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SUMMARY

The intention of this dissertation is to provide some insight about risk management by

using a methodology far from the standard statistical techniques: variance and correlation.

The alternative is Extreme Value Theory, that is presented as the natural setup to quantify

risk in financial econometrics.

The thesis concentrates on risk. There are different interpretations of this concept that

result in diverse methodologies to quantify its magnitude and impact on different char-

acteristics of financial econometrics. In the introduction of the thesis the distinction be-

tween uncertainty and risk is discussed, regarding the point of view: decision theory or

risk management. It follows with a formal definition of risk motivated by decision theory

but consistent with the methodology used in risk management. Risk can be quantified by

means of statistical techniques. Risk is characterized by the tails of the distribution of the

data, in particular by the likelihood of any event entailing a negative feature. In financial

econometrics this definition of risk is usually denominated downside risk and is associated

with the left tail of the distribution of returns.

The aim of the second chapter is to provide reliable measures to quantify the risk found

in financial sequences. In order to achieve this, standard tools of extreme value theory are

applied.

All the risk measures recently considered in the literature based on extreme values are

characterized in practice by ad-hoc selection methods for the extreme values (5%, 1%, etc.)

The main contribution in the second chapter is to propose a formal definition for these

values. The extreme values of any random sample of size n from a distribution function F

are defined as the observations exceeding a threshold and following a type of generalized

Pareto distribution (GPD) involving the tail index of F. The threshold is the order statistic

that minimizes a Kolmogorov-Smirnov statistic between the empirical distribution of the

corresponding largest observations and the corresponding GPD. To formalize the definition

we use a semiparametric bootstrap to test the corresponding GPD approximation. Finally,



we use our methodology to quantify risk by estimating the tail index (ratio of decay of the

negative tail), and the value at risk (VaR) of some financial indexes of major stock markets.

Once risk is defined and formally quantified the following aim in the thesis is analyzing

its transmission mechanisms in different settings. Chapter 3 is devoted to the transmission

of risk in time series. The risk is measured by the occurrence of significant large observa-

tions and the transmission channel is the serial dependence found in the extreme values

that can originate clustering of data. In this context there exists a parameter, the extremal

index, that governs the serial dependence in the largest observations, and such that its re-

ciprocal measures the level of clustering in the extremes. The contribution of the thesis in

this chapter starts by redefining this parameter. This definition provides a straightforward

estimation method for the extremal index with appealing statistical properties; consistency,

and asymptotic gaussian distribution. The existence of clustering in the largest observa-

tions is a byproduct of the transmission of risk derived from the occurrence of the largest

observations. An outstanding contribution in this part is the possibility of testing the trans-

mission of risk in financial sequences by testing the clustering in the extreme values. This

theory contrasts with theories founded on volatility models that claim that serial depen-

dence found in financial series is due to the conditional dependence on second moments.

The next chapter involves the transmission of risk between financial markets. The inter-

est lies in this section on distinguishing interdependence between markets, that surges from

regular links between economies, from contagion effects, originated by increasing links be-

tween the markets in crises periods. In order to do this, the notions of interdependence and

contagion are revisited. The contribution of the authors lies on new definitions for these

concepts based on copula properties and tail monotonicity, that will be used to analyze

directional contagion (causality between extremes). This is possible due to an innovative

copula function that is derived from the multivariate extreme value theory. This copula

allows us to model different patterns of dependence according to the state of the markets,

e.g. bear or bull markets. This model is sufficiently flexible to describe asymmetries between

variables in such a way that directional contagion can be tested. The model is applied to

the flight to quality phenomenon, outflows of capital from the stocks markets to the bonds



markets when the first ones are facing crisis periods.

Finally Chapter 5 sketches future lines of research involving different aspects of the

analysis of risk.





Chapter 1

Introduction

Summary

This chapter presents the problems and concerns that motivated this research project. The

section begins with the notions of uncertainty and risk derived from decision theory and

develops the corresponding statistical treatment. In the current literature, variance is used

for quantifying both of them. In this part however, the differences between uncertainty

and risk are discussed and the appropriate statistical methodologies for each problem are

sketched. The Extreme Value Theory is motivated as the natural environment to quantify

risk. The pitfalls of this technique and the alternatives presented in the thesis are intro-

duced. The section concludes with the multivariate setting and the use of copula functions

to model dependence motivated by the pitfalls of linear measures as correlation.

15



16 CHAPTER 1. INTRODUCTION

In the last decade Risk Management has become a major discipline in Finance. It is

studied in different fields within finance: financial econometrics, mathematical finance or

financial engineering. The main concern of risk management is analyzing the causes and

consequences of negative events for investor interests. This rough definition depends very

much on the definition of negative event, and on the profile of the investor. In addition, one

of the more promising research areas in finance in the last years is the development of fi-

nancial instruments and investment strategies that allow one hedging from negative events.

Simple examples of the latter are the use of stock options, the possibility of positioning

long or short in a portfolio of assets or investing in different derivatives with corresponding

different maturities.

The concept of risk, in turn, is not clearly defined. At least, there is not a universal

definition that permits academics and practitioners to progress in the same direction to

solving the same problems. Both groups however, have concentrated on studying the un-

certainty rather than risk guided by the common belief that both terms are exchangeable.

Knight (1921) defined uncertainty of occurrence of a particular event by the impossibility

of assigning a probability to the event. In this way this author defined uncertainty situa-

tions by the absence of insurance markets. In contrast, risk is present when we can assign

a probability measure to the event, and therefore insurance markets develop (trade exists).

One other important distinction between these concepts is given by the negative feature

of the event producing risk. Uncertainty does not necessarily entails a negative outcome.

On the contrary, risk implies a strictly positive likelihood of a negative result in the uni-

verse of possible outcomes. Both concepts however, are characterized by the presence of

randomness and therefore can be attributed to a random variable. In this way, the former

definitions for risk and uncertainty can be translated to probability theory.

In this context, uncertainty is intrinsic to the definition of random variable and is usu-

ally described by the variance. Risk however entails something more not captured by the

variance. Consider for example the forecast of the weight of an adult person when he is

ten years old. No doubt that statistical uncertainty is measured by the variance, albeit the

latter is not informative at all about the risk. Risk in this situation comes from very low
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or high forecasted values. In this example the extreme observations can derive in different

illnesses: anorexia, obesity.

This example raise the issue of defining risk as something occurring in the tails of the

distribution of the random variable and entailing the knowledge of its probability distribu-

tion. It is interesting however the statisticians and econometricians vision of risk. It boils

down to measuring the variance of the random variable describing the event. This is only

true if the probability distribution is known and the only unknown is the variance. Consider

the example of a normal distribution N(µ, σ2) where µ is unknown but σ is known. The

knowledge of σ is not sufficient to know the uncertainty neither the risk. The probability

distribution is not known, but a set of possible distribution functions. This unusual ex-

ample reflects the ambiguity of knowing only the variance. In the particular example of

analyzing financial returns it is a common hypothesis to assume the expected value of the

returns to be zero, and then makes sense to think of the volatility (variance) as measuring

the risk. Nevertheless this example derived from financial econometrics needs of another

assumption. The prices of the financial instrument (asset, bond) are assumed to follow a

log-normal distribution, and in consequence the returns distribution is assumed normal.

Other situation where the variance is sufficient to describe the overall risk of financial re-

turns is when the preferences function of the investor (utility function) is quadratic.

There is a handful of econometric techniques for estimating the risk under these assump-

tions. The focus is in the estimation and modelling of the volatility process. The standard

methodology is estimation from the historical distribution where the volatility is considered

constant, and all the observations have the same weight in estimating the variance. Instead,

if some dynamics is observed in the data, a more adequate estimator for the volatility is

some exponential smoothing technique where the most recent observations {xt} have more

protagonism than past observations.

σ2
t = (1− λ)x2

t−1 + λσ2
t−1, (1.1)

with 0 < λ < 1.
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The same philosophy is followed by GARCH models introduced in Engle and Bollerslev

(1986). The general GARCH(p,q) model takes this form

σ2
t = ω + α1x

2
t−1 + . . . + αpx

2
t−p + β1σ

2
t−1 + . . . + βqσ

2
t−q, t = 1, . . . , T (1.2)

with ω, αi, βj > 0 and
∑

i αi +
∑

j βj < 1 to obtain stationarity.

There are minor modifications of this model reflecting different stylized facts of the finan-

cial data. Examples of these models are EGARCH regarding the leverage effect, IGARCH

where
∑

i αi +
∑

j βj = 1 describing infinite variance (infinite risk?), etc.

More sophisticated forms of measuring risk in this setting are given by the implied

volatility and the realized volatility, that have been developed in the last years. Implied

volatility is derived from option pricing and in consequence from Black-Scholes formula,

Black and Scholes (1973). The prices are supposed to follow a geometric Brownian Motion.

This assumption is sufficient, for example, to find the no-arbitrage price for the European

plain-vanilla option,

Ct(St) = StΦ(d1)−Ke−r(T−t)KΦ(d2), (1.3)

with Ct the option price, Φ(·) the standard normal distribution function, r the risk free

interest rate, K the strike, T the maturity, and d1, d2 constants satisfying

d1 =
log St

K
+ (r + σ2

2
)(T − t)

σ
√

T − t
, d2 = d1 − σ

√
T − t.

The knowledge of the option prices for different maturities is observable from the market.

Therefore, from equation (1.3) the variance can be obtained. This variance, denoted im-

plied volatility, is derived in turn, from agents expectations about the future.

Other volatility measure founded on stochastic differential equations is the realized

volatility. This concept is originated in papers by Andersen et al (2001), and Barndorff-

Nielsen and Shephard (2002). The expression for volatility builds on the theory of continuous-

time arbitrage-free price processes and the theory of quadratic variation. Denote [x] for the
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quadratic variation of x defined as

[x]t = plim
q→∞

m−1∑
i=0

{xtqi+1
− xtqi

}2, (1.4)

for any sequence of partitions tq0 = 0 < tq1 < . . . < tqm = t with supi(t
q
i+1 − tqi ) → 0 for

q → ∞. The notation plim indicates the probability limit of the sum. If the log of prices

follow a stochastic differential equation of this type

xt = µtdt + σtdwt, (1.5)

with σ2
t the instantaneous or spot volatility, the quadratic variation takes the same expres-

sion than the integrated volatility defined as

σ2∗
t =

∫ t

0

σ2
udu. (1.6)

This method explodes the availability of high frequency intra-period returns. The realized

volatility, denoted {x}n is the natural estimator of the quadratic variation, and is defined

as the sum of the squared returns of M intra-day observations during each day. It takes

this expression

{x}n =
M∑

j=1

{
x(n−1)+ j

M
− x(n−1)+ j−1

M

}2

, (1.7)

that is consistent as M →∞. The theory of quadratic variation reveals that under suitable

conditions, realized volatility is not only an unbiased ex-post estimator of daily return

volatility, where the day index is n, but also asymptotically free of measurement error.

Empirically, by treating the volatility as observed rather than latent facilitates modelling

by using simple methods based directly on observable variables. On the other hand volatility

regarded as a latent variable, not observed, may be modelled by stochastic volatility models.

These models are of this form

σt = ρ σt−1 + εt, (1.8)

with 0 < ρ < 1 the autoregressive parameter, and εt the innovation variable.
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All of the above different methodologies to quantify risk fail if the distribution of returns

is far from the gaussian assumption. This fact is gaining popularity within the academics

and practitioners that have raised the need of a more realistic modelling of the distribution

of returns, and of the analysis of risk. The focus moves from a measure for the dispersion

of the data to a measure that describes the probability in the tails. The risk underlying the

financial sequence is renamed as downside risk since it is associated to negative outcomes

that are usually represented in the left tail of the distribution of returns. It is worth men-

tioning the upside risk due to the existence of hedging instruments that are designed to

compensate values in the left tail and can yield negative outcomes when the returns take on

large positive values. The interest of risk managers is found in estimating the distribution

of the data, in particular the distribution in the tails. The results found in Kolmogorov

(1933) and in Gnedenko (1943) derived from the distribution of the sample maximum are

the basis of a new and exciting area in Statistics involving the analysis of the extreme values

of random sequences and the distribution in the tails. This area is denominated Extreme

Value Theory (EVT ) and is the theoretical basis and statistical toolkit for the techniques

developed in this thesis.

Suppose a random sample from an unknown distribution function F, and let G be the

limiting distribution of the sample maximum Mn. Classical Extreme Value Theory shows

that under some regularity conditions on the tail of F and for some suitable constants

an > 0, bn,

P{a−1
n (Mn − bn) ≤ x} → G(x), (1.9)

where G must be of the following types (see de Haan (1976)),

Type I: (Gumbel) G(x) = e−e−x
, −∞ < x < ∞.

Type II: (Fréchet) G(x) =





0 x ≤ 0,

e−x
− 1

ξ
x > 0, ξ > 0.

Type III: (Weibull) G(x) =





1 x ≥ 0,

e−(−x)
− 1

ξ
x < 0, ξ < 0.
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The parameter ξ is the tail index of F and characterizes the tail behavior of the distribution

function. The three types can be gathered in the so called Generalised Extreme Value

Distribution, first proposed by von Mises (1936),

G(x) = e−(1+ξ x−ν
σ

)
− 1

ξ
, (1.10)

where ν is a location parameter, σ a scale parameter and ξ 6= 0. This expression boils down

to G(x) = e−e−
x−ν

σ when ξ = 0.

In consequence the distribution of the standardized sample maximum F n(anx + bn)

converges to e−(1+ξ x−ν
σ

)
− 1

ξ
for all x. Some simple algebra yields

lim
n→∞

n (1− F (anx + bn)) =

(
1 + ξ

x− µ

σ

)− 1
ξ

. (1.11)

This result is exploited to derive the weak convergence of the largest observations deter-

mined by a threshold sequence un = anν + bn, with ν satisfying −log G(ν) = 1. This is the

main result of Pickands theorem, Pickands (1975),

lim
un→xF

sup
[0≤y<∞]

|Fun(y)−GPDξ,σ(un)(y)| = 0, (1.12)

with

Fun(y) =
F (un + y)− F (un)

1− F (un)
, (1.13)

y = an(x−ν), σ(un) = σan and x > ν. Fun(y) is the conditional excess distribution function

given un, and

GPDξ,σ(un)(y) =





1− (1 + ξ y
σ(un)

)−
1
ξ if ξ 6= 0

1− e−
y

σ(un) if ξ = 0
, (1.14)

is the Generalized Pareto distribution.

Pickands theorem holds promise for accurate estimation of extreme quantiles and tail

probabilities of financial returns when the distribution F is unknown. In this way EVT

irrupted in financial econometrics as an omnibus technique that overcame the problems de-
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rived from the absence of information in the tails. This methodology had been implemented

before in other sciences as hydrology or meteorology with relative success. After some eu-

phoria expressed by a number of papers using EVT techniques in the middle nineties some

disappointment surged in academics due to pitfalls in the development of the statistical

theory, and in practitioners due to its complexity in comparison with historical simulation

or with the methods derived from gaussian assumptions on the data. In this line there is

a paper of Diebold, Schuerman and Stroughair (1998) that enumerates some pitfalls and

challenges in EVT that lie ahead. The final recommendation of these authors is some cau-

tion in the use of this methodology in financial econometrics and risk management, and

a better understanding of the situations where these powerful probabilistic and statistical

techniques are reliable and really helpful.

Much of the discussion in Diebold et al. is related to the statistical aspects of the the-

ory, in particular tail estimation and the GPD approximation. These authors assume that

the tail of F has a power law (decays polynomially) and in turn belongs to the maximum

domain of attraction of a Fréchet distribution, that is, the distribution of the sample max-

imum of F converges weakly to that type of EVT distribution. The tail index estimator

considered is Hill estimator, Hill (1975),

ξ̂Hi
n (un) =

1

k

n∑

i=n−k+1

log
x(i)

x(n−k)

, (1.15)

with un = x(n−k), the threshold sequence and x(n−k+1) ≤ . . . ≤ x(n) denoting the increasing

order statistics.

This estimator has appealing theoretical properties. It is consistent and asymptotically

normal, assuming the data are independent and identically distributed (iid) and that k, the

number of largest observations defined by the threshold un = x(n−k), grows at a suitable

rate, k →∞ with k/n → 0. It can be shown that the selection of the threshold for the Hill

estimator affects its bias and variance. In particular, there is an important bias-variance

tradeoff when varying k for fixed sample data. Diebold et al. point to the threshold selection

problem as the first pitfall in EVT regarding estimation in the tails. They claim for a formal
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and rigorous procedure to determine the threshold rather than ad-hoc rules of thumb based

on graphical methods. The formal rule to decide the threshold could be supplemented and

assessed by bootstrap resampling techniques and Monte-Carlo simulation.

The second pitfall regarding EVT is the absence of serious studies about the finite

sample properties of the tail index estimator under various threshold choices. They main-

tain that an intensive Monte-Carlo study is needed for various generating processes. Other

related pitfall not mentioned in Diebold et al. refers to the use of the asymptotic normal

approximation for the distribution of the tail index estimator for small sample sizes. The

authors remark the overall poor treatment of the statistical aspects of EVT in contrast to

the probabilistic results. Some important examples are the absence of confidence intervals

for quantile and tail estimates and the absence of reliable hypothesis tests for small sample

sizes.

The second chapter of this thesis gathers these concerns and develops a methodology

overcoming most of the pitfalls attributed to EVT. The chapter presents a definition for the

extreme values of a random sequence. This definition is given by the observations exceeding

a threshold sequence determined by the asymptotic property in Pickands theorem. In conse-

quence the choice of the threshold turns crucial. A formal iterative procedure for threshold

selection is implemented on the basis of the GPD approximation. The threshold choice de-

pends on the data (it is an order statistic) and on the length of the sequence. Therefore to

formalize the definition of extreme values we introduce an innovative bootstrap hypothesis

test. The bootstrap is semi-parametric benefiting of the historical information for the bulk

of the data and from the parametric GPD fit in the tail. The obtained bootstrap sampling

distribution makes immediate the study of the sample properties of the different tail index

estimators considered and the statistical inference (confidence intervals for quantile and

tail measures). The main beneficiaries of the accurate estimation methods obtained are

risk measures. In particular VaR and tail thickness that are estimated for major financial

indexes worldwide, and assessed by bootstrap confidence intervals.

The maintained assumptions in Diebold et al. are the polynomial law in the decay of

the tails and the iid data. In consequence, departures from these assumptions will lead to
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more pitfalls in the statistical aspects of EVT. In particular the iid assumption for finan-

cial econometrics data is not realistic. The availability of high frequency data improves and

motivates the use of EVT, but on the other hand entails serial dependence. The typical

financial literature explains this dependence by the correlation in the second moments. In

other words, while the returns are uncorrelated, the conditional volatility is driven by past

information. Along with the dependence in volatility there are other stylized facts charac-

terizing financial returns. These are the clustering of the largest observations in both tails,

the magnitude of the largest observations that is far from being explained by gaussian mod-

els ( heavy tails ?), the asymmetry observed in the distribution of returns, and the leverage

effect, that is, after periods of high volatility periods of negative returns. A first glance to

this type of sequences would promptly discard the use of gaussian assumptions, however

practitioners and researchers have kept on proposing models to describe the dynamics of

these data by modelling volatility.

The third chapter puts together the statistical challenge of EVT regarding the depen-

dence in the extremes and the financial econometrics problem regarding the modelling of

these stylized facts. The contributions of the chapter are twofold. First, it proposes a new

estimator for the parameter describing the dependence in the extremes, denoted extremal

index (θ), and second regards the clustering in the financial sequences as a characteristic

of the largest observations rather than from the second moments of the conditional distri-

bution. The statistical properties of the estimator for θ are very appealing. In particular,

it is asymptotically normal making the inference straightforward. In turn, the clustering in

the largest observations may be tested. Other hypothesis tests derived from the asymptotic

distribution of the estimator are developed with immediate application to testing the re-

maining stylized facts found in financial sequences. The conclusions agree with the theories

considering the presence of heavy tails in financial sequences rather than being condition-

ally gaussian with heteroskedastic volatility.

A major challenge in EVT is the multivariate setting. There is no natural extension

of this theory to several variables. Moreover, the typical problems encountered for higher

dimensions, serve as example the curse of dimensionality, are augmented in the context of



25

extreme values. Therefore, though the applications in the real world are endless, in par-

ticular in financial econometrics and risk management for modelling dependence between

markets in crises periods, these are hindered by the lack of data and rigorous techniques

for dimensions higher than two.

The fourth chapter concentrates on these links stressing the contagion phenomenon,

that is, the transmission of crises from ill economies to healthy economies. This has been

measured so far by linear measures as correlation. This methodology is not designed to mea-

sure causality between the variables and in consequence fails in describing the source and

strength of the dependence in distress periods. Embrechts, McMeil and Straumann (1999)

review the pitfalls of the Pearson correlation and present some alternatives to this standard

measure of dependence. The message is that Pearson correlation is an adequate measure

for dependence only for the multivariate normal distribution. In this case the marginal

distributions and the correlation matrix are sufficient to describe the overall dependence in

the data.

On the basis of correlation, two multivariate distribution functions with the same corre-

lation matrix cannot be differentiated, and more important for our case, correlation tells us

nothing about the degree of dependence in the tails of the underlying distributions. Other

problems of correlation are enumerated in the following list.

1. Correlation is simply an scalar measure of dependency. It is not designed to describe

the complete structure of dependence.

2. Correlation depends on the marginal distributions. All values between −1 and 1 are

not necessarily attainable.

3. Perfect positively dependent random variables do not necessarily have a correlation of

1. Perfect negatively dependent random variables do not necessarily have a correlation

of -1.

4. A correlation of zero does not indicate independence between the variables.

5. Correlation is not invariant under transformations of the risks.
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6. Correlation is only defined when the variances of the corresponding variables are

finite.

Embrechts et al. recommend the copula functions, a novel method in economics, to model

dependence. This method lies on the same idea raised in the discussion of the notions

of variance and risk. While variance was a linear measure describing the dispersion of

data, risk needed of the whole distribution function. In the multivariate setting, the role

of variance is assumed by correlation, and the notion of risk is replaced by contagion and

the strength of the dependence in the tails. Therefore, in the same way that risk needed

of F, contagion needs of the whole multivariate function. The copula function extracts the

dependence structure from the joint distribution function. Sklar (1959) showed that every

joint distribution function can be written as

H(x1, . . . , xm) = C(F1(x1), . . . , Fm(xm)), (1.16)

with H the multivariate distribution function, Fi, i = 1, . . . , m the margins, C the copula

function, and m the number of random variables.

