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Abstract

This paper studies majority voting outcomes for a specific class of two-

dimensional policies. The illustrative policy we consider consists of a tax

on an externality-generating good and a budgetary rule specifying the pro-

portions of the tax proceeds that go to wage earners and to capital owners.

We show: First, a sequential vote wherein the tax rate is determined first

and the budgetary rule second, always possesses an equilibrium and that

this equilibrium is the median-endowed individual’s most-preferred policy.

Second, the reverse sequential choice implies that the median-endowed in-

dividual may, but need not, be decisive. Third, the “Shepsle procedure”

and the “citizen-candidate” framework also imply that the equilibrium is

the policy most favored by the median individual. Fourth, this equilibrium

also constitutes, under certain circumstances, the Condorcet winner for the

unrestricted simultaneous voting game.

Key words: Two dimensional majority voting, political support, existence

of a Condorcet winner

JEL Classification: H23, D72.



1 Introduction

In democracies, citizens exercise their influence on public decision making by

casting their vote on election day. One important component of such public

decisions is the efficiency of the proposal under consideration: the quantity

of a public good to be provided, the way its provision is to be organized; or

more generally, the effectiveness of a proposed policy to alleviate a market

failure. Beyond efficiency, the other important component of any public

policy is its redistributive impact. A voters’ utility depends not just on the

efficiency of a public decision, but also on the impact of the policy on the

voter’s after-tax income. This suggests that the way the policy is financed

plays a fundamental role in its political feasibility.

The (non-)separability between equity and efficiency aspects of policy

design has been widely discussed in the public economics literature. It is

by now well known that while efficiency and equity considerations can be

dealt with separately in a (suitably defined) first-best setting, they tend to be

interdependent in a second best world. In this paper, we point to yet another

source of non-separability, namely the political process and, in particular,

multi-dimensional voting procedures. We consider a setting where, absent

the political process, the two issues are clearly separated. The policy to be

chosen is composed of two elements, one influencing efficiency and the other

one redistribution. The model is designed so that the (Pareto) efficient level

of the first instrument does not depend on redistribution. However, when a

two dimensional vote is considered the policies will interact in a non-trivial

way. Moreover the exact nature of interaction will depend on the specific

voting procedure considered.

While the point we are making is fairly general, we will cast our formal

analysis within a specific bidimensional setting. This is done for concrete-

ness, but also because we belive that the considered setting is of interest in

its own right. The public policy is one of correcting a market failure due
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to an externality-generating good, through a tax/subsidy scheme. Many

situations may be covered by such a framework, including cases where ex-

ternalities are positive (e.g. education). The example we concentrate on is

that of pollution.

There are several reasons for this. First, environmental policy has re-

ceived much attention during the past two decades or so, making it an inter-

esting problem to explore from a political economy perspective. A second

reason lies in the availability of data on this topic, and particularly on the

measurement of externalities created by the consumption of such polluting

goods as energy. We plan to test empirically the predictions of our model

in future work. Third, we would like to see how our results compare with

those of Cremer et al.(2002). There, we have considered an (almost) identi-

cal setup but have adopted a different perspective that combines normative

and positive considerations.1 Finally, our aim is to shed some fresh light on

the so-called double dividend hypothesis by casting it in a political econ-

omy context. The double dividend hypothesis suggests that the recycling of

tax revenues (in particular through reduction in taxes on labor income) is

a crucial ingredient of environmental tax policy. We argue that the signifi-

cance of this aspect is not necessarily linked to the reduction of distortions

associated with the pre-existing taxes. Instead, it plays an important role in

ensuring political support for a policy which otherwise would be infeasible.

The main features of our model are as follows. We consider a policy

that consists of two components: a tax and a budgetary rule. The tax is

levied on the consumption of externality generating (polluting) goods. The

budgetary rule specifies the way the tax proceeds are redistributed to the

polity; in particular, what proportion is directed to the wage earners and

what to capital owners. Citizens have their income originating from both

sources but at varying shares. We study voting procedures that differ in their

1Taxes are chosen by the political process as in the current paper, but the budgetary
rule is set by some welfare maximizing authority (possibly at an earlier, “constitutional”
stage).
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timing (simultaneously or sequentially) of the votes on the two components

of the environmental policy. The procedures differ also in the restrictions

they impose on the set of admissible policies. Preferences are such that the

median-endowed individual is decisive when the voting is on one dimension

(with the other dimension being fixed). However, when one takes account of

the bidimensionality of the decision to be taken, strategic aspects may (but

need not) surface2.

The main results of the paper are as follows. First, a sequential vote

wherein the tax rate is determined first and the budgetary rule second, al-

ways possesses an equilibrium and this equilibrium is the median-endowed

individual’s most-preferred policy. This is due to the fact that one’s prefer-

ences over the budgetary rule is independent of the value of the tax rate. The

preferences are determined solely by the relative shares of the individual’s

income due to labor and capital sources.

Second, we argue that the reverse sequential choice, in which the bud-

getary rule is determined first and the tax rate second, entails a more com-

plex interaction between the two decisions. The reason for this is that the

budgetary rule affects preferences over the tax rates. We show that in this

case the median-endowed individual may, but need not, be decisive. Addi-

tionally, we give the necessary conditions on the income distribution for the

median person not to be decisive.

Third, we examine the “Shepsle procedure” for simultaneous voting. In

this scheme, the decisions on the two dimensions are taken separately but

the outcome of each dimension must be consistent with the other to consti-
2Cremer et al. (2002) have used a similar framework to study the welfare properties

of politically viable environmental taxes. They have examined the relationship of the
(politically constrained) second-best taxes with their (unconstrained) first-best Pigouvian
counterparts. The current paper takes an entirely positive approach and focuses on the
various ways that a majority voting outcome can be attained. Another important differ-
ence is that Cremer et al. (2002) assume that the budgetary rule is always determined in
the first stage and that through two distinct mechanisms: a welfare-maximizing consti-
tutional planner or a majority voting scheme. The tax rate is determined in the second
stage via a majority-voting procedure. They also impose certain restrictions on income
distribution which we relax here.
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tute an equilibrium. We show that in this case too, the equilibrium is the

policy most favored by the median-endowed individual. Fourth, we study

the simultaneous determination of the tax rate and the budgetary rule while

assuming that the vote is taken over the voters’ most-preferred policies.3 We

show that under this restriction an equilibrium always exists. It is once again

given by the median-endowed individual’s most-preferred policy.

