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Abstract

An entrepreneur with limited liability needs to finance an infinite horizon investment
project. An agency problem arises because she can divert operating cash-flows before
reporting them to the financiers. We first study the optimal contract in discrete time. This
contract can be implemented by cash reserves, debt and equity. The latter is split between
the financiers and the entrepreneur, and pays dividends when retained earnings reach a
threshold. To provide appropriate incentives to the entrepreneur, the firm is downsized
when it runs short of cash. We then study the continuous-time limit of the model. We
prove the convergence of the discrete-time value functions and optimal contracts. Our
analysis yields rich implications for the dynamics of security prices. Stock prices follow a
diffusion reflected at the dividend barrier and absorbed at zero. Their volatility, as well as
the leverage ratio of the firm, increase after bad performance. Stock prices and book-to-
market ratios are in a non-monotonic relationship. A more severe agency problem entails
lower price earning ratios and firm liquidity, and higher default risk.
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1. INTRODUCTION

While corporate finance studies the design and issuance of securities, asset pricing investigates

the dynamics of their market valuations. Our objective is to analyze these two aspects in

a unified framework. In line with the corporate finance literature, we emphasize the role of

agency problems for the optimal design of securities. One of the main contributions of this

paper is to assess the implications of agency costs for the dynamics of key financial variables

such as stock prices, leverage, book-to-market ratios, or default risk. Another contribution

of this paper is methodological. While most of the literature on dynamic contracting relies

on discrete-time specifications, asset pricing models are typically formulated in continuous

time. Each of these approaches has its advantages and shortcomings. Discrete-time models

enable one to clarify the extensive form of the game played by the different agents. Yet,

continuous-time models are often simpler and analytically more tractable. Drawing from

these two approaches, we first study a discrete-time agency model of the firm, and then

examine its continuous-time limit obtained as the time interval between consecutive periods

vanishes. Besides laying down clear conceptual foundations for continuous-time modelling,

this allows us to derive a rich set of testable asset pricing implications.

Our discrete-time model is a stationary version of DeMarzo and Fishman’s (2003) cash-

flow diversion model. An entrepreneur has discovered an investment project, which only

she can manage successfully. Because she has limited resources and limited liability, she

needs to contract with financiers to fund the initial investment and the operating costs of the

project, as well as her personal consumption. Both the entrepreneur and the financiers are

assumed to be risk-neutral. After the initial investment has been sunk, the project generates

random cash-flows according to a binomial process. Specifically, in each period, cash-flows

can be negative, corresponding to operating losses, or positive, corresponding to operating

profits. Cash-flows are independently distributed across periods, with constant mean and

variance per unit of time. As in Bolton and Scharfstein (1990), an agency problem arises

because the entrepreneur privately observes the cash-flows, and can divert them for personal

consumption. An incentive compatible long-term contract incites her to report cash-flow

realizations truthfully by specifying appropriate transfers and liquidation decisions contingent

on each history of reports.

In line with Green (1987), Spear and Srivastava (1987) or Thomas and Worrall (1990),

we use recursive techniques to characterize the optimal incentive compatible contract. In any

period, a sufficient statistic of the history of past reports is the current expected discounted

utility of the entrepreneur. In the optimal contract, this state variable evolves randomly

between a liquidation threshold, below which the project is stochastically terminated or

downsized, and a dividend threshold, above which the entrepreneur is compensated with

cash. The utility of the entrepreneur increases after high cash-flow realizations, while it

decreases after low cash-flow realizations. Its sensitivity to the performance of the project

goes up with the severity of the agency problem, as measured by the rate at which the

entrepreneur can convert concealed funds into personal consumption. These results are the

stationary counterpart of DeMarzo and Fishman’s (2003) characterization of the optimal

financial contract in a finite horizon setting.

The second step of our analysis consists in offering a new implementation of this optimal

contract with standard financial instruments. We focus on the case where financiers hold

securities, that is, claims to non-negative cash-flows. This is consistent with the financiers
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forming a diffuse investor base, with limited liability. Since the project can generate operating

losses and the entrepreneur also has limited liability, the firm must hold cash reserves to

cover these losses and continue the project. These reserves are held on a bank account,

which ensures that they are observable and that their use is contractible. The securities

arising in the implementation are claims on the cash-flows generated by the firm’s assets,

which consist of the investment project and the cash reserves. Two types of securities are

issued by the firm. (i) Debt is held by the financiers only, and pays a coupon at each period

until the firm is liquidated. Downsizing or liquidation occur when the firm runs short of

cash and cannot service its debt. Debt is performance sensitive, as the coupon decreases

with the firm’s performance record. Specifically, covenants of the optimal financial contract

state that as cash reserves increase and default risk decreases, the coupon rate is reduced.

This property of our implementation is consistent with observed features of venture capital

contracts (Kaplan and Strömberg (2003)), and with the increased reliance on step-up bonds

(Lando and Mortensen (2004)) or performance pricing loans (Asquith, Beatty and Weber

(2005)). (ii) Equity is held both by the entrepreneur and the financiers. In line with the

empirical findings of DeAngelo, DeAngelo and Stulz (2006), dividends are distributed when

retained earnings reach a performance threshold. Thus equity holders receive dividends only

when the firm displays a sufficiently large ratio of liquid to total assets. To maintain incentive

compatibility, the entrepreneur is compensated by holding a non-tradeable fraction of equity,

which increases with the magnitude of the agency problem. Overall, the entrepreneur only

receives cash when the accumulated performance of the firm reaches a contractually specified

threshold (Kaplan and Strömberg (2003)).

While the implementation of the discrete-time optimal contract generates some interesting

qualitative results, it falls short of delivering precise asset pricing implications. To gain more

insight into the pricing of securities and the optimal financial structure of the firm, we examine

a limit model obtained by letting the length of each period go to zero. Our analysis proceeds

in two steps. (i) The first step is purely analytic, and consists in characterizing the continuous-

time limit of the value function that describes the aggregate social surplus in the discrete-time

optimal contract. Using an operator approach, we show that, as the period length goes to zero,

this value function converges uniformly to the solution of a free boundary problem. While

no explicit solution to this problem is available, characterizing the continuous-time limit of

the value function through a simple ordinary differential equation improves significantly the

analytical tractability of the model. (ii) The second step is probabilistic, and consists in

characterizing the continuous-time limit of the entrepreneur’s utility process in the discrete-

time optimal contract. Using stability results for reflected diffusion processes (SÃlomiński

(1993)), we show that, as the period length goes to zero, this utility process converges in

law to the solution of a stochastic differential equation with a reflecting boundary condition.

This limit process can be described as follows. Like its discrete-time counterpart, it evolves

randomly between an absorbing liquidation boundary, at which the project is terminated,

and a reflecting dividend boundary, at which the entrepreneur is compensated with cash.

The instantaneous variations of this limit process can be decomposed into two terms. The

first term is a diffusion, that grows on average at a rate equal to the entrepreneur’s discount

rate, with a constant volatility proportional to the intensity of the incentive problem and

the volatility of the cash-flows. The second term is the change in a non-decreasing process

which increases only when the utility of the entrepreneur hits the dividend threshold. This

reflecting process corresponds to the accumulated cash compensation of the entrepreneur.

2



These convergence results are complementary to the contemporaneous work of DeMarzo

and Sannikov (2006). Building on elegant martingale techniques introduced by Sannikov

(2003), they directly analyze a continuous-time version of the cash-flow diversion model, in

which cumulative cash-flows follow a Brownian motion with drift, corresponding to the limit

of our discrete-time binary cash-flow process. Their characterization of the continuous-time

optimal contract exactly matches our characterization of the continuous-time limit of the

discrete-time optimal contract. This convergence result is not a priori obvious. Indeed,

while it is customary in finance to approximate Brownian motion by binary processes, for

instance to discretize asset prices processes, it cannot be taken for granted that this type

of approximation remains valid in the context of an agency problem, nor that the optimal

contract in the binary model will yield a good approximation of the optimal contract in the

Brownian model (see Hellwig and Schmidt (2002) for a discussion of related difficulties in the

context of Holmström and Milgrom’s (1987) continuous-time principal-agent model).

In the last part of the paper, we use the continuous-time limit of the optimal contract and

of its implementation with cash reserves, stocks and bonds to derive a rich set of novel asset

pricing implications. (i) The endogenous stock price process generated by the implementation

of the optimal financial contract is reminiscent of that postulated by Black and Scholes (1973).

Yet, it displays several new features. First, the stock price is reflected at the dividend barrier.

Next, as the stock price approaches zero, its volatility remains strictly positive. As a result

of this, the price of the stock can reach zero, an event corresponding to the liquidation of

the firm. Last, the volatility of the stock goes up after bad performance, in line with the

leverage effect documented by Black (1976) and Nelson (1991). (ii) Performance shocks have

a persistent impact on the financial structure of the firm. This is consistent with the empirical

findings of Welch (2004). When the firm is financially distressed, or has low cash reserves,

the stock price reacts very strongly to current operating performance. This is also true of the

bond price, but to a lesser extent. Hence, leverage falls as the firm becomes more profitable

and moves out of financial distress. (iii) Our theoretical analysis also sheds light on the

dynamics of balance sheet items. We show that the sign of the correlation between stock

returns and changes in the book-to-market ratio is not constant. For financially distressed or

recently established firms with low cash reserves, stock returns and contemporaneous changes

in the book-to-market ratio should be negatively correlated, while they should be positively

correlated for financially healthy or mature firms. (iv) The credit yield spread provides a

convenient measure of the risk of default. Our continuous-time implementation enables us

to characterize this spread and to describe how it varies with the key parameters of the

model, such as the intensity of the incentive problem. With a more severe agency problem,

additional incentives must be given to the entrepreneur in the form of cash payments, so that

the optimal contract entails lower cash reserves. This makes default more likely to occur in

the near future, and consequently the credit yield spread is higher. This increase in the risk

of default also reduces the valuation of the stock. An empirical implication of this is that

firms facing more severe agency problems should have relatively lower price earning ratios.

The present paper is in line with several recent insightful analyses of dynamic financial

contracting. Gromb (1999) studies renegotiation-proof contracts in a multi-period version of

Bolton and Scharfstein’s (1990) model. More recently, recursive techniques have been used

by DeMarzo and Fishman (2003), Quadrini (2004) and Clementi and Hopenhayn (2006) to

analyze different versions of the cash-flow diversion model. Albuquerque and Hopenhayn

(2004) consider a symmetric information framework in which the entrepreneur can default

3



on her obligations toward the lenders. With the exception of DeMarzo and Fishman (2003),

these papers do not draw the implications of optimal contracting for the firm’s financial

structure. Our implementation differs from DeMarzo and Fishman’s (2003) in that it relies

on securities and cash reserves, while they emphasize the role of credit lines.

The paper is organized as follows. Section 2 presents the model and the discrete-time

optimal contract, and discusses its implementation with cash reserves, debt and equity. In

Section 3, we study the convergence of the value function and of the optimal contract to their

continuous-time limits. Section 4 spells out the continuous-time asset pricing implications of

our model. Section 5 concludes. Proofs not given in the text are in the appendices.

2. THE DISCRETE-TIME MODEL

2.1. The contractual environment

Our basic model is an infinite horizon version of DeMarzo and Fishman’s (2003) cash-flow

diversion model in which cash-flows are assumed to follow a stationary binomial process.

Time is discrete and indexed by nh, where n ∈ N is the number of periods elapsed, and

h > 0 is the length of a period. We will examine in Section 3 the continuous-time limit

of the model obtained as h goes to 0. There are two types of agents, an entrepreneur and

financiers. The financiers are risk-neutral and have unlimited wealth. Their discount factor is

1/(1+rh). The entrepreneur is risk-neutral and has initial wealth A ≥ 0. Her discount factor
is 1/(1 + ρh). We assume that ρ > r, hence the entrepreneur is more impatient than the

financiers. The entrepreneur is protected by limited liability, thus contracts cannot stipulate

negative payments to her.

We consider an investment project which can be managed by the entrepreneur only.

Undertaking this project requires an investment outlay I ≥ 0 at date 0. At each date, the
project can be continued or liquidated. The liquidation value is set equal to 0. As long as

the project is operated, it generates random cash-flows at intervals h according to a binomial

process. Specifically, at any date nh prior to liquidation, the net cash-flow is given by:

chnh = μh+ σεn
√
h, (1)

where μ and σ are positive constants and the random variables {εn}n∈N are identically and
independently distributed, with distribution:

εn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε+ =

r
1− p
p

with probability p,

ε− = −
r

p

1− p with probability 1− p.

(2)

Thus each cash-flow has a Bernoulli distribution with mean μh and variance σ2h. We denote

by ch+ = μh+ σε+
√
h and ch− = μh+ σε−

√
h the possible realizations of the cash-flows. We

shall assume hereafter that h is close enough to 0, so that ch− < 0. One interpretation is that
the project involves operating costs −ch− and yields a gross income ch+ − ch− with probability
p, while with probability 1− p the gross income is 0.

There are three reasons why the entrepreneur would like to contract with financiers.

First, whenever A < I, she needs to borrow to finance the project. Second, because of
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limited liability, she needs to borrow to fund operating costs. Third, because she is more

impatient than the financiers, she would like to borrow to finance consumption.

Contracting between the entrepreneur and the financiers is subject to an ex-post moral

hazard problem. Following Bolton and Scharfstein (1990), Gromb (1999), DeMarzo and

Fishman (2003), Quadrini (2004) and Clementi and Hopenhayn (2006), we assume that

the realizations of the cash-flows are privately observed by the entrepreneur. She can then

conceal them from the financiers and divert them for her personal consumption. We denote

by λ ∈ (0, 1] the rate at which the entrepreneur can convert concealed funds into personal
consumption. Thus 1− λ is the cost of diversion. For h close enough to 0, one has:

pλ(ch+ − ch−) > μh. (3)

Under condition (3), the cost of diversion is low, and the temptation to divert funds is high

relative to the expected cash-flow. As a result of this, the agency problem is severe. It is easy

to check that, in the static version of the model, condition (3) implies that even if the project

requires no investment outlay, I = 0, it cannot be financed with probability 1 whenever the

entrepreneur has low initial wealth. Thus static contracting would lead to credit rationing.

Like the cash-flow realizations, the consumption and saving decisions of the entrepreneur

are not observable by the financiers. As a result of this, financial contracts can be contingent

only on payments and reports made by the entrepreneur. Given a public history of such

payments and reports up to date nh, the contract first specifies the probability xhnh with which

the project is continued. If the project is liquidated, the financiers and the entrepreneur get

their reservation utility, which is 0 as the project has no liquidation value.1 If the project

is continued, the financiers pay −ch− to the entrepreneur to cover operating costs, the use
of these funds for operating the project being verifiable. After the gross income chnh − ch−
is realized, the entrepreneur makes a payment to the financiers, possibly concealing some of

the cash-flow, and sends a report. Taking into account this new information, the contract

then specifies a non-negative transfer uhnh from the financiers to the entrepreneur. Finally,

the entrepreneur chooses how much to consume from concealed funds, at rate λ, and from

her current transfer. Remaining funds accumulate on a private saving account at an interest

rate r0 at most equal to the market rate r. The balances on this account are not observable
by the financiers.