As everything in life, this powerful statistical tool is not free from pitfalls. There is an

enormous set of available copulas, but there is no formal method to discriminate between

them. Goodness of fit tests in the multivariate case are not straightforward, and depend

heavily on the knowledge of the marginal distributions. In addition most of the techniques

for testing copula fitness face computational burdens that make the practical implementa-

tion difficult. The choice of the copula is usually replaced by ad-hoc methods. The other

important deficiency of the majority of the copulas is symmetry. Copula functions are

usually symmetric and therefore are not designed to reflect different contributions of the

corresponding variables to the dependence. Finally, the dynamics in cross dependence for

multivariate data are not very much explored. Conditional copulas introduced in Patton

(2001) are a first attempt to model time-varying dependencies, albeit these copulas boil

down to impose some dynamics to the parameters driving the dependence in standard cop-

ulas. On the other hand the conditioning assumptions are not well specified in general.
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In Chapter 4 the multivariate dependence between different financial markets is di-

vided in two groups: rational and irrational dependence. The rational dependence is due

to economic fundamentals, and is described by univariate regression models and volatility

filters. The irrational dependence is reflected in the links in the vector of innovations and is

modelled by copula functions. The emphasis is placed on the links between financial bonds

markets and stocks indexes, and testing the contagion phenomenon versus the flight to

quality (outflows of capital from stocks markets to bonds markets in crises periods). The

copula introduced is a new variant of the Gumbel copula sufficiently flexible to describe

asymmetric effects between the variables. This copula is designed to be capable of reflect-

ing these asymmetric effects, and therefore to describe causality in the extreme values. The

choice of the Gumbel copula is motivated by the multivariate extreme value theory and

the dependence properties between the vector of maxima. The concepts of contagion and

interdependence are revisited and adapted to be defined as tail properties.

Finally, the last chapter sketches the future lines of research of the author and the main

conclusions found in the thesis.
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Chapter 2

Risk is in the Tails: A formal

definition of Extreme Values

The goal of this chapter is to define and estimate the extremes of any random sample

of size n, from a distribution function F. This is done by means of a threshold sequence

and a goodness of fit test. Extreme Values are the observations exceeding such threshold

and following a type of Generalized Pareto distribution (GPD) involving the tail index

of F. The threshold is the order statistic that minimizes a generalization of the distance

of the supremum between the empirical distribution function of the corresponding largest

observations and the corresponding GPD. This generalization includes the Kolmogorov-

Smirnov statistics as a particular case. Once a set of extreme values candidates is identified,

we use a semi-parametric bootstrap to test the corresponding GPD approximation (second

part of our definition). Monte Carlo simulations show a very good finite sample performance

of the proposed test. Finally, we use our methodology to estimate the tail index and Value

at Risk of some financial indexes of major stock markets.

29
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2.1 Introduction

Risk Management is one of the most important innovations of the 20th century in Eco-

nomics. During the last decade financial markets have realized the importance of monitoring

risk. The question one would like to answer is: ‘If things go wrong, how wrong can they

go?’ The variance used as a risk measure is unable to answer this question.

Alternative measures regarding possible values out of the range of available information

need to be defined and calculated. Extreme value theory (EVT) provides the tools to model

the asymptotic distribution of the maximum of a sequence of random variables {Xn}, and

in this sense this theory can be very helpful in order to get a first impression about how

wrong things can go. A deeper insight into EVT allows to know not only the order of

convergence of the maximum but also the limiting distribution of the largest observations

of the sequence. These observations are the main ingredients of more informative risk mea-

sures that have been recently introduced, like Value at Risk (VaR) or Expected Shortfall.

These measures are functions of extreme quantiles of the data distribution. The attempt

for modelling the tails of these distributions is troublesome and standard methodologies as

historical simulation or the gaussian distribution do not provide reliable approximations at

very high quantiles.

On the other hand, the methodology derived from EVT covers this gap, and produces

a parametric framework to derive the VaR or any function of this extreme quantile. It is

clear that the first task is to identify which values are really extreme values. In practice this

is done by graphical methods like QQ-plot, Sample Mean Excess Plot or by other ad-hoc

methods that impose an arbitrary threshold (5%, 10%, . . .), see Embrechts, Klüppelberg

and Mikosch (1997). These methods do not propose any formal computable method, and

moreover they only give very rough estimates of the set of extreme values. In this chapter

we propose a formal way of identifying and estimating the extreme values of any random

sample of size n coming from a distribution function, say F. These values are going to be

defined as the exceedances of a threshold sequence {un} following a type of Generalized

Pareto distribution (GPD). The selection of this threshold plays a central role in this defi-
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nition and in the estimation of the parameters of the GPD. The sequence of extreme values

depends on the length of the data sequence by the choice of {un}. Therefore, we need to

introduce an appropriate test to asses statistically whether the distribution function of the

set of extremes candidates given by the threshold, really satisfies the weak convergence to

the GPD or not, with parameters driven by F. In order to achieve this task, we propose a

semi-parametric bootstrap test and study its asymptotic as well as its finite sample perfor-

mance.

The final purpose of our methodology is to achieve a reliable approximation of F pay-

ing special attention to its tails. Our tail estimate provides accurate approximations of the

extreme quantiles of F, and from them it is straightforward to calculate the risk measures

introduced in the financial literature.

The chapter is structured as follows. In Section 2 we present some general results of

extreme value theory focusing on the weak convergence of the largest observations of a ran-

dom sequence. Section 3 introduces different approaches to select the threshold sequence

and gives a brief review of estimation methods for the parameters of the GPD. Some

simulations show the performance of our approach in terms of tail index estimation. The

complete definition of the sequence of extreme values is given in section 4 by means of a

bootstrap hypothesis test. Monte Carlo simulations provide the finite sample performance

of our proposed test. Section 5 presents an empirical application where the risk of financial

indexes of major stock markets is analyzed via the tail index and VaR. Finally, Section 6

draws some concluding remarks. Proofs are collected in the appendix.

2.2 Extreme Value Theory Results

The purpose of this section is to briefly introduce the set of results of the so called

extreme value theory necessary to develop the theory used herein. The departing point

is the study of the weak convergence for the sample maximum of a sequence of random

variables {Xn} with distribution function F. Our intention is to use the limiting distribution
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of this statistic to derive the weak convergence of the largest observations of a random

sequence imposing a minimum set of assumptions on the distribution function F.

Let Mn = max{X1, . . . , Xn} be the sample maximum of the sequence and let F be the

common distribution function for {Xn}. Our first goal is to introduce the conditions under

which Mn converges weakly to a non degenerate distribution function.

Result 2.2.1. Let {Xn} be an independent and identically distributed (iid) sequence. Let

0 ≤ τ ≤ ∞ and suppose that {un} is a sequence of real numbers such that

n(1− F (un)) → τ as n →∞. (2.1)

Then

P{Mn ≤ un} → e−τ as n →∞. (2.2)

Conversely, if condition (2.2) holds for some τ , 0 ≤ τ ≤ ∞, then so does condition (2.1).

The proof of this result is immediately derived from

P{Mn ≤ un} = F n(un) = (1− n(1− F (un))

n
)n. (2.3)

However this result does not guarantee the existence of a non degenerate distribution for

Mn. Define the right end point of a distribution function as xF = sup{x|F (x) < 1} ≤ +∞.

It is clear that Mn → xF with probability 1 as n → ∞. Suppose now that F has a jump

at xF with xF < ∞ (i.e. F (xF−) < 1), and consider a sequence {un} satisfying (2.2) with

0 ≤ τ ≤ ∞. Then, either un < xF for infinitely many values of n and n(1− F (un)) →∞,

or un > xF and n(1−F (un)) = 0. Therefore we also need some regularity condition on the

tail of F to avoid the existence of jumps.

Result 2.2.2. Let F be a distribution function with right end point xF such that

lim
x↑xF

1− F (x)

1− F (x−)
= 1, (2.4)
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and let {un} be a sequence with un < xF and n(1− F (un)) → τ . Then 0 < τ < ∞.

The choice of the sequence {un} determines the value of τ . Suppose vn > un and

(2.2) holds, then n(1 − F (vn)) → τ ′ with τ ′ < τ . We can write expression (2.2) as

P{Mn ≤ un(x)} → e−τ(x), with un depending on x. Moreover, there exist some scaling

sequences an, bn varying according to F such that

P{a−1
n (Mn − bn) ≤ x} → G(x) as n →∞, (2.5)

with un(x) = anx + bn and G(x) = e−τ(x) a distribution function. This function has been

fully characterized by Gnedenko (1943) or de Haan (1976) via the analysis of domains of

attraction for the maximum, and it can be summarized as follows:

Result 2.2.3. The distribution function G(x) derived in expression (2.5) can only take

three different forms,

Type I: (Gumbel) G(x) = e−e−x
, −∞ < x < ∞,

Type II: (Frèchet) G(x) =





0 x ≤ 0,

e−x
− 1

ξ
x > 0, ξ > 0

Type III: (Weibull) G(x) =





1 x ≥ 0,

e−(−x)
− 1

ξ
x < 0, ξ < 0

.

The parameter ξ is the tail index of F and characterizes the tail behavior of the dis-

tribution function. The three types can be gathered in the so called Generalised Extreme

Value Distribution, first proposed by von Mises (1936),

G(x) = e−(1+ξ x−µ
σ

)
− 1

ξ
, (2.6)

where µ is a location parameter, σ a scale parameter and ξ 6= 0. This expression boils down

to G(x) = e−e−
x−µ

σ when ξ = 0.
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Clearly τ(x) = (1 + ξ x−µ
σ

)
−1
ξ in expression (2.5), and hence n(1 − F (un(x))) → (1 +

ξ x−µ
σ

)
−1
ξ for all x, where an, bn are suitable constants. This is the result we exploit in order to

derive the weak convergence of the largest observations determined by a threshold sequence

uon = anµ + bn, with µ satisfying −log G(µ) = 1. By doing that

1− F (un(x))

1− F (uon)
→ (1 + ξ

x− µ

σ
)
−1
ξ , as n →∞. (2.7)

This expression can be rewritten as

F (un(x))− F (uon)

1− F (uon)
→ 1− (1 + ξ

x− µ

σ
)−

1
ξ , (2.8)

for all x > µ continuity point. The threshold sequence satisfies un(x) = uon + an(x − µ),

and we can define

Fuon(an(x− µ)) =
F (uon + an(x− µ))− F (uon)

1− F (uon)
, (2.9)

as the conditional excess distribution function given uon with x > µ. This takes us directly

to the following result:

Result 2.2.4. Let y = an(x− µ), then

lim
uon→xF

sup
[0≤y<∞]

|Fuon(y)−GPDξ,σ(uon)(y)| = 0, (2.10)

with

GPDξ,σ(uon)(y) =





1− (1 + ξ y
σ(uon)

)−
1
ξ if ξ 6= 0

1− e
−y

σ(uon) if ξ = 0
, (2.11)

the Generalized Pareto distribution and σ(uon) = σan.

This result is known as Pickands (1975) theorem. Pickands proposed a sequence uon

taken in the interval [bn, bn+1] with bn the suitable sequence in (2.5). This approximation

for the distribution of the largest observations regarded as the exceedances of a threshold
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sequence can be improved when the tail of F decays at a polynomial rate.

Suppose 1 − F (x) = x−
1
ξ L(x) with L(tx)/L(x) → 1 as x → xF and ξ > 0; then the

distribution function F satisfies

lim
x↑xF

1− F (tx)

1− F (x)
= t−

1
ξ , t > 0. (2.12)

This type of distribution functions are regularly varying at a rate 1
ξ

and the domain of

attraction of the sample maximum is the Fréchet distribution (see Resnick (1987) or de

Haan (1976)). The function L(x) is said slowly varying and is introduced to include the

deviations of F from the Pareto probability law. When these departures from the poly-

nomial law are small, Fuon(y) is better approximated by the Pareto distribution function.

Consider a sequence un(x) = uonx where uon = un(1) is the threshold sequence that satis-

fies 1 − F (uon) = u
− 1

ξ
on L(uon). The conditional excess distribution function defined by uon

as Fuon(un(x)) = F (un(x))−F (uon)
1−F (uon)

satisfies

Fuon(un(x)) → 1− (
un(x)

uon

)−
1
ξ , as n →∞, (2.13)

for un(x) ≥ uon or equivalently for x ≥ 1. This convergence holds for all continuity point

of F and therefore for this case we can rewrite the previous result as

lim
uon→xF

sup
[uon≤y<∞]

|Fuon(y)− PDξ(y)| = 0, (2.14)

with y = un(x) and PDξ(y) = 1− ( y
uon

)
−1
ξ .

Finally, the choice of the threshold sequence has also an effect on the error made by the

approximations claimed in Pickands theorem. This error arises from the asymptotic relation

n(1− F (un)) → τ and from the approximation of F n(un) by the exponential distribution.

The latter approximation is of order o(n−1) since

0 ≤ e−x − (1− x
n
)n ≤ 0.3 1

n−1
,

for 0 ≤ x ≤ n (see, e.g., Leadbetter, Lindgren and Rootzén (1983)). Nevertheless, if F is
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continuous one can always obtain an equality in expression (2.2) by taking un = F−1(e−
τ
n )

and making the approximation errors to vanish. However sequences of type un(x) = anx+bn,

with an, bn suitable constants are more appropriate to study the weak convergence of Mn. In

these cases the equality or any uniform bound for all x are not usually feasible in expression

(2.5).

2.3 Threshold Choices to define the Extreme Values

The last section has focused on finding the asymptotic laws that rule the largest ob-

servations of a random sequence from a distribution function F. This set of observations is

defined by means of a threshold sequence and the tail index ξ that characterizes the cor-

responding Generalized Pareto or Pareto. The choice of this sequence is troublesome since

uon → xF when n →∞, but at an appropriate rate. This order of convergence depends on

F represented by the sequences an and bn when un(x) is of the form un(x) = anx+bn. Hence

the threshold sequence uon can be defined by the scaling sequences an, bn and the value of

x satisfying the condition −log G(x) = 1, or equivalently n(1 − F (uon)) → 1. For ease of

notation we will use hereafter un instead of uon to denote the threshold sequence satisfying

these conditions. This sequence is immediately derived by direct calculations when F is

known. Consider as an example the case F (x) = 1− e−x. By continuity of F we can choose

un(x) = F−1(1 − τ(x)
n

) with τ(x) > 0, and hence un(x) = −log τ(x) + log n. Expression

(2.2) is written as

P{Mn ≤ −log τ(x) + log n} → e−τ(x),

and then P{Mn− log n ≤ x} → e−e−x
, with τ(x) = e−x for all x > 0. The scaling constants

are an = 1, bn = log n, and hence the threshold sequence is un = log n, since −log G(0) = 1.

More examples can be found in Leadbetter, Lindgren and Rootzén (1983).

In general F is unknown, and in this setting neither the theoretical derivation nor the

direct comparison of different threshold choices are possible. This comparison is undertaken
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by analyzing the properties of the tail index estimator of F, as most of these estimators for

ξ are tied to a threshold choice. Therefore their biases and variances are influenced by the

effect of the selection of un. There is a large amount of literature in tail index estimation

(chapter V I of Embrechts, Klüppelberg and Mikosch (1997) gives an excellent review).

Among these estimators, the most popular are Hill’s estimator (1975), and Pickands’s

estimator (1975). The former is given by

ξ̂Hi
n (un) =

1

k

n∑

i=n−k+1

log
x(i)

x(n−k)

, (2.15)

with un = x(n−k), x(n−k+1) ≤ . . . ≤ x(n) denoting the increasing order statistics and k an

integer value in [1, n]. Pickands’s estimator for the tail index is

ξ̂Pi
n (un) =

1

log(2)
log(

x(n−k+1) − x(n−2k+1)

x(n−2k+1) − x(n−4k+1)

), (2.16)

and

σ̂Pi
n (un) =

x(n−2k+1) − x(n−4k+1)∫ log 2

0
eξ̂Pi

n (x(n−4k+1))tdt
, (2.17)

for the variance, with un = x(n−4k+1) and k = 1, . . . , n/4. There are some features of

both estimators that is worth mentioning. These estimators are heavily dependent on the

threshold choice un, and both of them can be derived under the assumption that Fun

is exactly Pareto with parameter ξ or Generalized Pareto with parameters ξ and σ(un).

Moreover, if Fun = PDξ, Hill’s estimator is the maximum likelihood estimator (Ml) of ξ

inheriting the corresponding asymptotic properties: consistency and normal distribution.

This approach is only valid for regularly varying distribution functions, i.e. ξ > 0, otherwise

the asymptotic properties of this estimator vary according to F (see Davis and Resnick

(1984)).

Pickands’s estimator for the tail index is obtained assuming Fun = GPDξ,σ(un) and

taking the inverse of the parametric GPD. This estimator is consistent and also converges

to a normal distribution; but is very sensitive to the choice of un. Alternatively, under the

latter parametric assumption on Fun we can obtain the maximum likelihood estimator for
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the parameter ξ and σ(un) of the GPD. In this case there is not a closed expression for

the maximum likelihood estimators of these parameters, and we have to rely on numerical

procedures (see Press (1992)). The maximum likelihood estimator for the tail index is

consistent and asymptotically normal for ξ > −1
2
, as it is discussed in Smith (1985).

The threshold selection is carried out by studying the mean square error of these ξ

estimators, as un is let to vary. However some explicit form is required for the distribution

function F. Under the assumption

1− F (x) = Cx−
1
ξ [1 + Dx−β + o(x−β)], (2.18)

where ξ > 0, C > 0, β > 0 and D is a real number, Hall (1982) proposed estimators for

the tail index based on an optimal choice of intermediate order statistics as candidates for

the threshold sequence. Nevertheless the pioneer work for threshold selection is Pickands

(1975), where F is not necessarily as in (2.18). The estimation of the tail index and the

threshold selection are done in one single step. Pickands proposed as a candidate for the

threshold the order statistic of a sample {xn} that minimizes the distance d∞ involving

the distribution functions Fun,n and GPDξ̂Pi
n (un),σ̂Pi

n (un). The empirical conditional excess

distribution function Fun,n(x) with x > un is defined by

Fun,n(x) =
n∑

i=1

1{un<xi≤x}
n∑

j=1

1{xj>un}
, (2.19)

or equivalently, via the transformation y = an(x− un) > 0, by

Fun,n(y) =
n∑

i=1

1{0<yi≤y}
n∑

j=1

1{yj>0}
. (2.20)

The distance d∞ can be written as function of a parameter θ,

d∞(Fθ,n, GPDξ̂Pi
n (θ),σ̂Pi

n (θ)) = sup
0≤y<∞

|Fθ,n(y)−GPDξ̂Pi
n (θ),σ̂Pi

n (θ)(y)|. (2.21)
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The optimal threshold is then

uPi
n = arg min

θ
d∞(Fθ,n, GPDξ̂Pi

n (θ),σ̂Pi
n (θ)), (2.22)

with θ taking values along the ordered sample x(3n/4) ≤ . . . ≤ x(n). More specifically,

uPi
n = x(n−k) with k → ∞, n → ∞ and k = o(n) to benefit of an increase in the sample

size.

Alternatively, we propose a version of the distance d∞ where the number of tail obser-

vations is weighted differently. This new approach accounts for the estimation pitfalls that

derive from the lack of observations when θ gets close to xF .

Definition 2.3.1. Let Fθ,n be the empirical version of Fθ and GPDξ̂Ml
n (θ),σ̂Ml

n (θ) the distribu-

tion function of the largest observations with parameters estimated by maximum likelihood

(Ml). Define the Weighted Pickands distance dWp as

dWp(Fθ,n, GPDξ̂Ml
n (θ),σ̂Ml

n (θ)) = kε sup
0≤y<∞

|Fθ,n(y)−GPDξ̂Ml
n (θ),σ̂Ml

n (θ)(y)|, (2.23)

with 0 ≤ ε ≤ 1/2 and k =
n∑

j=1

1{xj>θ}.

The parameter ε determines the weight assigned by the distance dWp to the tail obser-

vations defined by the corresponding parameter θ. Notice that this distance is the one used

by Pickands when ε = 0, and the Kolmogorov-Smirnov (KS ) statistic (Kolmogorov (1933))

when ε = 1/2. The corresponding threshold choice is the order statistic that minimizes the

distance,

un = arg min
θ

dWp(Fθ,n, GPDξ̂Ml
n (θ),σ̂Ml

n (θ)), (2.24)

with θ taking values along the ordered sample x(1) ≤ . . . ≤ x(n). The parameter ε can be

useful to study the effect of different weighting schemes in the threshold selection; however

this is far beyond the scope of this chapter where we will only focus on the value ε = 1/2

(KS statistic).

A preliminary analysis points out that threshold values far from xF produce biased
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estimates of the tail index. On the other hand, un close to the right end point will result

in inefficient estimates of ξ.

Goldie and Smith (1987) and Smith (1987) derive the asymptotic distribution functions

of both the Ml and Hill estimators of the tail index for a class of distribution functions

such that 1− F (x) = x−
1
ξ L(x), where L(x) are slowly varying functions of different types.

They also discuss in detail asymptotic bias and variance for these estimators and find that

departures of F from a Pareto distribution function lead to biased and inefficient estimates

of the tail index for both estimators. As a result, a right choice of the threshold sequence

turns out to be of critical importance in order to minimize the mean square error (MSE).

Hall (1982) derives an analytical expression for the MSE of Hill’s estimator when F sat-

isfies (2.18). All these results are achieved for determined classes of distribution functions.

In contrast, under the set of assumptions stated in the previous section it is not possible to

derive analytically the mean square error expression for the tail index estimator. Therefore,

we propose bootstrap confidence intervals in order to measure the bias and uncertainty of

the different tail index estimators we considered.

The näıve nonparametric bootstrap is consistent since the empirical distribution func-

tion Fn is a consistent estimator of F and
√

k(ξ̂
(i)
n (un) − ξ), i = Hi,Ml converges weakly

to a normal distribution, with k the number of exceedances over un. Then, the bootstrap

approximation Jn(x, Fn) to the true sampling distribution function Jn(x, F ) of this statistic

can be used to produce confidence regions, at 1− α level, in the following way

ξ ∈ [ξ̂Ml
n (un)− 1√

k
J−1

n (1− α

2
, Fn), ξ̂Ml

n (un)− 1√
k
J−1

n (
α

2
, Fn)], (2.25)

where J−1
n (1− α, Fn) is the 1− α bootstrap quantile. To implement (2.25) the bootstrap

approximation is estimated by

Ĵn(x, Fn) =
1

B

B∑
j=1

1{
√

k(ξ̂∗Ml
j,n (u∗j,n)−ξ̂Ml

n (un))≤x}, (2.26)
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with B the number of bootstrap iterations, ξ̂∗Ml
j,n (u∗j,n) the maximum likelihood estimator

for the bootstrap sample j, and u∗j,n the corresponding threshold choice.