Fifth, we relax the preceding constraints and allow a simultaneous vote

that takes place over all feasible options. The literature on multidimensional

voting, starting with Plott (1967), is very gloomy when it comes to the

possibility of having an equilibrium (a policy preferred by a majority of

voters to any other admissible policy, i.e. a Condorcet winner) in such

circumstances. However, these negative results typically rely on the property

that feasible options constitute an open set. In our case, we do not have

an open set and the existence of a Condorcet winner cannot be ruled out

a priori. Indeed, we can infer from our results that if a Condorcet winner

exists, it will be the policy that the median-endowed individual prefers most.

We describe the circumstances under which this policy can be defeated by

a majority of voters, and give examples where a Condorcet winner does or

does not exist.

2 The model4

Individuals are identified by a parameter θ which is continuously distributed

over [0, 1] according to the density function, f(θ). The associated cumulative

distribution function is F (θ). Population size is normalized at one. An

individual of type θ has a total income of m(θ), with

m(θ) = w(θ) + r(θ),

3This may be justified by considering that citizen-candidates can not commit to a
policy.

4Some of the material reported in this Section, as well as in Sections 3—4, are contained
also in Cremer et al. (2001). This is done to make the paper self-contained and to avoid
cumbersome cross referencing.
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where w(θ) is labor and r(θ) is capital income. All sources of income are

exogenous and individuals are ranked such that m0(θ) > 0, i.e., total income

increases with θ. Let bθ be the median individual (satisfying F (bθ) = 1/2).

Further, assume w0(θ) > 0, r0(θ) > 0, and that r(θ)/w(θ) increases with

θ. In words, a higher θ corresponds to higher levels of both capital and

labor incomes, and to a larger share of capital income. Finally, we assume

r(0)/w(0) < r/w < r(1)/w(1) where r and w denote average capital and

labor incomes.5

All individuals have identical quasi-linear preferences over a numeraire

good (non-polluting) and a polluting good, y. The goods are produced by

a linear technology subject to constant returns to scale in a competitive

environment. Normalize the producer price of y at one. Let q denote the

consumer price of y, I(θ) the disposable income (net of taxes or transfers)

and Y the total consumption of y (across all individuals). The indirect

utility function of an individual of type θ is given by:

v(q, I, Y ) = a(q) + I(θ)− ϕ(Y ), (1)

with a0(q) < 0, ϕ0(Y ) > 0, and ϕ00(Y ) > 0. Total consumption of the

polluting good thus creates a negative “atmosphere externality” of ϕ(Y ).

By Roy’s identity, the demand for y is given by

y(q) = −∂v
∂q
= −a0(q). (2)

Note that y is independent of θ. Aggregate consumption of the polluting

good is then equal to

Y =

Z 1

0
y(q)f(θ)dθ = y(q) = y(q), (3)

5These are defined formally by

r =

Z 1

0

r(θ)f(θ)dθ and w =

Z 1

0

w(θ)f(θ)dθ.

This assumption ensures that r(θ)/w(θ) will be greater than r/w for some individuals,
and less than it for others.
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so that total, average and individual consumption levels are all equal.

Good y is subject to a “pollution tax” levied at the rate of (q − 1) per
unit of output. The proceeds of the tax are refunded through reductions in

labor and capital income taxes. To simplify notation, we do not explicitly

include pre-existing income taxes. This implies that the net of tax income

of individual θ is given by

I(θ) = (1 + gr)r(θ) + (1 + gw)w(θ), (4)

where gr ≥ 0 and gw ≥ 0 are the refund rates on capital and wage incomes.
The tax and refund rates are related through the government’s budget

constraint

R(q) ≡ (q − 1)y(q) = grr + gww, (5)

where R(q) is tax revenue6. Observe that, in light of (5), the government

has only two degrees of freedom in choosing its policy instruments. Once q

and, say, gr are set, gw is automatically determined. To represent this in a

more symmetric way and to characterize the refund system through a single

parameter, we introduce the concept of a “refund rule”. This specifies the

proportion α of tax proceeds that must be refunded on the basis of wage

incomes. Formally, α is defined such that

α =
gww

R(q)
= 1− grr

R(q)
. (6)

With this notation, the tax-cum-refund policy is completely character-

ized by the pollution tax (or the consumer price of y) and by the refund rule;

i.e. by the two parameters q and α. In the remainder of the paper we study

the determination of these two parameters through the political process.

The first obvious candidate to consider is a simultaneous voting proce-

dure. However, it is well-known from the voting literature that conditions

for the existence of a Condorcet winner in a two-dimensional setting are

6Observe that gr ≥ 0 and gw ≥ 0 result in R(q) ≥ 0,i.e. we rule out pollution subsidies.
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extremely restrictive.7 Consequently, we concentrate on other majority vot-

ing procedures to determine the values of α and of q. Sections 4—5 study

the sequential vote over these two instruments. Section 6 assumes that vot-

ing takes place separately over the two instruments, and looks for a fixed

point in this setting. Section 7 considers simultaneous vote over (q,α) when

the pairs considered are restricted to those most preferred by at least one

voter. Finally, we show by way of examples that the equilibrium obtained

with these restrictions may or may not be a Condorcet winner when the

restrictions are lifted.

As a first step, we begin by examining a θ-type person’s preferences

over (q,α). This will be a useful ingredient in the subsequent analysis. In

particular, we will characterize the preferred solution of the median endowed

individual bθ.
3 Preferences over (q,α) and the median individ-

ual’s optimum

A voter’s preferences over tax and refund policies can be derived from the

individual’s utility function (1), by making use of (3)—(6). This yields the

following reduced indirect utility function,

V (q,α, θ) = a(q) +m(θ) + δ(θ,α)R(q)− ϕ(y(q)), (7)

where

δ(θ,α) ≡ (1− α)
r(θ)

r
+ α

w(θ)

w
. (8)

Note that δ(θ,α) shows what proportion of his tax payment a person of type

θ gets back in refunds. To see this, substitute for α from (6) into (8). This

yields

δ(θ,α) =
grr(θ) + gww(θ)

R(q)
. (9)

It is clear from (7) that the size of δ(θ,α) is a crucial determinant of the im-

pact of q on V (q,α, θ). Moreover, δ(θ,α) is the only direct channel through
7See e.g., Davis et al. (1972), Plott(1967), Tovey(1992) or Schoffield and Tovey(1992).
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Figure 1: Depicting δ(θ,α) for different values of α.

which α affects V (q,α, θ). Lemma 1, from Cremer et al. (2001), also proved

in the Appendix, summarizes the properties of δ(θ,α) that will be useful in

our future discussions. See also Figure 1.