To focus on a single source of market imperfection, we assume that the entrepreneur and

the financiers can fully commit to a long-term contract.2 One can then simplify the analysis

considerably by relying on a version of the revelation principle. As shown by DeMarzo and

Fishman (2003, Proposition 1), there is no restriction in focusing on incentive compatible

direct revelation mechanisms such that the entrepreneur pays chnh − ch− to the financiers and
abstains from private saving, and in which other reports are irrelevant. This is because both

diversion and private savings are weakly inefficient, λ ≤ 1 and r0 ≤ r. Equivalently, the

entrepreneur reports truthfully each realization of the cash-flow, and receives a non-negative

transfer contingent on her report, which she consumes immediately. To induce truthful

revelation of the cash-flows, financiers will rely on transfers contingent on the history of

reports, as well as on the threat of liquidating the project.

1In full generality, one should also allow for transfers from the financiers to the entrepreneur in case of
liquidation. However, promising positive transfers to the entrepreneur in this event would weaken incentives
and be suboptimal. To ease the exposition, we therefore rule out such transfers from the outset.

2DeMarzo and Fishman (2003) also provide an analysis of renegotiation-proof contracts.
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Remark. In this model, an incentive problem arises because the entrepreneur can divert

operating cash-flows. An alternative approach would be to assume that the manager must

exert unobservable effort to enhance cash-flows, as in Innes (1990), Holmström and Tirole

(1997) and in a previous draft of the present paper. While the two interpretations of the

agency problem are slightly different and complementary, it turns out that when the effort

choice is binary, the formal analysis of the two models is identical, except in one respect. In the

cash-flow diversion model, the revelation principle implies that there is no loss of generality

in requiring truthful revelation of cash-flow realizations. By contrast, in the unobservable

effort model, one must impose additional restrictions to ensure that it is optimal to request

effort in all contingencies, which raises additional mathematical difficulties. To simplify the

exposition, we have therefore chosen to focus on the cash-flow diversion scenario.

2.2. The dynamic programming formulation

Following DeMarzo and Fishman (2003), we rely on a dynamic programming formulation to

solve for the optimal contract. Specifically, it can be shown as in Green (1987), Spear and

Srivastava (1987) or Thomas and Worrall (1990) that, at any date, the expected discounted

utility of the entrepreneur in the continuation of the optimal contract is a sufficient statistic

for the information provided by the history of payments and reports up to this date. At any

date prior to liquidation, and given a current promised utility w for the entrepreneur, the

optimal contract thus specifies a continuation probability x and, conditional on the project

not being liquidated, transfers to the entrepreneur, u+ and u−, as well as continuation utilities
for the entrepreneur, w+ and w−, contingent on the report ch+ or c

h
− she makes about the

current realization of the cash-flow. The contract must satisfy the following feasibility and

limited liability constraints:

(x, u+, u−, w+, w−) ∈ [0, 1]×R4+. (4)

We first solve for the optimal contract assuming that the entrepreneur cannot save privately.

We then argue that this optimal contract is robust to private savings.

Let Fh(w) be the expected discounted utility of the financiers given a promised utility

w for the entrepreneur in the optimal incentive compatible contract. At any date prior to

liquidation, the financiers receive the cash-flow from the project, net of the transfer to the

entrepreneur. The function Fh satisfies the following Bellman equation:

Fh(w) = max

½
x

∙
μh− pu+ − (1− p)u− +

pFh(w+) + (1− p)F h(w−)
1 + rh

¸¾
(5)

for all w ≥ 0, subject to (4) and to constraints (6)—(7) stated below. First, the contract must
satisfy a consistency condition, stating that the utility of the entrepreneur at the beginning

of any period must be equal to the expected payment made to her during the period, plus

the expected present value of her continuation utility:

w = x

∙
pu+ + (1− p)u− +

pw+ + (1− p)w−
1 + ρh

.̧ (6)

Second, we impose the condition that the entrepreneur always reports truthfully high cash-

flow realizations. Since by assumption the entrepreneur cannot save privately, this is the case

if the total payoff following a high cash-flow realization is larger than the sum of the total
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payoff following a low cash-flow realization and of the gain in terms of current consumption

of diverting the gross income ch+ − ch−, that is:

u+ +
w+
1 + ρh

≥ u− +
w−
1 + ρh

+ λ(ch+ − ch−). (7)

At this point, we could appeal to DeMarzo and Fishman’s (2003) results to characterize the

optimal contract, adjusting for the fact that our model is stationary while theirs is framed in

a finite horizon setting. Our restriction to binary cash-flows enables us however to provide a

simple and intuitive derivation of the optimal contract, which paves the way to the analysis

of its implementation and of its continuous-time limit.

The first step of our analysis consists in temporarily eliminating current transfers u+ and

u− from the formulation of the problem. To do so, it is convenient to introduce an auxiliary

function defined by V h(w) = w + Fh(w) for all w ≥ 0. The function V h measures the social
surplus generated by the project, which is independent of current transfers. One has then

the following lemma.

Lemma 1. The function V h satisfies the following Bellman equation:

V h(w) = max

½
x

½
μh+

pV h(w+) + (1− p)V h(w−)
1 + rh

− (ρ− r)h[pw+ + (1− p)w−]
(1 + rh)(1 + ρh)

¾¾
(8)

for all w ≥ 0, subject to the constraints:

(x,w+, w−) ∈ [0, 1]×R2+, (9)

w ≥ x
∙
w−
1 + ρh

+ pλ(ch+ − ch−) ,̧ (10)

w ≥ x
∙
pw+ + (1− p)w−

1 + ρh
.̧ (11)

It follows immediately from (9)—(10) that, for w < pλ(ch+ − ch−), liquidation must occur
with positive probability. The probability of liquidation goes to 1 as w goes to 0. This reflects

the fact that the optimal contract relies on the threat of project termination as well as on

continuation utilities to provide incentives to the entrepreneur. When the entrepreneur’s

utility is low, most incentives come from the threat of liquidation. Note that this threat is

socially costly since, even at the time of liquidation, the project remains potentially profitable.

The next lemma states that the solution V h to (8)—(11) exists and is unique, and establishes

some of its properties.

Lemma 2. There exists a unique continuous and bounded solution V h to (8) subject to

(9)—(11). The function V h is non-decreasing, concave, and vanishes at 0. Moreover, there

exist two thresholds wh,m ≥ wh,l ≥ pλ(ch+ − ch−) such that:

(i) If w ∈ [0, wh,l), the project is continued with probability w/wh,l and liquidated with
probability 1− w/wh,l. If w ∈ [wh,l,∞), the project is continued with probability 1.

(ii) The function V h is linear over the liquidation region [0, wh,l), strictly increasing over

[0, wh,m], and constant over [wh,m,∞).
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In the liquidation region [0, wh,l), the continuation probability x is a linear function of

the entrepreneur’s utility. If w ∈ [0, wh,l) and the project is continued, the entrepreneur’s
utility first jumps to w/x = wh,l, and the optimal contract starting at wh,l is then immediately

executed. If the project is liquidated, the continuation utilities are 0 for both the entrepreneur

and the financiers. As a result of this, V h(w) = (w/wh,l)V h(wh,l) for any w ∈ [0, wh,l), and
V h is linear over the liquidation region.

2.3. The optimal contract

We now derive the solution to (8)—(11), from which the optimal contract will follow. At

the upper end of the state space, the interval (wh,m,∞) corresponds to the region where
constraints (10)—(11) are slack. As can be seen from (8), it is then optimal to set x = 1 and:

w+ = w− = w
h,r, (12)

where wh,r is the smallest point at which the mapping w 7→ V h(w) − (ρ − r)hw/(1 + ρh)

reaches its maximum. By construction, wh,r ≤ wh,m. At wh,m, (10) is just binding, so that:

wh,m =
wh,r

1 + ρh
+ pλ(ch+ − ch−), (13)

while (11) is slack. When w ≥ wh,m, incentives are provided by current transfers, and not
through continuation utilities or liquidation threats. To determine the optimal transfers, we

return to the original formulation (4)—(7) of the problem. The consistency constraint (6) pins

down the expected transfer pu++ (1− p)u−, while the incentive compatibility constraint (7)
pins down the difference u+ − u−. Defining:

wh,d = wh,m − λ(ch+ − ch−), (14)

this yields:

u+ = w − wh,d, (15)

u− = w − wh,m. (16)

Additional information on the thresholds wh,l, wh,r and wh,m is provided by the following

lemma.

Lemma 3. For h close enough to 0, wh,l ≤ wh,r < wh,m.

Note that, by construction, the utility of the entrepreneur never leaves the interval [0, wh,r]

once it has entered it, which occurs after at most one period. A key implication of Lemma 3

is that wh,r is a reflecting barrier for the utility of the entrepreneur. This result hinges on the

assumption that ρ > r. If the entrepreneur and the financiers were equally patient, that is if

ρ = r, as in the model of Clementi and Hopenhayn (2006), there would be no cost in delaying

entrepreneurial compensation, and capitalizing the rewards promised to the entrepreneur at

rate r. In that case, it would never be optimal to make transfers to the entrepreneur before

reaching the point at which enough profits have been accumulated to finance the incentive
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costs without ever relying on the liquidation threat.3 By contrast, when ρ > r, there is a

trade-off between the efficiency gains from letting the entrepreneur consume early and the

risk of liquidation. As a result of this, it is optimal to let the entrepreneur consume while

the risk of liquidation is not fully eliminated, so that there always remains a strictly positive

probability that the project will be liquidated in the future.

It remains to characterize the solution to (8)—(11) over the interval [wh,l, wh,m], where

x = 1 and at least one of the constraints (10)—(11) is binding. Using the concavity of V h,

one obtains that it is optimal to let (10) be binding, so that:

w− = (1 + ρh)[w − pλ(ch+ − ch−)]. (17)

Concerning w+, two cases may occur. Either (11) is slack, so that an optimal choice is:

w+ = w
h,r. (18)

As can be seen from (11) and (13)—(14), this is the case if and only if w > wh,d. Alternatively,

if w ≤ wh,d, (11) is binding, so that from (11) and (17):

w+ = (1 + ρh)[w + (1− p)λ(ch+ − ch−)]. (19)

To determine the optimal transfers, we return to the original formulation (4)—(7) of the

problem. If w > wh,d this yields:

u+ = w − wh,d, (20)

u− = 0, (21)

while if w ≤ wh,d this yields:
u+ = u− = 0. (22)

The following proposition offers a summary of the results derived in (12)—(22),4 providing a

stationary analogue to DeMarzo and Fishman’s (2003, Propositions 2—4) characterization of

the optimal contract in a finite horizon setting.

Proposition 1. The optimal contract without private savings is characterized by two regimes:

(i) If w ∈ [0, wh,l), the project is continued with probability x = w/wh,l and liquidated

with probability 1− x = 1 − w/wh,l. If the project is continued, the optimal contract
starting at w/x = wh,l is immediately executed.

(ii) If w ∈ [wh,l,∞), the project is continued with probability 1. The optimal continuation
utilities are given by:

w+ = min{(1 + ρh)[w + (1− p)λ(ch+ − ch−)], wh,r}, (23)

w− = min{(1 + ρh)[w − pλ(ch+ − ch−)], wh,r}, (24)

3This case is not conducive to continuous-time analysis, since the present value (1 + rh)pλ(ch+ − ch−)/(rh)
of these incentive costs goes to ∞ as h goes to 0. While the continuous-time limit of the discrete-time value
function is still well-defined, the discrete-time optimal contract does not converge to a well-defined limit.

4We thank an anonymous referee for suggesting this formulation to us.
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while the optimal current transfers are given by:

u+ = max{w −wh,d, 0}, (25)

u− = max{w −wh,m, 0}. (26)

As a result of this, the total utility of the entrepreneur given a cash-flow realization c

is w − pλ(ch+ − ch−) + λ(c− ch−). If this exceeds wh,r/(1 + ρh), the entrepreneur is paid

the excess over wh,r/(1 + ρh) in cash.

This result can be interpreted as follows. For incentive compatibility reasons, the total

utility of the entrepreneur increases in the cash-flow she reports. As shown by (23)—(24),

her utility increases following a high cash-flow realization, while it decreases following a

low cash-flow realization. Another key implication of (23)—(24) is that, as λ increases and

thus the agency problem intensifies, the utility of the entrepreneur becomes more sensitive

to the performance of the firm. Finally, as shown by (25)—(26), the entrepreneur receives

immediate cash compensation only when the accumulated performance of the firm reaches

a contractually specified threshold. Below this threshold, the entrepreneur is compensated

solely by the promise of future payments.

We have derived the optimal contract under the assumption that the entrepreneur cannot

save privately. In line with DeMarzo and Fishman (2003, Corollary 3A), a key observation is

that the marginal benefit of reporting a higher cash-flow realization is constant and equal to

λ. As a result of this, since the discount rate ρ of the entrepreneur is greater than the return

r0 on private savings, she has no incentive to conceal a high cash-flow realization in order to
report higher cash-flow realizations in the future. That is, the optimal contract derived in

Proposition 1 is robust to private savings, and therefore coincides with the optimal contract

when the entrepreneur can save privately.

2.4. Initializing the optimal contract

To fully characterize the dynamics of the contractual relationship, one needs only to specify

the initial value of the entrepreneur’s utility, wh0 . Recall that F
h(w) = V h(w)− w measures

the expected discounted utility of the financiers in the optimal contract given a promised

utility w for the entrepreneur. In line with Holmström and Tirole (1997), one can then

interpret maxw∈R+{Fh(w)} as the maximum income that can be pledged to financiers. Two

cases can then arise. If maxw∈R+{Fh(w)} < I −A, then the maximum pledgeable income is

lower than the need for outside funds, so that the project cannot be financed with probability

1.5 Note that this may occur despite the project having a positive net present value in the

absence of agency costs, μ(1 + rh)/r > I, reflecting the possibility of credit rationing. If, on

the contrary, maxw∈R+{Fh(w)} ≥ I − A, then the project can be financed with probability
1, in contrast with the static case. The initial rent Fh(wh0 ) − (I − A) of the financiers then
depends on the allocation of bargaining power between the entrepreneur and the financiers.

If the entrepreneur has all the bargaining power at date 0, she maximizes her initial utility

subject to the financiers’ participation constraint:

wh,E0 = max {w ∈ R+ |Fh(w) ≥ I −A}.
5As shown by DeMarzo and Fishman (2003), randomization at this initial stage would enable funding,

although with a probability less than 1.
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If, on the contrary, the financiers have all the bargaining power at date 0, they choose the

entrepreneur’s initial utility so as to obtain the maximum pledgeable income:

wh,F0 ∈ argmax
w∈R+

{Fh(w)}.