The finite sample performance of the different estimators is analyzed in Table 2.8.1. The

threshold un is chosen by both methods, Pickands and Weighted Pickands with ε = 1/2.

To remark the importance of the threshold selection to estimating the tail index, an ad-hoc

threshold (un = x( 95
100

n)) is also included in the analysis.

The simulation experiment of Table 2.8.1 is done for different t-student distributions,

where the tail index ξ is well approximated by the inverse of the degrees of freedom (see

chapter III of Embrechts, Klüppelberg and Mikosch (1997)).

Before discussing the results of Table 2.8.1 it is important to notice that although F is

known, we replace it by Fn to calculate the bootstrap approximation Jn(x, Fn). The reason

to do that is that this bootstrap procedure works even when F is unknown and we only

have a realization from the random sequence {Xn}.
There are two clear results from Table 2.8.1: First, the confidence intervals for our

estimator contain the true tail index, something that it does not occur for Pickands’s

method; and second the confidence intervals estimated from the ad-hoc threshold are wider

than the ones derived from our method when ξ is significantly greater than zero.

Table 2.8.2 analyzes more in detail the advantages of the Weighted Pickands method for

selecting un when the data come from heavy tailed distributions. In this case the GPDξ,σ(un)

is replaced by the PDξ in (2.3.1) and (2.24).

From Table 2.8.2 we conclude that when we are dealing with heavy tailed distributions

(ξ > 0), our method is more efficient with the PD rather than with GPD. These simulation

results are in the same line as the theoretical findings derived in Smith (1987).

2.4 Hypothesis Testing

Different threshold choices define different sets of possible extreme values of a particular

sequence {Xn}. In this chapter the observations exceeding certain threshold are considered
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extreme values only if additionally they are distributed as a GPDξ,σ(un), with ξ the tail

index of F. In order to check this condition we propose a goodness of fit test for the following

hypothesis:

Hn,0: the sample {(x1 − un)+, . . . , (xn − un)+} is distributed as GPDξ,σ(un)

versus a general alternative of the form

Hn,1: the sample {(x1 − un)+, . . . , (xn − un)+} is not distributed as GPDξ,σ(un)

with un ∈ R, ξ the tail index of F and (x)+ = max(x, 0).

A natural goodness of fit test statistic is the KS statistic (for other goodness of fit

criteria see Anderson and Darling (1952)),

Rk(y; ξ, σ(un)) =
√

k sup
0≤y<∞

|Pk(y)−GPDξ,σ(un)(y)|, (2.27)

with k =
n∑

j=1

1{xj>un} and Pk the empirical distribution function of the observations exceed-

ing un. When the parameters are known, the asymptotic distribution of this test statistic

is tabulated and the critical values can be derived. If the parameters are unknown but

consistently estimated, the bootstrap distribution function is a reliable approximation of

the true sampling distribution of Rk(y; ξ, σ(un)). In this case it can be proved (see Romano

(1988)) that the bootstrap critical values are consistent estimates of the actual ones.

Our interest, however, does not lie in the definition of the extreme values of a particular

sequence {Xn}; but in the definition of the extreme values of any sequence of length n

with distribution function F. In this case a different hypothesis test is needed to determine

whether the selected threshold is a good candidate to define the extremes of F given the

sample size n. More formally, the testing problem under consideration is

H0 : Fun = GPDξ,σ(un)

versus a general alternative
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H1 : Fun 6= GPDξ,σ(un),

with ξ being the tail index of F.

Now, we can formally define the set of extreme values of any sequence with distribution

function F.

Definition 2.4.1. Let {Xn} be any sequence of a distribution function F. The extreme

values of any sequence of length n from this distribution are given by the observations

exceeding the threshold un, and satisfying Fun = GPDξ,σ(un).

The test statistic in this case is a version of the family of KS test statistics,

Tn(yn; ξ, σ(un)) =
√

n sup
0≤y<∞

|Fun,n(y)−GPDξ,σ(un)(y)|, (2.28)

with yi = (xi − un)+, i = 1, . . . , n. This statistic depends on un, ξ and σ(un).

In order to derive the asymptotic distribution of (2.28) and to asses the bootstrap

approximation, the following results are required. Let

Uλ(t) =
P{λ < T ≤ t}

P{T > λ} (2.29)

be the conditional excess distribution function, with parameter λ on [0, 1], of a uniform

[0, 1] random variable T. Its empirical counterpart

Uλ,n(t) =
1

n

n∑
i=1

1{λ<ti≤t}
1
n

n∑
j=1

1{tj>λ}
, (2.30)

with t1, . . . , tn and t ∈ [0, 1], defines an empirical process Bn(t) =
√

n(Uλ,n(t) − Uλ(t))

similar to the uniform empirical process
√

n(Un(t)−U(t)). It is well known that the latter

converges weakly to the distribution of a mean zero gaussian process ZU(·) (see chapter V

of Pollard (1984)). By an analogue reasoning, it is immediate to derive the probability law

of the process Sn(y) =
√

n(Fun,n(y)− Fun(y)) where the threshold un plays the role of the

parameter λ.
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Theorem 2.4.1. Consider a continuous and strictly increasing distribution function F

and a threshold un, with un < xF . The empirical process Sn(y) converges weakly to the

distribution of a mean zero gaussian process ZFun
(·) with covariance function

Cov(ZFun
(y1), ZFun

(y2)) =
(F (min(y1, y2))− F (un))− (F (y1)− F (un))(F (y2)− F (un))

(1− F (un))2
,

(2.31)

with y1, y2 ∈ R. Moreover, under the null hypothesis H0, this empirical process takes the

form
√

n(Fun,n(y)−GPDξ,σ(un)(y)) and the covariance function becomes

Cov(ZFun
(y1), ZFun

(y2)) =
GPDξ,σ(u)(min(y1, y2))

1− F (un)
−GPDξ,σ(un)(y1)GPDξ,σ(un)(y2).

(2.32)

By the continuous mapping theorem, the limiting distribution function, denoted by

L(x, F ), of the test statistic Tn is the distribution of the supremum of a mean zero gaussian

process with covariance function (2.32). The proof is in the appendix.

In order to test H0, we should be using the following rejection criteria

{Tn(yn; ξ, σ(un)) > L−1
n (1− α, F )}, (2.33)

where L−1
n (1− α, F ) is the 1− α quantile of the exact finite sample distribution Ln(x, F )

of the statistic Tn. This distribution Ln is clearly unknown and in practice has to be

approximated by the asymptotic distribution L(x, F ). This limiting distribution takes a

complicated form and depends on the knowledge of F, on the parameters of the GPD, as

well as on the threshold un. The nuisance parameters dependency forces us to look for an

alternative method to approximate the distribution Ln(x, F ).
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2.4.1 Bootstrap Approximation

Let Ln(x,Qn) be the bootstrap distribution that approximates Ln(x, F ), and L−1
n (1 −

α, Qn) the bootstrap quantile that approximates the corresponding finite sample distribu-

tion quantile L−1
n (1− α, F ). In order for the bootstrap to be consistent, Qn has to satisfy

certain conditions.

Lemma 2.4.1. Let Qn be an estimator of F based on {x1, . . . , xn} that satisfies sup
x∈R

|Qn(x)−
F (x)| p→ 0 whenever F ∈ H0, and let L(x, F ), the limiting distribution of the test statistic

Tn, be continuous and strictly increasing. Then

P{Tn > L−1
n (1− α,Qn)} → α, as n →∞. (2.34)

The näıve nonparametric bootstrap from Qn = Fn fails to produce consistent estimates

of a distribution function under H0 if F does not belong to the null. On the other hand,

the parametric bootstrap from the GPDξ,σ(un) (see (2.27)) fails to capture the structure

of F for the observations smaller than the threshold un.

To fulfill the conditions of Lemma (2.4.1) corresponding to Qn and therefore to solve

the two previously mentioned problems, a semi-parametric bootstrap methodology is in-

troduced. Define

Qn(x) =





Fn(x) x ≤ un

GPDξ,σ(un)(x− un) + Fn(un)(1−GPDξ,σ(un)(x− un)) x > un.
(2.35)

This distribution function is derived from the conditional probability theorem, since

P{X ≤ x} = P{X ≤ un}P{X ≤ x | X ≤ un}+ P{X > un}P{X ≤ x | X > un}, (2.36)

where P{X ≤ un} is consistently approximated by Fn(un), and under the null P{X ≤ x |
X > un} = GPDξ,σ(un)(y) with y = x− un.
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Denote {x∗n} a bootstrap sample obtained from Qn and consider the transformed boot-

strap sample y∗i = x∗i−un with i = 1, . . . , n. The value of the test statistic is tn(y∗1, . . . , y
∗
n; ξ, σ(un))

and for the sake of notation is denoted as t∗n(yn; ξ, σ(un)). The bootstrap approximation

Ln(x,Qn) is then estimated by the empirical distribution of the B (number of bootstrap

samples) values of Tn,

L̂n(x, Qn) =
1

B

B∑
j=1

1{t∗n,j(yn;ξ,σ(un))≤x}. (2.37)

The 1−α quantile of L̂n(x,Qn) is the order statistic t∗n,(d(1−α)Be)(yn; ξ, σ(un)) of the sequence

{t∗n,j(yn; ξ, σ(un))} of B elements, where dxe is the upper integer part of x. The rejection

criteria (2.33) is replaced now by

{Tn(yn; ξ, σ(un)) > t∗n,(d(1−α)Be)(yn; ξ, σ(un))}, (2.38)

and hence for a sample {xn} the null hypothesis is rejected if tn(y1, . . . , yn; ξ, σ(un)) is in

this rejection region. This means that the conditional excess distribution function defined

by un is not a GPDξ,σ(un), and according to our definition these candidates for extreme

observations are not really extreme.

Recall that until now we have assumed the parameters to be known. Nevertheless this

condition is rarely satisfied in practice. To make our test operational we replace these

parameters by their maximum likelihood estimators, and instead of Qn we define its coun-

terpart distribution function Q̂n:

Q̂n(x) =





Fn(x) x ≤ un

GPDξ̂Ml
n (un),σ̂Ml

n (un)(x− un) + Fn(un)(1−GPDξ̂Ml
n (un),σ̂Ml

n (un)(x− un)) x > un

.

(2.39)

Notice that the new bootstrap distribution function Ln(x, Q̂n) boils down to Ln(x, Qn) for

x ≤ un, and for x > un the former
√

k-converges to the latter where k is the number of

observations of the tail defined by un. Moreover, if F belongs to the null hypothesis defined
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by un, the conditions in Lemma (2.4.1) still hold and the rejection region (2.38) becomes

{T̂n(yn; ξ̂Ml
n (un), σ̂Ml

n (un)) > t∗n,(d(1−α)Be)(yn; ξ̂∗,Ml
n (un), σ̂∗,Ml

n (un))}, (2.40)

where T̂n and ξ̂Ml
n (un), σ̂Ml

n (un) are calculated from the original sample {xn} and ξ̂∗,Ml
n (un),

σ̂∗,Ml
n (un) are estimated from the corresponding bootstrap sequences.

2.4.2 Finite Sample Performance: Empirical Power

The power of our test,

P{T̂n > L−1
n (1− α, Q̂n)}, (2.41)

depends on three key parameters: the threshold choice, the distribution function F and the

length of the sequence. To calculate this power is important to realize that the maximum

likelihood estimates ξ̂Ml
n (un), σ̂Ml

n (un) that entry in the expression of T̂n are the ones used

to define the null distribution Q̂n.

This test lies in constructing a distribution function Q̂n, such that its conditional excess

distribution is a GPDξ̂Ml
n (un),σ̂Ml

n (un). In that way the observations coming from the null

hypothesis are drawn from Q̂n and not from F. The empirical size of the test is calculated

from the former distribution. For a deeper insight of how to calculate the power via boot-

strap, see Beran (1986) and Romano (1988).

The following algorithms are devoted to describe the simulation experiment. Algorithm

2.4.1 generates bootstrap samples {x∗n} from the distribution function Q̂n and calculates

the empirical bootstrap approximation of Ln(x, F ). The threshold value un and the maxi-

mum likelihood estimates are obtained from a particular sample {xn} from F, and are used

to construct Q̂n.

Algorithm 2.4.1. (Bootstrap procedure):

1. l = 1.

2. Generate x∗1,l, . . . , x
∗
n,l drawn from Q̂n.
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3. Calculate ξ̂∗Ml
n (un) and σ̂∗Ml

n (un) from the bootstrap sample.

4. t∗n,l(yn; ξ̂∗Ml
n (un), σ̂∗Ml

n (un)) =
√

n sup
0≤y<∞

|Fun,n(y)−GPDξ̂∗Ml
n (un),σ̂∗Ml

n (un)(y)|
with y = x− un.

5. l + +. Go to step 2 while l ≤ B.

6. L̂n(x, Q̂n) = 1
B

B∑
j=1

1{t∗n,j(y;ξ̂∗Ml
n (un),σ̂∗Ml

n (un))≤x}

In practice, the p-value replaces the rejection criteria given in expression (2.40). The

empirical p-value is

p =
1

B

B∑
j=1

1{t∗n,j>t̂n}, (2.42)

with t̂n obtained from the sample {xn}.
The probability (2.41) can not be directly derived and we have to rely on Monte

Carlo simulations to calculate it. The following algorithm describes how to implement this

procedure.

Algorithm 2.4.2. (Empirical Power):

1. j = 1.

2. Let {x1,j, . . . , xn,j} be a sample from F and obtain un, ξ̂Ml
n (un) and σ̂Ml

n (un).

3. Construct Q̂n and L̂n(x, Q̂n) as in algorithm ??.

4. Generate {x′1, . . . , x′n} from F1.

5. Calculate t̂n(x′n; ξ̂Ml
n (un), σ̂Ml

n (un)) if F1 6= F . Otherwise t̂n(x′n; ξ̂∗Ml
n (un), σ̂∗Ml

n (un))

with ξ̂∗Ml
n (un), σ̂∗Ml

n (un) from {x′n}.

6. Calculate the p-value p as in (2.42).

7. δj =





1 if p < α

0 otherwise.
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8. j + +. Repeat while j ≤ m.

9. α̂ = 1
m

m∑
j=1

δj.

As n → ∞, the estimate α̂ approaches the size of the test if the threshold un is really

defining the extremes of F for a given length n. On the other hand, when the conditional

distribution function defined by the threshold is not a GPDξ,σ(un), or the sequence of data

does not come from F the estimate α̂ tends to one.

The following Table 2.8.3 depicts the simulation results of the empirical power for a

family of t-student distribution functions with the threshold un obtained by our Weighted

Pickands Method.

Table 2.8.3 points out two clear results. First, the fact that the diagonal is very close

to the nominal size reveals that our procedure performs very well to capture the extremes

of sequences of length n coming from F0. Second, extreme values candidates coming from

F1 6= F0 are rejected as extreme values of F0. A by-product of this table is that our test

can be considered a goodness of fit test via the tails. In principle our test is more sensitive

than standard KS statistics to detect deviations in the tails (see Mason and Schuenemeyer

(1983)).

Another alternative to select the threshold is to choose a fixed order statistic. In this

case the set of extreme values is defined by a fixed number of observations given the sample

size n.

The message from Table 2.8.4 is clear: These ad-hoc selections of the set of extreme

values can be valid for particular sequences of F ; but in general are rejected to define the

extremes of any sequence of F with the same length n.

2.5 Application: VaR Estimation in Financial Indexes

An important application of the semi-parametric approximation Q̂n of F is quantile

estimation in the tail region, where there is usually a lack of observations because we are
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dealing with extremal events. This question is turning of primary importance in a wide

variety of research fields, e.g. finance, climatology or hydrology.

The goal of this section is to get a deeper insight into risk management for financial

indexes of different major markets. Market risk management is inherently related to the

probability of occurrence of extreme events, that is, very large negative or positive returns.

We focus on a particular measure of this market risk: Value at Risk (VaR), the amount

of money necessary to provide the institution with coverage against losses that can occur

with a p probability over some holding period. It is not our intention to get into details of

the VaR methodology, we only pursue to present some results about tail index estimation

(tail behavior) and a näıve calculus of VaR under iid assumptions for financial data. Of

course we know this assumption is unrealistic and we should go a step further regarding

heteroscedastic conditional volatility models; but this is left for future research.

General practitioners calculate VaRs in two different ways: (i) Complete parametric

way, where it is assumed an underlying distribution (normal, t-student, etc.), and (ii) fully

nonparametric way, where the main actor is the empirical distribution Fn. Our approach can

be considered as something in the middle, because we use a semi-parametric approximation

Q̂n.

The inverse of Q̂n provides a consistent estimator of VaR for the distribution function

F. In this case,

V̂aRp =





inf{x|Fn(x) ≥ 1− p}, 1− p ≤ Fn(un)

un + σ̂Ml
n (un)

ξ̂Ml
n (un)

(( p
1−Fn(un)

)−ξ̂Ml
n (un) − 1), 1− p > Fn(un)

. (2.43)

When the distribution function is regularly varying (ξ > 0), the tail of Q̂n is modelled as

a Pareto distribution and the inverse of F is consistently estimated by

V̂aRp =





inf{x|Fn(x) ≥ 1− p}, 1− p ≤ Fn(un)

un(1−Fn(un)
p

)ξ̂Ml
n (un), 1− p > Fn(un)

. (2.44)
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The uncertainty of these estimates can be measured by bootstrap confidence intervals,

since the exact finite sample distribution function of Vn =
√

n(V̂ aRp−V aRp) is not known

and its asymptotic distribution depends on nuisance parameters. Let Jn(x, Q̂n) be the

bootstrap approximation of the exact distribution of Vn. A confidence interval for VaRp, at

a significance level α, is therefore given by the following expression

I.Cα(VaRp) = [V̂aRp − 1√
n

J−1
n (1− α

2
, Q̂n), V̂aRp − 1√

n
J−1

n (
α

2
, Q̂n)], (2.45)

where J−1
n (1− α, Q̂n) is the 1− α bootstrap quantile.

2.5.1 Data features

The data we use to illustrate how the methodology proposed in this work can be ap-

plied consist of five financial indexes of major stock markets over the period 19/12/1994−
20/04/2001: Frankfurt (DaX), London (Ftse-100), Madrid (Ibex), Tokyo (Nikkei) and New

York (Dow-Jones). These data have been collected from www.freelunch.com. The observa-

tions considered for the analysis are the logarithmic returns measured in percentage terms

and denoted as rt:

rt = 100 (logPt − logPt−1),

with Pt the original prices at time t. For ease of calculus the negative observations (losses)

are depicted in the positive tail.

A first glance to the standard statistic for kurtosis shows that most of these series are

leptokurtic. For instance the Dax index has a coefficient of corrected kurtosis of 5.70; Ftse:

1.34; Ibex: 3.88; Nikkei: 2.77, and the Dow-Jones has a coefficient of 3.25. Traditionally,

this measure has been considered an indicator of heavy tails. Nevertheless, the coefficient of

kurtosis does not provide us with adequate information about the source of the heaviness.

The tail index, however, provides this kind of information focusing on a particular tail. For

instance, ξ > 0 corresponds to distributions where that tail has a polynomial decay (a more
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detailed discussion can be found in Shiryaev (2001)).

Table 2.8.5 presents nonparametric bootstrap confidence intervals for the tail index

(see (2.25)) obtained by the different approaches investigated throughout the work.

From this table appears clearly that the tail index ξ is greater than zero, indicating

the existence of heavy right hand side tails (corresponding to losses). The only exception

is Ftse index, where there are some reasonable doubts. For that reason in the next table

the V aR is calculated under both GPD and PD methodologies.

In Table 2.8.6 we provide pointwise estimates and confidence intervals for V aR under

four different approaches. The first two correspond to the methods developed in this work,

and the last two correspond to the standard empirical methodologies that will be used here

as a benchmark.

From Table 2.8.6 three conclusions can be obtained: (i) Comparing our two approaches

and taking into account the results of the previous table, the PD method outperforms

the GPD from an efficiency point of view, given that the point estimates are very similar.

This is the expected result under the presence of heavy tails; (ii) the approach based on

the empirical distribution is less efficient, compared to the PD method. The main reason

for that is the lack of observations coming from the tail, something that our PD method

overcomes by parameterizing properly the tail; and (iii) the approach based on gaussianity,

as expected, is very conservative in the sense of requiring less amount of capital (smaller

V aR).

2.6 Conclusion

Risk and uncertainty are not the same thing (see Granger (2002)) and therefore they

need to be characterized by different measures. It is accepted that variance is well designed

to capture the latter but not the former. To measure risk, in other words, to respond the

question if things go wrong how wrong they can go? it is first necessary to define the extreme

observations that determine the risk underlying the sequence of data. This is the main goal
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of this work, where following Pickands (1975) methodology we do not only define formally

the set of extreme observations of a particular sequence, but also, by means of a hypothesis

test we define the extreme values of any sequence of the same length and with the same

distribution function. Identification of the extreme observations allows to estimate very

accurately risk measures such as Value at Risk, as well as to make inference on different

tail parameters of interest.

The transmission of risk in time series, involving dependence in the largest observations,

is developed in the following chapter.
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2.7 Appendix A: Proofs

Proof of theorem 2.4.1: Let {Un} be a sequence of independent and identically

distributed (iid) uniform random variables on [0, 1] and let λ be a parameter in 0 < λ < 1.

Define the empirical process Bn(t) =
√

n(Uλ,n(t) − Uλ(t)) with Uλ,n(t) = 1
n

n∑
i=1

1{λ<ti≤t}
1
n

nP
j=1

1{tj>λ}
.

This process has a binomial distribution Bin(n, Uλ(t)). By the empirical central limit theo-

rem (CLT), Bn(t) converges weakly to a N(0, Uλ(t)(1−Uλ(t))), therefore the finite dimen-

sional distributions are normal for any fixed t ∈ [0, 1]. In addition the process is tight due

to the uniform continuity of the distribution function U and of Uλ(t). This implies that

Bn(t) converges weakly to a mean zero gaussian process ZUλ
(t). It only remains to find the

asymptotic covariance function,

Cov(Bn(s), Bn(t)) = Cov[
√

n(Uλ,n(s)− Uλ(s)),
√

n(Uλ,n(t)− Uλ(t))],

with 0 < s, t < 1. As Uλ(t) is constant given t ∈ (0, 1) the covariance function boils down

to

Cov(Bn(s), Bn(t)) =
n

(1− Un(λ))2
Cov(

1

n

n∑
i=1

1{λ<ti≤s},
1

n

n∑
i=1

1{λ<ti≤t}).

The observations {t1, . . . , tn} are iid, and therefore Cov(1{λ<ti≤s}, 1{λ<tj≤t}) = 0 with i 6= j.