Lemma 1 Let δ(θ,α), defined by (8), denote the proportion of the tax pay-

ment that a person of type θ gets back in refunds. We have:

(i) δ(θ,α) is an increasing function of θ: δθ(θ,α) > 0.

(ii) δ(θ,α) is a linear function of α with the slope

δα(θ) =
w(θ)

w
− r(θ)

r
. (10)

This is positive, zero, or negative depending on the individual’s type.

(iii) There exists one, and only one, value of θ at which δα(θ) = 0. This

value, eθ, denotes the person for whom δ(θ,α) is independent of α so that

varying α will have no direct impact on his utility, V (q,α, θ). For the rest
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of the population, δα(θ) T 0⇔ θ S eθ.
Next, we characterize the most-preferred policy of individual θ, denoted

by (q∗(θ),α∗(θ)). As a first step, we derive θ’s most-preferred value of α

conditional on q, α†(θ; q), and his most-preferred tax rate conditional on α,

q†(θ;α). Thus differentiate (7) partially with respect to α

∂V (q,α, θ)

∂α
= δα(θ)R(q) =

·
w(θ)

w
− r(θ)

r

¸
R(q). (11)

>From Lemma 1, δα(θ) T 0 ⇔ θ S eθ. Consequently, equation (11) implies
that an individual’s most-preferred level of α is independent of q. It will be

either one or zero, depending on whether θ < eθ or θ > eθ.
Turning to the most-preferred tax rate, differentiate (7) partially with

respect to q,

∂V (q,α, θ)

∂q
= [δ(θ,α)− 1]R0(q)− £ϕ0 − (q − 1)¤ y0(q), (12)

where

R0(q) = y(q) + (q − 1)y0(q)

is the marginal tax revenue. Assuming an interior maximum, one can then

determine q†(θ;α) by setting equation (12) equal to zero.8 There are two

interesting aspects to this solution. One is that q†(θ;α) is monotonically

increasing in θ. The other is that q†(θ;α) is monotonically increasing in α,

if θ < eθ and decreasing if θ > eθ. Specifically, we have:
Lemma 2 Assume q†(θ;α) is an interior maximum and R0(q†(θ;α)) > 0.9

Then,

8A set of sufficient conditions for this is that ∂V (1,α, θ)/∂q > 0 and
∂2V [q†(θ;α),α, θ)/∂q2 < 0. In turn, the latter condition will be satisfied if

(2δ − 1− ϕ00y0)y02 − (δ − 1)yy00 > 0,
at q = q†(θ;α).

9As pointed out by Cremer et al. (2001), this assumption is necessarily satisfied in the
absence of a negative externality. In that case, no one would vote for a tax rate that is on
the downward section of the Laffer curve; see, Guesnerie and Jerison (1991).
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(i) ∂q†(θ;α)/∂θ has the same sign as δθ(θ,α), so that q†(θ;α) is monoton-

ically increasing in θ.

(ii) ∂q†(θ;α)/∂α has the same sign as δα(θ), so that

∂q†(θ;α)
∂α

T 0⇔ θ S eθ. (13)

Proof. With q†(θ;α) being the interior maximum of V (q,α, θ), we have

∂V (q†(θ;α),α, θ)
∂q

≡ 0, (14)

∂2V (q†(θ;α),α, θ)
∂q2

< 0. (15)

Now differentiating (14) partially with respect to θ yields

∂2V (q†(θ;α),α, θ)
∂q2

∂q†(θ;α)
∂θ

+
∂2V (q†(θ;α),α, θ)

∂θ∂q
= 0.

Thus, from (15), ∂q†(θ;α)/∂θ has the same sign as ∂2V (q†(θ;α),α, θ)/∂θ∂q.

This latter expression in turn has the same sign as δθ(θ,α). To see this,

differentiate (12) partially with respect to θ. We have

∂2V (q,α, θ)

∂θ∂q
= δθ(θ,α)R

0(q), (16)

with R0(q†(θ;α)) > 0. Finally, the stated property of δθ(θ,α) in Lemma 1

(i), completes the proof of part (i).

Next, differentiating (14) partially with respect to α yields

∂2V (q†(θ;α),α, θ)
∂q2

∂q†(θ;α)
∂α

+
∂2V (q†(θ;α),α, θ)

∂α∂q
= 0.

Again, from (15), ∂q†(θ;α)/∂α has the same sign as ∂2V (q†(θ;α),α, θ)/∂α∂q.

In turn, this latter expression has the same sign as δα(θ,α). To prove this,

differentiate (12) partially with respect to α. We have

∂2V (q,α, θ)

∂α∂q
= δα(θ)R

0(q), (17)

with R0(q†(θ;α)) > 0. As with part (i), the stated property of δα(θ,α) in

Lemma 1 (iii), completes the proof of part (ii).
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We are now in a position to characterize (q∗(θ),α∗(θ)), the most-preferred

policy of individual θ. First, because α†(θ; q) is independent of q, α∗(θ) =

α†(θ; q). Hence α∗(θ) has the same characterization as α†(θ; q). Turning to

q∗(θ), we prove below that like q†(θ;α), q∗(θ) is monotonically increasing in

θ.

Proposition 1 (i) α†(θ; q) is decreasing in θ and given by

α†(θ; q) = α∗(θ) =


1 if θ < eθ,
0 if θ > eθ,
∈ [0, 1] if θ = eθ. (18)

(ii) Assume q†(θ;α) is an interior maximum, and R0(q†(θ;α)) > 0.

Then, q∗ (θ) = q† (θ;α∗(θ)) is monotonically increasing in θ.

Proof. Part (i) follows from equation (11) and Lemma 1. To prove

part (ii), consider all θ 6= eθ ∈ [0, 1]. Now from (18), α∗(θ) = 1 on [0,eθ[
and α∗(θ) = 0 on ]eθ, 1]. We also know from Lemma 2 (iii) that q†(θ;α) is

increasing in θ for any given value of α. Consequently, over the intervals

[0,eθ[ and ]eθ, 1], q∗ (θ) = q† (θ;α∗(θ)) is increasing in θ.

