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Abstract

This paper studies the impact of legal unbundling vs ownership unbundling on the
incentives of a network operator to invest and maintain its assets. We consider an
industry where the upstream �rm �rst chooses the size of a network, while several
downstream �rms then compete in selling goods and services that use this network
as a necessary input. We contrast the (socially) optimal allocation with several
equilibrium situations, depending on whether the upstream �rm owns zero, one or
two downstream �rms. The �rst situation corresponds to ownership unbundling
between upstream and downstream parts of the market. As for the other two
cases, we equate legal unbundling with the following two assumptions. First,
each downstream �rm maximizes its own pro�t, without taking into account any
impact on the upstream �rm�s pro�t. Second, the upstream �rm is not allowed
to discriminate between downstream �rms by charging di¤erent access charges for
the use of its network. On the other hand, we assume that the upstream �rm
chooses its network size in order to maximize its total pro�t, including the pro�t
of its downstream subsidiaries.
Our main results are as follows. Because the investment in the network is not

protected, at the time at which it is made, by a contract, the upstream �rm will
not take into account the interests of its clients when choosing its size. This e¤ect
can be mitigated by allowing it to own part of the downstream industry. In other
words, ownership separation is more detrimental to welfare than legal unbundling.
We also obtain that these results are robust to the introduction of asymmetry in
network needs across downstream �rms, imperfect downstream competition and
downstream investments.



1 Introduction

This paper studies the impact of legal unbundling vs ownership unbundling on

the incentives of a network operator to invest and maintain its assets. We con-

sider an industry where the upstream �rm invests in and maintains a network,

while several downstream �rms compete in selling goods and services that use

this network as a necessary input (i.e., no bypass technology is available, at least

at an economically relevant price). Many network industries �t this description

(telecommunications, railways, electricity, etc.) but we have in mind particularly

the natural gas industry.

There are many papers in the regulation, industrial economics and economics

of organizations literature that study the impact of various ownership structures in

network industries. The simplest such structure is one in which an upstream �rm

(�rm U) provides an input to a downstream �rm (�rm D). These papers often

compare the behavior of a vertically integrated �rm with the equilibrium situation

where the upstream and downstream activities are undertaken by separate �rms

(i.e., �rms whose ownership di¤er from one another).

There are two types of considerations that might induce �rm D and U to

merge. First, they might want to use the combined weight of the two �rms for

strategic purposes. For instance, when the upstream �rm has market power in the

supply of the input, but the downstream �rm faces competition, the merger can

be a way to prevent a form of �trickling up�e¤ect of competition. We will call this

view the �antitrust perspective�, as it is the fear of this type of consequences that

prompts competition authorities to disallow some mergers. Second, there might

be some e¢ ciency gains to running the two �rms as a single unit, and the aim of

the merger is to take advantage of these e¢ ciency gains. This type of merger can

arise in a competitive market, whereas the �rst type could not. To stress the fact

that authors who write on this topic are interested in the internal functioning of

the �rm, we will label this branch of the literature the �managerial perspective�

In this paper, we will be considering a situation where �rm U is regulated, and
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where several downstream �rms compete with each other. Regulatory practice has

typically analyzed the ownership of a downstream �rm by the upstream �rm in the

antitrust perspective and with suspicion: this ownership is seen as an open door

to anticompetitive discrimination; we think that it is fair to say that regulators

have often accepted vertical integration as a political compromise. The aim of

this paper is to begin exploring what the managerial perspective can bring to the

debate.

>From the managerial perspective, this paper mainly draws on the insights

linked to the notions of incomplete contracts and speci�c capital. In many cir-

cumstances, upstream and downstream �rms must make investments in order to

improve the bene�ts they derive from their relationships. For instance, they need

to conduct some research and development. This investment is speci�c if it is

productive exclusively within the context of this relationship.1 Because of the

incompleteness of contracts, the two �rms, if they are not integrated, will choose

suboptimal levels of investment. Vertical integration will incite them to take into

account the interests of their partner, and will therefore mitigate the resulting

ine¢ ciency.2

What the managerial perspective calls vertical disintegration corresponds to

the ownership unbundling scenario that we study in the current paper. On the

other hand, the intermediate situation of legal unbundling has, to the best of our

knowledge, not been studied previously in the literature. By legal unbundling,

we mean the situation where the upstream and one or many downstream �rms

belong to the same owners and where these owners, although they are the residual

claimants over the �nancial returns generated by the �rms�assets (i.e., they keep

the �rms�s pro�ts), do not have the full control rights over the �rms�decisions.

1There are degrees of speci�city depending on the usefulness of the investment outside of the
relationship with the other �rm. For simplicity, we assume that the investment is only useful in
the framework of the relationship that we are considering.

2The notion of incomplete contract is introduced in the economic literature by Simon (1951).
Among the classical early references on vertical integration one can cite Klein, Crawford &
Alchian (1978), Williamson (1985) and Grossman & Hart (1986) (which is criticized by Riordan
(1990)). For accessible surveys see Crémer (1995) and Tirole (1995).
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More precisely, in our context legal unbundling between upstream and downstream

would mean that the upstream �rm does not control its downstream subsidiaries�

actions, such as their pricing or investment decisions. That this intermediate (be-

tween integration and full divestiture) situation has not been studied before is all

the more surprising that it is at the heart of most European directives on network

industries. For instance, the 2003/55 European Directive on natural gas states

�In order to ensure e¢ cient and non-discriminatory network access it is appropri-

ate that the transmission and distribution systems are operated through legally

separate entities where vertically integrated undertakings exist. It is important

however to distinguish between such legal separation and ownership unbundling.