The covariance function is in this case

Cov(Bn(s), Bn(t)) =
1

(1− Un(λ))2
Cov(1{λ<ti≤s}, 1{λ<ti≤t}) =

=
1

(1− Un(λ))2
[E(1{λ<ti≤min(s,t)})− E(1{λ<ti≤s})E(1{λ<ti≤t})] =

=
(U(min(s, t))− U(λ))− (U(s)− U(λ))(U(t)− U(λ))

(1− Un(λ))2
, (2.46)

with 0 < s, t < 1. Therefore Bn(t) converges weakly to the distribution of a mean zero

gaussian process ZUλ
(t) with covariance function given by

Cov(ZUλ
(s), ZUλ

(t)) =
(min(s, t)− λ)− (s− λ)(t− λ)

(1− λ)2
.
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Let F be continuous and strictly increasing and define un = F−1(λ). Construct x1, . . . , xn

iid from F via xi = F−1(ti) and let Fn(x) denote the empirical distribution function based

on x1, . . . , xn. By the continuous mapping theorem
n∑

i=1

1{un<xi≤x} =
n∑

i=1

1{F (un)<F (xi)≤F (x)}

and therefore Fun,n(x) = Uλ,n(t). Then Bn(t) can be written as
√

n(Fun,n(y)−Fun(y)) with

y = x− un (see (2.19) and (2.20)) and the covariance function is

Cov(ZFun
(y1), ZFun

(y2)) =
(F (min(y1, y2))− F (un))− (F (y1)− F (un))(F (y2)− F (un))

(1− F (un))2
,

with y1 = F−1(s) and y2 = F−1(t).

Under the null hypothesis Fun = GPDξ,σ(un) the empirical process Sn(y) is written as

√
n(Fun,n(y) − GPDξ,σ(un)(y)) and the covariance function of the limiting process can be

written as

Cov(ZFun
(y1), ZFun

(y2)) =
GPDξ,σ(min(y1, y2))

1− F (un)
−GPDξ,σ(y1)GPDξ,σ(y2).

Proof of lemma 2.4.1: Let 0 < α < 1 be the significance level of the test and consider

L(x, F ) continuous and strictly increasing. By definition

P{Tn > L−1(1− α, F )} = α,

with L−1(1− α, F ) the 1− α asymptotic quantile.

Consider Ln(x,Qn) the bootstrap approximation of Ln(x; F ) and L−1
n (1 − α,Qn) its

1−α quantile. Therefore if sup
x∈R

|Qn(x)−F (x)| p→ 0 then L−1
n (1−α,Qn) → L−1(1−α, F )

with probability one and by Slutsky’s theorem

P{Tn > L−1
n (1− α, Qn)} → P{Tn > L−1(1− α, F )} = α.
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2.8 Appendix B: Tables

t1(ξ ∼ 1) t5(ξ ∼ 0.2) t10(ξ ∼ 0.1) t30(ξ ∼ 0)

ξ̂Ml
n (un) [0.70, 1.69] [−0.17, 0.24] [−0.28, 0.39] [−0.43, 0.68]

ξ̂Pi
n (uPi

n ) [0.29, 1.06] [−0.39, 0.08] [−0.63,−0.06] [−0.64,−0.17]

ξ̂Ml
n (x( 95

100
n)) [0.34, 1.75] [0.19, 0.91] [−0.26, 0.33] [−0.28, 0.57]

Table 2.8.1. Bootstrap confidence intervals at a significance level α = 0.05 for different

estimators of the tail index: ξ̂Ml
n (un) with un estimated by dWp and by x( 95

100
n); and ξ̂Pi

n (uPi
n )

with un estimated by d∞. B = 1000 bootstrap samples of size n = 1000 are drawn from a

sequence generated from tν, with ν = 1, 5, 10 and 30.

t1(ξ ∼ 1) t5(ξ ∼ 0.2) t10(ξ ∼ 0.1) t30(ξ ∼ 0)

ξ̂Ml
n (un) [0.70, 1.69] [−0.17, 0.24] [−0.28, 0.39] [−0.43, 0.68]

ξ̂Hi
n (un) [0.82, 1.23] [0.08, 0.37] [−0.42, 0.23] [0.04, 0.20]

Table 2.8.2. Bootstrap confidence intervals at a significance level α = 0.05 for different

estimators of the tail index when un is obtained from the GPDξ,σ(un) and from the PDξ

respectively. Note ξ̂Ml
n (un) is ξ̂Hi

n (un) for the PDξ case. B = 1000 bootstrap samples of size

n = 1000 are drawn from a sequence generated from tν, with ν = 1, 5, 10 and 30.
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n = 1000 F1

F0 t30(ξ ∼ 0) t10(ξ ∼ 0.1) t5(ξ ∼ 0.2) t1(ξ ∼ 1)

t30 0.06 0.63 0.91 0.97

t10 0.59 0.08 0.79 0.98

t5 0.95 0.72 0.06 0.99

t1 0.94 0.94 0.94 0.05

Table 2.8.3. Empirical power of Tn for a family of t-student distribution functions, with

un from dWp. F0 denotes the data generating process and F1 the distribution under the

alternative hypothesis. Bootstrap replications B = 1000, Monte Carlo simulations m = 500.

Significance level α = 0.05.

F0 x(700) x(800) x(900) x(950)

t30 0.49 0.48 0.43 0.44

t10 0.48 0.48 0.46 0.46

t5 0.54 0.50 0.48 0.47

t1 0.64 0.58 0.52 0.48

Table 2.8.4. Empirical power for a family of t-student distribution functions, with different

ad-hoc threshold choices for a sample size n = 1000. Bootstrap replications B = 1000,

Monte Carlo simulations m = 500. Significance level α = 0.05.
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ξ̂Ml
n (un) ξ̂Hi

n (un) ξ̂Pi
n (uPi

n ) ξ̂Ml
n (x( 95

100
n))

Dax [−0.02; 0.24; 0.84] [0.30; 0.31; 0.36] [−0.50;−0.37;−0.20] [−0.13; 0.22; 0.65]

Ftse [−0.57;−0.26; 0.04] [0.07; 0.11; 0.12] [−0.44;−0.28;−0.08] [−0.54;−0.29; 0.13]

Ibex [−0.12; 0.28; 0.87] [0.32; 0.37; 0.38] [−0.43;−0.21;−0.04] [−0.04; 0.46; 0.90]

Nikkei [−0.13; 0.11; 0.55] [0.33; 0.34; 0.39] [−0.34;−0.19;−0.03] [−0.25; 0.07; 0.50]

Dow-Jones [−0.11; 0.63; 1.52] [0.33; 0.41; 0.44] [−0.24;−0.22;−0.03] [0.05; 0.76; 1.72]

Table 2.8.5. Bootstrap confidence intervals (α = 0.05) and pointwise estimation of the

tail index ξ for stock returns over the period 19/12/1994− 20/04/2001. Bootstrap samples

B = 1000.

VaR GPD PD Fn Gaussian

Dax [3.57; 4.16; 7.83] [3.48; 4.25; 4.93] [2.96; 4.33; 5.04] [3.52; 3.62; 3.71]

Ftse [2.81; 3.04; 3.40] [2.83; 3.05; 3.31] [2.83; 3.08; 3.32] [2.65; 2.78; 2.85]

Ibex [3.25; 3.92; 4.69] [2.94; 3.91; 4.62] [3.02; 4.50; 5.80] [3.08; 3.19; 3.32]

Nikkei [3.69; 4.24; 8.30] [3.33; 4.31; 5.00] [4.09; 4.73; 5.95] [3.75; 3.79; 3.83]

Dow-Jones [1.47; 2.09; 2.60] [1.56; 2.09; 2.49] [1.36; 1.90; 2.15] [1.55; 1.73; 1.97]

Table 2.8.6. Confidence intervals (α = 0.05) and pointwise estimation of the VaR for

the different financial returns calculated with different methodologies: our GPD and PD

approaches, nonparametric approach Fn, and a parametric approach based on a Gaussian

assumption. The VaR indicates the percentage of returns losses with a p = 0.01 probabil-

ity, and a holding period of 1 day. The data covers the period 19/12/1994 − 20/04/2001.

Bootstrap samples B = 1000.



Chapter 3

Dependence in the Extremes: A

Channel for the transmission of Risk

The extremal index is the key parameter for extending extreme value theory for iid

random variables to stationary processes, reflecting the level of dependence in the largest

observations defined by a threshold sequence {un}. This chapter introduces an estimator

for this parameter as the ratio of the number of elements of two point processes defined

by a partition of the sample in different blocks, and by the block maxima exceeding the

corresponding thresholds {vn} and {un}, with vn > un. The estimator is asymptotically

unbiased under very general conditions on {un}, consistent (the variance converges to 0 as

n →∞), and the central limit theorem can be applied. Therefore it supports a hypothesis

test for the extremal index, and hence for testing the existence of clustering in the extreme

values. Other advantages of this method are that it allows some freedom to choose {un},
and it is not very sensitive to the choice of the partition. The analysis of the clustering of

the extreme observations in the Frankfurt financial market (DaX Index) sheds some light

about the patterns of dependence in financial sequences. The transmission of risk may be

due to the dependence found in the largest observations rather than to the dynamics in the

volatility process.

59
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3.1 Background

Suppose a random sample from an unknown distribution function F, and let G be the

limiting distribution of the sample maximum Mn. Classical Extreme Value Theory shows

that under some regularity conditions on the tail of F and for some suitable constants

an > 0, bn,

P{a−1
n (Mn − bn) ≤ x} → G(x), (3.1)

where G must be of the following types (see de Haan (1976)),

Type I: (Gumbel) G(x) = e−e−x
, −∞ < x < ∞.

Type II: (Fréchet) G(x) =





0 x ≤ 0,

e−x
− 1

ξ
x > 0, ξ > 0.

Type III: (Weibull) G(x) =





1 x ≥ 0,

e−(−x)
− 1

ξ
x < 0, ξ < 0.

This important result may be extended to study the maximum of a wide class of de-

pendent processes. We concentrate here on stationary sequences where the dependence is

restricted by different distributional mixing conditions. We distinguish two types of de-

pendence: long range and short range dependence. To limit the first type of dependence

we assume a variation of the distributional mixing condition D(un) of Leadbetter et al.

(1983). Leadbetter’s mixing condition is said to hold for a sequence {un} if for any integers

1 ≤ i1 < . . . < ip < j1 < . . . < jp′ ≤ n for which j1 − ip ≥ l, we have

D(un) : |Fi1,...,ip,j1,...,jp′ (un)− Fi1,...,ip(un)Fj1,...,jp′ (un)| ≤ αn,l,

where αn,ln → 0 as n → ∞ for some ln = o(n), and Fi1,...,ip(un) denotes P{Xi1 ≤
un, . . . , Xip ≤ un}. Let D′(un) be the alternative mixing condition that will be used through-

out the paper. This condition is as follows,
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D′(un) : |P
{

Xi1 > un or . . . or Xip > un orXj1 > un or . . . or Xjp′ > un

}
−

−P
{
Xi1 > un or . . . or Xip > un

}
P

{
Xj1 > un or . . . or Xjp′ > un

}
| ≤ αn,l. (3.2)

Note that these conditions only concern events of the form {Xi > un} in contrast to

more restrictive mixing conditions, for example the strong mixing condition introduced in

Rosenblatt (1956). These mixing conditions alone are sufficient to extend the central result

given in (3.1) to stationary sequences for some suitable constants not necessarily the ones

obtained from the iid context. In particular these constants an > 0, bn and the extreme

value distribution G are the same of the iid case under a condition D′′(un) restricting short

range dependence, Leadbetter (1983), that avoids the presence of clusters,

D′′(un) : limsup
n→∞

n

[n/kn]∑
j=2

P{X1 > un, Xj > un} → 0 as kn →∞, (3.3)

with kn a sequence that defines a partition of the sample. Otherwise, for a stationary

sequence {Xn} satisfying only D′(un) with un = anx + bn, we typically have

P{a−1
n (Mn − bn) ≤ x} → Gθ(x), (3.4)

where θ is the key parameter for extending extreme value theory for iid random variables to

stationary sequences. This concept, originated in papers by Loynes (1965), O’Brien (1974)

and developed in detail by Leadbetter (1983), reflects the effect of the clustering of the

observations exceeding un on the limiting distribution of the maximum.

There are different interpretations of the extremal index θ, concerning diverse features of

the clustering of the largest observations. Loynes (1965) under different mixing conditions

found that

P{Mn ≤ un} = F nθ(un). (3.5)
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O’Brien (1987) showed that

P{M2,rn ≤ un|X1 > un} → θ, (3.6)

where M2,rn is the maximum of {X2, . . . , Xrn}, and rn = o(n) satisfies certain growth

conditions. Note that from this definition of the extremal index it is straightforward to see

that 0 ≤ θ ≤ 1. Alternatively Leadbetter (1983) showed that the inverse of the extremal

index is the limiting mean number of exceedances of un in an interval of length rn, i.e.

E

[
rn∑

j=1

I(Xj > un)|
rn∑

j=1

I(Xj > un) ≥ 1

]
→ θ−1, (3.7)

with I(X > 0) the indicator function. By stationarity this is called the limiting mean cluster

size of the process. Finally, Hsing (1993) and Ferro and Segers (2003) take advantage of

the limiting probability

P{Mn ≤ un} → e−θτ , (3.8)

with 0 < τ < ∞, in two different ways. Hsing approximates the distribution of n(1−F (Mn))

by an exponential distribution with mean θ−1, and Ferro and Segers model the process of

the interexceedance times defined by un by the same limiting exponential distribution.

Expression (3.8) is a transformation of (3.4) where τ is the exponent of an extreme

value distribution and un = anx+bn. In the same way the limiting probability (3.1) may be

written as P{Mn ≤ un} → e−τ . Taking logs in this expression, it is immediate to derive that

n(1 − F (un)) → τ for un sufficiently high. Then for iid sequences, B
(un)
n =

n∑
j=1

I(Xj > un)

converges in distribution to a Poisson random variable with mean τ .

However for dependent stationary sequences where D′′(un) is not satisfied B
(un)
n does

not converge to a Poisson random variable (the exceedances of un are not mutually in-

dependent), nevertheless we can define a point process as the result of thinning B
(un)
n .

This thinning defines the process N
(un)
kn

formed by the maxima over kn blocks of length

rn and exceeding un, and converges to a Poisson process N with mean θτ , see Leadbetter

(1983) or Leadbetter et al. (1983). This paper presents an alternative derivation of the
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extremal index as the result of thinning twice B
(un)
n . The second thinning of B

(un)
n , and

hence thinning of N
(un)
kn

, defines another point process N
(vn)
kn

that converges in distribution

to a Poisson process with intensity θ2τ . The sequence {vn} satisfies n(1−F (vn)) → θτ and

is defined by E[
rn∑

j=1

I(Xj > vn)|
rn∑

j=1

I(Xj > un) ≥ 1] → 1. Under some mild conditions on

the threshold sequence, this method provides a consistent estimator of the extremal index

that outperforms most of the popular estimators and such that it is not very sensitive to

the choice of the block size rn nor the choice of the sequence {un} in contrast to the rest

of the candidates that estimate θ.

The chapter is structured as follows. Section 2 introduces a definition of the extremal

index as the ratio of two point processes derived from the asymptotic distribution of the

maximum. A natural estimator for this parameter based on these techniques is introduced

in Section 3. This section also reviews some of the most popular estimators found in the

literature and their statistical properties, in particular bias and variance. The correspond-

ing properties of our estimator are also studied with special emphasis in the analysis of

the mean square error of the different methods. The optimal block size selection is also

considered and the section concludes with a hypothesis test for the extremal index that is

sufficient to test the existence of clustering in the extremes. A simulation experiment for

different examples presented in the literature is conducted in Section 4 stressing a Monte-

Carlo experiment for the mean square error. Section 5 presents an application to DaX Index

returns in order to gain some understanding about the clustering in the extremes and in

the volatility of the process. Finally the conclusions are found in Section 6.

3.2 Definition of the extremal index

Suppose throughout that we have n observations from a stationary sequence {Xi, i ≥ 1}
with marginal distribution function F satisfying [1 − F (x)]/[1 − F (x−)] → 1 as x → ∞.

This condition is sufficient to define a sequence {un} for each 0 < τ < ∞ such that

n(1− F (un)) → τ. (3.9)
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Consider from now on that {Xn} satisfies D′(un), as defined in (3.2), for each τ > 0.

Intuitively this condition gives a measure of the degree of dependence in the process and

permits the construction of almost independent blocks by the definition of sequences {kn},
{rn} with kn → ∞, kn = o(n) and knln = o(n), while rn is the integer part of n/kn. The

interpretation of these sequences is: kn is the number of blocks of the sequence of length n,

and rn the size of each block.

Under these assumptions, if P{Mn ≤ un} converges for some τ > 0 then

P{Mn ≤ un} → e−θτ , (3.10)

for all τ > 0, with 0 ≤ θ ≤ 1 (see theorem 3.7.1. of Leadbetter et al. (1983) for a detailed

proof). The parameter θ is called the extremal index of the sequence {Xn} and is the key

parameter for extending extreme value theory from iid random variables to stationary pro-

cesses.

Consider {kn}, {rn} that define a suitable partition of the sequence {Xn}, then a suffi-

cient condition for the existence of the extremal index is

kn(1− F1,...,rn(un)) → θτ. (3.11)

This result is immediate by the approximation of P{Mn ≤ un} by P kn{Mrn ≤ un} for

suitable choices of kn and rn, and (3.10) and the linear polynomial expansion of the ex-

ponential function. The converse of this result is also true, i.e. a stationary sequence with

extremal index θ satisfies (3.11) for each τ > 0. The proof is obtained by taking logs in

the expression P kn{Mrn ≤ un} that approximates e−θτ .

Consider the number of exceedances of un within a block of size rn. This event defines

a sequence of random variables B
(un)
rn =

rn∑
j=1

I(Xj > un) for rn → ∞, and rn = o(n) whose

expected value, by the stationarity of the process, converges to the mean cluster size of the
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exceedances of un in the sequence {Xn}, that is, the inverse of the extremal index,

E
[
B(un)

rn
|B(un)

rn
≥ 1

] → θ−1.

This is readily seen since E
[
B

(un)
rn |B(un)

rn ≥ 1
]

=
∞∑

j=1

jP
{

B
(un)
rn = j|B(un)

rn ≥ 1
}

=
rnP{Xj>un}

P{
rnS

j=1
(Xj>un)}

,

and therefore E
[
B

(un)
rn |B(un)

rn ≥ 1
]

= rn(1−F (un))
1−F1,...,rn(un)

→ θ−1, if (3.11) holds.

The same argument may be applied to define a process B
(vn)
rn with vn ≥ un satisfying

E
[
B(vn)

rn
|B(un)

rn
≥ 1

] → 1. (3.12)

It is of interest to note that the sequence {vn} satisfies condition D′(vn) since vn ≥ un and

n(1− F (vn)) → θτ as n →∞. (3.13)

In addition, by the structure of dependence (see (3.9) and (3.10)) we have P{Mn ≤ vn} →
e−θ2τ . It is immediate now to see that (3.11) holds for the sequence {vn} by

kn(1− F1,...,rn(vn)) → θ2τ. (3.14)

The event {Xi > un} and the sequences {kn}, {rn} divide the sequence {Xn}, with extremal

index θ, in approximately independent groups of exceedances of un where M(j−1)rn+1,jrn is

the block maxima for j = 1, . . . , kn. It is clear that the sequence {M(j−1)rn+1,jrn} is approx-

imately serially independent as n increases if D′(un) holds for {Xn}.
Consider the points j as points in time and define for each n, and kn, a process

ηkn(j/kn) = M(j−1)rn+1,jrn . The time scale is normalized t = j/kn on the unit interval

(0, 1]. Then the exceedances of un by the process ηkn(t) define a point process N
(un)
kn

on the

unit interval (see Kallenberg (1976) for the theory of point processes). Moreover, the point

process N
(un)
kn

converges in distribution to a Poisson process N on (0, 1] with intensity pa-

rameter θτ . To prove this result it is only necessary to show that E[N
(un)
kn

(a, b]] → E[N(a, b]]

for 0 < a < b ≤ 1 and P{N (un)
kn

(A) = 0} → P{N(A) = 0} for each finite disjoint union A
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of sets (ai, bi] ⊂ (0, 1]. The proof is analog to the corresponding one found in theorem 4.1.

in Leadbetter (1983).

It is interesting to see that the same argument may be applied to construct a thinning

of N
(un)
kn

by a sequence {vn} satisfying (3.12). This sequence defines the point process N
(vn)
kn

on the unit interval that converges to a Poisson process with intensity measure θ2τ . The

proof is identical to the case N
(un)
kn

since (3.14) and D′(vn) hold with vn ≥ un.

These results provide the setting to define the extremal index as the ratio of the limiting

expected value of the point processes N
(un)
kn

and N
(vn)
kn

,

θ = lim
n→∞

E[N
(vn)
kn

]

E[N
(un)
kn

]
. (3.15)

The extremal index can also be interpreted as the conditional excess probability of un.

From the results given in (3.9) and (3.13),

θ = 1− lim
n→∞

Fun(vn), (3.16)

with Fun(vn) = F (vn)−F (un)
1−F (un)

. It is clear that as the dependence in the extremes (exceedances

of un) of the stationary sequence decreases, vn approaches un and θ gets closer to one as

for the iid case or for weak dependence (D′(un) and D′′(un) hold).

These definitions of the extremal index are also valid for threshold sequences where

(3.9) does not hold but the mixing condition in (3.2) still does. Consider ũn such that

n(1 − F (ũn)) = τn, with τn → ∞, and τn = o(n). This condition implies that P{Mn ≤
ũn} → 0.

A necessary condition for ũn in order to define the extremal index in the same way as

in (3.15) is that the ratio −logP{Mn≤eun}
n(1−F (eun))

converges to a constant in (0, 1). If the sequence

{Xn} has extremal index θ conditions (3.9) and (3.11) are satisfied for certain sequence un.

Then, a sufficient condition for ũn is that

(1− F (ũn))(1− F1,...,rn(un))

(1− F (un))(1− F1,...,rn(ũn))
→ 1. (3.17)
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This condition entails this, kn(1−F1,...,rn(ũn)) = τ ′n with τ ′n →∞ and τ ′n/τn → θ. The same

results that for un and τ constant are achieved now for ũn and τn. Therefore, the sequence

Brn(ũn) satisfies that

E
[
B(eun)

rn
|B(eun)

rn
≥ 1

] → θ−1,

and there exists a sequence ṽn such that n(1 − F (ṽn)) = τ ′n. Under condition (3.17) for

{ṽn} instead of {ũn} we obtain that kn(1−F1,...,rn(ṽn)) = τ ′′n , with τ ′′n →∞ and τ ′′n/τ ′n → θ,

and the extremal index may be defined as in (3.15) for the corresponding ũn and ṽn given

that D′(ũn) holds.