Since Fh is concave and bounded above, this situation leads to a lower initial utility for

the entrepreneur, wh,F0 ≤ wh,E0 , and thus to a lower social surplus, V h(wh,F0 ) ≤ V h(wh,E0 ).

More generally, the higher is the financiers’ bargaining power, the lower are the entrepreneur’s

initial utility and the social surplus. This reflects the rent-efficiency trade-off typically arising

in principal-agent problems. Since the entrepreneur is cash-constrained, she cannot generate

a Pareto improvement by offering a monetary transfer in exchange for an increase in her

initial utility.

Once the initial value of the entrepreneur’s utility has been specified, the dynamics of the

optimal contract is fully determined by Proposition 1. We denote by {xhnh}n∈N, {whnh}n∈N
and {uhnh}n∈N the stochastic processes describing the continuation probabilities, the utility
of the entrepreneur and the transfers to the entrepreneur in the optimal contract. Note that

the utility of the entrepreneur enters the interval [0, wh,r] after at most one period and never

leaves it thereafter. Hence there is no significant loss of generality in assuming that wh0 ≤ wh,r.
In this case, it follows from (26) that transfers are never distributed to the entrepreneur in

case of a low cash-flow realization. Proposition 1 can then be rephrased as follows. As long

as the project is continued, which occurs in each period with probability:

xhnh = min

½
whnh
wh,l

, 1

¾
, (27)

the utility of the entrepreneur evolves according to:

wh(n+1)h = min

½
(1 + ρh)

∙
whnh
xhnh

+ λ(chnh − μh)

¸
, wh,r

¾
, (28)

while the transfers to the entrepreneur are given by:

uhnh = max

½
whnh
xhnh
− wh,d, 0

¾
1{chnh=ch+}

. (29)

Once the project is liquidated, the entrepreneur receives no further transfers, and her utility

stays constant at 0.

2.5. Implementing the optimal contract with cash reserves and securities

So far, our results are closely in line with DeMarzo and Fishman (2003). We now depart from

their analysis, starting with a new implementation of the optimal contract characterized in

Proposition 1. In general, several implementations are possible. Indeed, as long as incentive,

limited liability and participation constraints are satisfied, the Modigliani and Miller (1958)

logic applies, and slicing and dicing of cash-flows is irrelevant. To narrow down the set of

possible implementations, we impose that financiers hold securities, defined as claims with

limited liability, which can be held by a diffuse investor basis. This contrasts with DeMarzo

and Fishman (2003), who show how to implement the optimal contract using a credit line,

together with long-term debt and equity. Ownership of securities by a diffuse investor basis
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hinders renegotiation. This provides a motivation for our assumption that parties can commit

to a long-term contract. As argued below, our implementation is consistent with stylized facts

and empirical evidence about the financial structure of firms. In Section 4, we also show that

it generates a rich set of testable implications for the pricing of securities.

At each date, operating costs can exceed operating revenues, resulting in a negative net

cash-flow. To meet these cash outlays while preserving the entrepreneur’s and the financiers’

limited liability, the firm must hold cash reserves. A consequence of limited liability is that

the project must be liquidated when the firm runs out of cash. Cash reserves are held on

a bank account, and their use is assumed to be verifiable. This differs from the operating

cash-flow generated inside the firm, which can be diverted and concealed by the entrepreneur.

Interest is earned at rate r on the cash deposited at the bank. In equilibrium, the change

in cash reserves at each date is thus equal to the net operating cash-flow, plus the interest

on cash reserves, less the payments to the entrepreneur and the financiers. Since no further

investments are made after date 0, these additional cash reserves are accounted for as retained

earnings in the financial statements of the firm.

For implementation purposes, it is convenient to interpret x as an irreversible downsizing

factor rather than as a liquidation probability. When x < 1, a fraction 1−x of the project is
liquidated, and the firm continues to operate at a reduced scale. We assume constant returns

to scale, so that current and future cash-flows are scaled down by a factor x, along with the

utilities of the entrepreneur and of the financiers. According to this downsizing interpretation,

w represents the size-adjusted entrepreneur’s utility, while V h(w) represents the size-adjusted

social surplus. The size-adjusted utility of the entrepreneur evolves as follows. If w ≥ wh,l, no
downsizing takes place in the current period. The size-adjusted continuation utilities are then

given by (23)—(24), and the size-adjusted transfers by (25)—(26). By contrast, if w < wh,l,

the firm is first scaled down by a factor x = w/wh,l, and the optimal contract starting at a

size-adjusted utility level w/x = wh,l is then immediately executed. This interpretation is

consistent with all the formal results hitherto obtained. In particular, the Bellman equation

(8)—(11) is the same under the downsizing and the probabilistic interpretation of liquidation.

We return to the latter in Section 3, and we show in Section 4 that the two interpretations

coincide in the continuous-time limit of the model.

We denote by {x̂hnh}n∈N, {ŵhnh}n∈N and {ûhnh}n∈N the stochastic processes describing
the downsizing factors, the size-adjusted utility of the entrepreneur and the size-adjusted

transfers to the entrepreneur in the optimal contract. These processes are formally defined

in Appendix A. By construction, they coincide with the processes {xhnh}n∈N, {whnh}n∈N and
{uhnh}n∈N defined by (27)—(29) until the period in which liquidation can occur according to
the probabilistic interpretation. The size of the firm at the beginning of period n is given byQn−1
i=0 x̂

h
ih, with the convention

Q−1
i=0 = 1.

In the abstract characterization of the optimal contract, the relevant state variable is

the size-adjusted utility of the entrepreneur. In the implementation of the optimal contract,

payoffs and decisions are contingent on size-adjusted cash reserves, defined as the ratio of cash

reserves to the current size of the firm. We design the implementation in such a way that these

two state variables are informationally equivalent. Specifically, the size-adjusted cash reserves

m̂h
nh will be constructed so that m̂

h
nh = ŵ

h
nh/λ

h at any date nh, where λh = (1+ρh)λ/(1+rh).6

In turn, the cash reserves held by the firm on its bank account at the beginning of period

6Similarly, Shim (2006) analyzes a dynamic agency model of bank regulation, in which the level of book
value capital plays the role of a record keeping device, linked to the banker’s continuation utility.

12



n are given by mh
nh = (

Qn−1
i=0 x̂

h
ih)m̂

h
nh. We focus hereafter on the case where ŵ

h
0 ≤ wh,r. If

ŵh0 > w
h,r, one can pay a special dividend to the entrepreneur at date 0, and then apply our

implementation of the optimal contract.

Proposition 2. Whenever λ is close enough to 1 and h is close enough to 0, the optimal

contract can be implemented as follows. At date 0, the firm issues stocks and bonds. The

entrepreneur contributes her initial wealth A and is granted a non-tradeable fraction λ of the

stocks. The financiers receive the remaining fraction 1−λ of the stocks and all of the bonds.

The firm uses the entrepreneur’s contribution and the proceeds from the issuance to pay the

investment cost I and to hoard an amount of cash m̂h
0 = ŵ

h
0/λ

h. At the beginning of period

n, the size of the firm is
Qn−1
i=0 x̂

h
ih as specified by the optimal contract. Then, at any date

nh, the implementation is characterized by two regimes:

(i) If m̂hnh ∈ [0, wh,l/λh), the firm is scaled down by a factor x̂hnh = m̂h
nh/(w

h,l/λh), after

which the implementation starting at m̂h
nh/x̂

h
nh = w

h,l/λh is immediately executed.

(ii) If m̂h
nh ∈ [wh,l/λh, wh,r/λh], x̂nh = 1 and no downsizing takes place. Stocks distribute

a dividend:

êhnh =

Ã
nY
i=0

x̂hih

!
max

½
λhm̂h

nh

λ
− w

h,d

λ
, 0

¾
1{chnh=ch+}

, (30)

while bonds distribute a coupon:

b̂hnh =

Ã
nY
i=0

x̂hih

!∙
μh− (ρ− r)hm̂

h
nh

1 + rh
.̧ (31)

In particular, stocks distribute a dividend if and only if, following a high cash-flow

realization, the size-adjusted cash reserves m̂h(n+1)h reach w
h,r/λh, while no dividend is

distributed following a low cash-flow realization.

Rules (i)—(ii) in Proposition 2 are specified at date 0 as covenants of the optimal contract.

Afterwards, in the execution of the contract, neither the entrepreneur nor the financiers have

discretion over these covenants. In line with our full commitment assumption, there is thus

no scope for renegotiating the liquidation and payout decisions.

In this implementation, the entrepreneur is compensated with a share λ of the stocks.

Since λhm̂h
nh = ŵhnh by construction, the dividend (30) paid by the stocks reflects that,

when no downsizing takes place in period n, the size-adjusted transfer ûhnh received by the

entrepreneur in case of success is given by max{ŵhnh−wh,d, 0}, which is the analogue of (25)
under the downsizing interpretation. The assumption that λ is high enough and h is small

enough guarantees that the coupon (31) paid by the bonds remains non-negative for each

level of the size-adjusted cash reserves.

Our implementation has several attractive features, consistent with stylized facts and

empirical findings about the financial structure of firms.

Balance sheet. The implementation essentially consists in creating a firm that is jointly

owned by the entrepreneur and the financiers. The value of this firm reflects not only the

investment project, but also the level of its cash reserves. On the liability side of the firm’s

balance sheet, the counterparts of these assets are debt, held by the financiers only, and

equity, held by both the entrepreneur and the financiers. These securities are limited liability

claims on the cash-flows generated by the assets of the firm.
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Financial distress. The firm is downsized when operating losses drive size-adjusted cash

reserves to a very low level. This is consistent with the stylized fact that financially distressed

firms are often downsized (Denis and Shome (2005)). A natural interpretation of downsizing

is that the firm must maintain a minimum liquidity ratio wh,l/λh, below which a fraction of

its assets must be liquidated.

Stocks. Stocks are claims on dividends which are distributed only when cash reserves

reach a contractually specified threshold. As pointed out by Brealey and Myers (2000, Section

24.6), bond covenants typically include clauses restricting the set of circumstances in which

dividends can be paid. In particular, contractual clauses often preclude dividend payments

when the firm does not have a sufficiently large ratio of liquid assets to total assets. Our

results are also in line with the empirical findings of DeAngelo, DeAngelo and Stulz (2006),

who observe a significant positive relationship between the distribution of dividends and the

level of retained earnings, which amount to cash reserves in our model. Consistent with our

emphasis on cash reserves, firms that consistently paid dividends in their sample displayed a

large ratio of cash balances to total assets. Our model also implies that dividends are paid only

after the firm has established a sufficient performance record. This is in line with the stylized

fact that dividends are paid by large and mature firms, while young firms, especially in the

high-tech industry, pay no cash to shareholders for long periods of time (Bulan, Subramaniam

and Tanlu (2005)).

Managerial compensation. In line with stylized facts on executive compensation (Dial

and Murphy (1995), Murphy (1999)), the entrepreneur, who is also the manager of the

project, is compensated with restricted stocks, which she cannot sell. If she could, this would

curb her incentives to refrain from diverting cash-flows. The entrepreneur’s share of equity

increases with the intensity of the incentive problem as measured by λ. Dividends on these

stocks are paid after the firm has accumulated high enough cash reserves. This is consistent

with the empirical findings of Kaplan and Strömberg (2003) that financial contracts typically

specify that managers receive cash compensation when performance milestones are reached.

Kaplan and Strömberg (2004) find that the use of such performance benchmarks increases

with asymmetric information about the operations of the firm.

Bonds. While stocks distribute dividends only when cash reserves reach a threshold,

bonds pay a coupon in each period. If the entrepreneur and the financiers were equally

patient, the size-adjusted coupon would be constant, as in a standard debt contract. By

contrast, when ρ > r, the coupon decreases with size-adjusted cash reserves, which reflect

accumulated firm performance. This is consistent with clauses observed in practice in financial

contracts. Kaplan and Strömberg (2003) find that venture capitalists often hold preferred

shares, which are similar to bonds in that they deliver contractually specified revenues, to

be paid before any dividend. As observed by Kaplan and Strömberg (2003, Table 3), the

contracts defining these claims typically include clauses stating that their revenue is reduced

if performance goals are attained, or that their owner is entitled to additional compensation

if the performance of the firm lies below a certain threshold. The payments on the bonds

in Proposition 2 are also in line with those of step-up bonds, which have been issued in

large amounts over the recent years, especially in the European telecom industry (Lando and

Mortensen (2004)). Such bonds have provisions stating that the coupon payments increase

as the credit rating of the issuer deteriorates, which in our model corresponds to a decline
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in cash reserves. The bonds in our implementation are also similar to performance pricing

loans, for which the interest is tied to some pre-specified measure of the performance of the

borrower.7 Asquith, Beatty and Weber (2005) document the prevalence of such clauses in

bank loans.

3. THE CONTINUOUS-TIME LIMIT

In this section, we examine the properties of the continuous-time limit of the model obtained

when the length of each period goes to 0. This will enable us in Section 4 to derive sharp

predictions on the pricing of securities used to implement the optimal contract.

3.1. Convergence of the value functions

To begin with, we study the limit of the value functions characterized in Lemma 1. Our

first result shows that the liquidation region [0, wh,l) shrinks to {0} as h goes to 0. Thus
in the continuous-time limit, liquidation is no longer probabilistic, or alternatively no size

adjustments need to take place before the firm is liquidated, unlike in the discrete-time

framework.

Lemma 4. limh↓0wh,l = 0.

The analysis now proceeds in several steps. First, we provide a heuristic derivation of the

continuous-time limit of the discrete-time value functions. Next, we state and discuss our

main convergence result. Finally, we provide an outline of the proof of this result.

A heuristic derivation. We first provide an intuitive approximation of the value function

V h for h close to 0. To do so, we focus on the region [wh,l, wh,d] of the state space in which

the project is continued with probability 1, but no transfers are made to the entrepreneur.

For any w in this region, the continuation utilities w− and w+ are given by (17) and (19).
By (1)—(2), ch+ − ch− = σ(ε+ − ε−)

√
h, so that Taylor-Young approximations yield:

V h(w+) = V
h(w)+V h0(w)[ρwh+ (1− p)λσ(ε+ − ε−)

√
h]

+
1

2
V h00(w)(1− p)2λ2σ2(ε+ − ε−)

2h+ o(h)

and:

V h(w−) = V
h(w)+V h0(w)[ρwh− pλσ(ε+ − ε−)

√
h]

+
1

2
V h00(w)p2λ2σ2(ε+ − ε−)

2h+ o(h).