Legal separation implies neither a change of ownership of assets [. . . ]. However, a

non-discriminatory decision-making process should be ensured through organiza-

tional measures regarding the independence of the decision-makers responsible.�

The way we model legal unbundling is as follows. We consider a sequential

game where the upstream �rm �rst chooses the size of its network, and where

two downstream �rms then compete by selling goods that use this network as an

essential input. We contrast the (socially) optimal allocation with several equi-

librium situations, depending on the ownership structure in the industry. More

precisely, we consider the market equilibria when the upstream �rm owns zero,

one or two downstream �rms. The �rst situation corresponds to ownership un-

bundling between upstream and downstream parts of the market. As for the other

two cases, we equate legal unbundling with the following two assumptions. First,

each downstream �rm maximizes its own pro�t, without taking into account any

impact on the upstream �rm�s pro�t. Second, the upstream �rm is not allowed

to discriminate between downstream �rms by charging di¤erent access charges for

the use of its network. On the other hand, we assume that the upstream �rm

chooses its network size in order to maximize its total pro�t, including the pro�t

of its downstream subsidiaries. In other words, the regulator is unable to prevent

the network operator from choosing the dimension of its network that maximizes

the total pro�t of its owner.
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We show that the same concerns as those raised by the managerial perspective

on vertical integration are at play here. Because the investment in the network

is not protected by a contract at the time it is made, the upstream �rm will not

take into account the interests of its clients when choosing its size. This e¤ect can

be mitigated by allowing it to own part of the downstream industry. In order to

show this, we present four di¤erent models. After introducing our general frame-

work in section 2, in section 3 we explore the strategies of the �rms when the two

downstream �rms face the same cost functions, use the network with the same

intensity and are price takers on the market for the �nal output (on which they

sell their production). Section 4 revisits the same model assuming that the �rms

have the same �non-network�cost function, but have di¤erent network utilization

requirements. In section 5, we relax the assumption that the downstream market

is competitive. Section 6 assumes that the downstream �rms can make some in-

vestments that reduce their use of the network at given output. In all these cases,

we obtain the same results: disallowing joint ownership of network and down-

stream facilities reduces the investment in the network. The conclusion, section 7,

discusses the limits of our work and the extensions that would be necessary for a

more complete comparison of legal and ownership unbundling.

2 The model

Consider an industry where one �rm (referred to as �upstream�, indexed by U) is

in charge of building and maintaining a network, while two �rms (�downstream�,

indexed by i = 1; 2) sell goods or services that use the network. One promi-

nent example of such an industry is the natural gas sector, where the upstream

�rm builds the pipeline network while the downstream �rms sell natural gas to

households and industrial customers. In order to bring gas to their customers,

downstream �rms need to transport this gas from the place where it is injected

into the upstream �rm�s network to the consumption node.

The upstream �rm chooses the size l of the network it builds and maintains.
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The (constant) per-unit cost of the network is denoted by k, so that its total cost

is K = kl. Downstream �rm i sells xi units of its product at price pi. Production

technology is such that each unit of good i uses one unit of network: there is no

bypass technology available at an economically relevant cost, so that the network

is an essential facility. In addition to network costs, �rm i incurs downstream

costs of Ci(xi). In the natural gas sector, these downstream costs are the costs of

buying the gas and all other costs not related to transport, such as the distribution

or marketing costs. We assume that the downstream technology shows decreasing

returns to scale, so that C 0i(xi) > 0 and C 00i (xi) > 0 .3 To ensure concavity of

the pro�t functions, we will also often assume that C 000i (x) is positive. As for

the network costs, downstream �rms pay to the upstream �rm a constant access

charge a (that is endogenous in our model) for each unit of the network that they

use.

The products sold by both downstream �rms are perfect substitutes.4 This

appears to be a sensible assumption in the natural gas market, since natural gas

is a homogenous product.5 Let X denote the total quantity in the downstream

market, so that X = x1 + x2. We denote by X(p) the aggregate demand for the

downstream product, and by p(X) the aggregate inverse demand. We assume

that the revenue functions pX(p) and Xp(X) are concave.

We model the following sequential game: �rst, the upstream �rm chooses the

size of the network and then the downstream �rms choose their price. This timing

is natural given the nature of the decisions involved. We solve this game for various

scenarios concerning the downstream competitive conditions and the symmetry

between downstream �rms. In Sections 3 and 4, we assume that the downstream

3This assumption is crucial in the �rst part of the paper, since it guarantees that competitive
downstream �rms earn a positive pro�t. However, it is not important for our argument per se.
To show this, the assumption is relaxed in section 5 where we introduce imperfect downstream
competition.

4This assumption is not crucial: our results would carry through if the downstream goods
were sold on totally separate, unrelated markets or if they were imperfect substitutes.

5However, note that the services that are sold together with the gas molecules can be di¤er-
entiated, for instance by adding interruptibility clauses. We abstract from these considerations
for the time being.
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�rms are perfectly competitive (price takers). Consequently, they choose their

output level to equate marginal cost and market price. Section 3 is concerned

with the case where both downstream �rms are symmetrical: they share the same

downstream cost function and have the same needs in terms of network usage.

Section 4 considers the case where the network is more adapted to one of the

downstream �rms than to the other, while the non network related cost functions

of the two downstream �rms are the same. This allows us to have a �rst go

at understanding the impact of the ability for the upstream �rm to discriminate

between downstream �rms. Section 5 then studies the situation where downstream

�rms have market power and play a Cournot game. Finally, section 6 analyzes

the impact of allowing downstream �rms to make investments that would allow

them to decrease their need of network usage for any given output level.

We proceed similarly in Sections 3 to 6. We �rst study the surplus-maximizing

allocation. We then solve for the downstream equilibrium, to obtain prices and

quantities as a function of the network size. We then study successively the

equilibrium allocation when the upstream �rm owns both downstream �rms, when

it owns none of them and when it owns one but not the other. As mentioned above,

we impose legal unbundling for the two cases where the upstream �rm owns at

least one downstream �rm. Our objective is to assess how legal and ownership

unbundling a¤ect the equilibrium network size.

3 Symmetric Equilibria

>From this point on, we assume that both downstream �rms have the same (non

network related) cost function Ci and drop the subscript i. We begin by studying

the outputs that would be chosen by a welfare maximizing planner before turning

to the analysis of the game between the �rms.
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3.1 Social Optimum

The social optimum is the allocation that maximizes total surplus S in the econ-

omy. Assuming quasi-linear preferences for consumers of the downstream prod-

ucts, total surplus is equal to consumers gross surplus minus upstream and down-

stream costs. The social planner chooses a network size l that solves

max
l
S =

Z l

0

p(s)ds� 2C
�
l

2

�
� kl:

Denote the optimal level of variables by a �. The solution is given by x�1 = x
�
2 =

X�=2 where X� = l� is de�ned by

p(X�) = C 0
�
X�

2

�
+ k = C 0(x�i ) + k:

This condition is easy to interpret; it requires marginal cost to equal marginal

willingness to pay for the �nal good. The marginal cost is equal to the sum of

marginal upstream and downstream costs. Further, observe that, at the optimum,

the marginal cost is the same for both �rms.6 The optimal network size equals

the volume of goods sold at this optimal price.