For estimation purposes we will refer to the number of elements of the processes N
(eun)
kn

and N
(evn)
kn

as Z∗
eun

and Z∗
evn

respectively, and Zeun and Zevn will be used to denote the number

of exceedances of ũn and ṽn by the sequence {Xn}. Analog notation will be used for the

corresponding exceedances of un and vn. Note the variables Z∗
eun

and Z∗
un

can be interpreted

as the number of blocks of the partition defined by {kn}, {rn} where there is at least one

exceedance of ũn and un respectively.

3.3 Estimation of the extremal index

The extremal index represents the clustering of the largest observations determined by

a sequence {un} sufficiently high to satisfy a condition of type (3.9). The serial dependence

in these observations has an effect on the distribution of the maximum of the stationary

sequence, that is, P{Mn ≤ un} is F nθ(un) instead of F n(un) for n and un sufficiently large.

This result leads to the first estimator of the extremal index for appropriate sequences

kn, rn satisfying that P kn{Mrn ≤ un} approximates P{Mn ≤ un}. Then, by taking logs in

both expressions, θ = logP{Mrn≤un}
rnlogF (un)

. A natural estimator for the extremal index is in this

case,

θ̂(1)
n =

log(1− Z∗
un

/kn)

rnlog(1− Zun/n)
, (3.18)



68 CHAPTER 3. DEPENDENCE IN THE EXTREMES

with the notation introduced in the last section. The ratio Zun/n is an estimator of 1−F (un),

and Z∗
un

/kn an estimator of 1− F1,...,rn(un).

On the other hand the concept of extremal index introduced by Leadbetter (1983), θ−1

the limiting mean cluster size of the exceedances, yields this estimator

θ̂(2)
n =

Z∗
un

Zun

. (3.19)

This method is called the blocks method and may be considered a simplified version of θ̂
(1)
n .

Another popular method is the runs estimator, that may be seen as the estimator of the

extremal index for the definitions introduced in O’Brien (1987) or in Hsing (1993),

θn =
Wun

Zun

, (3.20)

where Wun =
n−rn∑
i=1

I(Xi > un)(1− I(Xi+1 > un)) · ·(1− I(Xi+rn > un)).

Our definition of the extremal index yields an appealing estimator of θ given by the

ratio of Z∗
vn

and Z∗
un

or alternatively Z∗
evn

and Z∗
eun

. For un and vn sequences satisfying (3.9)

and (3.13) our estimator θ̃n is given by

θ̃n =
Z∗

vn

Z∗
un

, (3.21)

representing the corresponding thinnings defined by the sequence kn and the thresholds

un and vn. The estimator, however, is not fully specified since these sequences are not

determined. By (3.9) an appropriate candidate for this threshold sequence is given by

extreme order statistics (see section 2.5. in Leadbetter et al. (1983)). In turn an adequate

choice of vn is given by the order statistic of the stationary sequence {Xn} satisfying the

empirical counterpart of (3.12), i.e.

vn = max
1≤i≤n

{
xi, i = 1, . . . , n| 1

Z∗
un

kn∑
j=1

B
(xi)
rn,j = 1

}
, (3.22)
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with B
(un)
rn,j =

jrn∑
k=(j−1)rn+1

I(Xk > un). This expression boils down to vn = x(n−Z∗un), extreme

order statistic, with x(1) ≤ . . . ≤ x(n) the sequence of order statistics. By (3.17) the corre-

sponding expressions apply to ũn and ṽn being intermediate order statistics.

If the threshold un is estimated by an extreme order statistic the point process N
(un)
kn

converges to a Poisson process, and its variance in consequence converges to a constant.

This is a serious inconvenient for the consistency of the majority of the estimators of θ that

is overcome in our setup by using ũn (intermediate order statistic).

3.3.1 Statistical properties of the different estimators

Consider first the case of θ̃n as the quotient of the random variables Z∗
vn

and Z∗
un

where

vn and un satisfy (3.13) and (3.9) respectively, that is,

θ̃n =
Z∗

vn

Z∗
un

.

By the second order Taylor expansion of E[Z∗
vn

/Z∗
un

] about the respective expected values

(delta method) we have that

E[θ̃n] =
E[Z∗

vn
]

E[Z∗
un

]

(
1 +

V [Z∗
un

]

E[Z∗
un

]2
− Cov[Z∗

vn
, Z∗

un
]

E[Z∗
un

]E[Z∗
vn

]

)
+ O(

1

τ 2
). (3.23)

The different contributions to Z∗
un

are not mutually independent. In particular, E[Z∗2
un

] =

knP{M1 > un}+
kn∑
i=1

kn∑
i6=j

P{Mi > un,Mj > un}, where Mi is used to denote the maximum of

{X(i−1)rn+1, . . . , Xirn}. By stationarity the variance can be expressed as V [Z∗
un

] = E[Z∗
un

]+

k2
nP{M1 > un,M2 > un}−E2[Z∗

un
]−knP{M1 > un,M2 > un}. Under D′(un) the difference

between k2
nP{M1 > un,M2 > un} and E2[Z∗

un
] converges to 0 as n increases, and knP{M1 >

un,M2 > un} is well approximated by E[Z∗
un

]P{M1 > un} that in turn also converges to 0.

The covariance takes a similar expression, Cov[Z∗
un

, Z∗
vn

] = E[Z∗
vn

] + k2
nP{M1 > un, M2 >

vn}−E[Z∗
un

]E[Z∗
vn

]− knP{M1 > un,M2 > vn} that boils down to Cov[Z∗
un

, Z∗
vn

] = E[Z∗
vn

].
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Therefore expression (3.23) for n sufficiently high is as follows

E[θ̃n] =
E[Z∗

vn
]

E[Z∗
un

]

(
1 +

E[Z∗
un

]

E[Z∗
un

]2
− E[Z∗

vn
]

E[Z∗
un

]E[Z∗
vn

]

)
+ O(

1

τ 2
),

and it is immediate to see that the expected value of our estimator takes this expression,

E[θ̃n] = θ + O(
1

τ 2
). (3.24)

For the analysis of the variance it is useful to derive the conditional moments. Consider

Z∗
un

= z∗un
known, and note that the sequences un and vn are related by this expression,

1− F1,...,rn(vn) = (1− F1,...,rn(un))

(
1− F1,...,rn(vn)− F1,...,rn(un)

1− F1,...,rn(un)

)
. (3.25)

Then by (3.11), E[θ̃n|Z∗
un

= z∗un
] = 1 − F1,...,rn(vn)−F1,...,rn(un)

1−F1,...,rn(un)
, and the conditional variance

takes this form

V [θ̃n|Z∗
un

= z∗un
] =

1

z∗un

(
1− F1,...,rn(vn)− F1,...,rn(un)

1− F1,...,rn(un)

)
. (3.26)

By the law of iterated expectations the unconditional variance can be decomposed in two

different terms, V [θ̃n] = V [E[θ̃n|Z∗
un

]] + E[V [θ̃n|Z∗
un

]]. It is clear the first term is 0, and by

the Taylor expansion of E[1/Z∗
un

] about E[Z∗
un

] we obtain that

E[V [θ̃n|Z∗
un

= z∗un
]] =

(
1− F1,...,rn(vn)− F1,...,rn(un)

1− F1,...,rn(un)

)(
1

E[Z∗
un

]
+

V [Z∗
un

]

E3[Z∗
un

]

)
. (3.27)

In consequence,

V [θ̃n] =

(
1− F1,...,rn(vn)− F1,...,rn(un)

1− F1,...,rn(un)

)(
1

θτ
+ O

(
1

τ 2

))
= O

(
1

τ

)
. (3.28)

Therefore the mean square error (MSE) of our estimator is of order O( 1
τ
) with τ constant.

This result implies that this estimator is not consistent for un and vn defined by extreme

order statistics. The consistency, however, will be achieved when these sequences are re-
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placed by ũn and ṽn intermediate order statistics as it is shown in the following section.

Our estimator may be interpreted as a refinement of the standard blocks method θ̂
(2)
n

by writing θ̃n =
Z∗vn

/Zun

θ̂
(2)
n

. The asymptotic properties of the latter estimator θ̂
(2)
n are derived

in Hsing (1991) or in Smith and Weissman (1994). By means of the delta method they

find that E[θ̂
(2)
n ] = θ + O( 1

τ
), and the variance is V [θ̂(2)

n ] = O(
1

τ
). Therefore the bias of this

estimator is higher than the bias of θ̃n, but the mean square error (MSE) of both estimators

is O(1/τ).

For the logs method,

E[θ̂(1)
n ] =

E[Z∗
un

]

E[Zun ]

(
1 +

E[Z∗
un

]

2kn

+
E2[Z∗

un
]

6k2
n

)
= θ + O

(
τ

kn

)
, and V [θ̂(1)

n ] = O(
1

τ
).

This estimator is asymptotically unbiased, but it is not consistent either for τ constant.

3.3.2 Inference for the Extremal Index

Consider now the sequences ũn and ṽn defined by the conditions τ ′n = kn(1−F1,...,rn(ũn)),

τ ′′n = kn(1− F1,...,rn(ṽn)), with τ ′n →∞, τ ′′n →∞ and τ ′′n/τ ′n → θ. In this case the first two

moments of the random variables Z∗
eun

and Z∗
evn

diverge to infinity. By stationarity the

variance is given by this expression,

V [Z∗
eun

] = E[Z∗
eun

] +
(
k2

nP{M1 > ũn,M2 > ũn} − E2[Z∗
eun

]
)− knP{M1 > ũn,M2 > ũn}.

Note that in this case, under D′(un) for n sufficiently high, the variance is

V [Z∗
eun

] = E[Z∗
eun

]− E[Z∗
eun

]P{M1 > ũn}. (3.29)

The covariance in turn takes this expression,

Cov[Z∗
eun

, Z∗
evn

] = E[Z∗
evn

]− E[Z∗
evn

]P{M1 > ũn}.
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Therefore expression (3.23) is as follows

E[θ̃n] =
τ ′′n
τ ′n

(
1 +

τ ′nP{M1 ≤ ũn}
(τ ′n)2

− τ ′′nP{M1 ≤ ũn}
τ ′nτ ′′n

)
+ o

(
1

τn

)
, (3.30)

that boils down to E[θ̃n] = θ + o
(

1
τn

)
, by the definition of τ ′n and τ ′′n .

This estimator of θ is now asymptotically unbiased, and for τn < kn, τ 2
n > kn, θ̃n

outperforms θ̂
(1)
n in this sense. For τn > kn this result is trivial.

In order to find the unconditional variance in this case, we calculate first the conditional

moment.

V [θ̃n|Z∗
eun

= z∗eun
] =

1

z∗2eun

V [Z∗
evn
|Z∗
eun

= z∗eun
]. (3.31)

Applying (3.29) to the random variable Z∗
evn
|Z∗
eun

,

V [Z∗
evn
|Z∗
eun

= z∗eun
] = E[Z∗

evn
|Z∗
eun

= z∗eun
]P{M1 ≤ ṽn|M1 > ũn},

that amounts to

V [Z∗
evn
|Z∗
eun

= z∗eun
] = z∗eun

P{M1 > ṽn|M1 > ũn}P{M1 ≤ ṽn|M1 > ũn}. (3.32)

Then, in the same way as in (3.27),

V [θ̃n] =

(
1− F1,...,rn(ṽn)− F1,...,rn(ũn)

1− F1,...,rn(ũn)

)(
F1,...,rn(ṽn)− F1,...,rn(ũn)

1− F1,...,rn(ũn)

)(
1

E[Z∗
eun

]
+

V [Z∗
eun

]

E3[Z∗
eun

]

)
,

that in turn is

V [θ̃n] =

(
1− F1,...,rn(ṽn)− F1,...,rn(ũn)

1− F1,...,rn(ũn)

)(
F1,...,rn(ṽn)− F1,...,rn(ũn)

1− F1,...,rn(ũn)

)
1

τ ′n
+o

(
1

τn

)
. (3.33)

Under D′(ũn) the distribution of Z∗
evn
|Z∗
eun

is well approximated (∼) by a binomial distribu-

tion with parameters bin
(
Z∗
eun

, 1− F1,...,rn(evn)−F1,...,rn(eun)

1−F1,...,rn(eun)

)
, and Z∗

eun
by a bin (kn, 1− F1,...,rn(ũn)).

Then, the distribution of θ̃n can be approximated by a normal distribution with parameters

given in (3.30) and (3.33).
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On the other hand the relation between the tails introduced in (3.25) holds for ũn and

ṽn, and by assumption τ ′′n/τ ′n → θ, yielding that 1− F1,...,rn (evn)−F1,...,rn(eun)

1−F1,...,rn(eun)
→ θ. In turn, the

distribution of θ̃n is approximated by

θ̃n
w∼ N

(
θ,

θ(1− θ)

τ ′n

)
. (3.34)

By the structure of dependence τ ′n
τn
→ θ as n goes to infinity, and hence θ̃n

w∼ N
(
θ, 1−θ

τn

)

results a valid approximation for the distribution of θ̃n. More formally, we can obtain a test

statistic that is asymptotically parameter free,

Tn =
θ̃n − θ√
1− θ

√
τn

w→ N(0, 1). (3.35)

The asymptotic confidence intervals for θ are easily calculated from the former expression.

θ ∈

θ̃n ± z1−α/2

√
1− θ̃n

τn


 , (3.36)

with z1−α/2 the quantile of the standard normal distribution. This interval is an approxi-

mation of the true confidence interval for finite samples. The exact confidence region for

small sample sizes may be better approximated by resampling techniques. The confidence

interval takes this expression

θ ∈

θ̃n −

√
1− θ̃n

τn

J−1
n (1− α

2
, F ), θ̃n −

√
1− θ̃n

τn

J−1
n (

α

2
, F )


 , (3.37)

where J−1
n (1−α, F ) is the 1−α quantile of the sampling distribution Jn(F ) of the statistic

Tn. In practice this quantile is approximated by the order statistic Tn,((1−α)B) of the sample

Tn,1, . . . , Tn,B with B the number of iterations. The notation F in the distribution Jn(F )

refers to Monte Carlo simulation, that is, the generating process of the data is known.

Otherwise Jn(F ) must be approximated by Jb(F ) with b < n, b/n → 0 (subsampling), or

by Jn(F ∗) with F ∗ representing blocks bootstrap methods. The näıve bootstrap does not
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work in this context due to the serial dependence in the data. Nevertheless, as it is seen in

the simulations, the gaussian asymptotic intervals give reliable approximations of the exact

confidence regions for moderate sample sizes.

Our interest however lies on testing hypotheses of the type H0 : θ = θ0 vs H1 : θ < θ0.

This one-sided hypothesis test permits to assess the mixing condition D′′(un) introduced in

(3.3) by imposing θ0 = 1. In other words, if θ = 1 there are no clusters of extreme values

(exceedances of some threshold) in the stationary sequence. The null hypothesis amounts

to see if θ0 is contained in the interval


−∞, θ̃n + z1−α

√
1− θ̃n

τn


 or alternatively in

(
−∞, θ̃n −

√
1−eθn

τn
J−1

n (α, F )

]
, the bootstrap approximation.

Consider the example due to Chernick (1981) for {Xn} a strictly stationary first order

autoregressive sequence driven by the model Xi = 1
r
Xi−1 + εi, where r ≥ 2 is an integer, εi

are discrete uniforms on {0, 1/r, . . . , (r− 1)/r}, being independent of Xi−1, and Xi having

a uniform distribution on [0, 1]. The extremal index is given by θ = r−1
r

. The plot given in

figure 3.7.1 describes the curve of the estimates of θ for different partitions and different

sample sizes. The upper panel is for n = 200 and the lower panel considers n = 1000.

Two conclusions stem from these plots. First, it is clear that condition D′′(ûn) is rejected

with α = 0.05, and second, the confidence intervals for θ are smaller as n increases. This

is caused by the choice of an increasing order statistic, ûn = x(n−k) with k =
√

2n as

threshold.

3.3.3 Some comments on the block size selection

The partition of the sequence {Xn} in kn blocks of size rn has two main features: First, it

defines a point process N
(un)
kn

that converges to a serially independent process, and second,

the distribution of this sequence converges to a Poisson process as kn goes to infinity. The

majority of the estimators for the extremal index found in the literature are tied to that

partition. This dependence turns explicit for example for the logs method where kn appears

in the expression for θ̂
(1)
n , as well as in its expected value.
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If the observations are independent or weak dependent, N
(un)
kn

with kn = n defines itself

an iid point process and θ = 1. Otherwise the extremal index is less than 1 and the

partition kn < n plays a central role in the estimation of the extremal index.

Provided n, an adequate choice of the sequence kn along with a suitable threshold

un define a sequence given by the maxima over the corresponding blocks of observations.

Testing condition D′(un) in practice is replaced by testing for serial independence in this

sequence of maxima. Hypothesis tests for the latter condition require large sample sizes

and most of them rely on gaussian assumptions. A näıve alternative to these methods is

dropping the first partitions defined by kn = n, n − 1, . . ., that have a high likelihood of

entailing serial dependence in N
(un)
kn

, and analyzing the performance of the estimators by

the stability of the corresponding estimates along the different partitions.

The influence of the choice of kn on the estimates of the extremal index also depends

on the choice of the threshold un. For example in the blocks method the estimates of θ are

driven by the corresponding partition for low un. In this case Z∗
un

and kn take the same

values resulting in a sequence of estimates that approaches 0 when kn decreases.

A similar situation occurs for the logs method with un a low threshold. The numerator in

this case collapses to −∞ and the estimator is not defined for the corresponding partition.

These effects are not present in θ̃n because a larger ratio Z∗
un

/kn given by a low threshold

is compensated by a large value of Z∗
vn

/kn, that is, the sequence vn varies according to un.

3.4 Simulations: Some examples

We now consider some examples from the literature showing short range dependence

(0 < θ < 1) reflected by a distribution of the maximum satisfying (3.5).

The following example is the doubly stochastic model studied by Smith and Weissman

(1994). Let {ξi, i ≥ 1} be iid with distribution function F, and suppose that Y1 = ξ1,

and for i > 1, Yi = Yi−1 with probability ψ, and Yi = ξi with probability 1 − ψ. The

doubly stochastic sequence {Xi} is defined by Xi = Yi with probability η, and Xi = 0 with
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probability 1− η, with these different events mutually independent. The extremal index is

θ =
1− ψ

1− ψ + ψη
.

The following pictures, figure ( 3.7.2), represent the paths of the different estimators for

the extremal index. The threshold sequence is estimated by an order statistic: ûn = x(n−k).

We have implemented two different types of order statistics for samples of size n = 200

and n = 1000 observations. An extreme order statistic (k = 20 fixed), and an intermediate

order statistic (k =
√

2n). We present only the estimates of θ for the intermediate order

statistic since the other threshold sequence provides similar results for these sample sizes

in this example.

The curves describe the sample means of the different estimates of the extremal index

and for different partitions of the sample for m = 100 simulated sequences generated from

the model introduced in Smith and Weissman with ψ = 0.9 and η = 0.7. Suppose also F,

a Fréchet distribution F (x) = exp(−x−α) with α = 1 and x ∈ (0,∞).

The confidence intervals for θ̃n derived in the last section are not plotted. Instead we

have represented the simulated standard deviation of the different estimators for m = 100

in order to present a fair comparison between the three competitors. The standard deviation

for the different partitions is estimated via Monte Carlo simulation by σ̂kn with

σ̂2
kn

=
1

m− 1

m∑
i=1

(θi,est − θest)
2, (3.38)

and θest the sample mean of the different estimates.

Apparently the blocks method is the best method. After the first partitions of the

sample the curve of the estimates of θ remains stable very close to the target line for the

three methods. Nevertheless, the blocks method estimator has smaller variance. In addition,

focusing on figure 3.7.3 it is clear that the different estimators of θ analyzed in this example

are consistent and the blocks method is more efficient. The mean square error is estimated
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from the simulated sequences generated for figure 3.7.2, and takes this expression,

MSE(θest) =
1

m

m∑
i=1

(θi,est − θ)2.

These results agree with the conclusions found in Smith and Weissman (1994). However the

impressive performance of the blocks method may be due to the low value of the extremal

index (θ = 0.137) and the choice of a low threshold estimate. Under these circumstances,

the curve of estimates of θ by the blocks method is decaying as kn decreases (rn increases)

and approaches the true parameter. To get an insight into this, we also study a doubly

stochastic process where the extremal index is significantly higher. Suppose ψ = 0.5 and

η = 0.5, i.e. θ = 0.66. The plots displayed in figures 3.7.4 and 3.7.5 are the analogs of

figures 3.7.2 and 3.7.3.

The blocks method in this example does not work. The number of blocks with an

exceedance of ûn (Z∗
ûn

) is similar to kn for each partition. Therefore the estimator decreases

as kn decreases since Zûn remains constant. On the other hand the logs method improves

as n increases and the mean square error of θ̃n and θ̂
(1)
n are negligible for n = 1000.

Finally the exact and asymptotic confidence intervals for θ are displayed in figure 3.7.6

to assess the estimates given by θ̃n.

3.5 Clustering in Financial Series: The Case of DaX

Index

Financial returns are characterized by a series of stylized facts: leverage effect (after

periods of high volatility the likelihood of losses is higher than in calm periods), heavy tails,

clustering of the largest observations and some skewness towards the losses tail. The seminal

paper of Engle and Bollerslev (1986) proposed the popular GARCH models, Generalized

Auto-Regressive Conditional Heteroscedastic volatility models, to explain these features of

the data. In general, the GARCH(1,1) is sufficient to model most of the financial returns.
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It takes this expression,

Xi = εiσi, σ2
i = ω + αX2

i−1 + βσ2
i−1,

with ω, α, β > 0, and α + β < 1, that can be interpreted as an ARMA(1,1) model for the

squares,

X2
i = ω + (α + β)X2

i−1 + νi − βνi−1,

with νi = σ2
i (ε

2
i − 1).

According to this model, the dependence found in the financial returns is driven by

the second moments. The literature concerning this topic is enormous; up to the extent

that there exist different GARCH type models to explain particular characteristics of the

financial series.

We propose to analyze some of these stylized facts, in particular the clustering of the

largest observations, by means of the extremal index. A value of θ significatively less than 1

shows certain short range dependence reflected in the clustering of the largest observations.

This may be interpreted as a pattern in the occurrence of the extreme values, that is, once

a large loss in the asset return has occurred we can expect a period of large losses (values

exceeding some threshold). The average length of this period is the inverse of the extremal

index.