It remains to show that q∗ (θ) = q† (θ;α∗(θ)) is continuous at eθ. With
q†(θ;α) being continuous in θ, it will suffice to show that q†(eθ;α) is inde-
pendent of α. This we have already shown in (13). See Figure 2.

We close this section by characterizing the most-preferred policy of the

median individual. As we shall see, the median individual turns out to be

the decisive voter in all the voting procedures we study with two possible

exceptions.

Proposition 2 Let (bq, bα) = (q∗(bθ),α∗(bθ)) denote the most-preferred tax-
cum-refund policy of the median individual. We have:

(i)

bα =

1 if bθ < eθ,
0 if bθ > eθ,
∈ [0, 1] if bθ = eθ. (19)
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Figure 2: Determination of q∗(θ).
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(ii) bq T qF ⇔ max[
bw
w
,
br
r
] T 1, (20)

where (qF − 1) = ϕ0 is the first-best Pigouvian tax.

The proof of part (i) follows as an application of Proposition 1 (i) to the

median individual. Part (ii) is proved in the Appendix. This establishes that

the median individual’s most-preferred tax rate may exceed the Pigouvian

rate or fall short of it depending on the relationship between median and

mean incomes (wage and capital). To understand the intuition behind this

result, assume first that 1 > bw/w > br/r. That is, assume that the median
is smaller than the mean for both sources of income and that the ratio of

median to mean is smaller for capital than for wage income distribution. The

latter assumption is one indicator of the fact that capital income distribution

is “more skewed” than the wage income distribution. Under this assumption,

the median will want to have the entire tax refunds based on labor income;

consequently, we have bα = 1. However, with 1 > bw/w, even the most-
preferred level of α is not “good enough” to ensure the median individual

a full refund of his tax payments.10 Consequently, he favors a tax which is

less than the (socially) optimal (Pigouvian) level.

Under the alternative assumption that bw/w > 1 > br/r, we again obtainbα = 1, but this now yields a more than full refund for the median individual.
Consequently, he favors a tax which exceeds the Pigouvian level. Finally,

when br/r > bw/w, we will have bα = 0; the median now wants all refunds to
be based on capital income. The remaining part of the argument then goes

through exactly as in the previous cases.11

This discussion, with its normative flavor is somewhat orthogonal to the

main focus of the paper. Nevertheless, the arguments are quite telling for

they highlight the implications of the nonseparability between efficiency and

equity brought about by the political process.

10Formally, δ(bθ, bα) = δ(bθ, 1) < 1.
11This result generalizes a proposition in Cremer et al. (2002).
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4 Sequential vote: α then q

Consider a sequential voting procedure of the following sort. In the second

stage, q is determined by majority voting for a given level of α; denote

the voting equilibrium by qE(α). In the first stage, individuals vote on

α, anticipating the induced voting equilibrium in the second stage.12 To

determine the equilibrium of this sequential vote, we proceed by backward

induction.

4.1 Stage 2: voting on q given α

The following Lemma from Cremer et al. (2001), also proved in the Appen-

dix, establishes the existence of a majority voting equilibrium for q condi-

tional on α, denoted by qE(α).

Lemma 3 For any α ∈ [0, 1], there exists a majority voting equilibrium
level of q: qE(α). This is given by the most-preferred choice of the median

individual; that is,

qE(α) = q†(bθ;α), ∀α ∈ [0, 1]. (21)

4.2 Stage 1: voting on α

In the first stage, voter θ has preferences over α as described by

V I(α, θ) = V (qE(α),α, θ), (22)

where V is defined in (7). Let

αI(θ) = arg max
α∈[0,1]

[V I(α, θ)]

denote the most preferred level of α for voter θ. One has to study the

properties of αI(θ) to determine if a voting equilibrium exists.

12When defining the equilibrium in the sequential voting procedure, we assume that
the second-stage equilibrium exists and is unique. This is the case in our setting as will
become clear below.
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4.2.1 Preferences over α in the first stage

Differentiate (22) totally with respect to α. This yields

∂V I(α, θ)

∂α
=

∂V (qE(α),α, θ)

∂α| {z } +
∂V (qE(α),α, θ)

∂q

dqE(α)

dα| {z } .
A B

(23)

A variation in α has two effects on an individual’s utility: a direct effect, A,

and an indirect effect, B, associated with the induced variation in the second

stage voting equilibrium value of qE. Consider the two terms separately.

Direct effect: A This is specified by (11) and we have A > 0 for θ < eθ,
and A < 0 for θ > eθ. According to the direct effect, then, all individuals
in the interval θ < eθ favor α = 1, while those in θ > eθ favor α = 0. See

Figure 3.

Indirect effect: B The analysis of this term is more complex. First,

we know from (16) that ∂2V (qE(α),α, θ)/∂θ∂q > 0, if R0(qE) > 0. That

is, ∂V (qE(α),α, θ)/∂q is increasing in θ. Now with qE(α) = q†(bθ;α) be-
ing the second stage median voter’s most-preferred value of q, we have

∂V (qE(α),α,bθ)/∂q = 0. These properties imply that
∂V (qE(α),α, θ)

∂q
S 0 ⇔ θ S bθ. (24)

Second, with qE(α) = q†(bθ;α), we have from Lemma (2) (ii) that

dqE(α)

dα
T 0 ⇔ bθ S eθ. (25)

That is, thee second-stage voting equilibrium of q is increasing or decreasing

in α depending on whether bθ < eθ or bθ > eθ. In the former case, the sign
of the indirect effect is as specified by (24). In the latter case, the sign is

reversed. See Figure 3.
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αI(θ) = 1 αI(θ) = 0
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B > 0

A > 0

B > 0

A < 0

θ̃

3a :
ewbw > erbr (bθ < eθ)

3b :
ewbw < erbr (bθ > eθ)

Figure 3: Determination of αI(θ).
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Total effect When A and B are of the same sign, an individual’s most

preferred value for α is a corner solution. Specifically, A > 0 and B > 0

implies αI(θ) = 1, while A < 0 and B < 0 yields αI(θ) = 0. When A

and B are of opposite signs, no clearcut conclusion can be drawn. The

individual’s most preferred α may, but need not, be interior.13 Observe that

for the median individual only the first term is relevant as B = 0. He will

then always choose a corner solution except if bθ = eθ, in which case he is
indifferent to any value of α ∈ [0, 1].