Taking expectations and using the fact that p(1− p)(ε+ − ε−)2 = 1 by (2) leads to:

pV h(w+) + (1− p)V h(w−) = V h(w) + V h0(w)ρwh+
1

2
V h00(w)λ2σ2h+ o(h).

7Tchistyi (2006) extends DeMarzo and Fishman’s (2003) analysis to the case where cash-flows are serially
correlated. He offers an implementation of the optimal contract using a credit line in which a higher interest
rate is charged when the balance is high. Such performance pricing is similar to our findings.
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Substituting this into (8) and using the fact that pw+ + (1− p)w− = (1 + ρh)w by (17) and

(19), one obtains the following approximation:

rV h(w) = μ− (ρ− r)w + ρwV h0(w) +
λ2σ2

2
V h00(w) + o(1). (32)

This intuition for (32) is that the total social return of the project is approximatively equal

to the expected cash-flow μ, plus the social benefit ρwV h0(w)−(ρ−r)w of providing utility w
to the entrepreneur, less the social cost −λ2σ2V h00(w)/2 of incentives. The above derivation
is heuristic in that it presumes that the function V h is twice differentiable, which need not

always be the case. Moreover, while we know that limh↓0wh,l = 0, we have little information
so far about the behavior of wh,d for h close to 0, so that the range over which (32) is valid

remains unclear. Finally, (32) gives us information about the discrete-time value functions,

not directly about their continuous-time limit. What needs to be established is that an exact

version of (32) holds in the limit as h goes to 0.

The convergence result. The main result of this subsection can be stated as follows.

Proposition 3. As h goes to 0, the value function V h converges uniformly to the unique

solution V to the free boundary problem:

rV (w) =

⎧⎪⎪⎨⎪⎪⎩
μ− (ρ− r)w + ρwV 0(w) +

λ2σ2

2
V 00(w) if w ∈ [0, wm],

rV (wm) if w ∈ (wm,∞),
(33)

with boundary conditions:

V (0) = 0, (34)

V 0(wm) = 0, (35)

V 00(wm) = 0. (36)

The ordinary differential equation in (33) is the natural continuous-time counterpart of

the Taylor-Young approximation (32). Condition (34) simply reflects that the discrete-time

value functions V h all vanish at 0 and converge uniformly to V . Condition (35) is a smooth

pasting condition which expresses the fact that wm can be interpreted as a dividend boundary

in the continuous-time limit of the model, as discussed in Subsection 3.2 below. Condition

(36) is a super contact condition which reflects the optimality of the dividend boundary wm.

Our next result is a useful corollary of Proposition 3.

Corollary 1. limh↓0wh,m = wm.

By (13)—(14), an immediate implication of this is that limh↓0wh,r = limh↓0wh,d = wm.

In particular, the region (wh,d, wh,m] in which the entrepreneur receives positive transfers in

case of success shrinks to {wm} as h goes to 0.
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Outline of the proof. The proof of Proposition 3 proceeds in several steps. First, we show

that the free boundary problem (33)—(36) has a unique solution.

Lemma 5. There exists a unique solution V to (33)—(36).

Next, we establish two important properties of V .

Lemma 6. V is strictly increasing and strictly concave over [0, wm].

We now come to the key part of the proof. For any period length h > 0, and for

any bounded continuous function v defined over R+, let T h,cv be the incentive constrained
maximum social surplus given a continuation value function v, assuming that stochastic

liquidation is not feasible. The operator Th,c is more tractable than the Bellman operator Th

implicit in (8)—(11) because the constraints that enter its definition are linear, see equations

(A.1)—(A.4) in the Appendix. Specifically, T h,c differs from Th only in that x is constrained

to be equal to 1. From (10), this implies that Th,cv is defined over [pλ(ch+ − ch−),∞) only.
Moreover, by construction, T h,cV h = T hV h = V h over [wh,l,∞). We examine what happens
when one applies the operator Th,c to the solution V to (33)—(36) for h close enough to

0. For this purpose, it will be convenient to denote by k · kh the supremum norm over

[pλ(ch+ − ch−),∞). One has then the following result.

Lemma 7. limh↓0 kT h,cV − V kh/h = 0.

The proof relies on the differential operator (33) characterization of V , together with the

smooth pasting and super contact conditions (35)—(36). The intuitive meaning of this result

is that, when it is applied to V , the operator T h,c converges rapidly to the identity as h

goes to 0. Alternatively, note that the operator T 0,c obtained by letting h = 0 in (A.1)—(A.4)

coincides with the identity on the subspace of concave functions defined over R+. Then, since
V is itself concave by Lemma 6, what Lemma 7 asserts is that the derivative at h = 0 of the

operator T h,c, evaluated at the solution V to (33)—(36), is equal to 0:

lim
h↓0

k(Th,c − T 0,c)V kh
h

= 0.

Since T h,cV h = V h over [wh,l,∞) by construction, and limh↓0wh,l = 0 by Lemma 4, this

suggests that V h converges to V as h goes to 0. This can be formally established as follows.

Note that V h − V = Th,cV h − Th,cV + T h,cV − V over [wh,l,∞). Since wh,l ≥ pλ(ch+ − ch−),
one has, by definition of the norm k · kh:

sup
w∈[wh,l,∞)

{|V h(w)− V (w)|} ≤ kTh,cV h − T h,cV kh + kTh,cV − V kh

≤ kV h − V k0
1 + rh

+ kT h,cV − V kh,

(37)

where k · k0 is the standard supremum norm over R+, and the second inequality follows from
a straightforward adaptation of Blackwell’s theorem. We now use (37) to obtain an upper

bound for kV h − V k0. A difficulty is that the left-hand side of (37) may be strictly smaller
than kV h − V k0, as the function |V h − V | may reach its maximum over R+ in [0, wh,l]. Two
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cases must therefore be distinguished. Either kV h − V k0 = supw∈[wh,l,∞){|V h(w) − V (w)|}
along a subsequence of h’s that goes to 0. It then follows from (37) that:

kV h − V k0 ≤
µ
1 + rh

r

¶
kT h,cV − V kh

h
.

Lemma 7 then implies that kV h − V k0 goes to 0, and thus V h converges to V uniformly

along this subsequence. Alternatively, kV h − V k0 = maxw∈(0,wh,l){|V h(w)− V (w)|} along a
subsequence of h’s that goes to 0. It then follows that:

kV h − V k0 = |V (w̃h)− αhw̃h|,

where αh is the constant slope of V h over (0, wh,l), and w̃h ∈ (0, wh,l) is given by the first-
order condition V 0(w̃h) = αh. Since V 0 is bounded, the slopes αh remain bounded. Lemma
4 then implies that kV h − V k0 goes to 0, and thus V h converges to V uniformly along this

subsequence. This completes the proof of Proposition 3.

Remark. It should be noted that the proof of Proposition 3 only makes use of the Bellman

operator characterization of the discrete-time value functions, along with the differential

operator characterization of the continuous-time value function. In particular, it relies on

the discrete-time value functions only to the extent that they are defined as fixed points of

a family of Bellman operators. As can be seen from the proof of Lemma 7, however, the

application of the operator T h,c to the continuous-time value function V leads to thresholds

similar to those used in the derivation of the discrete-time optimal contract.

3.2. Convergence of the optimal contracts

The results obtained so far are purely analytic. The objective of this subsection is to study

their probabilistic counterpart, that is, the limit of the optimal contracts characterized in

Proposition 1. We first examine the continuous-time limit of the cumulated cash-flow process.

By (1), for any fixed period length h > 0, the total revenue generated by the project up to

any date nh prior to liquidation is given by:

rhnh = μnh+ σ
nX
i=1

εi
√
h. (38)

A continuous-time process Rh = {Rht }t≥0 can be obtained from the discrete-time revenue

process {rhnh}n∈N given by (38) by setting Rht = rh[[t/h]]h for all t ≥ 0, where [[t/h]] is the integer
part of t/h, that is, the unique integer n such that t ∈ [nh, (n + 1)h). Accordingly, each
sample path of Rh is a step function, taking the value rhnh when t ∈ [nh, (n+1)h). It follows
then from Jacod and Shiryaev (1987, Chapter IX, Theorem 4.21) that, as h goes to 0, this

process converges in law to an arithmetic Brownian motion R = {Rt}t≥0 with drift μ and
volatility σ,

Rt = μt+ σZt (39)

for all t ≥ 0, where Z = {Zt}t≥0 is a standard Brownian motion. Similarly, for any fixed
period length h > 0, a continuous-time process Wh = {Wh

t }t≥0 can be obtained from the

discrete-time utility process {whnh}n∈N by setting Wh
t = w

h
[[t/h]]h for all t ≥ 0. Our objective

is to study the limit in law of this process as h goes to 0.
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The analysis proceeds in several steps. First, we provide a heuristic derivation of the

continuous-time limit of the discrete-time utility process. Next, we establish an intuitive

probabilistic representation of the continuous-time value function. Finally, we state and

discuss our main convergence result.

A heuristic derivation. We use the results of Subsections 2.3 and 3.1 to identify the limit

of the utility processWh as h goes to 0. Note first that since the value function V h converges

uniformly to V , the initial value Wh
0 of the process W

h converges to a well-defined limit W0,

holding the bargaining power of the financiers and that of the entrepreneur fixed as h goes to

0. Since there is no loss of generality in assuming that Wh
0 ≤ wh,r for all h > 0 as the utility

of the entrepreneur enters the interval [0, wh,r] after at most one period and never leaves it

afterwards, and since limh↓0wh,r = wm by Corollary 1, one can assume that W0 ∈ [0, wm].8
Next, by Proposition 1, the utility of the entrepreneur is reflected at wh,r, and it grows at an

expected rate ρh and with constant volatility λσ
√
h over the interval (wh,l, wh,r). Moreover,

by Lemma 4, the liquidation region [0, wh,l) shrinks to {0} as h goes to 0. Finally, by

Corollary 1, the region (wh,d, wh,m] in which the entrepreneur receives positive transfers in

case of success shrinks to {wm} as h goes to 0. This suggests that, in the continuous-time
limit, the utility of the entrepreneur follows a diffusion process that is reflected at wm and

killed at 0, and that grows at an expected rate ρ and with constant volatility λσ over the

interval (0, wm).

To establish this result, we rely on tools from the theory of reflected diffusion processes.

We first need an adequate formalization of the candidate limit process. This can be achieved

as follows. Given the Brownian motion Z = {Zt}t≥0, consider the so called Skorokhod
problem of finding a continuous adapted process W = {Wt}t≥0 with initial value W0 and a

non-decreasing adapted process L = {Lt}t≥0 with initial value 0 that jointly satisfy:

dWt = ρWtdt+ λσdZt − dLt, (40)

Wt ≤ wm, (41)

Lt =

Z t

0
1{Ws=wm} dLs (42)

for all t ∈ [0, τ ], where τ = inf{t ≥ 0 |Wt = 0}, and Wt = 0 for all t ≥ τ . Condition (42)

requires that L increases only when W hits the boundary wm, while (40)—(41) express the

fact that this causes W to be reflected back at wm. From Tanaka (1979, Theorem 4.1), there

exists a pathwise unique solution (W,L) to (40)—(42).

A probabilistic representation. The above heuristic derivation suggests that W is the

continuous-time limit of the entrepreneur’s utility process, and therefore that L represents

the entrepreneur’s continuous-time cumulative payment process. In line with this conjecture,

the following representation result holds.

Proposition 4. Let F (w) = V (w)−w denote the financiers’ utility given a promised utility
8Alternatively, one could allow forW0 > w

m, and let the continuous-time limit of the discrete-time optimal
contract start with a transfer to the entrepreneur bringing back her utility to wm.
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w for the entrepreneur in the continuous-time limit of the model. Then, for any w ∈ [0, wm],

w = E(w,0)
∙Z τ

0
e−ρtdLt ,̧ (43)

F (w) = E(w,0)
∙Z τ

0
e−rt(μdt− dLt) ,̧ (44)

where E(w,0) is the expectation operator induced by the process (W,L) starting at (w, 0).

This result is a simple consequence of Itô’s formula, together with the properties (33)—(35)

of V and the dynamics (40)—(42) of W . The interpretation of (43) is that the utility of the

entrepreneur is equal to the present value of the payments she receives, discounted at rate

ρ. Similarly, (44) says that the utility of the financiers is equal to the present value of the

cash-flows from the project, less the payments to the entrepreneur, discounted at rate r.

The structure of payments is then intuitively as follows. As long as W stays in [0, wm),

the entrepreneur receives no payments. By contrast, whenever W hits wm, the entrepreneur

receives an immediate payment dL, and W bounces back in [0, wm). Therefore wm can be

interpreted as a dividend boundary in the continuous-time limit of the model. The smooth

pasting condition (35), which plays a key role in the proof of (44), accordingly expresses

the fact that the marginal cost of compensating the entrepreneur at wm is just equal to

the marginal cost of an immediate payment, that is F 0(wm) = −1. Finally, the project is
liquidated at the first time τ at which W hits 0, and the continuation utilities are then 0 for

both the entrepreneur and the financiers.

The convergence result. The main result of this subsection can be stated as follows.

Proposition 5. As h goes to 0, the process Wh converges in law to the process W .

This result strengthens the conclusions of Proposition 3 by establishing that the discrete-

time optimal contract, as summarized by the utility process of the entrepreneur, converges to

a well-defined continuous-time limit as h goes to 0. This justifies rigorously our interpretation

of the representation (43)—(44).

The proof of Proposition 5 proceeds in three steps. Leaving aside the issues raised by

the potential liquidation of the project, we first study the stochastic processes W̃h and W̃

generated by (23)—(24) and (40)—(42) over the whole intervals (−∞, wh,r] and (−∞, wm]. A
key observation is that the discounted version W̃h,ρ of W̃h solves a discretized and discounted

version of the Skorokhod problem (40)—(42). One can then rely on stability properties of this

problem (SÃlomiński (1993, Proposition 4)) to establish that, as h goes to 0, W̃h,ρ converges

in law to the discounted version W̃ ρ of W̃ . In the second step of the proof, we argue that

since limh↓0 wh,l = 0, this convergence result is preserved if one kills W̃h and W̃ , respectively

at the first times at which W̃h < wh,l and W̃ ≤ 0. Note that the process W̃ killed at 0

coincides with W . The third step of the proof deals with the liquidation region [0, wh,l),

and examines the relationship between the discounted version Wh,ρ of Wh and the process

W̃h,ρ killed at the first time at which W̃h < wh,l. By construction, the processes Wh,ρ and

W̃h,ρ coincide up to the point where they reach the liquidation region. Using again the fact

that limh↓0 wh,l = 0, we show that the distance between the paths of Wh,ρ and those of the

process W̃h,ρ killed at the first time at which W̃h < wh,l converges to 0 in probability as h

goes to 0. Combining this with the first step of the proof implies the result.
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3.3. Comparison with DeMarzo and Sannikov (2006)

In contemporaneous work, DeMarzo and Sannikov (2006) study a continuous-time version

of the cash-flow diversion model, in which cumulative cash-flows follow a Brownian motion

with drift as in (39). In line with Sannikov (2003), they use martingale techniques to derive

the optimal contract. Their continuous-time characterization of the financiers’ value function

and of the entrepreneur’s utility process matches our characterization of the continuous-time

limit of the discrete-time optimal contracts. Propositions 3 and 5 therefore show that their

continuous-time analysis emerges as the limit of a discrete-time cash-flow diversion model in

which cash-flows follow the binomial process defined by (1)—(2).