The data we use to illustrate this methodology consists on the analysis of the Frankfurt

financial market (DaX Index) over the period 19/12/1994− 20/04/2001. These data have

been collected from www.freelunch.com. The observations considered for the analysis are

the logarithmic returns measured in percentage terms and denoted as rt,

rt = 100 (log Pt − log Pt−1),

with Pt the original prices at time t. In figure 3.7.7 DaX Index returns, rt, and the corre-

sponding sequence of squared returns, r2
t , are plotted.

The analysis of the extremal index for both tails (figure 3.7.8) shows certain clustering
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in the occurrence of the positive and negative extreme values. The confidence intervals

derived from θ̃n do not contain θ = 1 for α = 0.05.

These pictures also depict a higher level of clustering for the largest negative returns

than for the positive values. This fact can be statistically tested by means of a confidence

interval for the difference of the extremal indexes corresponding to the positive and negative

tail. This confidence interval takes this expression

θpos − θneg ∈

θ̃n,pos − θ̃n,neg ± z1−α/2

√
1− θ̃n,pos

τn,pos

+
1− θ̃n,neg

τn,neg


 . (3.39)

It is important to mention that θ̃n,pos and θ̃n,neg are considered independent. This can lead to

obtain smaller confidence intervals given α compared to considering dependent estimators

with positive correlation. For some partitions of the sample it is statistically significant

that the clustering for the positive extreme values is smaller than for the largest negative

returns (figure 3.7.9).

The analysis of the clustering of the largest values for the sequence of the volatility

(squres of returns) deserves some interesting comments. The confidence interval introduced

in (3.39) may be applied to test the difference between the extremal index of the volatility

sequence θvol and θpos or θneg (figure 3.7.10). The results derived from both tests, θpos−θvol

and θneg−θvol, point out that the extreme values of the volatility sequence are driven by the

negative extreme values. Therefore these observations are bigger in absolute value than the

largest positive returns. This fact explains the negative skewness of the returns sequence.

Finally it is worth mentioning the stylized fact of heavy tails. By Berman’s condition

(Berman, 1964), if {rt} is a standard normal sequence and Cov(rt, rt−j) log j → 0 as j →∞,

the extremal index of the sequence is θ = 1. In practice, the autocorrelation function of the

returns of a financial series is usually close to zero, also in this case and then the second

part of Berman’s condition holds. Therefore, if θ < 1 the sequence of the returns of the

DaX Index is not normally distributed but heavy tailed. This suggests that the existence

of clustering of the extreme values in a financial series implies that the distribution of the
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observations is heavy tailed. Hence it is not sufficient with the second moments of {rt}
to know the structure of dependence of the sequence. Moreover, the dependence in the

extremes plays an important role and this dependence stems from the heavy tails.

3.6 Conclusion

The aim of this chapter has been to propose an estimator for the extremal index de-

fined by the ratio of the number of exceedances of two threshold sequences. This estimator

possesses two appealing properties: First, it is not necessary to choose a sequence {un}
satisfying the Poisson condition in the limit, and second it is not very sensitive to the block

size selection.

Regarding the asymptotic properties of our estimator, we can conclude that are estima-

tor has the same order of convergence than the standard methods (the respective variances

are of the same order). However, under very general conditions our estimator is asymptoti-

cally unbiased outperforming the other two methods that are not free from a residual term.

Our estimator also works better than these methods in two manners: it is not so dependent

of the corresponding partition of the sequence, and it relaxes the selection of the threshold

sequence.

In addition, the absence of dependence on the Poisson condition permits to propose a

hypothesis test for the extremal index. We find this test useful in different ways: it for-

mally assesses the estimates of the extremal index, it introduces an innovative procedure

for testing the existence of clustering in the occurrence of extreme events, and it may be

useful to determine the skewness and kurtosis of the distribution of the data by testing the

difference of extremal indexes between both tails.

Finally, the application of these methodologies to financial series (DaX Index) confirms

the existence of short range dependence in the extreme observations; that is, some clus-

tering of the extreme values of the positive and negative returns. The clustering is higher

for the negative tail. By Berman’s condition, the distribution of the observations is heavy
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tailed since θ is statistically less than 1. These results agree with the stylized facts found

in most of the financial series.
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3.7 Appendix: Figures
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Figure 3.7.1. Estimated values of θ for the Chernick model with r = 5. θ = 0.8 is plotted

by ¤ line. The partitions rn considered are in the range [1, 50]. θ̃n is represented by (· · ·)
and o; the dash line describes the bootstrap confidence interval with B = 1000 and (+−) is

employed for the asymptotic intervals. The significance level is α = 0.05. The sample sizes

are n = 200 and n = 1000 respectively. The threshold is ûn = x(n−k) with k =
√

2n.
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Figure 3.7.2. Estimated values of θ for the doubly stochastic model with ψ = 0.9 and

η = 0.7. The extremal index is θ = 0.137 plotted by ¤ line. The partitions rn considered are

in the range [1, 50]. θ̃n is represented by (· · ·) and o; the corresponding standard deviation is

plotted with (· · ·). The logs method θ̂
(1)
n is represented with (−−−−) and ¦. The standard

deviation with (− − −−). The blocks method θ̂
(2)
n with (· − ·−) and +, and (· − ·−) for

the standard deviation. The sample sizes are n = 200 and n = 1000 respectively. m = 100

simulations are used. The threshold sequence is ûn = x(n−k) with k =
√

2n.
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Figure 3.7.3. Simulated mean square error (MSE) of the estimators of θ for the doubly

stochastic model with ψ = 0.9 and η = 0.7. The partitions rn considered are in [1, 50].

m = 100 simulations of the model are used. θ̃n is represented by (· · ·) and o, θ̂
(1)
n with

(−−−−) and ¦, and (· − ·−) and + for θ̂
(2)
n . The sample sizes are n = 200 and n = 1000

respectively. The threshold sequence is ûn = x(n−k) with k =
√

2n.
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Figure 3.7.4. Estimated values of the extremal index for the doubly stochastic model with

ψ = 0.5 and η = 0.5. θ = 0.66 is plotted by ¤ line. The partitions rn considered are in

the range [1, 50]. θ̃n is represented by (· · ·) and o; the corresponding standard deviation is

plotted with (· · ·). The logs method θ̂
(1)
n is represented with (−−−−) and ¦. The standard

deviation with (− − −−). The blocks method θ̂
(2)
n with (· − ·−) and +, and (· − ·−) for

the standard deviation. The sample sizes are n = 200 and n = 1000 respectively. m = 100

simulations are used. The threshold sequence is ûn = x(n−k) with k =
√

2n.
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Figure 3.7.5. Simulated mean square error (MSE) of the estimators of θ for the doubly

stochastic model with ψ = 0.5 and η = 0.5. The partitions rn considered are in the range

[1, 50]. m = 100 simulations of the model are used. θ̃n is represented by (· · ·) and o, θ̂
(1)
n with

(−−−−) and ¦, and (· − ·−) and + for θ̂
(2)
n . The sample sizes are n = 200 and n = 1000

respectively. The threshold sequence is ûn = x(n−k) with k =
√

2n.
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Figure 3.7.6. Estimated values of the extremal index for the doubly stochastic model with

ψ = 0.5 and η = 0.5. The extremal index is θ = 0.66 plotted by ¤ line. The partitions rn

considered are in the range [1, 50]. θ̃n is represented by (· · ·) and o; the dash line describes

the bootstrap confidence interval with B = 1000 and (+−) is employed for the asymptotic

intervals. The significance level is α = 0.05. The sample sizes are n = 200 and n = 1000

respectively. The threshold sequence is ûn = x(n−k) with k =
√

2n.
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Figure 3.7.7. DaX Index returns are represented in the upper panel. Squared returns

showing the patterns of volatility are plotted in the lower panel. The sample period is

19/12/1994− 20/04/2001 (n = 1614 observations).
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Figure 3.7.8. Estimated values of θpos and θneg for the DaX Index returns over the period

19/12/1994− 20/04/2001 (n = 1614). The upper panel estimates θpos and the lower panel

θneg. rn ∈ [1, 100]. θ̃n is represented by (···) and o; (+−) describes the asymptotic confidence

intervals with α = 0.05. θ̂
(1)
n with (−−−−) and ¦, and (·−·−) and + for θ̂

(2)
n . ûn,pos = x(n−k)

and ûn,neg = x(k) with k =
√

2n are the corresponding thresholds.
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Figure 3.7.9. Estimated values of θpos − θneg for the DaX Index returns over the period

19/12/1994− 20/04/2001 (n=1614). rn ∈ [1, 100]. θ̃n,pos− θ̃n,neg is represented by (· · ·) and

o; (+−) describes the asymptotic confidence intervals with α = 0.05. ûn,pos = x(n−k) and

ûn,neg = x(k) with k =
√

2n are the corresponding thresholds.
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Figure 3.7.10. Estimated values of θpos − θvol (upper panel) and θneg − θvol (lower panel)

for the DaX Index returns over the period 19/12/1994 − 20/04/2001 (n = 1614). rn ∈
[1, 100]. θ̃n,pos − θ̃n,vol and θ̃n,neg − θ̃n,vol are represented by (· · ·) and o; (+−) describes

the asymptotic confidence intervals with α = 0.05. un,pos = x(n−k) is the threshold for the

positive exceedances and un,neg = x(k) for the negative exceedances, with k =
√

2n.
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Chapter 4

Transmission of Risk in Financial

Markets: The Contagion effects

None doubts that financial markets are related (interdependent). What is not so clear

is whether there exists contagion among them or not, its intensity, and its causal direction.

The aim of this work is to define properly the term contagion (different from interdepen-

dence) and to present a formal test for its existence, the magnitude of its intensity, and for

its direction. Our definition of contagion lies on tail dependence measures and it is made

operational through its equivalence with some copula properties. In order to do that, we

define a NEW copula, a variant of the Gumbel type, that is sufficiently flexible to describe

different patterns of dependence, as well as being able to model asymmetric effects of the

analyzed variables (something not allowed with the standard copula models). Finally, we

estimate our copula model to test the intensity and the direction of the extreme causality

between bonds and stocks markets (in particular, the flight to quality phenomenon) dur-

ing crises periods. We find evidence of a substitution effect between Dow Jones Corporate

Bonds Index with 2 years maturity and Dow Jones Stock Price Index when one of them

is through distress periods. On the contrary, if both are going through crises periods a

contagion effect is observed. The analysis of the corresponding 30 years maturity bonds

with the stock market reflects independent effects of the shocks.

93
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4.1 Introduction

There is common consensus about the concept of crisis, that is, everyone detects a crisis

when she is going through one. However, the definitions for this phenomenon are differ-

ent depending on the features of the economy under study. For example a firm manager

concerned about the levels of output may consider that the firm is going through a crisis

period if she detects a loss of productivity for certain levels of labor and capital. On the

other hand, if most of the firm’s business is based on exports abroad the manager will be

concerned with sharp appreciations of the local currency against the foreign currency.

These examples raise the issue of finding a general definition of crisis that gathers the

different types of crisis regardless the cause. In this way, a naïve and very general definition

of crisis in an economy may be given by a threshold that represents a tolerance level. The

questions that arise here are how determining this tolerance level and how an exceedance of

this threshold affects the tolerance level of other economies or related markets worldwide.

The latter question clearly points out that a crisis is something more than an isolated

phenomenon affecting independent markets (financial, credit, currency markets). A crisis

in one market is characterized by the collapse not only of that market but by the negative

effects produced on other markets. Therefore it seems natural to think of the transmission

channels that connect the markets. From an economic viewpoint this involves the analy-

sis of different mechanisms that affect the system: economic fundamentals, market specific

shocks, the impact of bad news, or phycological effects (herd behavior). The discussion

surges here in the direction and intensity of the dependence between the markets in tur-

moil periods. There is a large amount of literature concerning these features of dependence.

For example Forbes and Rigobon (2001), or Corsetti, Pericoli, Sbracia (2002) where the

concepts of interdependence and contagion are analyzed in detail. Regarding the inten-

sity of the dependence, contagion implies that cross market linkages are stronger after a

shock to one market, while interdependence implies no significant change in cross market

relationships. Regarding the direction, contagion implies that the collapse in one market

produces the fall of the other market, whilst interdependence implies that both markets
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collapse because both are influenced by the same factors.

From an statistical viewpoint, the linkages between markets are usually measured by

Pearson correlation. Baig and Goldfajn (1998) compare the correlation between two mar-

kets for a pre-crisis and a post-crisis period determined by a shock. They find that there

is an increase in cross market correlation after a crisis and therefore there exists a conta-

gion effect. This conditional correlation, however, does not carry the adequate information

about an increase in dependence. Forbes and Rigobon (2001) propose an adjusted corre-

lation measure that corrects the problem of conditioning to turmoil periods where cross

market correlation is biased upwards because stock market volatility of the conditioning

variable (market in crisis) is higher, even if the linkages between the markets remain con-

stant. They find that the cross dependence between the markets is hardly altered after a

shock, so there is interdependence but not contagion. Corsetti, Pericoli and Sbracia (2002)

find something in the middle, sometimes contagion, sometimes interdependence. They con-

sider that the absence of contagion found in Forbes and Rigobon (2001) can be attributed

to pitfalls in their testing procedure.

Correlation, therefore, can lead to misleading results or at least to different interpreta-

tions depending on the way of using it. This measure only presents a complete picture of the

dependence structure between the markets when their corresponding random variables are

jointly gaussian. Under this assumption cross correlations are sufficient to fully describe the

dependence structure between the random variables. In this setting multivariate GARCH

models are sufficient to describe the dynamics (co-movements) of the vector of random

variables. There are many specifications of these models, however a natural specification

is given by the extension of the univariate GARCH, that is, the covariances and variances

are linear functions of the squares and cross products of the data. Engle and Kroner (1995)

propose the vec model that in the first order case is,

vec(Σt) = vec(Ω) + Avec(Xt−1X
′
t−1) + Bvec(Σt−1),
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where A, B are m2 ×m2 matrices with some restrictions, with m the number of random

variables. For m = 2, vec(Σt) = (σ2
1t, σ12t, σ21t, σ

2
2t), σit, i = 1, 2 are the conditional volatil-

ities and σ12t, σ21t the conditional covariances at time t. Engle and Kroner (1995) also

introduce BEKK models, that in the first order case can be written as

Σt = Ω + AXt−1X
′
t−1A

′ + BΣt−1B
′,

where A, B are m×m matrices. These models are really complex: the number of parame-

ters to be estimated for the vec model of order 1 is 2m4, and for the BEKK model is 2m2.

In addition, unless the observations are jointly gaussian the cross correlations are not able

to fully describe the pattern of multivariate dependence and therefore some dependence is

misspecified. Consider for example the asymmetric linkages, corresponding to the left and

the right tail, found between most of the financial assets returns. These stylized facts are

far from being explained by these models.

Engle (1999) proposes dynamic conditional correlation models (DCC) that extend con-

stant conditional correlation models (CCC) introduced by Bollerslev (1990). The vocation

of DCC is to model the structure of dependence between a vector of random variables

(m=2) by means of the conditional correlation that is allowed to evolve over time. First the

serial dependence of each random variable is individually modelled (GARCH, Stochastic

Volatility (SV)), and then the cross dependence between the innovations is modelled by

another univariate model (exponential smoothing, GARCH, etc.)

Xi,t = εitσit, i = 1, 2,

σ2
i,t = ωi + αiX

2
i,t−1 + βiσ

2
i,t−1,





and ρ2
t = ωo + αoε1,t−1ε2,t−1 + βoρ

2
t−1,

with ρt the conditional correlation, and ωi, αi, βi, i = o, 1, 2 the corresponding parameters

of the GARCH processes.

The martingale property is imposed on the vector of innovations, i.e. E[εit|=i,t−1] = 0,

i = 1, 2, with =i,t−1 the set of information available at t− 1 for each random variable.

These assumptions do not preclude the case E[εit|=1,t−1

⋃=2,t−1] 6= 0 (Granger causal-
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ity, Granger (1969)) and the type of specifications for the conditional correlation consid-

ered in Engle (1999) are not sufficient to explain the cross linkages between the random

variables. Therefore more complex models are called for such that the innovations satisfy

E[εit|=1,t−1∪=2,t−1] = 0, i = 1, 2. However this assumption does not delivers us from differ-

ent forms of serial dependence in the innovation vector (ε1t, ε2t). Instead, we should analyze

the whole structure of dependence between the innovations. This is given by the copula

function derived from the bivariate distribution Ht(ε1t, ε2t), and by their conditional coun-

terpart obtained from Ht(ε1t, ε2t|=1,t−1 ∪=2,t−1), see Patton (2001) or Granger, Terasvirta

and Patton (2002).

The definition of copula is due to Sklar (1959). This function provides the complete

structure of dependence between the random variables after taking into account the corre-

sponding marginal distributions. In particular, the model introduced in Engle (1999) may

be considered a gaussian copula where the dynamics of the dependence are given by the

conditional correlation. The set of available copulas is endless providing different alterna-

tives suiting to the problem at hand. Some examples are given by the gaussian copula

used by Longin and Solnik (2001) to describe the dependence in financial asset returns,

Student’s t copulas (Mashal and Zeevi, (2002)) that suit better to the tails of these se-

quences, Joe-Clayton copula in Joe (1997) or its variation, the symmetrized Joe-Clayton

copula introduced in Patton (2001) for the dependence between exchange rates series.

It is also interesting to analyze the links between the vector of random variables in the

tail regions. Its joint distribution function in the tail region is derived from the multivariate

extreme value theory, see Resnick (1987). Applications of multivariate extreme value dis-

tributions to examples concerning the tail regions appear in Ledford and Tawn (1996) or

in de Haan and de Ronde (1998). The analysis of the dependence in the extremes provides

an interesting alternative to correlation for measuring the strength of the linkages between

the random variables as they become more extreme (differences between interdependence

and contagion).

The vocation of this chapter is modelling the dependence found between the random

variables that represent different economies and financial markets. This dependence is di-
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vided in two classes regarding the origin. First, the links due to economic fundamentals

(rational dependence) and second, the co-movements of the corresponding innovations (ir-

rational dependence). Our focus lies on the latter form of dependence and the concepts

of interdependence and contagion. In order to model this form of dependence (cross de-

pendence in the innovations sequences) we introduce an innovative copula function derived

from the extreme value theory that incorporates sufficient flexibility to describe different

patterns of dependence, in particular asymmetric effects between the variables not reflected

by standard copulas. Furthermore, the concepts of interdependence and contagion are re-

visited and the definitions proposed in the literature are adapted to be expressed as tail

dependence measures, and in turn properties of the copula functions involving the tails of

the marginal distributions. Finally, the intention of the authors is to apply this methodol-

ogy to test the flight to quality phenomenon, that is, outflows of capital from the stocks

markets to the bonds markets when the first ones are facing crises periods.

This chapter is structured as follows. Section 2 introduces the copula function derived

from the multivariate extreme value theory. The next section proposes tail dependence

measures as an alternative to correlation; these measures are used to define contagion and

interdependence. The cases of asymptotic dependence and independence are also studied.

Finally the section studies the statistical aspects of the model, and provides a test for the

existence of these effects. In Section 4, this innovative copula function as well as the new

dependence measures are applied to analyze the dependence structure between bonds and

assets (flight to quality phenomenon). Section 5 presents the conclusions.

4.2 The model

Consider the model

X1,t = g1(X1,t−1, . . . , Xm,t−1) + ε1,t,

. . . . . . . . .

Xm,t = gm(X1,t−1, . . . , Xm,t−1) + εm,t,





(4.1)
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and assume that (ε1,1, . . . , εm,1), . . . , (ε1,t, . . . , εm,t) are independent vectors, that is, the

multivariate dependence between the innovations is given by Ht((ε1, . . . , εm)|=t−1), with

=t−1 = =X1,t−1 ∪ . . . ∪ =Xm,t−1. Note that the structure of dependence is time varying

though the marginal distributions of the observations are independent of time. Otherwise

if the innovations satisfied the martingale property, the marginal distributions would not

be free from the time index, that is, the joint distribution function would take the form

Ht((ε1,t|=t−1, . . . , εm,t|=t−1)|=t−1),

with εi,t|=t−1, i = 1, . . . , m the conditional random variables.

Both distribution functions, however, give rise to the type of conditional copulas in-

troduced in Patton (2001) where the dynamics of the joint distribution function is driven

by a parameter that is time varying. Instead, for appropriate functions g1, . . . , gm we pro-

pose a multivariate distribution function H(ε1, . . . , εm) time invariant motivated by the

dependence found between the vector of maxima of the corresponding random variables.

4.2.1 The structure of dependence: The copula function

This section studies the dependence structure between m random variables via the

copula function. The concept of copula is due to Sklar (1959) and refers to the class of

multivariate distribution functions supported in the unit cube with uniform margins.

Definition 4.2.1. A function C : [0, 1]m → [0, 1] is a m-dimensional copula if it satisfies

the following properties:

• For all ui ∈ [0, 1], C(1, . . . , 1, ui, 1, . . . , 1) = ui.

• For all u ∈ [0, 1]m, C(u1, . . . , um) = 0 if at least one of the coordinates is zero.

• The volume of every box contained in [0, 1]m is non-negative, i.e., VC([u1, . . . , um] ×
[v1, . . . , vm]) is non-negative. For m = 2, VC([u1, u2]×[v1, v2]) = C(u2, v2)−C(u1, v2)−
C(u2, v1) + C(u1, v1) ≥ 0 for 0 ≤ ui, vi ≤ 1.
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The copula C(u1, . . . , um) is the joint distribution function of the probability integral

transforms of each of the variables X1, . . . , Xm with respect to the marginal distributions

F1, . . . , Fm. It may be seen as the component of the multivariate distribution function of a

vector of random variables that captures the dependence structure.

Theorem 4.2.1. (Sklar’s theorem): Given a m-dimensional distribution function H with

continuous marginal distributions F1, . . . , Fm, then there exists a unique copula C : [0, 1]m →
[0, 1] such that

H(x1, . . . , xm) = C(F1(x1), . . . , Fm(xm)), ∀x1, . . . , xm ∈ R ∪ {∞}. (4.2)

Conversely, if C(u1, . . . , um) is a m-dimensional distribution function with uniform mar-

gins, and F1, . . . , Fm are continuous univariate distribution functions for the random vari-

ables X1, . . . , Xm, then the function H defined in (4.2) is a m-dimensional distribution

function with margins F1, . . . , Fm.

It is immediate to see that if we have a model for the joint distribution of the m random

variables and the marginal distributions of the Xi are continuous, the complete dependence

structure of the corresponding variables is known,

C(u1, . . . , um) = H(F−1
1 (u1), . . . , F

−1
m (um)), (4.3)

with F−1
i (u) = inf{x ∈ R|Fi(x) ≥ u}, for all 0 ≤ u ≤ 1.