4.2.2 The decisive voter and the median individual

If A were the only effect, the decisive voter would necessarily be bθ. When
both effects are present, one must distinguish between two cases as illus-

trated in Figure 3. In case (b), bθ > eθ: The median individual and all
individuals to his right have the same most-preferred value for α; namely

α = 0. By definition, then, they form a majority and the median individual

is decisive. In case (a), bθ < eθ, and it is not a priori clear whether the median
individual is decisive or not. This is because direct and indirect effects are

now of conflicting signs at both ends of the distribution; see Section 9 below

for numerical examples where the median is and is not decisive. Observe

that when the median is not decisive we can have two types of situations.

First, we can have an equilibrium with a different pivotal voter. Second,

and more seriously, the equilibrium may fail to exist altogether.14

The following proposition summarizes the main results of this section.

Proposition 3 Assume that the policy (q,α) is determined through a se-

quential majority voting procedure. The second stage vote is on q for a given

value of α. In the first stage, individuals vote on α anticipating the induced

13While the signs of A and B do not depend on α, their absolute values are affected by
α. This makes an interior solution possible.
14We have run numerical simulations (along the lines of those presented in Section 9)

which show that both type of regimes can effectively occur. However, the distinction
between these cases is not essential for the remainder of the paper. Consequently, we shall
not discuss this in detail here.
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second-stage equilibrium. If bθ > eθ, the voting equilibrium exists and is given

by the most-preferred policy of the median individual, (bq, bα) = (q∗(bθ),α∗(bθ)),
as characterized in Proposition 2. On the other hand, if bθ < eθ, the median
individual may or may not be decisive.

5 Sequential vote: q then α

Consider now an alternative sequential procedure in which q is determined in

the first stage and α in the second. That is, reverse the sequence considered

in Section 4. As in that section, we solve this game by backward induction.

5.1 Stage 2: voting on α given q

To determine individual θ’s most-preferred level of α, for any given level of

q, it is sufficient to use the properties of V (q,α, θ) established in Section 3.

First, recall that ∂V/∂α is given by (11). Consequently V is linear in α which

implies that the voting equilibrium for α exists. Furthermore expression

(11), together with Lemma 1 (ii) , implies that the most-preferred level of α

is a corner solution and that it is independent of q. This is given by α∗(θ) as

defined by (19). Finally, the property that α∗(θ) is a monotonic (decreasing)

function of θ implies that the median individual is the decisive voter so that

αE(q) = α∗(bθ) = bα ∀q, (26)

where αE(q) denotes the second-stage voting equilibrium, and bα is defined
by (19).

5.2 Stage 1: voting on q

When voting over q, individuals anticipate that the second-stage equilibrium

will be α∗(bθ), so that their first-stage utility is
V I (q, θ) = V

³
q,α∗(bθ), θ´ .
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Given that α∗(bθ) is independent of q, one can apply Lemma 3 to show that
the median individual is also decisive in the first stage:

qE(bα) = q†(bθ; bα) = q∗(bθ) = bq.
Anticipating that his preferred α will prevail in the second stage, the median

individual will simply choose q∗(bθ) = bq. This is the level of q that he would
choose, if he could directly set the entire policy (q,α).

The following proposition summarizes the results obtained in this sec-

tion.

Proposition 4 Assume that the policy (q,α) is determined through a se-

quential majority voting procedure. The second-stage vote is on α for a

given value of q. In the first stage, individuals vote on q anticipating the

induced second-stage equilibrium. The voting equilibrium exists and is given

by the most-preferred policy of the median individual, (bq, bα) = (q∗(bθ),α∗(bθ)),
characterized in Proposition 2.

6 Shepsle’s procedure

This section considers the choice procedure proposed by Shepsle (1979)

where one assumes that the two votes (over α and q) are taken separately.

This would be the case if, for instance, each aspect of the problem (the

value of the tax rate and the structure of the refunds) were chosen by a

different committee. Because preferences over each variable depend on the

value assumed by the other, one must first compute the majority voting

reaction functions qE(α) and αE(q). A Shepsle equilibrium is then a pair

(qS ,αS) such that each variable in this pair is the majority voting equilib-

rium conditional on the value of the other variable, i.e. qS=qE(αS) and

αS=αE(qS).

The determination of the Shepsle equilibrium follows directly from the

results obtained for the second-stage voting equilibria of Sections 4—5. First,
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observe that equation (26) implies αS = bα. With the majority voting equi-
librium value of α (for a given q) being independent of q, the Shepsle level

of α is also independent of q. Evaluating (21) at αS = bα then yields,
qS = qE(bα) = q†(bθ; bα) = q∗(bθ) = bq.

This establishes the following result.

Proposition 5 Assume that the policy (q,α) is determined through a Shep-

sle procedure where the equilibrium policy is a pair (qS ,αS) such that qS =

qE(αS) and αS = αE(qS) (i.e., qS is the voting equilibrium given αS, and αS

is the voting equilibrium given qS). The equilibrium of this procedure exists

and is given by the most-preferred policy of the median individual, i.e.,

(qS ,αS) = (bq, bα),
where (bq, bα) is characterized in Proposition 2.
7 Voting over blisspoints

We now consider a procedure where the set of admissible alternatives is

restricted to the individual blisspoints (q∗(θ),α∗(θ)). Such a restriction is

justified, for instance, in the context of a representative democracy where

“the candidates” cannot commit to a policy. Consequently, voters anticipate

that each candidate will implement his own most-preferred policy if elected.

This assumption has been used for instance by Osborne-Slivinski (1996) and

Besley-Coate(1997) in the so-called citizen-candidate model. Unlike these

papers, however, we do not model the initial stage of the game wherein

citizens decide if they want to be a candidate. Instead, we effectively assume

that all citizens are potential candidates. Note that, as long as the median

individual is a candidate, our results remain intact. And the candidacy of

the median individual appears very likely because he will be decisive if he

stands.
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To study the voting equilibrium of such a procedure, we first have to

look at the properties of the set of individual blisspoints. We have shown in

Section 3, Proposition 1, that α∗(θ) is decreasing in θ and given by (18), and

q∗(θ) is monotonically increasing in θ. We now derive the voting equilibrium.