3.2 Equilibrium in the downstream market

In the remainder of this section, we shall study di¤erent ownership structures. For

all of them, once the size of the network has been chosen, the downstream �rms

act as price-takers; in this subsection, we study the prices which will prevail given

a choice of a network size l.

Because the downstream �rms are price-takers, they consider both the market

price p of their output and the network access a to as given. Consequently, they

choose their output in order to equalize their marginal cost with the market price

p:

p = C 0(xi) + a: (1)

6This will hold true also when we introduce an asymmetry between the downstream �rms.
In other words, productive e¢ ciency is necessary for social optimality.
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Their total production will be X(p), which is equal to their total demand for the

services of the network since equilibrium on the network input market requires

X(p) = l: (2)

Given a size l chosen for the network in the �rst stage of the game, equations (1)

and (2) simultaneously determine the access charge a and the downstream price

p (and therefore also the quantity sold X) as functions of l; we denote these

functions by ~a(l) and7 ~p(l) = p(l): they denote the prices that will prevail as a

function of the choice of l.

We now turn to the equilibrium when the upstream �rm owns both down-

stream �rms.

3.3 Equilibrium when U owns both downstream �rms

If U owns both downstream �rms, it chooses l so as to maximize the sum of its

pro�ts,

�U = ea(l)l � kl;
and those of the two downstream �rms, �1 and �2, where

�i = xi (ep(l)) [ep(l)� ea(l)]� C �xi(ep(l))
2

�
; i = 1; 2:

This sum is equal to

�U + �1 + �2 = ea(l)l � kl +X (ep(l)) [ep(l)� ea(l)]� 2C �X(ep(l))
2

�
;

where ~a(l) and ~p(l) are the solutions to equations (1) and (2).

Observe that �rm U has some market power, since it anticipates the equilib-

rium downstream prices (access charge a and �nal price p) induced by its choice

of l. Further, the assumption that C 00(x) > 0 means that downstream �rms make

a positive pro�t even when they act as price takers.
7Notice the di¤erence: p(l) represents the price at which consumers will choose to consume l

units of the �nal good whereas ~p(l) represents the price which will prevail if l units of network
services are provided. In the model of this section, they are equal; with other technology of
productions they need not be.
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This scenario of legal unbundling di¤ers from the classical vertical integra-

tion case because the upstream �rm U does not control the pricing policy of the

two downstream �rms. In other words, the managers of the downstream �rms

maximize their pro�t given the market price.

We reorganize this optimization problem to obtain

max
l;a;p

�U + �1 + �2 = al � kl +X(p) (p� a)� 2C
�
X(p)

2

�
;

s. t. p = C 0
�
X(p)

2

�
+ a;

X(p) = l:

Simplifying and using the inverse demand function yield

�U + �1 + �2 = lp (l)� 2C
�
l

2

�
� kl: (3)

Maximizing this expression with respect to l gives the following �rst-order condi-

tion:

p+ lp0 = C 0
�
l

2

�
+ k: (4)

Equation (4) is the same condition that we would obtain if we assumed that the

three �rms acted as an integrated pro�t maximizing monopolist and maximized

p(l)l � 2C(l=2) � kl. Total marginal cost is the sum of the downstream mar-

ginal cost C 0 and of the upstream marginal cost k, rather than the access charge

paid by the downstream �rm: when setting its network size, the upstream �rm

understands that the access charge is a pure transfer between its subsidiary and

itself.

Using the superscript e2 to index the equilibrium levels of the di¤erent vari-

ables, we obtain

le2 < l� and pe2 > p�:

In words, the equilibrium network size is lower than optimal while the equilibrium

retail price is larger than optimal. Intuitively, the upstream �rm chooses a lower-

than-optimal network size in order to reduce the downstream output level and to

9



increase downstream pro�ts. This result holds even with legal unbundling between

downstream and upstream �rms i.e., even when managers of the downstream �rms

do not take into account the pro�ts of the upstream �rm when they set their

pro�t-maximizing prices.

We now turn to the situation where downstream and upstream ownerships are

separated.

3.4 Equilibrium with ownership unbundling

When the upstream �rm owns neither of the downstream �rms, it sets the network

size in order to maximize its own pro�ts,

�U = ~a(l)l � kl:

Using equations (1) and (2) together with the symmetry between the downstream

�rms, this optimization program can be rewritten as

max
l;a;p

�U = al � kl

s.t. p = C 0
�
X(p)

2

�
+ a;

X(p) = l:

The two constraints imply

a = p(l)� C 0
�
l

2

�
which we substitute in �U to obtain

�U =

�
p (l)� C 0

�
l

2

��
l � kl; (5)

=

�
lp (l)� 2C

�
l

2

�
� kl

�
� 2

�
C 0
�
l

2

�
l

2
� C

�
l

2

��
: (6)

Observe that the �rst term in the right hand side of (6) corresponds to �U +

�1 + �2 as de�ned in (3). Because the two downstream �rms are price takers,

their downstream prices re�ect their marginal costs: per unit of output, they each
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charge C 0(l=2) to their customers to re�ect their costs. The second bracketed term

represents the di¤erence between the resulting revenue and their true cost. These

are pro�ts that the network must abandon to the downstream �rms.