This measure of dependence extends the notions of linear correlation (Pearson) and

rank correlation (Spearman). More important, it overcomes the typical problems of these

scalar measures. Embrechts, McNeil and Straumann (1999) provides an excellent review

about the properties and problems of these dependence measures.

It is shown that under very general conditions on the marginal distribution functions the

dependence structure of any multivariate distribution is described by the copula function. In

particular this interesting result is found for the joint distribution of the maxima of a vector

of random variables. Moreover, there exists a copula function that drives the dependence
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in the extremes whose expression is derived from the extreme value theory.

Consider Mn = (Mn1, . . . , Mnm) the vector of componentwise maxima, with components

Mni = max{X1i, . . . , Xni}, and the vector of sequences an = (an1, . . . , anm) with each

ani > 0, and bn = (bn1, . . . , bnm). Under some smoothness condition in the tail of Fi,

Leadbetter, Lindgren and Rootzén (1983) show that

lim
n→∞

F n
i (anixi + bni) = Gi(xi), i = 1, . . . , m, (4.4)

where Gi(xi) is an extreme value distribution of one of the three possible types, Gumbel,

Weibull and Fréchet. The distribution Fi is said to belong to the maximum domain of

attraction of Gi, see also Embrechts, Klüppelberg and Mikosch (1997). Denote the distri-

bution of the multivariate maximum by

Hn(an1x1 + bn1, . . . , anmxm + bnm) = P{a−1
ni (Mni − bni) ≤ xi, i = 1, . . . , m}, (4.5)

where H(x1, . . . , xm) = P{X1 ≤ x1, . . . , Xm ≤ xm}. The core result of the multivariate

extreme value theory is that (4.4) may be extended to

lim
n→∞

Hn(an1x1 + bn1, . . . , anmxm + bnm) = G(x1, . . . , xm), (4.6)

with G a non degenerate multivariate extreme value distribution (mevdf ). The class of

these particular distributions is precisely the class of max-stable distributions (Resnick

(1987), proposition 5.9). These distributions are defined by this property

Gt(tx1, . . . , txm) = G(α1x1 + β1, . . . , αmxm + βm), (4.7)

for every t > 0, and some constants αi > 0 and βi.

The marginal distribution functions of G are the univariate extreme value distributions
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Gi(xi). By Sklar’s theorem, (4.6) may be written as

lim
n→∞

Hn(an1x1 + bn1, . . . , anmxm + bnm) = C(G1(x1), . . . , Gm(xm)), (4.8)

with C a copula function.

It can be seen under some simple algebra that C also describes the dependence structure

of the largest observations. Our aim in the following lines is to derive a suitable analytical

expression for this copula function. In order to do this, the marginal distributions are

transformed to obtain identical and parameter free versions of these univariate distributions,

in particular Fréchet distributions of the type Ψα(z) = exp (−z−α) with α = 1.

Let Zi = 1/log 1
Fi(X)

be such transformation, and denote P{Zi ≤ z} = F ∗
i (z) with

z = 1/log 1
Fi(anix+bni)

. This distribution satisfies these interesting properties: F ∗
i (z) = Ψ1(z),

F ∗
i (z) = Fi(anix + bni) and F ∗n

i (nz) = Ψ1(z). Note that these conditions imply F ∗n
i (nz) =

F ∗
i (z) and

lim
n→∞

H∗n(nz1, . . . , nzm) = C(Ψ1(z1), . . . , Ψ1(zm)), (4.9)

with H∗(z1, . . . , zm) = H(an1x1+bn1, . . . , anmxm+bnm). This condition holds for any vector

(z1, . . . , zm) in [zo1,∞)× . . .× [zom,∞), with (zo1, . . . , zom) a threshold vector. The function

C is called extreme copula because satisfies this property,

Ct(Ψ1(z1), . . . , Ψ1(zm)) = C(Ψt
1(z1), . . . , Ψ

t
1(zm)), t > 0, (4.10)

where the margins are extreme value distributions. The proof immediately follows from

(4.7). This condition entails an invariance property given by the logs of the corresponding

distributions, that is,

t log C(Ψ1(tz1), . . . , Ψ1(tzm)) = log C(Ψ1(z1), . . . , Ψ1(zm)).
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Then, for n and (z1, . . . , zm) sufficiently high,

lim
n→∞

n (1−H∗(nz1, . . . , nzm)) = −log C(Ψ1(z1), . . . , Ψ1(zm)), (4.11)

and

lim
n→∞

H∗(nz1, . . . , nzm)

1 + log C(Ψ1(nz1), . . . , Ψ1(nzm))
= 1. (4.12)

Other interesting result derived from the invariance property is

P
{

Z1 ≤ nz1, . . . , Zm ≤ nzm|
m∪

i=1
Zi > nz0i

}
= P

{
Z1 ≤ z1, . . . , Zm ≤ zm|

m∪
i=1

Zi > z0i

}
.

The left term in (4.11) may be considered as a sequence of measures that converge to a

constant given the vector (z1, . . . , zm), see Resnick (1987) or de Haan and de Ronde (1998)

for different transformations of the marginal distributions. Expression (4.12) provides the

joint distribution function of the largest observations, that is, for n sufficiently high the

denominator may be approximated by the copula function C. Therefore

P {Z1 ≤ z1, . . . , Zm ≤ zm} = C(Ψ1(z1), . . . , Ψ1(zm)), (4.13)

for the vector (z1, . . . , zm) sufficiently high.

The latter expression is promising in the sense that C is a good approximation of the

dependence structure in the largest observations. However, the challenge of choosing a suit-

able threshold vector that determines the region satisfying condition (4.11) still remains.

On the other hand the invariance property implies that the copula C must be of expo-

nential type. There are different characterizations of this distribution. A general expression

for m = 2 is given in the form of the Pickands representation, (Pickands, 1981) that is,

C(u1, u2) = expD(t)log(u1u2), (4.14)

where u1 = Ψ1(z1), u2 = Ψ1(z2), t = log(u1)
log(u1u2)

, and D(t) is a convex function on [0, 1] such
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that max(t, 1 − t) ≤ D(t) ≤ 1 for all 0 ≤ t ≤ 1. This family of distributions is included

in the class of Archimedean copulas (Nelsen 1999, chapter 4). The dependence in these

copulas is driven by a single variable t for m = 2. The Gumbel-Hougaard family is within

this class of distributions and satisfies the invariance property. It is represented by

CG(u1, u2; θ) = exp−[(−log u1)θ+(−log u2)θ]1/θ

, θ ≥ 1. (4.15)

This distribution function is usually known as Gumbel bivariate logistic copula. The main

problem that arises if we assume that C is modelled by a Gumbel distribution CG in (4.13)

is the choice of the threshold. Condition (4.11) may be violated for low thresholds where

the extreme value theory is not a reliable technique. Other drawback of modelling C as CG

is the asymmetry, the random variables modelled by the Gumbel copula are exchangeable

and hence it is not possible to quantify different contributions of the corresponding random

variables. In order to account for this asymmetric dependence we propose a version of CG

able to describe these effects. This function is denoted by C̃G(u1, u2; Θ), with Θ = {θ, γ, η},
and takes the following expression

C̃G(u1, u2; Θ) = exp−D(u1,u2;γ,η)[(−log u1)θ+(−log u2)θ]1/θ

, (4.16)

with

D(u1, u2; γ, η) = expγ(1−u1)(1−u2)η

, γ ≥ 0, η > 0. (4.17)

Theorem 4.2.2. The function C̃G : [0, 1] × [0, 1] → [0, 1] defined in (4.16) and (4.17)

is a copula function if the parameters in Θ satisfy that c̃G(u1, u2; Θ) > 0, ∀ (u1, u2) ∈
[0, 1]× [0, 1], with c̃G(u1, u2; Θ) = δ2 eCG(u1,u2;Θ)

du1du2
the density function of the copula C̃G.

Proof.- Let us denote A(u1, u2; θ) = [(−log u1)
θ + (−log u2)

θ]1/θ. The conditions related

to the contour of C̃G immediately follow from the contour properties of the functions

D(u1, u2; γ, η) and A(u1, u2; θ). The proof that C̃G is 2-increasing involves more algebra.

Consider VecG
([uo1, u11]× [uo2, u12]) = C̃G(u11, u12; Θ)− C̃G(u11, uo2; Θ)− C̃G(uo1, u12; Θ) +



4.2. THE MODEL 105

C̃G(uo1, uo2; Θ), and define V ′(u1) = C̃G(u1, u12; Θ)− C̃G(u1, uo2; Θ). Then,

VecG
([uo1, u11]× [uo2, u12]) = V ′(u11) − V ′(uo1). Note that V ′(u1) ≥ 0, ∀ u1 ∈ [0, 1], with

uo2 < u12. This function can be written as

V ′(u1) = exp−D(u1,uo2;γ,η)A(u1,uo2;θ)
[
exp−(D(u1,u12;γ,η)A(u1,u12;θ)−D(u1,uo2;γ,η)A(u1,uo2;θ))−1

]
,

that is greater than 0 if and only if D(u1, u2; γ, η)A(u1, u2; θ) is decreasing in u2. The only

condition that remains to see is that V ′(u1) is nondecreasing. This condition will hold if

the function δ eCG(u1,u2;Θ)
du1

is nondecreasing in u2, that amounts to see if c̃G(u1, u2; Θ) > 0,

∀ (u1, u2) ∈ [0, 1]× [0, 1]. ¤

The choice of the threshold in (4.13) is overcome by adding the function D(u1, u2; γ, η).

This function by means of the pair (u1, u2) and the parameter γ measures the sensitivity

of the dependence structure to departures from the invariance property. In other words,

either the margins are further in the right tail (u1, u2 → 1) or γ ∼= 0 the copula function

C̃G is closer to CG and the invariance property holds. In this way the joint distribution

function for the entire range of the random variables Z1, Z2 is

P {Z1 ≤ z1, Z2 ≤ z2} = C̃G(Ψ1(z1), Ψ1(z2)), (4.18)

where zi = 1/log 1
Fi(xi)

in this case. This distribution function is driven by the parameters

θ, γ, η. The constant γ assesses the extent of the invariance property. The parameter θ

describes the level of asymptotic tail dependence between the random variables. The case of

perfect independence is covered by θ = 1, γ = 0. Finally η measures the level of asymmetry

or exchangeability of the variables.

The following list enumerates the most outstanding advantages of our copula function

C̃G.

1. This copula function is derived from the multivariate extreme value theory, in contrast

to ad-hoc choices to model the dependence structure.
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2. The function D(u1, u12; γ, η) and in particular the parameter γ extend the results of

the multivariate extreme value theory about the distribution of the largest observa-

tions to the entire range of the random variables.

3. C̃G is able to explain asymmetric effects of the variables for η 6= 1. It may be consid-

ered as an alternative to the asymmetric logistic model in Tawn (1988).

4. This copula function is sufficiently flexible to describe different forms of dependence

and asymptotic dependence, as will be shown below.

4.3 Contagion: types and definitions

Linear measures of dependence are not sufficient to describe the dependence patterns

between a vector of random variables. The popular Pearson correlation has a number of

pitfalls, see Embrechts, McNeil and Straumann (1999). Some of them are that a a zero

correlation does not imply independence if the marginal distributions are not elliptical,

and second, correlation is not invariant under transformations of the random variables.

Spearman correlation (rank correlation) for example solves the latter, however, it also fails

to give a measure of independence far from the elliptical world.

In the bivariate setting natural measures of dependence different from the traditional

correlation are given by the dependence in the tails. Ledford and Tawn (1997) and Coles,

Heffernan and Tawn (1999) define the asymptotic tail dependence measure ℵ,

ℵ = lim
t→∞

P{Z2 > t|Z1 > t}. (4.19)

This measure takes the zero value if the random variables are asymptotically independent.

There are two classes of extreme value dependence, asymptotic dependence and asymptotic

independence. Both forms of dependence permit dependence for moderately large values

of the variables, however the likelihood of joint extreme events under asymptotic indepen-

dence converges to 0 as the events become more extreme. Loosely speaking, the probability
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of one variable being extreme given the other is extreme is 0 in the limit. The copula C̃G

supports both types of asymptotic dependence. It can be seen that ℵ eCG
= 2 − 21/θ, that

reflects asymptotic independence for θ = 1 and asymptotic dependence otherwise.

The definition in (4.19) can be extended to the entire range of the random variables.

Lehman (1966) defined two random variables Z1, Z2 as positively quadrant dependent

(PQD) if for all (z1, z2) ∈ R2,

P{Z1 > z1, Z2 > z2} ≥ P{Z1 > z1}P{Z2 > z2}, (4.20)

or equivalently if

P{Z1 ≤ z1, Z2 ≤ z2} ≥ P{Z1 ≤ z1}P{Z2 ≤ z2}. (4.21)

In the same way negative quadrant dependence (NQD) is defined reversing the inequalities

in both expressions.

Definition 4.3.1. We say that two random variables are interdependent if they are PQD.

In consequence interdependence is characterized by joint movements in the same direction

(co-movements) of the corresponding random variables.

If Z1 and Z2 are NQD a large value in one random variable is corresponded by a

value of the same magnitude in the opposite direction for the other variable. Economically,

interdependence means that links in turmoil periods (tails of the distributions) are only

consequence of the same linkages between the markets found in still periods.

In the case that the random variables are continuous these definitions are a property of

the copula. From elementary probability theory

P{Z1 > z1, Z2 > z2} = C̃G(u1, u2)− (u1 + u2) + 1, (4.22)

with ui = Ψ1(zi), i = 1, 2.

Define the function g(u1, u2) as the difference between the probabilities in (4.20) in
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terms of the copula function,

g(u1, u2) = C̃G(u1, u2)− u1u2. (4.23)

If this function is positive for all (u1, u2) ∈ [0, 1] × [0, 1] the former definitions for cross

dependence apply, that is, Z1 and Z2 are PQD.

The function g(u1, u2) itself is not sufficient to determine the strength of the links be-

tween the variables. A stronger condition is required to measure the amount of dependence

for different values of the random variables. This condition is tail monotonicity, that is, the

function (4.23) is either nonincreasing or nondecreasing in its arguments. In particular,

increasing tail monotonicity for the function P{Z1 > z1, Z2 > z2}−P{Z1 > z1}P{Z2 > z2}
characterizes the existence of contagion in the upper tails between the random variables.

Thus, contagion in this context can be defined as a significant increase in the intensity of

the dependence between the variables Z1, Z2 when these take on extreme values.

Definition 4.3.2. Suppose Z1, Z2 with common Fréchet distribution Ψ1 and consider z

a threshold that determines the extremes in the right tail of both random variables. Then,

there exists a contagion effect between Z1 and Z2 if g(u1, u2) is an increasing function for

both random variables, and for u1, u2 ≥ u with u = Ψ1(z).

On the other hand contagion in intensity for the lower tails is characterized by decreasing

tail monotonicity for the function P{Z1 ≤ z1, Z2 ≤ z2}−P{Z1 ≤ z1}P{Z2 ≤ z2}. In terms

of copulas the conditions in definition 4.3.2 for contagion amount to these properties,

h1(u1, u2) =
δC̃G(u1, u2)

du1

− u2 > 0, h2(u1, u2) =
δC̃G(u1, u2)

du2

− u1 > 0. (4.24)

The presence of tail monotonicity for the whole range of the random variables indicates

something stronger than contagion. These properties, called Right Tail Increasing (RTI )

and Left Tail Decreasing (LTD) in Esary and Proschan (1972), imply that P{Z2 > z2|Z1 >

z1} > P{Z2 > z2} and P{Z2 ≤ z2|Z1 ≤ z1} > P{Z2 ≤ z2} respectively, for any pair

(z1, z2), and therefore are synonymous of contagion and interdependence. Note however
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that these phenomena do not necessarily appear together. There can exist contagion in the

extremes between two random variables without being interdependent, and on the other

hand, two interdependent random variables can show weaker links (though stronger than

being independent) in distress periods than in calm periods.

The concepts of contagion and interdependence introduced so far regard the intensity of

the dependence, that is, the strength of the links between the variables as these go further

into the tails. However, other forms of contagion regarding the direction of the dependence

are found, in this setup the conditional probability of (4.19) is interpreted as a causality

relationship. Contagion in this context occurs when one variable is influencing the other,

that is, a large value in one variable is raising the likelihood of a large value in the other

variable. Then the relation between the variables must be asymmetric, otherwise there is

only an increase in the intensity of the dependence (contagion as defined in 4.3.2). Note

however that a condition of the type P{Z2 > z2|Z1 > z1} > P{Z2 > z2} is equivalent to

(4.20). Moreover, the only difference of the former with a condition as P{Z1 > z1|Z2 >

z2} > P{Z1 > z1} is given by the marginal distributions. In the case of H∗(z1, z2) where

the margins are identical Fréchet, both conditional probabilities are identical.

Let us focus instead in the following conditions for contagion spill-over,

P{Z2 > z2|Z1 > z1} ≥ P{Z1 > z2|Z2 > z1}, (4.25)

for the upper tails, with z2 ≥ z1, and

P{Z2 ≤ z2|Z1 ≤ z1} ≥ P{Z1 ≤ z2|Z2 ≤ z1}, (4.26)

for the lower tails, where z2 ≤ z1. These conditions boil down to see if C̃G(u1, u2; Θ) >

C̃G(u2, u1; Θ). Consider z1 a threshold value that determines the extreme events, hence this

inequality implies that the likelihood of Z2 being extreme given that Z1 is extreme is larger

than the likelihood of Z1 being extreme with Z2 extreme. In other words, Z1 is causing Z2

reaches extreme values. The particular case of equality in the latter expressions represents
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symmetry of the variables and economically concerns directional interdependence (both

economies are affected by the external factors in the same way).

To formalize directional contagion define gdv(u) = C̃G(u, v) − C̃G(v, u) and introduce

the following definition,

Definition 4.3.3. Suppose Z1, Z2 with common Fréchet distribution Ψ1 and consider z a

threshold that determines the extremes of both random variables. Then, Z1 is influencing

Z2 in the extreme values (contagion effect) if gdv(u) is strictly positive for all v > u for the

upper tail, and for all v < u for the lower tail, with u = Ψ1(z).

This definition is analog for Z2 influencing Z1 but reversing the signs of the inequality.

In terms of the parameters of the copula C̃G, there is contagion from Z1 towards Z2 if

η > 1, and from Z2 towards Z1 if η < 1.

The definition may be strengthened by imposing a monotonicity condition on gdv(u).

The intensity of this type of contagion can be measured by means of this monotonicity

condition. In particular,

Definition 4.3.4. Suppose the conditions of definition 4.3.3, and Z1, Z2 such that there is

positive contagion from Z1 to Z2. Then, Z1 is strongly influencing Z2 in the extreme values

(strong contagion effect) if gdv(u) is an increasing function in v for all v > u.

A characterization of this definition is

sc(u, v) =
δC̃G(u, v; Θ)

dv
− δC̃G(v, u; Θ)

dv
> 0. (4.27)

The economic interpretation behind lies on irrational increases in the probability that Z2

becomes extreme given that Z1 has reached extreme observations (remind that the variables

represent innovations).
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4.3.1 Estimation of the Copula: Testing Contagion

In general, to estimate the set of dependence parameters Θ of any multivariate distri-

bution function two strategies may be employed. If the marginal distributions are known or

can be estimated by valid parametric models the likelihood function for the data is easily

derived. If the multivariate distribution function is H(x1, x2) = C(F1(x1), F2(x2); Θ) the

likelihood function is

£(Θ; x1, x2) =
n∑

i=1

log f1(xi,1) +
n∑

i=1

log f2(xi,2) +
n∑

i=1

log c(F1(xi,1), F2(xi,2); Θ), (4.28)

with fi the marginal density function of Fi, and c(F1(x1), F2(x2); Θ) the bivariate density of

the copula. The resulting estimates of the dependence parameters are margin-dependent,

as well as the parameters of the corresponding marginal distributions. On the other hand

the estimates of Θ are free of these effects for nonparametric estimates of the margins.

Genest, Ghoudi, and Rivest (1995) show that the estimates derived from a pseudo-likelihood

estimation are consistent and asymptotically normal. This method is implemented in two

steps. First, the estimates of the marginal distributions are estimated by the respective

nonparametric empirical distribution functions. In this way ui is obtained as ui = F̂i,n(x),

with F̂i,n(x) = 1
n

n∑
i=1

1{Xi≤x}, and the log-likelihood for C is

£(Θ; u1, u2) =
n∑

i=1

log c(ui,1, ui,2; Θ). (4.29)

In our case, H∗(z1, z2) = C̃G(Ψ1(z1), Ψ1(z2); Θ), though the marginal distribution functions

are known, standard Fréchet, the underlying marginals F1, F2 are not, so it is preferable

to consider the nonparametric case. Note that ui = Ψ1(zi) boils down to ui = Fi,n(xi)

by construction of Zi. The log-likelihood function of H∗ is calculated as in (4.29). This

function, however, does not take an easy-to-handle expression in logs, and the score function

does not adopt a closed form. Instead numerical optimization methods are employed to

maximize the likelihood.
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An appealing property of the copula C̃G is its nested character. It is immediate to

see that γ = 0 is the standard Gumbel distribution, that represents the class of bivariate

extreme value distributions. The case of asymptotic independence for the right tail is given

by θ = 1 whilst perfect independence is described by θ = 1 and γ = 0. Finally, η measures

the level of asymmetry (exchangeability) of the variables. As a result, it is straightforward to

implement tests for the corresponding hypotheses about dependence by means of likelihood

ratio tests. The test statistic is

Λn = 2 log

sup
Θ

n

Π
i=1

c̃G(ui,1, ui,2; Θ)

n

Π
i=1

c̃G(ui,1, ui,2; Θ0)
, (4.30)

with Θ0 the set of parameters under the null hypothesis. The asymptotic distribution of Λn

is chi squared-distributed with degrees of freedom equal to the difference of the dimensions

between Θ and Θ0.

The nested character of the copula makes immediate testing dependence as well as

testing the existence of contagion effects in the data. The corresponding hypotheses tests

are H0 : θ = 1, γ = 0 vs H1 : θ > 1 or γ > 0, and H0 : η = 1 vs H1 : η 6= 1 for γ > 0.

Meanwhile the existence of intensity contagion and strong directional contagion boil down

to study conditions (4.24) and (4.27) respectively plugging the estimated parameters.

4.4 Application: Flight to quality versus Contagion

Financial crises are characterized by dramatic falls in the prices of asset returns for

reference markets. The fall in prices of these returns trigger a sequence of negative effects

on the prices of the rest of the assets traded in the market by different reasons: a remarkable

weight of the asset in the composition of the portfolios, bilateral trade, or a psychological

or contagion effect.