Proposition 6 Assume that the policy (q,α) is determined through a ma-

jority voting procedure in which the set of admissible alternatives is restricted

to the individual blisspoints (q∗(θ),α∗(θ)), and that V (q,α; θ) is single-peaked

in q for all values of α and θ. The equilibrium of this procedure exists and

is given by the most-preferred policy of the median individual, (bq, bα), as
characterized in Proposition 2.

Proof. Consider V
¡
q∗(θ0),α∗(θ0); θ

¢
: the preferences of a θ-type person

∈ [0, 1] over the blisspoints (q∗(θ0),α∗(θ0)) of θ0 ∈ [0, 1]. We prove that these
preferences are single-peaked. We can then apply the median voter theorem

which states that the majority voting equilibrium is the point most preferred

by the median individual.

We have

V
¡
q∗(θ0),α∗(θ0); θ

¢
=


V
¡
q∗(θ0), 1; θ

¢ ∀ θ0 < eθ
V
¡
q∗(θ0),α; θ

¢
θ0 = eθ

V
¡
q∗(θ0), 0; θ

¢ ∀ θ0 > eθ.
Assume first that θ < eθ. From (11), ∂V (q,α, θ)/∂α > 0 indicating that

V (q∗(θ0), 1; θ) lies above V (q∗(θ0), 0; θ) for all values of q. Moreover, from

Lemma (2) (ii), we have that over this interval, ∂q†(θ;α)/∂α > 0. Hence the

peak in V (q∗(θ0), 1; θ) is to the right of the peak in V (q∗(θ0), 0; θ). Now we

also have, from Lemma (2) (i), that ∂q†(θ;α)/∂θ > 0 for all α. Consequently,

the peak in V (q∗(θ0), 1; θ) is to the left of q∗(eθ). We thus obtain the curves
V (q∗(θ0), 1; θ), the utility attained for the blisspoints {α∗(θ0) = 1, q∗(θ0) <

q∗(eθ)}, and V (q∗(θ0), 0; θ), the utility attained for the blisspoints {α∗(θ0) =
0, q∗(θ0) > q∗(eθ)}, as shown in Figure 4a (given the single-peakedness of the
two curves). The utility of θ < eθ on the set of blisspoints is single peaked.
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Figure 4b shows the same two curves for an individual θ > eθ. Note that in
this case, ∂V (q,α, θ)/ ∂α < 0, ∂q†(θ;α)/∂α < 0 and ∂q†(θ;α)/∂θ > 0 assure

that the peak of V (q∗(θ0), 0; θ) is to the right of the peak of V (q∗(θ0), 1; θ),

itself to the right of q∗(eθ). This implies the single-peakedness for θ > eθ. Fi-
nally, if θ = eθ, (11) shows that V (q∗(θ0),α∗(θ0);eθ) is independent of the value
of α. Consequently, we will have single-peakedness on the set of blisspoints

for θ = eθ as well.
The intuition for this proof is as follows. The set of blisspoints can be

split into two subsets: one containing the blisspoints with α = 0, and the

other with α = 1. By assumption, each individual’s utility is single-peaked

on the subset of blisspoints which corresponds to his preferred value of α

(1 if θ < eθ, 0 if θ > eθ). We then have to check that the individual’s utility
function does not have a second peak on the other subset of blisspoints. It is

easy to see that a shift toward the less preferred value of α decreases utility.

Furthermore, the proof of Proposition 6 shows that, moving away from q∗(eθ)
on the least preferred subset of blisspoints always strictly decreases utility.

8 Unrestricted simultaneous vote

The simultaneous voting setting we have considered so far assumes that the

voters’ choices are restricted. In the Shepsle case, only deviations in a single

dimension are considered. In the citizen-candidate setting, alternatives are

restricted to the set of individual blisspoints. These restrictions increase

the likelihood that an equilibrium exists because some deviations are ruled

out. It is well known that in an unrestricted simultaneous vote, a Condorcet

winner generally fails to exist. However, the results pertaining to the generic

nonexistence of a Condorcet winner typically rely on the fact the feasible

set is an open set.15 In our case, we do not have an open set and blisspoints

15 In this case, first studied by Davis et al. (1972) and Plott (1967), a Condorcet winner
exists only if, given an starting point, it is possible to pair all voters in such a way that
the members of every pair want to go in opposite directions from one another. If it is
impossible to pair all individuals in this manner, there exists a direction that is favored
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Figure 4: The θ type’s preferences over the blisspoints of θ0:
V (q∗(θ0),α∗(θ0), θ).
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are located on the frontier of the set (corner solution for α). Consequently,

existence of a Condorcet winner cannot be ruled out a priori, at least not

on the basis of the usual argument.

The following property, proved in the appendix, is helpful for identifying

a candidate Condorcet equilibrium:

Proposition 7 If (q,α) is a Condorcet winner in the unrestricted simul-

taneous voting game over q > 1 and α ∈ [0, 1] , it is also an equilibrium
of the sequential voting games (α then q, and q then α) and of the Shepsle

procedure.

The proof of Proposition 7 is based on the observation that both sequen-

tial and the Shepsle procedures impose additional constraints on the set of

feasible options. If a pair is a Condorcet winner in the unrestricted simulta-

neous voting game, it remains a Condorcet winner (and thus a majority vot-

ing equilibrium) when the set of feasible options is reduced (provided that it

still includes the unrestricted Condorcet winner). Observe that a Condorcet

winner is not necessarily the winner in the citizen-candidate model, because

the Condorcet winner is not necessarily in the set of individual blisspoints.

However, if the Condorcet winner is in the set of individual blisspoints, then

it is also the winner in the citizen-candidate setting.

Proposition 7 implies that a Condorcet winner can exist only if the con-

sidered alternative procedures all have the same equilibrium.16 Based on

this proposition, we can distinguish between two cases. One in which the

median individual is not decisive in the α then q sequential vote and the

other when he is. Under the former, no Condorcet winner exists. In the

latter case, on the other hand, there is a possibility of the existence of a

Condorcet winner with the candidate being the blisspoint of the median

by a majority of voters, and the considered point is not a Condorcet winner. Existence of
a Condorcet winner located on the boundary of a closed feasible set is easier to obtain,
because a feasible direction preferred by a majority of individuals would be less likely.
16As long as each procedure has a unique equilibrium.
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individual (characterized by Proposition 2).17 We emphasize that this can-

didate equilibrium may, but need not, be a Condorcet winner. All we can

say, at this level of generality, is that there is no obvious way to eliminate

the candidate equilibrium. To demonstrate that different cases can arise,

and to develop further understanding of the pertinent factors, we now turn

to the study of some illustrative examples.