From (6), we obtain

d�U
dl

����
l=le2

= � l
e2

2
C 00
�
le2

2

�
< 0:

Denote by e0 the equilibrium levels of variables in the ownership unbundling

scenario. If the function �U is concave, which it will be if the revenue function is

concave and if C 000 � 0,8 this implies

le0 < le2 < l�:

In words, the fact that the upstream �rm does not share in the downstream

pro�ts induces it to further decrease l and X, compared to the legal unbundling

situation. Ownership unbundling is thus more detrimental to welfare than legal

unbundling in our setting. The intuition for this result is as follows. With owner-

ship unbundling, the upstream �rm�s only source of pro�t is the selling of access to

its network. Total revenue of the upstream �rm is given by 2axi = 2(pxi � xiC 0);
with xi = l=2. This is lower than downstream pro�t, which equals 2(pxi � C);
because decreasing returns to scale imply that xiC 0 > C. The gap between up-

stream revenue and downstream pro�t increases with the di¤erence between xiC 0

and C, which is itself increasing9 with xi and l. This explains why the upstream

�rm has an incentive to further decrease its network�s size when it does not own

any downstream �rm.

We now look at the intermediate situation where the upstream �rm owns

only one of the two downstream �rms. We continue to assume legal unbundling

8Let R(x) = p(x)x be the revenue function. From (5), the second derivative of �U with
respect to l is

R00(l)� C 00
�
l

2

�
� 1
2
C 000

�
l

2

�
:

It is negative if R is concave and both C 00 and C 000 are positive.
9The derivative of xiC 0(xi) � C(xi) with respect to xi is xiC 00(xi), which is positive by

convexity of C.
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between the upstream and the downstream �rm it owns.

3.5 Equilibrium when the upstream �rm owns one of the
downstream �rms

To study the situation where the upstream �rm owns only one downstream �rm,

one can proceed as in the previous section to obtain that

�U + �i =

�
lp (l)� 2C

�
l

2

�
� kl

�
�
�
C 0
�
l

2

�
l

2
� C

�
l

2

��
; i = 1; 2: (7)

Di¤erentiating this equation, and denoting equilibrium levels by the superscript

e1, one shows10

le0 < le1 < le2 < l�:

Another way to proceed will prove easier and more general. Note that the

objective function of U in this section, given by (7) is a convex combination of

the objectives in the previous two sections, which are given by (3) and (6):

�U + �i =
1

2
(�U + �1 + �2) +

1

2
�U ; i = 1; 2:

This in turn gives the same ranking of equilibrium and optimal network sizes,

provided that the objective functions are concave.

In words, incentives for the proper determination of the network size increase

with the number of downstream �rms that the upstream �rm owns. The intu-

ition for this result is as explained at the end of the previous subsection: because

of decreasing returns to scale, the di¤erence between the access revenues of the

upstream �rm and the downstream pro�t increases with output. If the upstream

�rm does not share in this downstream pro�t, it is induced to under-invest in its

network. As the upstream �rm acquires more downstream �rms, its incentives

to invest in the network increase, and the equilibrium network size increases to-

ward the optimal level. Observe that we have assumed throughout the analysis

10This requires to prove that the relevant objective functions, (�U , �U +�i and �U +�i+�j)
are concave. This is a straightforward consequence of the concavity of the revenue function, and
of the convexity of C and xC 0 (whose second derivative is 2C 00 + C 000).
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that legal unbundling prevails in the absence of ownership unbundling. We have

also obtained that, with legal unbundling, the equilibrium network size when the

upstream �rm owns both downstream �rms falls short of the optimal network size.

4 Downstream �rms�asymmetry and discrimi-
nation

Let us now introduce some asymmetry between downstream �rms, in the form

of di¤erent needs in terms of network access. We assume that the investments

made in the network by the upstream �rm bene�t more one �rm than the other.

In the natural gas sector, this situation could arise because of the localization of

the investments (new pipelines built in a region where one downstream �rm has a

larger share of its customers�portfolio than the other �rm) or their type (investing

in LNG rather than pipelines for instance). The objective in this section is to

understand how the existence of discrimination a¤ects the optimal and equilibrium

size of the network, and how it relates with legal and ownership unbundling.

We model asymmetry in network needs as follows. We assume that down-

stream �rm 1 bene�ts more than downstream �rm 2 from investments in the

network: �rm 1 needs only (1��) unit of network for each unit of �nal good that
it sells. On the other hand, downstream �rm 2 needs one unit of network use for

each unit of �nal good sold, as previously. The parameter � 2 [0; 1[ measures the
intensity of the additional bene�t that �rm 1 gets from the network. We assume

that this parameter � is set exogenously (given by the technology, for instance).

An extension to our analysis would be to endogenize the setting of this parameter

by letting the upstream �rm choose its pro�t-maximizing level.

Except for the introduction of the parameter �, we maintain all the assump-

tions made in the previous section. We proceed as in the previous section by

looking �rst at the optimal allocation before turning to the equilibrium alloca-

tions in the various unbundling scenarios.
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4.1 Social Optimum

The social planner�s optimization program is

max
x1;x2

S =

Z x1+x2

0

p(s)ds� C(x1)� C(x2)� k[(1� �)x1 + x2];

yielding the following �rst-order conditions

p(x1 + x2) = C
0(x1) + (1� �)k;

p(x1 + x2) = C
0(x2) + k:

These are the usual conditions that price should equal marginal costs. Together,

they imply that

C 0(x�1) + (1� �)k = C 0(x�2) + k;

i.e., that we have productive e¢ ciency at the optimum.

The �rst order conditions allow us to obtain the optimal downstream quantities

and network size, which we denote as previously with a �: x�1; x
�
2 and l

� = (1 �
�)x�1 + x

�
2:

4.2 Equilibrium in the downstream market

As in section 3, we need to compute the equilibrium of the game played by the

downstream �rms as a function of l.

Competition in the downstream market generates the following equilibrium

conditions, which replace (1) and (2:

p = C 0(x1) + a(1� �); (8)

p = C 0(x2) + a; (9)

l = (1� �)x1 + x2; (10)

X(p) = x1 + x2: (11)

The solution to these four simultaneously equations, yields the equilibrium levels

of the access charge, retail price and downstream quantities as functions of the
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network size and the parameter �. Given that � is treated as exogenous in this

section, we denote these relationships by ea(l); ex1(l); ex2(l) and
ep(l) = p(ex1(l) + ex2(l)): (12)

Observe that unlike in the earlier section we now have that ep(l) 6= p(l) since

l 6= x1 + x2:
We now look at the equilibrium where the upstream �rm owns the two down-

stream �rms, with legal unbundling between the upstream and downstream seg-

ments.