It seems logical to think that investors in order to avoid the pernicious effects of the crisis

flee towards safe markets: the bonds market. However, sometimes it is not clear the type
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of market failing and originating the crisis since the overall economic structure collapses.

In this situation the refuge in the bonds market may not provide with the desired coverage

against losses. The phenomenon of fleeing from the stocks market to the bonds market is

known as flight to quality. Measuring this effect is useful in a number of ways: it reflects the

links between these markets, in cases of crisis it is useful to identify its sources (financial

vs other types), or the causality of the relationship, that is, if bear stock markets imply

bull bond markets, or there is some common economic factor producing the co-movements

(e.g. low interest rates).

In this section this phenomenon is tested for two different pairs of financial indexes: the

Dow Jones Corporate 02 Years Bond Index (DJBI02) vs the Dow Jones Industrial Average:

Dow 30 Industrial Stock Price Index (DJSI), and the the Dow Jones Corporate 30 Years

Bond (DJBI30) Index vs the Dow 30 Industrial Stock Price Index. These series are studied

for the period 02/01/1997−24/09/2004. The Corporate Bonds Indexes data are taken from

the official Dow Jones Index website and the Stock Price Index from www.freelunch.com.

Sample observations corresponding to public holidays and missing data in either of the

series are deleted from both data sets to avoid the incorporation of spurious zero returns

and aberrant dependencies, leaving n=1942 observations. The observations considered for

the analysis are the logarithmic returns measured in percentage terms and denoted as rt,

rt = 100 (logPt − logPt−1),

with Pt the original prices at time t.

The methodology followed in this empirical work starts by filtering the data by uni-

variate models as sketched in (4.1) and analyzing the dependence patterns between the

resultant innovation vector (ε1, ε2) by means of the copula C̃G. This copula is sufficient for

testing the existence of contagion effects, co-movements, or opposite effects in the tails that

are reflected in the set of parameters Θ of the copula C̃G.

Tables 4.6.1, 4.6.2 show that DJBI02 index is well modelled by an AR(1)-GARCH(1,1)

model as follows,
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X1,t = 0.00025 + 0.089X1,t−1 + σ1,tε1,t, with ε1,t i.i.d. (0, 1), and

σ2
1,t = 6.194 · 10−8 + 0.071ε2

1,t−1 + 0.903σ2
1,t−1.

The DJSI Index is modelled by the following pure GARCH(1,1) model (tables 4.6.3, 4.6.4),

X2,t = σ2,tε2,t, with ε2,t i.i.d. (0, 1), and σ2
2,t = 3.0012 · 10−6 + 0.096ε2

2,t−1 + 0.887σ2
2,t−1.

The bivariate sequence of innovations (ε1,t, ε2,t) is represented in figure 4.6.1. A first glance

to the picture provides some guidance towards the existence of a flight to quality effect be-

tween the innovations of DJSI and the innovations corresponding to DJBI02. The analysis

of cross correlation (figure 4.6.2) confirms the existence of opposite shocks in the innovation

sequence as well as validates the univariate models proposed to satisfy the assumptions in

(4.1).

The copula function C̃G introduced in this chapter is estimated numerically. The pa-

rameter estimates for this example are θ̂n = 1.031, η̂n = 1 and γ̂n = 0.175. This model

fits well the data for different sections of the copula for both margins as can be seen (see

figure 4.6.3). The following pictures are derived from C̃G estimated from the data. In this

way, figures 4.6.4 and 4.6.5 show negative interdependence between the random variables

in the left tail, that becomes stronger in the middle of the bivariate distribution and turns

positive in the right tail. Both plots are identical indicating the absence of directional con-

tagion, that is, asymmetric effects between the variables. This is also described in figure

4.6.6. On the other hand it is remarkable the presence of intensity contagion in the left tail

(figure 4.6.5). A deeper analysis of figures 4.6.4 and 4.6.5 shows opposite movements in

the middle of their domain, that decrease when the variables take larger absolute values.

This phenomenon is more pronounced for the extreme negative values that tend to move

together, or at least not in opposite directions (contagion without interdependence).

It is convenient not confusing the contagion phenomenon just illustrated that appears

when both variables simultaneously take on extreme events in the same tail with the flight

to quality. This phenomenon occurs when the extreme values occur in the opposite tails, in

particular when DJBI02 takes positive extreme values and DJSI negative extreme values.
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Figure 4.6.7 clearly describes the existence of this phenomenon in both tails, that may

be interpreted as a substitution effect between these financial sequences when either of the

sequences are in crises periods.

The analysis for the pair Dow Jones Corporate 30 Years Bond Index (DJBI30 ) and

the Dow Jones Stock Price Index (DJSI ) yields different results. DJBI30 is modelled by

an AR(1)-GARCH(1,1) model where DJSI also enters in the equation. The parameter

estimates are displayed in tables 4.6.5 and 4.6.6 and can be summarized as follows,

X1,t = 0.00037 + 0.063X1,t−1 + 0.048X2,t−1 + 0.028X2,t−2 + σ1,tε1,t, with ε1,t i.i.d. (0, 1),

and σ2
1,t = 1.375 · 10−6 + 0.056ε2

1,t−1 + 0.905σ2
1,t−1.

The pair (ε1,t, ε2,t) is represented in figure 4.6.8. The cross correlation function (figure

4.6.9) indicates the absence of linear correlation between any lag combination. This graph

also assesses the univariate model proposed to describe the dynamics of DJBI30. The

parameter estimates for C̃G in this case are θ̂n = 1.01, η̂n = 1 and γ̂n = 0.0003. This

model suits very well to the data (figure 4.6.10). The fitted copula shows that the random

variables are weakly interdependent (figure 4.6.11), that is, both innovation sequences,

though close to independence, move in the same direction. More formally, the likelihood

ratio test introduced in (4.30) calculated for H0 : θ = 1, γ = 0 vs H1 : θ > 1 or

γ > 0 does not reject the hypothesis of independence. Note from the value of γ the random

variables are symmetric and therefore there is not directional contagion. Furthermore, figure

(4.6.12) describes absence of intensity contagion in either of the tails reflecting a weakening

in the links between the variables in the tails. In the limit these random variables are

asymptotically independent in both tails. Finally the flight to quality phenomenon is not

present for these two series as shown in figure 4.6.13.

4.5 Conclusions

Contagion and interdependence are different concepts. In this chapter contagion is re-

lated to extreme or tail events. Via the theory of copulas, we are able to analyze and test
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the existence of contagion, its intensity, as well as its causal direction. This is done by

creating a new copula, derived from the multivariate extreme theory, that is sufficiently

flexible both to describe different patterns of dependence, and model asymmetric effects

between markets.

This copula has been applied to study the links between safe and risky markets repre-

sented by the Dow Jones Corporate Bond Index (DJBI ) and the Dow Jones Stock Price

Index (DJSI ). From the point of view of economic fundamentals, the latter index is inde-

pendent of DJBI, while the bonds indexes, DJBI02 and DJBI30, have different behaviors

depending on their maturity. The price of DJBI02 is independent of the evolution of risky

markets, actually the conditional mean price is only driven by its own past price, while

the conditional variance is well modelled by a GARCH(1,1) model. On the other hand,

DJBI30 is positively influenced by the evolution of DJSI reflecting the health of the over-

all economy.

Regarding the irrational links between the markets reflected in the innovations sequences

and modelled by the copula function introduced in this chapter, the conclusions are also

different for the corresponding pairs of financial series. The shocks between DJBI02 and

DJSI are negatively related. In particular, the flight to quality effect is present indicating

a substitution effect between both financial instruments when either of them are through

distress periods. It is also remarkable the existence of a contagion effect in the intensity of

the dependence in situations of crises in both markets, common negative shocks. On the

other hand DJSI and DJBI30 innovation sequences are almost independent. There is no

contagion or flight to quality effect.

The conclusion regarding the dependence of these financial series is that while DJBI02

can serve as refuge for investors fleeing from crises attributed to the stocks markets, DJBI30

reflects the health of the overall economy, including the stocks markets, and are used by a

type of investors not concerned with sharp fluctuations of prices in the stocks markets.
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4.6 Appendix: Tables and Figures

Parameter Value Standard Error T Statistic

C 0.00023981 3.2242e− 005 7.4378

AR(1) 0.075112 0.023976 3.1327

AR(2) −0.0060864 0.023504 −0.2590

Regress(1) 0.0033575 0.0023594 1.4231

Regress(2) 0.001902 0.0023953 0.7940

Regress(3) −0.0032545 0.0027541 −1.1817

K 4.6857e− 008 1.0825e− 008 4.3286

GARCH(1) 0.92472 0.0088449 104.5485

ARCH(1) 0.055603 0.0053162 10.4591

Table 4.6.1. Parameter estimates for DJCB02 Index for the period 02/01/1997−24/09/2004.

Parameter Value Standard Error T Statistic

C 0.000254010 3.1119e− 005 8.1626

AR(1) 0.089148 0.024137 3.6934

K 6.1945e− 008 1.4083e− 008 4.3985

GARCH(1) 0.90361 0.011627 77.7188

ARCH(1) 0.071044 0.0066707 10.6502

Table 4.6.2. Parameter estimates for DJCB02 Index for the period 02/01/1997−24/09/2004.
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Parameter Value Standard Error T Statistic

C 0.00049681 0.00024775 2.0053

AR(1) −0.0078747 0.026044 −0.3024

AR(2) −0.011078 0.023067 −0.4803

Regress(1) 0.0060823 0.0409134 0.1487

Regress(2) 0.035009 0.043498 0.8048

Regress(3) −0.056755 0.038002 −1.4935

K 2.9658e− 006 8.5241e− 007 3.4793

GARCH(1) 0.88763 0.011124 79.7956

ARCH(1) 0.095891 0.0092913 10.3205

Table 4.6.3. Parameter estimates for DJSP Index for the period 02/01/1997−24/09/2004.

Parameter Value Standard Error T Statistic

C 0.00049118 0.00024454 2.0086

K 3.0012e− 006 8.5464e− 007 3.5116

GARCH(1) 0.88719 0.010683 83.0474

ARCH(1) 0.096116 0.0084832 11.3302

Table 4.6.4. Parameter estimates for DJSP Index for the period 02/01/1997−24/09/2004.
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Parameter Value Standard Error T Statistic

C 0.0003741 0.000129 2.9001

AR(1) 0.063049 0.023987 2.6284

AR(2) −0.0075111 0.023612 −0.3181

Regress(1) 0.04884 0.0097296 5.0197

Regress(2) 0.028364 0.01017 2.7891

Regress(3) 0.0058778 0.011312 0.5196

K 1.3042e− 006 4.3895e− 007 2.9712

GARCH(1) 0.90783 0.019353 46.9090

ARCH(1) 0.055566 0.0098548 5.6385

Table 4.6.5. Parameter estimates for DJCB30 Index for the period 02/01/1997−24/09/2004.

Parameter Value Standard Error T Statistic

C 0.00037386 0.00012836 2.9127

AR(1) 0.063416 0.023811 2.6633

Regress(1) 0.048314 0.0097464 4.9572

Regress(2) 0.028526 0.010177 2.8031

K 1.3752e− 006 4.5783e− 007 3.0038

GARCH(1) 0.90551 0.020033 45.2007

ARCH(1) 0.055866 0.010029 5.5704

Table 4.6.6. Parameter estimates for DJCB30 Index for the period 02/01/1997−24/09/2004.
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Figure 4.6.1. Bivariate plot of the innovations sequences of the Dow Jones Corporate 02

Years Bonds and the Dow Jones Stock Index. The observations span the period 02/01/1997−
24/09/2004, n = 1942 observations.
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Figure 4.6.2. Cross correlation for different lags of the bivariate innovation sequence,

Dow Jones Corporate 02 Years Bonds and Dow Jones Stock Index, spanning the period

02/01/1997− 24/09/2004, n = 1942 observations.
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Figure 4.6.3. Empirical (o−) and theoretical (+−) margins of the cumulative bivariate

distribution function. The upper panel describes the vertical sections and the lower panel the

horizontal section. The left panels represent 0.05 quantile, the middle panels 0.50 quantile

and the right panels the 0.0.95 quantile.
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Figure 4.6.4. The upper panel depicts the function g(u, v) as defined in (4.23) plotted

against the innovations of DJSI. The lower panel g(u, v) plotted against the innovations of

DJBI02.
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Figure 4.6.5. The upper panel depicts the function h1(u, v) as defined in (4.24) plotted

against the innovations of DJBI02 and the lower panel depicts h2(u, v) against the innova-

tions of DJSI. (+−) represents the 0.05 quantile, (o−) the 0.50 quantile and (¦−) the 0.95

quantile.
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Figure 4.6.6. The upper panel depicts gdv(u) = C̃G(u, v) − C̃G(v, u) for the lower tail

(v ≤ u). (+−) represents u = 0.50, (o−) represents u = 0.30 and (¦−) for u = 0.10. The

lower panel depicts gdv(u) for the upper tail (v > u). (+−) represents the u = 0.50, (o−)

represents u = 0.70 and (¦−) for u = 0.90.
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Figure 4.6.7. The upper panel depicts the flight to quality from DJSI towards DJBI02.

(+−) represents u = 0.60, (o−) represents u = 0.80 and (¦−) for u = 0.95. The lower

panel depicts the flight to quality from DJBI02 towards DJSI. (+−) represents v = 0.60,

(o−) represents v = 0.80 and (¦−) for v = 0.95.
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Figure 4.6.8. Bivariate plot of the innovations sequences of the Dow Jones Corporate 30

Years Bonds and the Dow Jones Stock Index. The observations span the period 02/01/1997−
24/09/2004, n = 1942 observations.
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Figure 4.6.9. Cross correlation for different lags of the bivariate innovation sequence,

Dow Jones Corporate 30 Years Bonds and Dow Jones Stock Index, spanning the period

02/01/1997− 24/09/2004, n = 1942 observations.
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Figure 4.6.10. Empirical (o−) and theoretical (+−) margins of the cumulative bivariate

distribution function. The upper panel describes the vertical sections and the lower panel the

horizontal section. The left panels represent 0.05 quantile, the middle panels 0.50 quantile

and the right panels the 0.0.95 quantile.
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Figure 4.6.11. The upper panel depicts the function g(u, v) as defined in (4.23) plotted

against the innovations of DJSI. The lower panel g(u, v) plotted against the innovations of

DJBI30.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

u

δ g
(u

,v)
/du

Contagion in Intensity between 30 years DJ bonds − DJ Stock Index

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

v

δ g
(u

,v)
/dv

Figure 4.6.12. The upper panel depicts the function h1(u, v) as defined in (4.24) plotted

against the innovations of DJBI30 and the lower panel depicts h2(u, v) against the innova-

tions of DJSI. (+−) represents the 0.05 quantile, (o−) the 0.50 quantile and (¦−) the 0.95

quantile.
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Figure 4.6.13. The upper panel depicts the flight to quality from DJSI towards DJBI30.

(+−) represents u = 0.60, (o−) for u = 0.80 and (¦−) for u = 0.95. The lower panel

depicts the flight to quality from DJBI02 towards DJSI. (+−) represents v = 0.60, (o−)

for v = 0.80 and (¦−) for v = 0.95.



Chapter 5

Future Lines of Research

This chapter sketches possible extensions of the thesis. The discussion is concentrated on

three topics. First, the transmission of risk between economies and the effects of contagion

in diversification. Second, the transmission of risk in financial sequences involving serial

dependence in the extreme observations generated by heavy tails, and finally, the use of

EVT techniques for the detection of aberrant observations (outliers) out of the range of the

available information and far from being explained by the extreme values of the distribution

of the data.

127
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Contagion effects in different aspects of the economy is a promising research area that

is accumulating interest from academics as well as from practitioners. This thesis has ex-

plored the flight to quality from stocks to bonds markets. Other interesting results involving

contagion effects are found in the analysis of banking crises, currency crises or portfolio

crises. The immediate aim further this thesis is portfolio risk management. In particular

the negative effects of contagion in diversification strategies.

The methodology introduced in Markowitz for portfolio selection (Journal of Finance,

1952, 1991) is based on minimizing the linear combination of the vector of weights of the

individual returns and the corresponding variance-covariance matrix. In this way the opti-

mal portfolio is the linear combination with minimum variance. This statistical measure,

however, is an adequate tool for measuring risk only under some restrictive conditions: log

normal distribution of asset prices (normal distribution of returns), or quadratic utilities.

In this world correlation plays the main role to quantify dependence. On the other hand,

one of the contributions of this thesis has been highlighting the need of alternative statis-

tical measures for modelling dependence when the distribution of the returns is far from

normality. In turn, portfolio decision on the basis of linear measures as variance and corre-

lation may be misleading. The asymmetry observed in financial returns is not reflected in

these measures either. The negative skewness implies a higher probability of large negative

returns than of the corresponding positive values. In this context, it is important to develop

a methodology that is able to account for the risk (negative tail), and for the probability

of profits (positive tail) in a separate way.

The extreme value theory techniques are suitable for these problems by their capability

to describe the distribution of the returns in the tails. Along with these techniques the bi-

variate copula function developed in Gonzalo and Olmo (2005) will be the main ingredient

to modelling asymmetric relations between the elements of the portfolio. The intention of

this research is to move the criterium in portfolio decision from minimizing the variance to

minimizing risk, measured as the probability in the negative tail of the portfolio distribu-

tion.

The second topic of research regards the transmission of risk in time series. Theories
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relying on dependence on the second moments have been enormously popular since they

arose in the middle eighties. In particular GARCH(1,1) models, due to its simplicity and

tractability in practice. Practitioners were very fond of these methodologies as well. As time

went by and deficiencies and limitations of this model surged, slight modifications of the

base GARCH(1,1) model arose reflecting the stylized facts not described by the original

GARCH(1,1). Some of these are the negative skewness of returns or the higher clustering

of the negative observations. Different models as EGARCH, IGARCH, etc. were designed

to describe these features of financial data. All these methodologies assume conditional

gaussian returns where the volatility is time varying and stationary (under some more as-

sumptions) reflecting the dynamics found in financial data.

In the last years however, the common belief that observations are normally distributed

has been encountering more and more enemies. The first signs of the disappointment in

these models was the need of assuming t-Student distributed observations rather than nor-

mally distributed. This family of distributions does not describe very well the empirical

features of financial data either. Other authors, however, have raised the use of heavier

distributions, for example α-stable distributions with infinite variance. The intention of my

future research is something between the gaussian and the heavy tails theories. Berman’s

condition states that

Cov(εt, εt−j) log j → 0 ⇒ θ = 1,

as j → ∞, with εt the standardized observations. The statistical rejection of the null

hypothesis θ = 1 versus θ < 1 implies that either the covariance is not o(1/log j) or εt is

not normally distributed. Provided that the correlation of the financial returns is zero there

is no doubt that rejecting θ = 1 amounts to rejecting the gaussian assumption.

Under this evidence it seems appropriate to consider mixtures of distributions as the

generating process. The normal distribution for calm periods where the observations are

iid, and heavy tailed distributions for distress periods. The dependence would be caused

by the largest observations that would generate a disturbance effect (panic or euphoria) for

a period of time (clusters). No doubt that this theory of transmission of risk in financial
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sequences is in its infancy and much more attention and theoretical grounds are necessary

to construct a reliable theory, but the first steps are built with the hypothesis test for the

extremal index and Berman’s condition in Olmo (2005a).

In the same way that processes generating clusters of significant large observations may

be misspecified and modelled by conditional heteroskedastic volatility models, the opposite

result is also remarkable. Isolated outliers may hide true conditional heteroskedasticity and

be confused with iid processes. This problem, the detection of outliers in financial sequences,

is also of interest in risk management. A few large observations may bias the tail estimates

of the unconditional distribution of the data. For the conditional case, these significant

large observations may affect the estimates of the parameters driving the dependence. It

is important then to account for these observations developing a methodology capable of

detecting outliers in both cases, for iid sequences and for true conditional heteroskedastic

volatility models.

A rough definition of outlier is an observation not generated by the generating process

of data. In consequence, the first challenge is to know the process. Under iid assumptions

this boils down to know F if the distribution of data has finite support. Otherwise the

former definition is misleading and needs of additional assumptions. On the other hand,

for risk management purposes it seems more interesting the detection of outliers in time

series. In this case the generating process is not only F but the random process generating

the dependence. The current literature in outliers detection tests for time series is based on

likelihood ratio tests and regression models between the residuals and the true innovations,

see Tsay (1988) and Chen and Liu (1993) for an overview of the methods.

These tests require some information about the process including the type and location

of the outlier. In addition, the innovations of the generating process must be gaussian. Under

these assumptions, the asymptotic distribution of the test statistic for the null hypothesis

is standard normal. If the location of the outlier is not known, however, the null asymptotic

distribution is highly non standard and must be calculated by simulation.

The aim of this future research is to benefit of the properties of EVT in order to

detect outliers. In particular of the asymptotic results of the distribution of the sample
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maximum. The hypothesis test and detection rules for outlying observations based on EVT

are sketched in the following results.

The three extreme value distributions are related. Given a random variable Y with

a Fréchet distribution function (Φξ) there exist some transformations of Y following a

Gumbel (Λ) distribution, and a Weibull distribution (Ψξ).

Y ∼ Φξ ⇔ ln Y 1/ξ ∼ Λ ⇔ −Y −1 ∼ Ψξ, (5.1)

with ξ the tail index of F.

Suppose {xn} = (x1, . . . , xn) an iid random sequence, and denote γn = Mn({xn}) for

its sample maximum. The statistic used for testing the presence of outliers is a−1
n (γn− bn).

Under the null hypothesis of no outliers this test statistic follows asymptotically an extreme

value distribution of Fréchet, Weibull or Gumbel type. Denoting Gξ for the extreme value

distribution the rejection rule for the null of no outliers will be given by

P
{
a−1

n (γn − bn) < Gξ

}
< α, (5.2)

with α the significance level. Roughly speaking, the likelihood that γn is generated by F

is negligible. This is measured by the probability that the standardized γn belongs to the

range of the corresponding extreme value distribution.

Note that in this way the information regarding the location and type of the outlier and

the form of the distribution F are not necessary. The only difficulties now arise from the

estimation of ξ, an, and bn. Nevertheless by means of (5.1) the test statistic a−1
n (γn−bn) can

be transformed to follow asymptotically the Gumbel (Λ) distribution, that is parameter free.

In consequence, the test statistic is a pivot, although, the estimation of the tail index and

the sequences an, bn must be still regarded. The observations of the sequence influencing the

estimation of these parameters will be denoted influential observations rather than outliers.

For risk management purposes the extension of the test to dependent processes of

GARCH type is also considered. More details on the detection of outliers in the iid case as
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well as for time series can be found in Olmo (2005b).
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