9 Illustrations

This subsection develops a number of simple numerical examples that satisfy

all the assumptions imposed on our general model. They illustrate various

possibilities regarding the equilibrium in the sequential α then q vote (me-

dian voter decisive or not) and the existence of a Condorcet winner. All

examples are based on the following specification

a(q) = −1− ln q, ϕ(Y ) = Y 2,

w(θ) = θ2, r(θ) = θ5. (27)

What differentiates the examples is the distribution of types which is para-

meterized by ε ∈ [1/6, 1/2[ so that

f(θ) =


2

3−6ε if θ ≤ 1/2− ε
1
6ε if 1/2− ε < θ ≤ 1/2 + ε
2

3−6ε if θ > 1/2 + ε
. (28)

For each level of ε, the distribution defines three classes of individuals with

equal weight (i.e., support times density equals 1/3 for each group); see

Figure 5. When ε = 1/6 the distribution is uniform; when ε increases, it

becomes more polarized.

Observe that the distribution is symmetric so that we always have bθ =
1/2. From (27), median wage and capital incomes are given by w(bθ) =
1/4, r(bθ) = 1/32. Table 1 provides some additional characteristics of the

distribution for the levels of ε considered below.
17This case is not limited to having bθ > eθ. Recall that this condition is sufficient but

not necessary for the median individual to be decisive; see Section 4.
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Figure 5: Distribution of types.

ε w̄ r̄ eθ
1/6 1/3 1/6 0.790

0.27 0.359 0.213 0.839

0.275 0.361 0.215 0.841

0.3 0.369 0.229 0.853

Table 1: Four values of ε and the corresponding values for w̄, r̄, and eθ.
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ε q∗(bθ) Sequential vote Simultaneous vote
[α∗(bθ) = 1] (α then q)

1/6 1.838 39.84 % 42.2 %
0.27 1.804 49.00 % 49.8 %
0.275 1.801 49.70 % 50.1 %
0.3 1.793 51.10 % 52.0 %

Table 2: Candidate equilibrium and the maximal opposition.

In each case, we consider the most-preferred policy of the median individ-

ual (bq, bα). Note that, with bθ = 1/2 < eθ, bα = 1 (see Proposition 2), and that
the median individual is not necessarily decisive (see Proposition 3). Subse-

quently, we numerically determine the maximal opposition which can arise

against this solution. Formally, the opposition is the proportion of individu-

als who support a deviation from (bq, bα); the maximal opposition corresponds
to the deviation which is supported by the highest number of individuals.

We determine this maximum opposition both for an unrestricted simulta-

neous vote and for a sequential (α then q) vote. In either case, (bq, bα) is the
equilibrium if (and only if) the maximum opposition is less than 50%.

The results of the simulations are summarized in Table 2. They estab-

lish the main point emphasized in the previous section; namely, that the

candidate equilibrium may or may not be a Condorcet winner. Specifically,

we have a candidate equilibrium in the first three cases (for ε equal to 1/6,

0.27 and 0.275) but a Condorcet winner in the first two cases. This also

shows that the existence of a Condorcet winner is not just a possibility;

it arises for a non-trivial set of parameter values. The last case (ε = 0.3)

provides an illustration for Proposition 7: The median-preferred policy does

not pass the candidate equilibrium’s test; hence it cannot be a Condorcet

winner.

To get a better understanding of these results, it is interesting to take

a closer look at the determination of the degree of opposition against the
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median-preferred outcome. Consider first the case where voting takes place

simultaneously over q and α. Starting with the median individual’s pre-

ferred policy, we look for a direction that would be favored by a majority

of voters.18 Since (bq, bα) is preferred by a majority of voters to any other
policy with α = 1, a deviation can be favored by a majority of voters only if

it involves a decrease in α. Furthermore, any decrease in α accompanied by

an increase in q will be rejected by all individuals with θ < bθ, and thus can
not defeat the policy (bq, bα). Consequently, we have to consider deviations
involving a decrease in both α and q. Such deviations could appeal both

to low θ’s (because of the decrease in q) and to high θ’s (because of the

decrease in α). Such a direction is drawn in Figure 6.

Increasing ε leads to a more polarized society, with a greater proportion

of individuals favoring such deviations from the median’s preferred policy.

For ε sufficiently low (ε ≤ 0.27, approximately), the political support for

any South West deviation is less than one half, and (bq, bα) is the Condorcet
winner. For ε high enough (ε ≥ 0.275), a majority of individuals prefer the
deviation and there is no Condorcet winner.

Next, consider the case where voting takes place sequentially: first over

α and then over q. Observe that the set of possible deviations is smaller than

in the simultaneous vote case: once α has been chosen, second stage voting

results in qE(α). Consequently, the maximum opposition for the sequential

vote is smaller than (or equal to) that for the simultaneous vote. It is also

increasing with the polarization of the distribution of voters. This is because

voters opposing the median’s favorite policy are to be recruited among the

individuals with extreme values of θ; see Figure 3a. Table 2 shows that,

for ε ≤ 0.27, (bq, bα) is both an equilibrium in the sequential vote and a

Condorcet winner. For ε = 0.275, the median preferred point continues to

18We can come as close as we wish from a 50% support for a deviation consisting in
slightly modifying q while keeping α constant. On the other hand, such a deviation will
never be preferred by a majority of voters. We thus concentrate on deviations that a
majority of voters can potentially support and report the maximum opposition among
such deviations in Table 2.
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Figure 6: Candidate equilibrium and the direction of opposition.

be an equilibrium in the sequential voting procedure, even though it is not

a Condorcet winner anymore. Finally, when ε = 0.3, (bq, bα) is no longer an
equilibrium in the sequential vote.