4.3 Equilibrium when U owns the two downstream �rms

We start by using the equilibrium quantities and price in the downstream markets

in order to obtain the pro�t levels of the three operators as a function of the

network size:

�U = ea(l)l � kl;
�1 = ex1(l) [ep(l)� (1� �)ea(l)]� C (ex1(l)) ;
�2 = ex2(l) [ep(l)� ea(l)]� C (ex2(l)) :

The objective of the upstream �rm is to �nd the network size l that maximizes

the sum of the three operators�pro�ts:

max
l
�U + �1 + �2 = [ex1(l) + ex2(l)]ep(l)� C (ex1(l))� C (ex2(l))� kl: (13)

The �rst order solution of this program is given by

ep(l)[ex01(l) + ex02(l)] + [ex1(l) + ex2(l)]ep0(l)
� C 0 (ex1(l)) ex01(l)� C 0 (ex2(l)) ex02(l)� k = 0: (14)

To simplify this expression, we use (12) and

ep0(l) = [ex01(l) + ex02(l)]p0(ex1(l) + ex2(l)); (15)

(1� �)ex01(l) + ex02(l) = 1; (16)
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where (15) and (16) are obtained by di¤erentiating, respectively, (12) and (10).

We substitute equations (12) to (16) in (14). Using the superscript e2 to

denote the equilibrium levels of the variables in this scenario, we obtain after

simpli�cations that

p(xe21 + x
e2
2 ) + (x

e2
1 + x

e2
2 )p

0(xe21 + x
e2
2 ) = C 0(xe21 ) + (1� �)k

= C 0(xe22 ) + k;

i.e., the same conditions as if x1 and x2 were directly controlled by the upstream

operator. Marginal revenue is equal to marginal cost for both downstream opera-

tors. Observe that productive e¢ ciency is maintained by the combined �rm, since

marginal costs are the same at equilibrium for the two downstream operators.

Comparing these pro�t-maximizing downstream quantities with their optimal

levels, we obtain that xe21 < x
�
1 and x

e2
2 < x

�
2; which implies that l

e2 = (1��)xe21 +
xe22 < l� = (1 � �)x�1 + x�2: This is the same ranking of downstream quantities

and network sizes as in the symmetric case. Although the mechanism is made

more complex by the existence of asymmetric network needs between downstream

operators, the intuition for the result is not a¤ected by this asymmetry: the

upstream �rm under-invests in the network, anticipating that lower downstream

quantities will generate larger pro�ts for the two downstream �rms that it owns.

4.4 Equilibrium with ownership unbundling

One could proceed as in the symmetric situation in order to solve for equilib-

rium quantities when ownership is unbundled between upstream and downstream

segments. It will prove easier to use the indirect method introduced in 3.5.

The upstream �rm maximizes its own pro�t, which can be expressed as

�U = (�U + �1 + �2)� (�1 + �2): (17)
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We can also rewrite the pro�t functions of the two downstream �rms as

�1 = ex1(l) [ep(l)� (1� �)ea(l)]� C (ex1(l)) ;
= ex1(l)C 0 (ex1(l))� C (ex1(l)) ;

�2 = ex2(l) [ep(l)� ea(l)]� C (ex2(l)) ;
= ex2(l)C 0 (ex2(l))� C (ex2(l)) :

Di¤erentiating pro�ts with respect to network size, we then obtain

�01 = ex1(l)C 00 (ex1(l)) ex01(l) > 0;
�02 = ex2(l)C 00 (ex2(l)) ex02(l) > 0:

Using equation (17), we show

�0U(l
e2) =

�
�0U(l

e2) + �01(l
e2) + �02(l

e2)
�
�
�
�01(l

e2) + �02(l
e2)
�
;

= 0�
�
�01(l

e2) + �02(l
e2)
�
< 0;

which by concavity of the function �U implies

le0 < le2:

This shows that the intuition obtained in section 3.4 carries over to the case of

asymmetric downstream cost functions: with ownership unbundling, the upstream

�rm fails to take into account downstream pro�ts, with the di¤erence between

upstream and downstream pro�t levels increasing with downstream volumes. The

upstream �rm has then an incentive to invest less in its network than in the case

where it owns the two downstream �rms.

4.5 Equilibrium when the upstream �rm owns one of the
downstream �rms

We distinguish between the case where the upstream �rm owns the downstream

�rm 1 (denoted by e11) and the case where U owns �rm 2 (denoted by e12). In

the e11 scenario, the objective of the upstream operator is to maximize

�U = (�U + �1 + �2)� �2; (18)
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which allows us to use the same argument as in the e0 scenario where ownership

is totally unbundled between the upstream and downstream segments. More pre-

cisely, we evaluate �0U(l
e0) and �0U(l

e2); with �U given by equation (18), to show

that (provided that �U is concave in l)

le0 < le11 < le2:

Similarly, one can show that

le0 < le12 < le2:

The general conclusion that we draw from this section is that the relative

ranking of the equilibrium network sizes is robust to the introduction of asymmetry

between downstream �rms. With such an asymmetry, ownership unbundling leads

to more under-investment than legal unbundling: the more integrated the industry

is, the closer the equilibrium network size comes to its optimal level.

We now study the robustness of our results to the introduction of imperfect

competition in the downstream market.

5 Imperfect competition in the downstream
market

In this section, we assume that both downstream �rms compete à la Cournot on

the �nal market. We maintain the assumption that the products they o¤er are

perfect substitutes. We retain the assumption that they are totally symmetric:

they have the same cost function and require the same use of the network. We

further assume that the downstream cost function is linear, with Ci(xi) = cxi.

Finally, we assume that the downstream �rms act as price takers in their purchase

of network services.

5.1 Social Optimum

The social planner�s objective is to

max
l
S =

Z l

0

p(s)ds� cl � kl:

18



The solution X� = l� to this problem is de�ned by

p(X�) = c+ k:

This is the usual condition that marginal willingness to pay should equal marginal

cost. Since the (constant) marginal cost is the same for both downstream �rms,

the socially optimal allocation is concerned with the total downstream quantities

and not with the individual quantities sold by each �rm.