4. DYNAMIC PRICING OF SECURITIES

In this section, we investigate the implications of our continuous-time analysis for the pricing

of the securities used to implement the optimal contract.

4.1. Security prices

We first describe the continuous-time limit of the implementation of the discrete-time optimal

contract proposed in Subsection 2.5. For a short period length h > 0, this implementation

generates a stochastic process {m̂h
nh}n∈N for size-adjusted cash reserves that is designed in

such a way that m̂h
nh = ŵ

h
nh/λ

h at each date nh. The cash reserves held by the firm on its

bank account at the beginning of period n are given bymh
nh = (

Qn−1
i=0 x̂

h
ih)m̂

h
nh. A continuous-

time process Mh = {Mh
t }t≥0 can be obtained from the discrete-time cash reserves process

{mh
nh}n∈N by setting Mh

t = mh
[[t/h]]h for all t ≥ 0. The processes Wh and Mh are not

obviously related to each other, since the former derives from the probabilistic interpretation

of liquidation, while the latter derives from the downsizing interpretation of liquidation.

However, the following corollary of Proposition 5 shows that Mh and Wh/λh have the same

limit M =W/λ as h goes to 0, implying that the two interpretations of liquidation coincide

in the continuous-time limit of the model. Intuitively, this is because the liquidation region

[0, wh,l) shrinks to {0} as h goes to 0.

Corollary 2. As h goes to 0, the process Mh converges in law to the process M .

Since M =W/λ, it follows from (40) that:

dMt = ρMtdt+ σdZt −
1

λ
dLt (45)

for all t ∈ [0, τ ], and Mt = 0 for all t ≥ τ . Note that τ = inf{t ≥ 0 |Mt ≤ 0} by construction,
so that the firm is liquidated as soon as it runs out of cash. This is an endogenous feature of the

implementation of the optimal contract, rather than an exogenous and possibly suboptimal

restriction, as in the dividend distribution models of Jeanblanc-Picqué and Shiryaev (1995)

or Radner and Shepp (1996). From (41), the cash reserves are bounded above by wm/λ at

all times. One can alternatively represent the dynamics of the cash reserves by:

dMt = (rMt + μ)dt+ σdZt − dLt − dPt (46)

for all t ∈ [0, τ ], where dL is the payment to the entrepreneur and dP is the payment to the
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financiers. It follows then from (45)—(46) that:

dPt = [μ− (ρ− r)Mt]dt+
1− λ

λ
dLt (47)

for all t ∈ [0, τ ]. Equations (45) and (47) provide the continuous-time analogue of our discrete-
time implementation. There are two types of securities, namely stocks and bonds. As in the

discrete-time implementation, the entrepreneur is granted a non-tradeable fraction λ of the

stocks. Stocks pay out only when cash reserves reach a threshold, while bonds pay out a

continuous stream of cash-flows. Specifically, in analogy with (30), stocks distribute a total

dividend dL/λ when the cash reserves M reach the threshold wm/λ. A fraction λ of the

dividend goes to the entrepreneur, who therefore receives a payment dL, while the remaining

fraction 1 − λ of the dividend goes to the financiers. Next, in analogy with (31), bonds

continuously distribute to the financiers a coupon μ− (ρ− r)M , that varies with the level M
of cash reserves. Since M is bounded above by wm/λ, one must have μ− (ρ− r)wm/λ ≥ 0
in order to preserve limited liability. As can be seen from (33)—(36), this is the case when λ

is close enough to 1.

We now derive continuous-time pricing formulas for these securities. A key implication

of our implementation is that, at any date, stock and bond prices are deterministic functions

of the current level of cash reserves. Specifically, let St be the market value of stocks at

date t. Since financiers are risk-neutral, for each t ∈ [0, τ ] this is the present value of future
dividends, discounted at rate r:

St = Et
∙Z τ

t
e−r(s−t)

1

λ
dLs ,̧ (48)

where Et is the expectation operator conditional on information up to date t. Using Itô’s
formula as in the proof of Proposition 4, together with the dynamics (45) of M , it is easy to

check that St = S(Mt) for all t ≥ 0, where S is the solution over [0, wm/λ] to the boundary
value problem:

rS(m) = ρmS 0(m) + σ2

2
S 00(m), (49)

S(0) = 0, (50)

S 0
µ
wm

λ

¶
= 1. (51)

Note that condition (51) simply expresses the fact that wm/λ is the threshold value for

cash reserves at which stocks distribute a dividend. When this boundary is reached, each

additional revenue generated by the firm is earned as a dividend by the shareholders.

Remark. By construction, the instantaneous expected return on stocks is equal to the

market rate r, which is less than the entrepreneur’s discount rate ρ. Hence, if her share of

the stocks were tradeable, the entrepreneur would like to sell it to the financiers. This is

precluded in the optimal contract to preserve incentive compatibility.

Similarly, let Dt be the market value of bonds at date t. For each t ∈ [0, τ ] this is the
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present value of future coupons, discounted at rate r:

Dt = Et
∙Z τ

t
e−r(s−t)[μ− (ρ− r)Ms] ds .̧ (52)

Proceeding as for stock prices, it is easy to check that Dt = D(Mt) for all t ≥ 0, where D is

the solution over [0, wm/λ] to the boundary value problem:

rD(m) = μ− (ρ− r)m+ ρmD0(m) + σ2

2
D00(m), (53)

D(0) = 0, (54)

D0
µ
wm

λ

¶
= 0. (55)

We denote by S = {St}t≥0 and D = {Dt}t≥0 the stochastic processes of stock and bond
prices. The processes W , M , S and D are related as follows.

Proposition 6. At any date t ≥ 0, the following holds:

F (Wt) +Mt = (1− λ)St +Dt. (56)

The right-hand side of (56) is the market value of the securities held by the financiers,

that is, the present value of the cash-flows these securities will distribute. The left-hand

side of (56) corresponds to the assets generating these cash-flows. The first term, F (Wt), is

the present value of the fraction of the operating cash-flows allocated to the financiers. The

second term, Mt, is the level of cash reserves, which generate interest income and correspond

to the proceeds that would accrue to the bondholders if the firm were exogenously liquidated

at time t. At date 0, (56) states that the value of the securities allocated to the financiers,

(1− λ)S0 +D0, is equal to the proceeds from the issuance, I −A+M0, plus the initial rent

of the financiers, F (W0)− (I −A).
In the remainder of this section, we use the characterizations (49)—(51) and (53)—(55) of

stock and bond prices to derive empirical implications and comparative statics results.

4.2. Empirical implications

Stock price. Our first result is a direct implication of (49)—(51).

Proposition 7. The stock price is a strictly increasing and strictly concave function of the

level of cash reserves.

The fact that S increases in M is the result of two effects. First, an increase in cash

reserves makes dividend distribution more likely. Second, it reduces the risk of default. The

combination of these two effects leads to an increase in the value of the stock. The fact that

S is a concave function of M is less immediate. Intuitively, the stock price reacts less to

changes in the level of cash reserves when the firm has established a sufficient performance

record. This is because the larger the cash reserves accumulated by the firm, the less likely

default will occur in the near future, see below. By contrast, after a sequence of low cash-flow
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realizations, cash reserves are low, and default risk is high. As a result of this, the stock price

reacts strongly to firm performance and ensuing changes in the level of cash reserves. Note

that since S 0(wm/λ) = 1 and S is a strictly concave function that vanishes at 0, S(M) > M
as long as M > 0. Thus the market value of stocks exceeds the level of cash reserves at any

date prior to liquidation.

These results have several important implications for the dynamics of stock prices. Using

the characterization (49)—(51) of the function S together with Itô’s formula, we obtain that:

dSt = rStdt+ Stσ
S(St)dZt −

1

λ
dLt (57)

for all t ∈ [0, τ ], where for each s ∈ [0,S(wm/λ)], σS(s) = σS 0(S−1(s))/s represents the
volatility of the return on stocks. Together with (57), Proposition 7 implies that the dynamics

of the stock price S differs in three important ways from that postulated by Black and

Scholes (1973). First, the stock price is reflected back each time dividends are distributed,

which occurs when S hits S(wm/λ). Next, since the volatility SσS(S) = σS 0(S−1(S)) of
S is bounded away from 0, the stock price can attain 0 with positive probability, which

happens when the firm is liquidated. Last, since the function S is strictly increasing and
strictly concave, SσS(S) and a fortiori σS(S) are decreasing functions of S, so that changes

in the volatility of the stock price and in the volatility of the stock return are negatively

correlated with stock price movements. This is in line with the leverage effect documented

by Black (1976) and Nelson (1991): volatility tends to rise in response to bad news, and to

fall in response to good news. Another implication is that stock prices are more volatile than

cash-flows, SσS(S) ≥ σ, with equality in the limit only at the dividend boundary S(wm/λ).

Leverage ratio. Our implementation also enables us to study how the financial structure

of the firm is affected by the level of cash reserves, and hence varies with the performance

of the firm and the price of the stock. At any date t ∈ [0, τ), the leverage ratio expressed in
market values is Dt/St. Then the following holds.

Proposition 8. The leverage ratio expressed in market values is a strictly decreasing function

of the level of cash reserves, and hence of the stock price.

This result reflects the fact that, when the firm is consistently successful and cash reserves

increase, the value of stocks increases more than that of bonds. Intuitively, this is because

stocks pay out dividends only after significant accumulated performance, while bonds are

relatively safer, and distribute a coupon even when performance is weaker. Hence the value of

stocks is more responsive to the performance of the firm than the value of bonds. Proposition

8 implies that performance shocks and stock price movements induce persistent changes in

the leverage of the firm. Such persistent changes have been documented by recent empirical

analyzes. In discussing these findings, Welch (2004) questions why firms do not issue or

repurchase debt or equity to counterbalance the impact of stock price movements on their

capital structure. This phenomenon is indeed puzzling if one relies upon a static model,

such as for instance the trade-off theory, according to which there exists an optimal leverage

ratio to which the firm should endeavor to revert. By contrast, in our implementation of the

optimal contract, the financial structure of the firm adjusts optimally through the change in

the market value of securities, without requiring further issuing activities.
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Book-to-market ratio. The empirical finance literature has emphasized the correlation

between the book-to-market ratio and key economic variables such as returns. Our model

can be used to generate implications for the joint dynamics of the book and market values of

balance sheet items. Consider first the balance sheet of the firm at date 0. On the liability

side, one finds debt and equity, accounted at their market values D0 and S0. On the asset

side, one finds the initial cash reservesM0, the book value I of property, plant and equipment,

and an intangible asset G0, the goodwill, reflecting the net value of the project.
9 Thus, we

have the accounting identity:

D0 + S0 = I +M0 +G0. (58)

From (56) and (58), it is easy to check that the goodwill is equal to the present value of the

entrepreneur’s compensation, discounted at rate r, plus the financiers’ rent, less the financial

contribution of the entrepreneur to the project:

G0 = λS0 + F (W0)− (I −A)−A.

Now consider the balance sheet at time t > 0. The only item that has changed on the asset

side of the balance sheet is the level Mt of cash reserves. On the liability side, debt is still

accounted for at its historical value. Consequently, the book value of equity is:

I +Mt +G0 −D0 = S0 +Mt −M0. (59)

The first term on the right-hand side of (59) is the par value of the stock, equal to its initial

book value. The second term reflects accumulated retained earnings. The ratio of the book

value of stocks to their market value, that is, the book-to-market ratio, is thus given by:

Bt =
S0 +Mt −M0

St
. (60)

From (60) and the characterization (49)—(51) of the stock price, the book-to-market ratio is

a deterministic function of the cash reserves, which can be characterized as follows.

Proposition 9. If M0 < w
m/λ, the book-to-market ratio is a U-shaped function of the level

of cash reserves, and hence of the stock price.

The book-to-market ratio goes to infinity when cash reserves go to 0, since the market

value of stocks then goes to 0, while their book value is bounded below by S0 −M0, which

is strictly positive since the market value of stocks exceeds the level of cash reserves at any

date prior to liquidation. As a result of this, the book-to-market ratio is decreasing at 0. By

contrast, the increase in the book-to-market ratio occurring when cash reserves rise towards

wm/λ reflects the concavity of S. Proposition 9 generates the following testable implications.
For financially distressed or recently established firms with low cash reserves, the correlation

between stock returns and contemporaneous changes in the book-to-market ratio should be

9In accounting terms, this can be justified as follows. Initially, the entrepreneur owns a venture consisting of
a tangible asset corresponding to her initial wealth A, and an intangible asset corresponding to the investment
project that only she can manage. At date 0, this entity is partially acquired by the financiers, who contribute
I−A andM0. At this point, the investment I is sunk. The implementation of the optimal contract determines
the financial structure of the new entity thus created. At date 0, its tangible assets are M0 and I. The assets
also include the goodwill, which is an intangible asset reflecting the economic value of the investment project.
For more details, see Brealey and Myers (2000, Section 33.4).
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negative. By contrast, for healthy or mature firms with high cash reserves, stock returns and

contemporaneous changes in the book-to-market ratio should be positively correlated. As far

as we know, this is a new implication, which has not been tested yet.10

Default risk. As a measure of the risk of default at time t ∈ [0, τ), we take the credit
yield spread ∆t on a consol bond that pays one unit of account at each date until the time

of default. For any t ∈ [0, τ), ∆t is defined by the following formula:Z ∞

t
e−(r+∆t)(s−t) ds = Et

∙Z τ

t
e−r(s−t) ds .̧ (61)

Rearranging (61), we obtain that:

∆t =
rTt
1− Tt

, (62)

where Tt = Et[e−r(τ−t)] for all t ∈ [0, τ ]. Using Itô’s formula as in the proof of Proposition
4, together with the dynamics (45) of M , it is easy to check that Tt = T (Mt) for all t ≥ 0,
where T is the solution over [0, wm/λ] to the boundary value problem:

rT (m) = ρmT 0(m) + σ2

2
T 00(m), (63)

T (0) = 1, (64)

T 0
µ
wm

λ

¶
= 0. (65)

One has then the following result.

Proposition 10. The credit yield spread is a strictly positive, strictly decreasing and strictly

convex function of the level of cash reserves.

The fact that an increase in the cash reserves reduces the credit yield spread simply

reflects that default occurs when the firm runs out of cash. The intuition for the convexity

of the credit yield spread with respect to the level of cash reserves can then be grasped by

observing that, when M reaches the dividend threshold wm/λ, cash inflows are distributed

as dividends and thus do not reduce the credit yield spread, as can be seen from (62) and

(65). By contrast, changes in the level of cash reserves have a large impact on the credit yield

spread when the firm is close to default.

4.3. Comparative statics

Initial investment and liquidity. We first discuss some comparative statics properties of

the initial balance sheet. For simplicity, the entrepreneur is assumed to have all the bargaining

power at date 0, that is, financial markets are perfectly competitive.

Proposition 11. The investment capacity of the firm and the initial level of the cash reserves

are strictly increasing with respect to μ, and strictly decreasing with respect to λ and σ.

