different methods and their performances 719

have been evaluated over whole test data. The different SVMs 720

have been trained 100 times, with different randomly selected 721

training data, and their averaged results have been studied. 722

As result, standard 2 and 1-norm SVMs present an averaged 723

CE of 16.33(±0.3)% and 15.97(±0.2)% employing 14 and 724

13.9 ± 0.3 groups, respectively, whereas Dr-SVM presents 725

the same performance (both in C E and number of selected 726

features) as 1-norm SVMs. This result is a consequence of 727

standard 2-norm SVM having selected all groups and 1-norm 728

SVM and Dr-SVM having seldom discarded group 10, this 729

group is associated to original feature sex and codified with 730

only one dummy variable. 731

To compare these results with the proposed methods, Fig. 5 732

depicts the values of the CE and the number of selected 733

groups as a function of parameter ν in ν-SP-SVMs. It can 734

be seen that if ν is cross validated (see dotted vertical line), 735

ν-SP-SVMs present CE close to 16% with 12 groups, since 736

groups 3 and 10 are usually removed. However, if we had 737

wanted to select a lower number of groups, ν could have 738

been fixed around 0.3, keeping the CE lower than 17% and 739

selecting just the 4 most relevant groups: Groups associated to 740

original features education-num, relationship, and capital-gain 741

are always chosen and additionally, either group 4 (education) 742

or 7 (occupation) is included in the model. Thus, this example 743

illustrates the convenience of the ν formulation of SP-SVM for 744

allowing a more flexible selection of the number of variables 745

to be incorporated in the model. 746

Again, a retraining process (dash-dotted line in Fig. 5) 747

provides a small improvement, since for most ν values, 748

ν-SP-SVMs, and retrained SVMs achieve similar CEs. 749



IE
EE

Pr
oo
f

GÓMEZ-VERDEJO et al.: SUPPORT VECTOR MACHINES WITH CONSTRAINTS FOR SPARSITY IN THE PRIMAL PARAMETERS 13

TABLE VI

CE AND NUMBER OF SELECTED FEATURES PROVIDED BY

DIFFERENT METHODS UNDER STUDY IN MULTICLASS DATA SETS

Classical SVMs
Dr-SVM

Sparse SVMs
2-norm 1-norm 2-norm 1-norm

Segmentation
CE 9.05 9.00 8.24 8.43 8.52

# feat. 18.00 13.00 15 13.00 10.00

Wave
CE 13.87 14.33 14.20 13.87 14.07

# feat. 40.00 38.00 30.00 17.00 15.00

E. Multiclass Problems750

In this section, we will test the performance of the751

ν-SP-SVMs over multiclass datasets Segmentation and Wave752

from the UCI repository [38]. The purpose of Segmentation753

problem is to classify hand-segmented images represented by754

19 features in 7 categories: brickface, sky, foliage, cement,755

window, path, and grass. The data set has 210 and 2100756

training and test data, respectively. Wave problem consists of757

3 classes of waves to be identified from 40 features, whose758

latter 19 ones are all noise, the data set has 3500 training759

samples and 1500 test data. As in the previous sections, the760

free parameters of the different methods have been adjusted761

with a 5 fold CV process.762

To train the different classifiers, proposed ν-SP-SVM meth-763

ods have solved problem (10), either in its 2-norm or in its764

1-norm version, whereas reference methods have directly used765

the multiclass problem defined by (9) with their corresponding766

penalization terms. Table VI presents the results achieved by767

both standard and proposed SVMs. As it can be observed,768

ν-SP-SVMs achieve lower error rates with lower number of769

features. In Segmentation, CE is reduced in a 0.5%, with770

respect to 1-norm and 2-norm SVMs, using only 13 and771

10 features, whereas Dr-SVM achieves a slightly lower C E772

using 15 features. In Wave, the advantages of the proposed773

SVM classifiers are clearer, since the number of features in774

the model is half the number for the reference methods and775

the CE is similar in the 2-norm models, slightly reduced in776

the 1-norm methods and Dr-SVMs are outperformed by both777

ν-SP-SVMs.778

When the evolution of CE and the number of features are779

analyzed as a function of ν (see Fig. 6), the trade-off between780

these parameters is again observed. Besides, retrained SVMs781

provide a significant CE reduction in Segmentation problem.782

V. CONCLUSION783

This paper introduced a method for feature selection based784

on a new formulation of linear SVMs that includes constraints785

additional to the classical ones. These constraints drop the786

weights associated to those features that are likely to be787

irrelevant. In order to predefine an upper bound for the number788

of relevant features, a ν-SVM formulation has been used,789

where ν is a parameter that indicates the fraction of features790

to be considered. This parameter is swept in an efficient791

way in order to find the optimal number of features over792

a validation set of data. This paper presented two versions793

of the formulation, the first one being an SVM with a 2- 794

norm regularization term. The second one uses a 1-norm 795

regularization, that has a reduced computational burden with 796

respect to the first one. Besides, this new SVM formulation 797

allows us to easily apply the feature selection process over 798

predefined feature sets. This, in turn, is useful to introduce a 799

straightforward, yet efficient way to extend the algorithms to 800

multiclass problems. 801

Experiments showed that the introduced methods present 802

advantages not only in terms of CE, but also in the ability 803

of reducing the model complexity by adequately removing 804

features during the training process, not as a preprocessing 805

stage. Also, these experiments showed that the algorithms are 806

efficient when applied to the task of feature group selection 807

and to multiclass problems. 808

Future research includes nonlinear versions of the algorithm 809

in order to take into account the nonlinear relationships 810

between features. Applications can also include extensions to 811

regression problems as well as linear model selection for signal 812

processing tasks, such as filter design or plant modeling, in 813

situations where optimal models are known to be sparse. 814
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