5.2 Equilibrium in the downstream market

With Cournot competition, each downstream �rm chooses its output level xi in

order to maximize

�i = xip(xi + xj)� axi � cxi;

= xi [p(xi + xj)� a� c] ;

given the output level xj supplied by its competitor j. The fact that �rm i acts

as a price taker in the market for network services implies that it takes the access

charge a as given, and independent of its own demand for these services.

The �rst order condition for downstream pro�t maximization is

xi =
p(xi + xj)� a� c
�p0(xi + xj)

: (19)

Equation (19) together with the condition X(p) = l determine as previously the

access charge and retail price as a function of network size. These relationships

are denoted by ~a(l) et ~p(l) = p(l):

The symmetry between the two �rms, together with the equilibrium condi-

tion on the market for input l imply that both �rms choose the same output at

equilibrium

x1 = x2 = l=2:

This relationship allows us to simplify equation (19) to obtain

~p(l) = a+ c� l

2
~p0(l);
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with ~p0(l) < 0:

The intuition for this result is that each �rm sells its product at a price larger

than its marginal cost a + c, with the mark-up being inversely proportional to

(half) the demand-price elasticity of output.

We now proceed to study equilibrium network size under various integration

scenarios.

5.3 Equilibrium when U owns both downstream �rms

In its choice of network size, the upstream �rm internalizes the downstream pro�t

and solves

max
l;a;p

�U + �1 + �2 = al � kl +X(p) [p� a� c]

s.t. p = a+ c� l

2
~p0(l);

X(p) = l:

After simpli�cation and using the inverse demand function, we obtain

�U + �1 + �2 = l(~p(l)� c� k); (20)

whose maximization with respect to l gives the condition

~p+ l~p0 = c+ k: (21)

This condition is the usual pro�t-maximization solution of a monopoly, equalizing

marginal revenue and marginal cost.

Observe that the second order condition for total (downstream plus upstream)

pro�t maximization is given by

2~p0 + l~p00 < 0: (22)

We will use this result later.

As in the previous two sections, we obtain le2 < l� and pe2 > p�. The intuition

for this result is also the same as previously: the upstream �rm under-invests in
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the network in order to decrease downstream quantities and increase downstream

prices. The main di¤erence with the previous section lies in the fact the down-

stream �rms make a pro�t because of imperfect competition, not because returns

to scale are decreasing.

5.4 Equilibrium with ownership unbundling

If ownership is separated between upstream and downstream segments of the

markets, the upstream �rm chooses the network size that maximizes

�U = ~a(l)l � kl:

We can rewrite the optimization problem as

max
l;a;p

�U = al � kl

s.t. p = a+ c� l

2
p0(l);

X(p) = l:

We obtain after substitution that

�U = [p (l)� c� k] l +
l2

2
p0(l): (23)

The �rst term in the right hand side of (23) is equal to the total pro�t �U+�1+�2

as speci�ed by equation (20) when the upstream �rm owns both downstream �rms.

This implies
d�U
dl

����
l=le2

= le2
�
p0(le2) +

le2

2
p00
�
le2
��
< 0;

where the inequality is a consequence of condition (22). Therefore, by concavity

of �U ,

le0 < le2 < l�:

Although this ranking of network sizes is the same than under downstream

perfect competition coupled with decreasing returns to scale, the intuition di¤ers.

Note �rst that the upstream �rm revenue is given by axi = (pxi� cxi+ l2p0(l)=4)
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(with xi = l=2), which is lower than the downstream pro�t (equal to pxi � cxi)
because of the mark-up posted downstream. Moreover, the second order condition

for (total) pro�t maximization guarantees that the di¤erence between the two in-

creases with xi and l. In other words, the reason why the di¤erence between down-

stream pro�t and upstream revenue increases with the network size varies with the

downstream cost structure and competitive situation: under perfect competition,

it is due to the (assumed) convexity of costs while under imperfect competition,

it is due to the increase in the downstream mark-up.

5.5 Equilibrium when the upstream �rm owns one of the
downstream �rms

If the upstream �rm owns one of the downstream �rms, one can replicate the

argument mentioned in section 3.5: the constraints faced are the same in the

cases where the upstream �rm owns zero, one and two downstream �rms, while

the objective in the case e1 is a convex combination of the objectives in the

scenarios e0 and e2:

�U + �i =
1

2
(�U + �1 + �2) +

1

2
�U ; i = 1; 2:

We then obtain that, provided that the pro�t functions are concave in l,

le0 < le1 < le2 < l�:

We then conclude from this section that the ranking of network sizes according

to the number of downstream �rms owned by the upstream �rm is robust to the

introduction of imperfect competition in the downstream market.

6 Investments by the downstream �rms

We now study the robustness of our results to the introduction of a second decision

by the downstream �rms, beyond the setting of their prices. This decision is how

much to invest in an activity that, although costly by itself, allows the downstream
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�rm to economize on its network usage for any given level of output. The kind

of downstream investment we have in mind for the natural gas market consists in

o¤ering to �nal clients interruptible contracts or alternatively buying insurance

to cover risks such as transport congestion due to a peak demand. These two

types of contracts are obviously costly for the downstream �rm (in the �rst case

because they decrease its output price, in the second because of the direct outlays

they represent) but allow it to decrease its needs in terms of network usage for

any level of output sold to clients.

We maintain the assumption of legal unbundling throughout the analysis, so

that the upstream �rm cannot control the investment decisions of its downstream

subsidiaries. We model this extension to downstream investments as follows. The

pro�t of downstream �rm i is given by

�i = pxi � C(xi)� �(yi)axi � yixi;

where, as above, the non network cost function C is convex, with C 000 > 0.

6.1 Social Optimum

The social planner chooses the network size l and the downstream investment that

solve the problem

max
l;y
S =

Z X

0

p(s)ds� 2C
�

l

2�(y)

�
� yl

�(y)
� kl;

with X = l=�(y):

Denoting the optimal level of variables by a � as previously, the �rst order

condition with respect to network size is

p� = p(X�) = C 0
�
X�

2

�
+ y + k�(y) (24)

i.e., marginal willingness to pay should equal social marginal cost. With constant

marginal costs, the social optimum determines total downstream output but not

23



how much is produced by �rm 1 or �rm 2. For later use, we express condition (24)

in terms of mark-up over the marginal non network cost:

p� � C 0
�
X�

2

�
= y + k�(y) (25)

The �rst-order condition with respect to downstream investment is

�0(y�)k = �1: (26)

Both �rms should invest the same per-unit of output amount, which equalizes

marginal bene�t and marginal cost per unit of output.