10Indeed, the empirical asset pricing literature has primarily focused on the relationship between the value
of the book-to-market ratio at a given point in time and subsequent returns.
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A high value of μ means that the investment project is potentially very profitable, while

high values of λ and σ imply that the agency problem is severe and that the operating

risk is high. Proposition 11 is in line with static corporate finance models, which typically

predict that the investment capacity of the firm increases with respect to the profitability of

the project, and decreases with respect to the magnitude of agency costs and the operating

risk (Innes (1990), Holmström and Tirole (1997)). A further implication of Proposition 11

is that firms facing severe agency problems have lower cash reserves. In order to test this

empirical prediction, one needs to find a proxy for λ. To this end, one may for instance rely

on the measure of internal risk developed by Kaplan and Strömberg (2004). In addition,

the ability to divert cash-flows is likely to be greater in more innovative firms, or firms with

high immaterial expenses, such as R&D or marketing, where operating cash-flows are more

difficult to benchmark and evaluate.

Default risk. We next study how the credit yield spread is affected by changes in the

structural parameters of the model.

Proposition 12. For any strictly positive level of cash reserves, the credit yield spread is

strictly decreasing with respect to μ, and strictly increasing with respect to λ.

The impact of the parameters λ and μ on the credit yield spread runs through their impact

on the dividend threshold wm/λ. As λ increases, the entrepreneur’s temptation to divert

cash-flows is greater, and the incentive problem becomes more severe. To make reporting

high cash-flows realizations more attractive for the entrepreneur, it is optimal to lower the

threshold level wm/λ of cash reserves at which she receives dividends from her share of the

stocks. This has a cost, however, since increasing the frequency of dividend distributions

depletes the cash reserves of the firm. This in turn increases the risk that the firm will run

out of cash and therefore the risk of default. As a result, the credit yield spread increases.

By contrast, an increase in μ raises the total cash-flows that can be promised to all parties,

including the entrepreneur, which relaxes the agency problem. One can then afford to raise

the dividend threshold, in order to reduce the risk of default and the resulting social cost of

liquidation.

Stock prices. Further comparative statics results can be drawn from the characterization

(49)—(51) of the stock price.

Proposition 13. For any strictly positive level of cash reserves, the stock price is strictly

increasing with respect to μ, and strictly decreasing with respect to λ.

This result implies that, controlling for the level of cash reserves, the market value of

stocks decreases with the magnitude of the agency problem. The intuition is that, when

the incentive problem becomes more severe, the risk of default increases, which reduces the

present value of future dividends, that is, the stock price. In addition, initial cash reserves

are lower, which further depresses stock prices. Our analysis thus predicts that, all other

things being equal, firms facing more severe incentive problems should have lower stock price

valuations. An empirical implication of this is that the magnitude of agency costs should be

negatively correlated with price earning ratios. This result also sheds light on the link between

insider ownership and stock price performance, which has been a longstanding question of

interest in corporate finance. Our theoretical analysis underlines that both these variables
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are endogenous and jointly reflect the intensity of the agency problem as captured by our

structural parameter λ, in line with the empirical studies of Himmelberg, Hubbard and Palia

(1999), Demsetz and Villalonga (2001), and Coles, Lemmon and Meschke (2006).

5. CONCLUSION

This paper develops a dynamic model of the firm in which capital structure matters because

of internal agency costs. A simple incentive problem suffices to rationalize a number of

appealing features of the firm’s balance sheet. At any given date, payout and liquidation

decisions depend solely on the current amount of liquidities accumulated by the firm. A key

feature of the optimal long-term contract is that dividends are paid out when cash reserves

hit a given threshold, while the firm is closed when illiquid. As a consequence, shocks on the

firm’s solvency and liquidity ratios are highly persistent.

We characterize the continuous-time limit of the optimal financial contract. This enables

us to derive several testable implications for the market valuation of optimal securities. Stock

prices are more volatile than earnings, and unlike the latter, have a stochastic volatility that

increases after stock price drops. Leverage is negatively related to the past performance of the

firm, which also determines the sign of the correlation between stock returns and changes in

the book-to-market ratio. Finally, more severe agency problems result in lower price earning

ratios and firm liquidity, and in higher credit yield spreads.

We hope that this analysis can serve as a first step to bridge the gap between asset pricing

and corporate finance. An important extension, which we leave for further research, would be

to depart from the assumption that financiers are risk-neutral, and to study the relationship

between required expected returns, market risk, and frictions within the corporation.

APPENDIX A

Proof of Lemma 1. It is immediate from (5)—(6) that the function V h satisfies the Bellman equation

(8) for all w ≥ 0, subject to constraints (4) and (6)—(7). We now eliminate u+ and u− from the

constraints. Given a triple (x,w+, w−) ∈ [0, 1] × R2+, one can find a pair (u+, u−) such that (4) and
(6)—(7) hold if and only if the set of (u+, u−) ∈ R2+ such that:

u+ − u− ≥ λ(ch+ − ch−)−
w+ − w−
1 + ρh

,

w

x
− pw+ + (1− p)w−

1 + ρh
≥ pu+ + (1− p)u−

is non-empty. The second of these constraints immediately implies (11). If the right-hand side

of the first of these constraints is negative, then u+ = u− = 0 is obviously a feasible choice. In

the opposite case in which this term is non-negative, the feasible set is not empty if and only if

(u+, u−) = (λ(c
h
+ − ch−)− (w+ − w−)/(1 + ρh), 0) is feasible, which is equivalent to:

w

x
− pw+ + (1− p)w−

1 + ρh
≥ p

∙
λ(ch+ − ch−)−

w+ − w−
1 + ρh

,̧

which, after simplifications, yields (10). The result follows. k

Proof of Lemma 2. Let Th be the Bellman operator associated to (8)—(11), and consider a bounded

continuous function v ∈ Cb(R+). Note that the mapping w 7→ v(w)− (ρ− r)hw/(1+ ρh) goes to −∞
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at ∞ since v ∈ Cb(R+) and ρ > r. Accordingly, let Mh
v be the maximum value of this function, and

wh,rv the smallest point at which it reaches its maximum. Clearly Thv ≥ 0, so Thv is bounded below.
Similarly, Thv ≤ μh+Mh

v /(1 + rh), so T
hv is bounded above. For any value of w, there is no loss of

generality in restricting w+ and w− to be in [0, w
h,r
v ]. Hence Berge’s maximum theorem applies, and

thus Th maps Cb(R+) into itself. Using Blackwell’s theorem, it is immediate to check that Th is a
contraction, and thus it has a unique fixed point V h ∈ Cb(R+) by the contraction mapping theorem.

We now prove that V h is non-decreasing and concave. Since the set of continuous, bounded,

non-decreasing and concave functions that vanish at 0 is a closed subset of Cb(R+), it is sufficient to
prove that Th maps this set into itself. Specifically, let v be such a function, and let w0 ≥ w ≥ 0.
Assume that (x,w+, w−) is an optimal choice in the program that defines Thv(w). Since w0 ≥ w, it
follows from (9)—(11) that (x,w+, w−) is a feasible choice in the program that defines Thv(w0), which

yields the same value as Thv(w). Hence Thv(w0) ≥ Thv(w), and Thv is non-decreasing. That Thv
vanishes at 0 follows directly from (8) together with the fact that w = 0 implies x = 0 because of

(10). We now prove that Thv is concave. In line with Clementi and Hopenhayn (2006), we decompose

(8)—(11) into two subproblems. First, we consider the problem of maximizing the expected social

surplus conditional on not liquidating the project:

Th,cv(w) = max

½
μh+

pv(w+) + (1− p)v(w−)
1 + rh

− (ρ− r)h[pw+ + (1− p)w−]
(1 + rh)(1 + ρh)

¾
(A.1)

for all w ≥ pλ(ch+ − ch−), subject to:

(w+, w−) ∈ R2+, (A.2)

w ≥ w−
1 + ρh

+ pλ(ch+ − ch−), (A.3)

w ≥ pw+ + (1− p)w−
1 + ρh

. (A.4)

The value function Thv, taking into account the possibility of liquidation, is then given by:

Thv(w) = max{xTh,cv(wh,c)} (A.5)

for all w ≥ 0, subject to:
(x,wh,c) ∈ [0, 1]× [pλ(ch+ − ch−),∞) (A.6)

and:

w = xwh,c. (A.7)

By the same argument used to show that Thv is non-decreasing over R+, it follows that Th,cv is
non-decreasing over [pλ(ch+ − ch−),∞). Moreover, it is concave over this interval. To check this, let
w ≥ w0 ≥ pλ(ch+ − ch−), θ ∈ [0, 1] and wθ = θw + (1 − θ)w0. Assume that (w+, w−) is optimal in

the program that defines Th,cv(w), that (w0+, w
0
−) is optimal in the program that defines Th,cv(w0),

and define (wθ+, wθ−) = θ(w+, w−) + (1 − θ)(w0+, w
0
−). Since the constraints (A.2)—(A.4) are linear,

it follows that (wθ+, wθ−) is a feasible choice in the program that defines Th,cv(wθ). Hence, since v is

concave, one has Th,cv(wθ) ≥ θTh,cv(w)+ (1− θ)Th,cv(w0), and thus Th,cv is concave. By definition,

wh,rv is the smallest point at which the mapping w 7→ v(w)− (ρ−r)hw/(1+ρh) reaches its maximum.

Let wh,mv = wh,rv /(1 + ρh) + pλ(ch+ − ch−). Then, for any w ≥ wh,mv , (wh,rv , wh,rv ) is a feasible choice

in the program that defines Th,cv(w), and it yields the maximum utility in (A.1). As a result of this,
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Th,cv is constant over [wh,mv ,∞). Next, (A.5)—(A.7) can be rewritten as:

T hv(w) = max

½
Th,cv(wh,c)w

wh,c

¾
for all w ≥ 0, subject to:

wh,c ≥ max{pλ(ch+ − ch−), w}.

Since T h,cv is continuous over [pλ(ch+ − ch−),∞) and constant over [wh,mv ,∞), the mapping wh,c 7→
Th,cv(wh,c)/wh,c reaches its maximum in [pλ(ch+ − ch−), wh,mv ]. Moreover, since Th,cv is concave, the

set of points at which this mapping reaches its maximum is an interval [wh,cv , wh,cv ], possibly reduced

to a point. It follows that Thv is given by:

Thv(w) =

⎧⎪⎪⎨⎪⎪⎩
Th,cv(wh,cv )w

wh,cv
if w ≤ wh,cv ,

Th,cv(w) if w > wh,cv ,

which implies that Thv is concave. We let wh,l = wh,c
V h , w

h,r = wh,r
V h and w

h,m = wh,m
V h . Observe that

V h satisfies items (i)—(ii) of Lemma 2 by construction. To conclude the proof, we need only to check

that V h is strictly increasing over [0, wh,m]. Suppose by way of contradiction that V h(w) = V h(w0)

for some w < w0 < wh,m. Then V h(w) = V h(w0) = V h(wh,m) by concavity of V h. Therefore,

the optimal choice in (8)—(11) given w must be (1, wh,r, wh,r). However, because w < wh,m and

wh,m = wh,r/(1 + ρh) + pλ(ch+ − ch−), this choice violates (10), a contradiction. Hence the result. k

Proof of Lemma 3. To prove that wh,r < wh,m for h close enough to 0, one may be tempted to argue

that because V h0(wh,r) = (ρ − r)h/(1 + ρh) > 0 = V h0(wh,m), one has wh,r < wh,m by concavity

of V h. This presumes, however, that V h is differentiable at wh,r and wh,m, which need not be the

case. Instead, we rely on the following variational argument. Since wh,r ∈ argmaxw∈R+{V h(w) −
(ρ − r)hw/(1 + ρh)}, wh,m ∈ argmaxw∈R+{V h(w)} and ρ > r, one has wh,r ≤ wh,m. Suppose that
wh,r = wh,m. It follows then from (13) that the contract (x, u+, u−, w+, w−) = (1,λ(c

h
+−ch−), 0, wh,m−

(1+ρ)ε, wh,m−(1+ρ)ε) satisfies (9)—(11) for all ε > 0 close enough to 0, and delivers a utility wh,m−ε
to the entrepreneur. By (8), one must then have:

V h(wh,m − ε) ≥ μh+
V h(wh,m − (1 + ρh)ε)

1 + rh
− (ρ− r)h[w

h,m − (1 + ρh)ε]

(1 + rh)(1 + ρh)
. (A.8)

Moreover, since wh,r = wh,m, one has:

V h(wh,m) = μh+
V h(wh,m)

1 + rh
− (ρ− r)hwh,m
(1 + rh)(1 + ρh)

, (A.9)

so rearranging (A.8) yields:

1 + ρh

1 + rh

∙
V h(wh,m)− V h(wh,m − (1 + ρh)ε)

(1 + ρh)ε

¸
− V

h(wh,m)− V h(wh,m − ε)

ε
≥ (ρ− r)h

1 + rh
.

Taking limits as ε goes to 0, and using the fact that ρ > r, one gets V h−
0(wh,m) ≥ 1. Since V h is

concave and V h(0) = 0, it follows that V h(wh,m) ≥ wh,m. However, since we have assumed that

wh,r = wh,m, one can use (13) to obtain that wh,m = (1 + ρh)pλ(ch+ − ch−)/(ρh), and from this and

(3), it follows that μh < pλ(ch+ − ch−) = ρhwh,m/(1 + ρh) for h close enough to 0. Using (A.9), it

is then straightforward to check that this implies that V h(wh,m) < wh,m, a contradiction. Hence

wh,r < wh,m, as claimed.
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We next prove that for h close enough to 0, wh,l ≤ wh,r. Suppose by way of contradiction that
wh,r < wh,l. Then, since V h is linear over [0, wh,l] and wh,r is by definition the smallest point at

which the mapping w 7→ V h(w)− (ρ− r)hw/(1 + ρh) reaches its maximum, one must have wh,r = 0.

By (13), this implies that wh,m = pλ(ch+ − ch−) and that:

V h(w) =

⎧⎪⎪⎨⎪⎪⎩
μhw

pλ(ch+ − ch−)
if w < pλ(ch+ − ch−),

μh if w ≥ pλ(ch+ − ch−).

However, by (1)—(2), ch+ − ch− = σ(ε+ − ε−)
√
h. One then has:

V h0(0) =
μ
√
h

pλσ(ε+ − ε−)
>
(ρ− r)h
1 + ρh

for h close enough to 0, and the mapping w 7→ V h(w)− (ρ−r)hw/(1+ρh) cannot reach its maximum

at 0, a contradiction. The result follows. k

Proof of Proposition 2. We first define the processes {x̂hnh}n∈N, {ŵhnh}n∈N and {ûhnh}n∈N. One sets
ŵh0 = w

h
0 , and as long as ŵ

h
nh > 0, one has:

x̂hnh = min

½
ŵhnh
wh,l

, 1

¾
, (A.10)

ŵh(n+1)h = min

½
(1 + ρh)

∙
ŵhnh
x̂hnh

+ λ(cnh − μh)

¸
, wh,r

¾
, (A.11)

ûhnh = max

½
ŵhnh
x̂hnh
− wh,d, 0

¾
1{chnh=ch+}. (A.12)

Let ν = sup{n ∈ N | ŵhnh > 0}, which may be finite or infinite. Then, in any period n > ν, one has

x̂hnh = ŵ
h
nh = û

h
nh = 0. We generalize the definitions (30)—(31) of the dividend and the coupon to take

into account the possibility of downsizing in the current period. In any period n ≤ ν, this yields:

êhnh =

Ã
nY
i=0

x̂hih

!
max

½
λhm̂h

nh

λx̂hnh
− w

h,d

λ
, 0

¾
1{chnh=ch+}, (A.13)

b̂hnh =

Ã
nY
i=0

x̂hih

!∙
μh− (ρ− r)hm̂

h
nh

(1 + rh)x̂hnh
.̧ (A.14)

The proof now proceeds in three steps.