10 Concluding remarks

This paper has studied how environmental policies are determined through

the political process. It has considered policies that differ in two dimensions:

a tax levied on polluting goods and a budgetary rule specifying the propor-

tion of the tax proceeds that goes to wage earners and to capital owners. It

has examined a number of voting procedures, sequential and simultaneous

(restricted and unrestricted) for determining the values of these two para-

meters. Surveying the results, we conclude the paper by making two final

observations about our findings.

First, the most striking feature of the results is that the best-preferred

policy of the median-endowed individual constitutes a rather robust equilib-

rium outcome under a wide array of majority voting procedures. This fact

29



notwithstanding, the paper has shown that there also exist circumstances

under which an equilibrium may not exist (simultaneous voting), or if it

does, it will not be the median’s most-preferred policy (when voting first on

the budgetary rule).

Second, our results on unrestricted simultaneous voting have an inter-

esting implication from a methodological perspective. The existence of a

Condorcet winner has been deemed as an extremely rare phenomenon in

the literature on multidimensional voting. The reason for this is that the

feasible voting options are invariably assumed to be an open set. When the

feasible set is closed and the voters have corner preferences, the existence

no longer appears that problematic. This is borne out by the widespread

existence of the Condorcet winner in our setting. These two characteristics

are not that rare and show up in other economic problems–at least when

individuals have fixed endowments.19 To the extent that this is the case, our

results point to the possibility of solving a two-dimensional voting problem

for a non-trivial set of economic problems.

19This is the case, for example, when individuals choose the degree of capital and labor
income taxes in a general equilibrium setting (DeDonder (2000)). It is also the case when
individuals vote over non distortionary quadratic income tax functions (De Donder and
Hindriks (2002)).
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Appendix

Proof of Lemma 1: To prove (i), differentiate (8) partially with respect

to θ. The result follows from the assumptions that r0(θ) > 0 and w0(θ) > 0.

To prove (ii), differentiate (8) partially with respect to α. This yields (10)

proving the claim.

To prove (iii), rewrite (10) as

δα(θ) =
r(θ)

w

·
w(θ)

r(θ)
− w
r

¸
. (A1)

Thus δα(θ) will always have the same sign as w(θ)/r(θ) − w/r. From the

assumption that w(0)/r(0) > w/r > w(1)/r(1), it then follows that δα(0) >

0 and δα(1) < 0. Consequently, given the continuity of w(θ)/r(θ), there

must exist a value of θ, say eθ, at which δα(eθ) = 0. Now because w(θ)/r(θ)
is decreasing in θ, it also follows from (A1) that δα(θ) changes sign only

once so that eθ is unique. Additionally, this implies that δα(θ) > 0 as long
as θ < eθ, and δα(θ) < 0 whenever θ > eθ.
Proof of Proposition 2 (ii): The Pigouvian tax rate qF − 1 maximizes
aggregate welfare given by

WF =

Z 1

0
v(q, I(θ), Y )f(θ)dθ = a(q) +m+ (q − 1)y(q)− ϕ(y(q)). (A2)

Differentiating (A2) with respect to q results in,

∂WF

∂q
= [1− δ(θ,α)]R0(q) +

∂V

∂q
, (A3)

where we have made use of (12). Finally, evaluating (A3) at q = q†(θ;α)

yields
∂WF

∂q
= [1− δ(θ,α)]R0

³
q†(θ;α)

´
. (A4)

Equation (A4) tells us that whether individual θ prefers a higher or a lower

tax than the Pigouvian rate depends on the proportion of taxes that he gets

back in refunds. Formally, it follows from (A4) that

q†(θ;α) T qF ⇔ δ(θ,α) T 1. (A5)
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In turn, evaluating (A5) at α = α∗(θ) yields

q∗(θ) = q†(θ;α∗(θ)) T qF ⇔ δ(θ,α∗(θ)) T 1. (A6)

To establish (20), one then makes use of equations (8), (A6)—(19) and

Lemma 1 (iii).

Proof of Lemma 3: Using (1), (3), (4) and the fact that gww̄/grr̄ =

α/(1− α) (obtained from (6)), the utility of individual θ, as a function of q

and gr, can be written as

U(q,α, gr, θ) = a(q)+(1 + gr) r(θ)+

µ
1 +

α

1− α
gr
r

w

¶
w(θ)−ϕ(y(q)). (A7)

Note that (A7) does not make use of (5), i.e. of the government’s budget

constraint. It specifies the preferences as a function of α, q and gr. It satisfies

Gans and Smart’s (1996) sufficient condition for the median individual to be

decisive (in the vote over q, for any given value of α). This condition relies

on the Spence-Mirrlees “single-crossing” property. Applied to our setting,

it requires that the marginal rates of substitution in the space (q, gr) be

monotonic in voters’ type θ. Now one can easily check that the marginal

rate of substitution of individual θ in the space (q, gr)

−∂U(q,α, gr, θ)/∂gr
∂U(q,α, gr, θ)/∂q

=
r (θ) + α

1−α
r
ww (θ)

−a0 (q) + ϕ0(y(q))y0(q)

is monotonically increasing in θ whatever the values of α, q and gr. Hence,

the median individual is decisive when voting on (q, gr) which, given the

degree of freedom lost when incorporating (5), amounts to a vote on q.

Proof of Proposition 7: Let (qCW ,αCW ) denote the unrestricted Con-

dorcet winner, i.e. the pair that is preferred by a majority of voters to

any other feasible pair (q,α), with q > 0 and α ∈ [0, 1]. We first prove
that (qCW ,αCW ) is a Shepsle equilibrium. Fix α = αCW and let individ-

uals vote over q. Because (qCW ,αCW ) is preferred by a majority to any

pair (q > 0,αCW ), the outcome of this vote is qCW . Symmetrically, fixing
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q = qCW and voting over α gives as outcome (qCW ,αCW ). This pair is thus

a Shepsle equilibrium.

Second, we show that (qCW ,αCW ) is also the outcome of a sequential

voting game. Suppose that vote takes place first over α and then over

q. Solving this game by backward induction, we note, by the argument

explained above, that the outcome of the second step is qCW if the first step

outcome is αCW . Going back to the first step, individuals then realize that

a vote for αCW is indeed a vote for (qCW ,αCW ). Since this pair is preferred

by a majority to any other pair, αCW is the majority voting equilibrium

in the first stage, and qCW in the second stage. Note also that this line of

reasoning applies mutatis mutandis to the other sequential vote (first q then

α).
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