6.2 Equilibrium in the downstream market

The two downstream �rms, which are price takers both on the downstream market

and on the market for the network input, simultaneously choose their pro�t-

maximizing levels of investment, yi. Using the symmetry between downstream

�rms, the �rst-order condition for y is

�0(y)a = �1; (27)

which is very intuitive, since it calls for equalization of the monetary marginal

bene�t from the investment with its marginal cost.

The price taking behavior of downstream �rms implies

p = C 0
�
X(p)

2

�
+ a�(y) + y; (28)

i.e., that the equilibrium price equals total marginal cost for the downstream �rms.

Equilibrium on the input l market implies

�(y)X(p) = l: (29)

Equations (27) to (29) simultaneously determine the access charge a, the down-

stream price p and the amount of downstream investment y (and thus also X) as

function of l. We denote these functions by ~a(l); ~y(l) and ~p(l): Observe that, as

in section 4, ~p(l) 6= p(l) because l 6= X = x1 + x2:

We now turn to the equilibrium when the upstream �rm owns the two down-

stream �rms.
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6.3 Equilibrium when U owns both downstream �rms

When the upstream �rm owns the two downstream �rms, it maximizes the sum

of its pro�t, �U and of pro�ts of the two downstream �rms, �1 and �2:

�U + �1 + �2 =ea(l)l � kl +X (ep(l)) [ep(l)� � (~y(l))ea(l)]
� 2C

�
X(ep(l))
2

�
� ~y(l)X (~p(l)) ;

where ~a(l); ~y(l) and ~p(l) are the solutions to equations(27) to (29).

We reorganize this optimization problem to obtain

max
l;a;p;y

�U + �1 + �2 = al � kl +X(p) (p� �(y)a)� 2C
�
X(p)

2

�
� yX(p)

s. t. p = C 0
�
X(p)

2

�
+ a�(y) + y;

l = �(y)X(p);

1 = ��0(y)a:

After simpli�cation, and using the inverse demand function, we obtain

�U + �1 + �2 =
l

�(y)
~p (l)� 2C

�
l

2�(y)

�
� kl � yl

�(y)

whose maximization with respect to l gives the following �rst order condition

~p(l) + l~p0(l) = C 0
�

l

2�(y)

�
+ y + k�(y); (30)

where y is determined by

�0(y)a = �1:

This corresponds to the pro�t-maximizing condition of a monopoly, where mar-

ginal revenue equals total marginal cost. In order to compare with the socially

optimal price, we denote as usual the equilibrium levels with the e2 superscript

and reformulate (30) into

pe2 � C 0
�

le2

2�(ye2)

�
= ye2 + k�(ye2)� le2~p0(le2): (31)
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We now compare the right hand sides of (25) and (31) term by term. The

sum of the �rst two terms is the (per unit of output) network cost, including

the investment cost. Note that y� + k�(y�) < ye2 + k�(ye2) if a 6= k, since y�

precisely minimizes y + k�(y). This calls for a pro�t maximizing price pe2 larger

than its optimal level, because in the e2 scenario the downstream �rms base their

investment decision on the access charge rather than the marginal social cost k,

and end up (when a 6= k) with a social marginal cost that is larger than its

socially optimal level. The third term in (31) pushes pe2 in the same direction

since it represents the classical impact of a pro�t-maximizing �rm concentrating

on marginal revenue rather than considering that its �nal price is exogenously set.

We then conclude that the mark-up over the non network cost is larger when the

upstream �rm owns the downstream �rms than its socially optimal level.

In section 3, the observation that the mark-up over non network marginal cost

C 0 was larger in the e2 scenario than its optimal level was enough to deduct that

pe2 > p� and l� > le2. This is not su¢ cient in the framework of this section, since

such comparisons also depend on the comparison between ye2 and the socially op-

timal downstream investment level y�. This comparison in turn hinges on whether

the access charge a is larger or smaller than the network marginal cost k. Ob-

serve that, with legal unbundling, the upstream �rm cannot control the pricing

decisions of its downstream subsidiaries. In the absence of downstream invest-

ment, the upstream �rm induces a positive mark-up on the downstream market

by decreasing the size of its network and at the same time increasing the (market

clearing) access charge a, so that a > k. Introducing downstream investment, we

obtain that a further e¤ect of increasing a above k is to induce the downstream

�rm to invest more than would be socially optimal: y� < ye2. This in turn implies

that the downstream �rm is able to sell more output for a given network size l

than with the optimal downstream investment level, which counteracts the e¤ect

of a higher access charge a on p.

We have not been able to obtain analytically unambiguous results with respect

to the comparison between optimal and e2 levels of a, y, l andX. We surmise that
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the new e¤ect mentioned above mitigates only partially the direct e¤ects described

in section 3, so that the most likely situation is the one where ae2 > k, y� < ye2,

l� > le2; pe2 > p� and X� > Xe2 � i.e., where the relationships between prices and

quantities obtained in section 3 carry through to the case where downstream �rms

make an investment. We show in section 6.6 that it is the case for the numerical

example we develop there.

6.4 Equilibrium with ownership unbundling

We proceed as in section 4.4, noting that the objective of the upstream �rm is to

maximize its own pro�t, which can be expressed as

�U = (�U + �1 + �2)� (�1 + �2):

We can also rewrite the pro�t functions of the two downstream �rms as

�i = exi(l) [ep(l)� � (~y(l))ea(l)� ~y(l)]� C (exi(l)) ;
= exi(l)C 0 (exi(l))� C (ex1(l)) ;

where exi(l) = l

2� (~y(l))
:

Di¤erentiating pro�ts with respect to network size, we obtain

�0i = ex1(l)C 00 (ex1(l)) ex01(l);
where ex0i(l) = 2� (~y(l))� 2l�0 (y) ~y0(l)

4�2 (~y(l))

is of an ambiguous sign since �0 (y) < 0 and ~y0(l) < 0:

Observe that, if ex0i(l) > 0, then we can use the same reasoning as in section 4.4
to obtain, provided that the objective function �U is concave,

le0 < le2:
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In that case, we would also have

le0 < le1 < le2:

Finally, it is easy to see that ye0 > y� because, with ownership unbundling,

the only way for the upstream �rm to make a pro�t is to charge an access price

larger than its marginal cost, a > k.