Step 1. We first argue that for λ close enough to 1 and h close enough to 0, b̂hnh stays non-negative

for each value of m̂h
nh/x̂

h
nh in [0, w

h,r/λh]. By (A.14), this is the case if and only if:

μ− (ρ− r)w
h,r

(1 + ρh)λ
≥ 0, (A.15)

where we have used the fact that λh = (1 + ρh)λ/(1 + rh). One has:

V h(wh,m) = μh+
V h(wh,r)

1 + rh
− (ρ− r)hwh,r
(1 + rh)(1 + ρh)

,
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so that, since wh,r < wh,m for h close enough to 0 by Lemma 3 and V h is strictly increasing over

[0, wh,m],

μ− (ρ− r)w
h,r

1 + ρh
> r[V h(wh,m)− μh],

and, since V h(wh,m) > 0,
(ρ− r)wh,r
1 + ρh

< (1 + rh)μ.

Since λ ∈ (0, 1], it follows from these two inequalities that:

μ− (ρ− r)w
h,r

(1 + ρh)λ
> r[V h(wh,m)− μh] +

µ
1− 1

λ

¶
(ρ− r)wh,r
1 + ρh

≥ r[V h(wh,m)− μh] +

µ
1− 1

λ

¶
(1 + rh)μ (A.16)

≥ r[V h1 (w
h,m
1 )− μh] +

µ
1− 1

λ

¶
(1 + rh)μ,

where V h1 (w
h,m
1 ) is the minimum over λ of V h(wh,m), which is clearly reached for λ = 1 from (8)—(11).

One can check independently that when h goes to 0, V h1 (w
h,m
1 ) converges to a strictly positive value,

see Proposition 3. Taking limits as (λ, h) goes to (1, 0) in (A.16) then yields that (A.15) holds for any

pair (λ, h) close enough to (1, 0), as claimed.

Step 2. Next, we show that the entrepreneur’s utility process in the implementation is the same as

in the optimal contract. The proof proceeds by induction. At date 0, ŵh0 = λhm̂h
0 by assumption. Now

suppose that our implementation works until date nh, so that ŵhnh = λhm̂h
nh and the size of the firm at

the beginning of period nh is
Qn−1
i=0 x̂

h
ih. At date nh, the size-adjusted dividend is ẽ

h
nh = ê

h
nh/

Qn
i=0 x̂

h
ih,

while the size-adjusted coupon is b̃hnh = b̂hnh/
Qn
i=0 x̂

h
ih. Two cases must be distinguished. Suppose

first that ŵhnh ∈ [wh,l, wh,r], so that x̂hnh = 1 by (A.10). Since ŵhnh = λhm̂h
nh, (A.12)—(A.13) imply

that ẽhnh = max{ŵhnh − wh,d , 0}1{chnh=ch+}/λ = û
h
nh/λ, which reflects the fact that the entrepreneur is

compensated with a share λ of equity. Size-adjusted cash reserves evolve according to:

m̂h
(n+1)h = (1 + rh)(m̂h

nh + c
h
nh − b̃hnh − ẽhnh)

= (1 + rh)

∙
(1 + ρh)m̂h

nh

1 + rh
+ chnh − μh− ẽhnh

¸
(A.17)

= (1 + ρh)

∙
m̂h
nh +

1 + rh

1 + ρh
(chnh − μh− ẽhnh) ,̧

where the second equality follows from (A.14). The optimal contract at date nh is implemented if

and only if ŵhnh = λhm̂h
nh implies that ŵ

h
(n+1)h = λhm̂h

(n+1)h, where ŵ
h
(n+1)h is as specified by (A.11).

Multiplying (A.17) by λh, and using the fact that ŵhnh = λhm̂h
nh together with (A.13), one gets:

λhm̂h
(n+1)h = (1 + ρh)[ŵhnh + λ(chnh − μh− ẽhnh)]

(A.18)

= (1 + ρh)[ŵhnh + λ(chnh − μh)−max{ŵhnh − wdh, 0}1{chnh=ch+}].

Using that (1 + ρh)[w − pλ(ch+ − ch−)] ≤ wh,r for all w ≤ wh,m together with the fact that wh,d, wh,r

and wh,m are related by (13)—(14), it is straightforward to check that the right-hand side of (A.18)
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is equal to the right-hand side of (A.11) with x̂hnh = 1. Hence ŵh(n+1)h = λhm̂h
(n+1)h, as required.

Suppose now that ŵhnh ∈ [0, wh,l). Then, according to the implementation, the firm is scaled down

by a factor m̂h
nh/(w

h,l/λh) = ŵhnh/w
h,l = x̂hnh, as prescribed by the optimal contract, and the size-

adjusted cash reserves jump to wh,l/λh. One can then apply the implementation starting with a level

m̂h
nh/x̂

h
nh = w

h,l/λh of size-adjusted cash reserves, and the claim follows.

Step 3. Finally, we check that our implementation delivers the required utility to the financiers.

This is the case if and only if, in any period n ≤ ν, the value of claims held by the financiers is equal

to the sum of their utility Fh(ŵhnh) in the optimal contract and of the size-adjusted cash reserves m̂
h
nh.

For notational simplicity, we establish this result at date 0. It is then straightforward to adapt the

proof to an arbitrary period n ≤ ν. For each n ∈ N, let Enh be the expectation operator conditional
on information up to date nh. One needs to show that:

F̂h(ŵh0 ) + m̂
h
0 = E0

"
νX

n=0

1

(1 + rh)n
[(1− λ)êhnh + b̂

h
nh]

#
. (A.19)

To establish (A.19), note that since the process {ŵhnh}n∈N is uniformly bounded, the series:

ŵh0 =
νX

n=0

1

(1 + rh)n

Ã
nY
i=0

x̂ih

!Ã
ŵhnh
x̂hnh
−
ŵh(n+1)h
1 + rh

!
(A.20)

converges absolutely even when ν =∞. Using (A.11) together with the fact that wh,d, wh,r and wh,m
are related by (13)—(14), it is straightforward to check that, for each n ≤ ν,

Enh
∙
λh

λ
max

½
ŵhnh
x̂hnh
− wh,d , 0

¾
1{chnh=ch+} −

(ρ− r)hŵhnh
(1 + rh)x̂hnh

¸
= Enh

"
ŵhnh
x̂hnh
−
ŵh(n+1)h
1 + rh

#
. (A.21)

Taking expectations in (A.20) and using (A.21) thus yields:

ŵh0 = E0

"
νX

n=0

1

(1 + rh)n

Ã
nY
i=0

x̂hih

!∙
λh

λ
max

½
ŵhnh
x̂hnh
− wh,d , 0

¾
1{chnh=ch+} −

(ρ− r)hŵhnh
(1 + rh)x̂hnh

¸#
. (A.22)

For each n ≤ ν, ŵhnh = λhm̂h
nh. It then follows from (A.13)—(A.14) and (A.22) that:

m̂h
0 = E0

"
νX

n=0

1

(1 + rh)n

Ã
nY
i=0

x̂hih

!
(ẽhnh + b̃

h
nh − μh)

#
, (A.23)

where ẽhnh and b̃
h
nh are defined as in Step 2. To conclude the proof, observe that by construction,

Fh(ŵh0 ) is equal to the present value, discounted at rate r, of the cash-flows from the project, less the

payments to the entrepreneur:

Fh(ŵh0 ) = E0

"
νX

n=0

1

(1 + rh)n

Ã
nY
i=0

x̂hih

!
(μh− λẽhnh)

#
. (A.24)

Summing (A.23) and (A.24) yields (A.19). The result follows. k

APPENDIX B

Proof of Lemma 4. We prove that wh,l < (1+ρh)λ(ch+− ch−) for all h close enough to 0, which implies
that limh↓0 w

h,l = 0. Suppose that wh,l ≥ (1+ ρh)λ(ch+− ch−) along a subsequence of h’s that goes to
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0. Then, by Lemma 3, one has wh,r ≥ (1 + ρh)λ(ch+ − ch−) along this subsequence. It follows that
for any such h, the choice (w+, w−) = ((1 + ρh)λ(ch+ − ch−), 0) is feasible and optimal in (A.1)—(A.4)
for w = pλ(ch+ − ch−). Denoting by αh the slope of V h over (0, wh,l) and using the fact that, by

assumption, wh,l ≥ (1 + ρh)λ(ch+ − ch−), one thus has:

Th,cV h(pλ(ch+ − ch−)) = μh+
pαh(1 + ρh)λ(ch+ − ch−)

1 + rh
−
p(ρ− r)hλ(ch+ − ch−)

1 + rh
,

or, equivalently, by (1)—(2):

Th,cV h(pλ(ch+ − ch−))
pλ(ch+ − ch−)

=
μ
√
h

pλσ(ε+ − ε−)
+

αh(1 + ρh)

1 + rh
− (ρ− r)h

1 + rh
.

Since ρ > r, it follows that for h close enough to 0,

Th,cV h(pλ(ch+ − ch−))
pλ(ch+ − ch−)

> αh,

which contradicts the fact that V h(pλ(ch+ − ch−))) = αhpλ(ch+ − ch−) since pλ(ch+ − ch−) belongs to the
interval [0, wh,l], see (10). The result follows. k

Proof of Corollary 1. Suppose first that lim infh↓0 w
h,m < wm. Then, since V h converges uniformly

to V , V h(wh,m) converges to V (lim infh↓0w
h,m) < V (wm) along a subsequence of h’s that goes to

0. However, since V h attains its maximum at wh,m and V attains its maximum at wm, uniform

convergence implies that limh↓0 V
h(wh,m) = V (wm), a contradiction. Therefore lim infh↓0 w

h,m ≥
wm. We now prove that lim suph↓0 w

h,r ≤ wm, which implies the result since lim suph↓0w
h,m =

lim suph↓0w
h,r by (13). It follows from Lemma 3 that, for h close enough to 0,

V h(wh,m) = μh+
V h(wh,r)

1 + rh
− (ρ− r)hwh,r
(1 + rh)(1 + ρh)

< μh+
V h(wh,m)

1 + rh
− (ρ− r)hwh,r
(1 + rh)(1 + ρh)

,

so that in particular:
(ρ− r)wh,r

(1 + rh)(1 + ρh)
< μ− rV

h(wh,m)

1 + rh
.

Taking limits as h goes to 0 and using the fact that μ− rV (wm) = (ρ− r)wm by (33) and (35)—(36)

yields lim suph↓0w
h,r ≤ wm as required. This completes the proof. k

Proof of Lemma 5. To begin with, fix some wm > 0, and consider the differential equation:

rV (w) = μ− (ρ− r)w + ρwV 0(w) +
λ2σ2

2
V 00(w) (B.1)

for w ∈ [0, wm]. Any solution to (B.1) can be written as the sum of a particular solution, namely

w + μ/r, and a general solution to the second-order linear homogenous differential equation:

rH(w) = ρwH 0(w) +
λ2σ2

2
H 00(w). (B.2)

Consider the solutions H0 and H1 of (B.2) over R+ characterized by the initial conditions H0(0) = 1,
H 0
0(0) = 0, H1(0) = 0 and H

0
1(0) = 1, and let WH0,H1 = H0H

0
1 −H1H 0

0 be the Wronskian of H0 and

H1. Then WH0,H1(0) = 1 6= 0 which shows that H0 and H1 are linearly independent over R+. As a
result of this, (H0,H1) is a basis of the 2-dimensional space of solutions to (B.2). One can thus write:

V (w) = w +
μ

r
+ α0H0(w) + α1H1(w)
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for all w ∈ [0, wm]. To pin down the coefficients α0 and α1, we impose the boundary conditions

V (0) = 0 and V 0(wm) = 0. This yields:

V (w) = w +
μ

r
[1−H0(w)] +

H1(w)

H 0
1(w

m)

hμ
r
H 0
0(w

m)− 1
i
. (B.3)

We now establish that there exists a unique wm > 0 and a unique function V satisfying (B.3) such

that V 00(wm) = 0. First, we show that H 0
1 > 0 over R+. Suppose by way of contradiction that

w̃ = inf{w ≥ 0 | H 0
1(w) ≤ 0} < ∞. Then H 0

1(w̃) = 0 and H 00
1 (w̃) ≤ 0. By (B.2), it follows that

H1(w̃) ≤ 0. However, since H 0
1(0) = 1, one has w̃ > 0, and since H1 is strictly increasing over [0, w̃],

it follows that H1(w̃) > H1(0) = 0, a contradiction. Hence H
0
1 > 0 over R+, as claimed. As a result

of this, H1 > 0 over R++. Next, by (B.1) and the boundary condition V 0(wm) = 0, one has:

λ2σ2

2
V 00(wm) = rV (wm)− μ+ (ρ− r)wm.

Using (B.3) and the definition of WH0,H1 , we obtain that:

λ2σ2

2
V 00(wm) = ρwm − μWH0,H1(w

m) + rH1(w
m)

H 0
1(w

m)
. (B.4)

Then by (B.2),

W 0
H0,H1

(w) = H0(w)H
00
1 (w)−H1(w)H 00

0 (w)

=
2

λ2σ2
{H0(w)[rH1(w)− ρwH 0

1(w)]−H1(w)[rH0(w)− ρwH 0
0(w)]} (B.5)

= − 2ρw
λ2σ2

WH0,H1(w)

for all w ≥ 0. Since WH0,H1(0) = 1, one obtains Abel’s identity by integration of (B.5):

WH0,H1(w) = exp

µ
−ρw2
λ2σ2

¶
for all w ≥ 0. Define a function ϕ by:

ϕ(w) = [ρwH 0
1(w)− rH1(w)] exp

µ
ρw2

λ2σ2

¶
for all w ≥ 0. From (B.4) and the expression for WH0,H1 , we need to show that there exists a unique

wm > 0 such that ϕ(wm) = μ. Since ϕ(0) = 0, it is sufficient to prove that ϕ is strictly increasing

and strictly convex over R+. By (B.2), one has:

ϕ0(w) =

½
(ρ− r)H 0

1(w) + ρwH 00
1 (w) +

2ρw

λ2σ2
[ρwH 0

1(w)− rH1(w)]
¾
exp

µ
ρw2

λ2σ2

¶

= (ρ− r)H 0
1(w) exp

µ
ρw2

λ2σ2

¶
,

which is strictly positive for all w ≥ 0 as H 0
1 > 0 over R+. Hence ϕ is strictly increasing over R+. By

(B.2) again, one has:

ϕ00(w) = (ρ− r)
∙
H 00
1 (w) +

2ρw

λ2σ2
H 0
1(w)

¸
exp

µ
ρw2

λ2σ2

¶
=

2r

λ2σ2
(ρ− r)H1(w) exp

µ
ρw2

λ2σ2

¶
,
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which is strictly positive for all w > 0 as H1 > 0 over R++. Hence ϕ is strictly convex over R+, which
concludes the proof. k

Proof of Lemma 6. Using the fact that the solution V to (33)—(36) is smooth over [0, wm), one can

differentiate the differential equation in (33) to obtain:

rV 0(w) = −ρ+ r + ρV 0(w) + ρwV 00(w) +
λ2σ2

2
V 000(w)

for all w ∈ [0, wm). From (35)—(36), it follows that V 000− (w
m) = 2(ρ− r)/(λ2σ2) > 0, and thus V 00 < 0

and V 0 > 0 over an interval (wm − ε, wm) for ε > 0 small enough. From (33), V 00(w) < 0 whenever

rV (w) < μ − (ρ − r)w and V 0(w) > 0. Since rV (wm) = μ − (ρ − r)wm and V is strictly increasing

over (wm−ε, wm), it follows that these two conditions are satisfied over (wm−ε, wm), and the first of
these conditions remains satisfied for any w < wm as long as V 0 remains strictly positive over [w,wm).