6.5 Equilibrium when the upstream �rm owns one of the
downstream �rms

We can proceed as in sections 3.5 and 5.5, to show that the objective in the case

e1 is a convex combination of the objectives in the scenarios e0 and e2, with the

same constraints in all three cases. Provided that the objective is concave, we

then obtain that the e1 levels of the variables p, y, and l should be in between

their equilibrium levels in scenarios e0 and e2.

6.6 A numerical example

The new e¤ects generated by the introduction of downstream investments have

prevented use from reaching unambiguous analytical conclusions when comparing

equilibrium and optimal levels of prices, network size and output. We therefore

present a numerical example where the comparison of the equilibrium levels in the

various scenarios is the same as in the previous sections.

We use the following functional forms

C(x) = x2;

�(y) = 1�
p
y

10
;

X(p) = 100� 5p:

We �rst study the case where y is set exogenously equal to zero i.e., the case

developed in section 3. This allows us to show graphically the equilibrium and

optimal levels of the network size l and of output price p as a function of the
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marginal network cost k. Figure 1 shows that le0 < le1 < le2 < l� while �gure 2

illustrates that pe0 > pe1 > pe2 > p�:

[Insert Figures 1 and 2 around here]

We now turn to the case where y is chosen by the downstream �rms. In Table

1, we compare the optimum and equilibrium values of y, X, p, l and a when k is

set equal to 5.11

Table 1: Equilibrium levels when k = 5.
Scenarios

� e2 e1 e0
y 0.062 0.126 0.283 0.409
X 12.552 10.853 8.037 6.345
p 17.490 17.830 18.393 18.731
l 12.238 10.467 7.609 5.939
a 7.103 10.639 12.796

Table 1 shows that we obtain the following relationship: k < ae2 < ae1 <

ae0: Intuitively, as the number of downstream �rms owned by the upstream �rm

decreases, the upstream �rm relies more and more on the access charge to increase

its pro�t. At the limit, with ownership unbundling (case e0), the access charge

is the only way for the upstream �rm to obtain revenues. In all scenarios, the

equilibrium access charge is larger than its optimal level. It follows directly from

this that we obtain y� < ye2 < ye1 < ye0 i.e., the equilibrium level of downstream

investment is too large and increases with ownership separation. The intuition is

that downstream �rms react to large access charges by over-investing in activities

whose objective is to limit their network usage.

Table 1 also shows that l� > le2 > le1 > le0 i.e., the main result of the

paper carries through to the case of downstream investments: the more ownership

is unbundled, the larger is the incentive for the upstream �rm to decrease its

network size in order to raise its pro�t. We also obtain p� < pe2 < pe1 < pe0 :

11We obtain the same qualitative results for any value of k between 0 and 20.
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prices increase with ownership unbundling. Finally, observe that, even though

downstream investment increases with ownership unbundling, total downstream

quantity decreases with ownership unbundling: X� > Xe2 > Xe1 > Xe0: In

words, the main e¤ect at work when ownership is unbundled is the incentive for

the upstream �rm to decrease its network size. The impact on the downstream

investment mitigates only partially the consequences of a smaller network size, so

that total quantity sold decreases with ownership unbundling.

7 Conclusion

In all the models that we have developed in this paper, we �nd that full control of

the downstream industry by the upstream �rm would be socially e¢ cient. This is

of course too strong a conclusion, but we still believe that our analysis highlights

important considerations for economic analysis. In this conclusion, we would like

both to discuss these lessons and explain how we believe our model should be

expanded and/or modi�ed.

In all our models, we assume that the regulator has a strong control over the

behavior in the downstream market. In particular, it can completely prevent the

network from favoring one of the downstream �rms and, in the models of sections 3

and 4 it can impose on the downstream �rms that they behave competitively. On

the other hand, it has less control over the long term decisions of the network, in

our case new investment. We believe that this is a fair, if caricatural, character-

ization of the powers of most regulators. Our model stresses the fact that under

these circumstances making the upstream �rm internalize the pro�ts of its client

can be a powerful method for inducing it to invest more. Even if the upstream

�rm owns only one of the two downstream �rms, both �rms bene�t from this

vertical integration.

To analyze in more details the tradeo¤s involved, we would need to modify the

model so that there is positive reasons why competition in the downstream market

is bene�cial. This would involve introducing explicitly some degree of asymmetric
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information, while preserving our emphasis on incomplete contracts and speci�c

investment, and will be the topic for future research.

31



References

[1]

Crémer, J. (1995), �Intégration verticale: Vers un guide pour le praticien�, Revue

d�Economie Industrielle numéro Hors-Série, �Economie Industrielle:

développements récents, 193�214.

Grossman, S. J. & Hart, O. D. (1986), �The costs and bene�ts of ownership:

A theory of vertical and lateral integration�, Journal of Political Economy

94(4), 691�719.

Klein, B., Crawford, R. C. & Alchian, A. A. (1978), �Vertical integration, appro-

priable rents, and the competitive contracting process�, The Journal of Law &

Economics XXI(2), 297�326.

Riordan, M. H. (1990), What is vertical integration?, in M. Aoki, B. Gustafsoon

& O. E. Williamson, eds, �The �rm as a nexus of treaties�, European Sage,

London.

Simon, H. A. (1951), �A formal theory of the employment relationship�, Econo-

metrica 19, 293�305.

Tirole, J. (1995), �Les idées nouvelles sur l�intégration verticale: Un guide informel

de l�utilisateur�, Annales des Télécommunications pp. 256�264.

Tirole, J. &Rey, P., �A Primer on Foreclosure,� forthcoming in Handbook of In-

dustrial Organization, vol.3, ed. by M. Armstrong and R.H. Porter, North

Holland.

Williamson, O. E. (1985), The Economic Institutions of Capitalism: Firms, Mar-

kets and Vertical Contracting, Free Press, New York.

32



Figure 1 : Network size l as a function of network cost k
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Figure 2 : Output price p as a function of network cost k
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