Now suppose that V 0(w) ≤ 0 for some w < wm − ε, and let w̃ = sup{w < wm − ε |V 0(w) ≤ 0}. Then
V 0(w̃) = 0, and for all w ∈ (w̃, wm), V 0(w) > 0 and rV (w) < μ− (ρ− r)w. It follows that V 00(w) < 0
for any such w and thus, by (35), V 0(w̃) = −

R wm
w̃

V 00(w) dw > 0, a contradiction. Hence V 0 > 0 and

thus V 00 < 0 over [0, wm), which concludes the proof. k

Proof of Lemma 7. Since V is strictly concave over [0, wm] by Lemma 6, there exists a unique point

wh,rV ∈ [0, wm) at which the mapping w 7→ V (w)− (ρ− r)hw/(1 + ρh) reaches its maximum, and for

h close enough to 0, wh,rV is characterized by V 0(wh,rV ) = (ρ− r)h/(1 + ρh). Since V 0(wm) = 0 and V

is continuously differentiable, limh↓0 w
h,r
V = wm. In analogy with (13)—(14), define:

wh,mV =
wh,rV
1 + ρh

+ pλ(ch+ − ch−), (B.6)

wh,dV = wh,mV − λ(ch+ − ch−). (B.7)

It should be noted that limh↓0 w
h,m
V = limh↓0 w

h,d
V = wm. In particular, wh,dV > pλ(ch+ − ch−) for h

close enough to 0. By (1)—(2) and (B.6)—(B.7), one has:

wh,mV = wh,rV + pλσ(ε+ − ε−)
√
h+ o(

√
h) > wh,rV , (B.8)

wh,dV = wh,rV − (1− p)λσ(ε+ − ε−)
√
h+ o(

√
h) < wh,rV (B.9)

for h close enough to 0. Moreover, using that V 0(wm) = V 00(wm) = 0, V 000− (w
m) = 2(ρ − r)/(λ2σ2)

and V 0(wh,rV ) = (ρ− r)h/(1 + ρh), a Taylor—Young expansion yields:

wm = wh,rV + λσ
√
h+ o(

√
h). (B.10)

Proceeding as in Subsection 2.3, it is straightforward to characterize Th,cV when h is close to 0, where

Th,c is defined by (A.1)—(A.4). For any w ≥ 0, define:

wh+(w) = (1 + ρh)[w + (1− p)λ(ch+ − ch−)],

wh−(w) = (1 + ρh)[w − pλ(ch+ − ch−)].

Three cases must then be distinguished. When w ∈ [wh,mV ,∞), (w+, w−) = (wh,rV , wh,rV ) is optimal.

Next, when w ∈ [wh,dV , wh,mV ), (w+, w−) = (wh,rV , wh−(w)) is optimal. Finally, when w ∈ [pλ(ch+ −
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ch−), w
h,d
V ), (w+, w−) = (wh+(w), w

h
−(w)) is optimal. For each h > 0 and w ≥ pλ(ch+ − ch−), let

∆h(w) = (1 + rh)[Th,cV (w)− V (w)]. We now establish that k∆hkh = o(h), which implies the result.
Consider first the region [wh,mV ,∞). For any w in this interval, one has:

Th,cV (w) = μh+
V (wh,rV )

1 + rh
− (ρ− r)hwh,rV
(1 + rh)(1 + ρh)

.

Multiplying by 1 + rh and subtracting (1 + rh)V (w), we obtain that:

∆h(w) = [μ− rV (wh,rV )− (ρ− r)wh,rV ]h+ (1 + rh)[V (wh,rV )− V (w)] + o(h).

Since V attains its maximum at wm, we have the following lower bound for ∆h(w):

∆h(w) ≥ [μ− rV (wh,rV )− (ρ− r)wh,rV ]h+ (1 + rh)[V (wh,rV )− V (wm)] + o(h). (B.11)

We show that the right-hand side of (B.11) is a o(h). For the first term, this follows at once from the

fact that limh↓0w
h,r
V = wm and rV (wm) = μ− (ρ−r)wm by (33) and (35)—(36). For the second term,

note that V is concave and that wm > wh,rV for all h > 0. Together with the definition of wh,rV , this

implies that, for h close enough to 0,

|V (wh,rV )− V (wm)|
h

≤ V
0(wh,rV )(wm − wh,rV )

h
=
(ρ− r)(wm − wh,rV )

1 + ρh
,

and the result follows since limh↓0 w
h,r
V = wm. Next, from (B.8), w ≥ wh,mV > wh,rV for h close enough

to 0, and thus we have the following upper bound for ∆h(w):

∆h(w) ≤ [μ− rV (wh,rV )− (ρ− r)wh,rV ]h+ o(h). (B.12)

Proceeding as for the first term of the right-hand side of (B.11), one obtains that the right-hand side

of (B.12) is a o(h). It follows that:

sup
w∈[wh,mV ,∞)

{|∆h(w)|} = o(h). (B.13)

Consider next the region [wh,dV , wh,mV ). For any w in this interval, one has:

Th,cV (w) = μh+
pV (wh,rV ) + (1− p)V (wh−(w))

1 + rh
−
(ρ− r)h[pwh,rV + (1− p)wh−(w)]

(1 + rh)(1 + ρh)
.

Multiplying by 1 + rh and subtracting (1 + rh)V (w), we obtain that:

∆h(w) = {μ− rV (w)− (ρ− r)[pwh,rV + (1− p)wh−(w)]}h

+ p[V (wh,rV )− V (w)] + (1− p)[V (wh−(w))− V (w)].

Proceeding as for the region [wh,mV ,∞), it is easy to check that:

sup
w∈[wh,dV ,wh,mV )

{|μ− rV (w)− (ρ− r)[pwh,rV + (1− p)wh−(w)]|}h = o(h).

We now consider the two remaining terms in V (wh,rV )− V (w) and V (wh−(w))− V (w) that appear in
the expression of ∆h(w). The following argument is valid for both terms, so we shall only consider

the first. A Taylor—Young expansion yields:

V (wh,rV )− V (w) = V 0(w)(wh,rV − w) + 1
2
V 00(w)(wh,rV − w)2 + o((wh,rV − w)2). (B.14)
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We treat each term on the right-hand side of (B.14) separately. For any w ∈ [wh,dV , wh,mV ), (B.8)—(B.10)

imply that:

|wh,rV − w| ≤ λσ(ε+ − ε−)
√
h+ o(

√
h), (B.15)

|wm − w| ≤ λσ(1 + ε+ − ε−)
√
h+ o(

√
h). (B.16)

Since V 000, which is defined everywhere except at wm, is bounded in absolute value by a positive

constant K, and since V 00(wm) = 0 by (36), (B.16) implies that:

|V 00(w)| ≤ K|wm − w| ≤ λσ(1 + ε+ − ε−)K
√
h+ o(

√
h) (B.17)

for all w ∈ [wh,dV , wh,mV ). Finally, since V 0(wm) = 0 by (35), (B.16)—(B.17) imply that:

V 0(w) = −
Z wm

w

V 00(x) dx ≤ λ2σ2(1 + ε+ − ε−)
2Kh+ o(h) (B.18)

for all w ∈ [wh,dV , wh,mV ). From (B.14)—(B.18), one has:

sup
w∈[wh,dV ,wh,mV )

{|V (wh,rV )− V (w)|} = o(h),

and a similar result holds for V (wh−(w))− V (w). It follows that:

sup
w∈[wh,dV ,wh,mV )

{|∆h(w)|} = o(h). (B.19)

Consider finally the region [pλ(ch+ − ch−), w
h,d
V ). For any w in this interval, one has:

Th,cV (w) = μh+
pV (wh+(w)) + (1− p)V (wh−(w))

1 + rh
−
(ρ− r)h[pwh+(w) + (1− p)wh−(w)]

(1 + rh)(1 + ρh)

Multiplying by 1 + rh and subtracting (1 + rh)V (w), we obtain that:

∆h(w) = [μ− rV (w)− (ρ− r)w]h+ p[V (wh+(w))− V (w)] + (1− p)[V (wh−(w))− V (w)] + o(h).

A Taylor—Young expansion yields:

∆h(w) = [μ− rV (w)− (ρ− r)w + ρwV 0(w)]h

+
1

2
V 00(w)

©
p[wh+(w)− w]2 + (1− p)[wh−(w)− w]2

ª
(B.20)

+ o([wh+(w)− w]2) + o([wh−(w)− w]2) + o(h).

By (B.9), wh,dV < wh,rV < wm for h close enough to 0. Hence V satisfies the differential equation in

(33) at any w ∈ [pλ(ch+ − ch−), w
h,d
V ). One can therefore rewrite (B.20) as:

∆h(w) =
1

2
V 00(w)

©
p[wh+(w)− w]2 + (1− p)[wh−(w)− w]2 − λ2σ2h

ª
(B.21)

+ o([wh+(w)− w]2) + o([wh−(w)− w]2) + o(h).
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Using (1)—(2) and the definitions of wh+(w) and w
h
−(w), one has:

wh+(w)− w = (1− p)λσ(ε+ − ε−)
√
h+ o(

√
h) (B.22)

wh−(w)− w = −pλσ(ε+ − ε−)
√
h+ o(

√
h) (B.23)

Using that p(1− p)(ε+ − ε−)
2 = 1 and that V 00 is bounded, it follows from (B.21)—(B.23) that:

sup
w∈[pλ(ch+−ch−),w

h,d
V )

{|∆h(w)|} = o(h). (B.24)

Collecting (B.13), (B.19) and (B.24) yields that k∆hkh = o(h) by definition of the norm k · kh. The
result follows. k

APPENDIX C

In all this appendix, we fix a probability space (Ω,A,P). All the stochastic processes we shall consider
have sample paths that are P—almost surely right continuous with left limits. A real valued process of
this kind can thus be considered as a random variable taking its values in the space D(R+) of functions
from R+ to R that are right continuous and have left limits, endowed with the standard Prokhorov
metric δ (Jacod and Shiryaev (1987, Chapter VI, Section 1c)). Such a process Y h = {Y ht }t≥0 converges
in law to a process Y = {Yt}t≥0 as h goes to 0 if the probability measure induced by Y h over D(R+)
converges weakly to the probability measure induced by Y over D(R+).

Proof of Proposition 4. Let W0 = w and suppose that w ∈ [0, wm]. Since L is continuous with

bounded variation, it follows from (40) and Itô’s formula for continuous semimartingales (Karatzas

and Shreve (1991, Chapter 3, Theorem 3.6)) that, for each T ≥ 0,

e−ρT∧τWT∧τ = w +

Z T∧τ

0

e−ρtλσ dZt −
Z T∧τ

0

e−ρt dLt. (C.1)

We first take expectations in (C.1) and then let T go to∞. Since Wτ = 0 by definition of τ , and since

the second term on the right-hand side of (C.1) is a martingale, we obtain that:

w − E(w,0)
∙Z τ

0

e−ρt dLt

¸
= 0,

from which (43) follows. Next, by (33)—(35), F satisfies:

rF (w) = μ+ ρwF 0(w) +
λ2σ2

2
F 00(w) (C.2)

for all w ∈ [0, wm], with boundary conditions:

F (0) = 0, (C.3)

F 0(wm) = −1. (C.4)

Since L is continuous with bounded variation, it follows from (40) and Itô’s formula that, for each
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T ≥ 0,

e−rT∧τF (WT∧τ ) = F (w) +

Z T∧τ

0

e−rt
∙
−rF (Wt) + ρWtF

0(Wt) +
λ2σ2

2
F 00(Wt)

¸
dt

+

Z T∧τ

0

e−rtλσF 0(Wt) dZt −
Z T∧τ

0

e−rtF 0(Wt) dLt (C.5)

= F (w)−
Z T∧τ

0

e−rtμ dt+

Z T∧τ

0

e−rtλσF 0(Wt) dZt +

Z T∧τ

0

e−rt dLt,

where the second equality follows from (41) and (C.2), together with (42) and (C.4). We first take

expectations in (C.5) and then let T go to ∞. Since F (Wτ ) = F (0) = 0 by definition of τ and (C.3),

and since the third term on the right-hand side of (C.5) is a martingale, we obtain that:

F (w)− E(w,0)
∙Z τ

0

e−rt(μ− dLt) dt
¸
= 0,

from which (44) follows. k

Proof of Proposition 5. Before proceeding with the proof, we recall some technical results on the

Skorokhod problem (see Tanaka (1979)). We start with the deterministic case. Let y ∈ D(R+) such
that y(0) ≤ 0. Then a pair (x, k) ∈ D(R+)2 solves the Skorokhod problem associated to y if x = y−k,
x ≤ 0, and k is a non-decreasing function such that k(0) = 0 and k(t) =

R t
0
1{x(s)=0} dk(s) for all t ≥ 0.

The interpretation is that k increases only at the points where x hits 0, which causes x to be reflected

back at 0. It can be shown that there exists a unique solution to this problem, which is characterized

by k(t) = sups∈[0,t]{max{y(s), 0}} for all t ≥ 0. Now let Y = {Yt}t≥0 be a stochastic process and let
AY be the filtration generated by Y . Then a pair (X,K) = {(Xt,Kt)}t≥0 of AY —adapted processes
solves the Skorokhod problem associated to Y if for P—almost every ω ∈ Ω, (X(ω),K(ω)) solves the
Skorokhod problem associated to Y (ω). One has the following lemma.

Lemma C.1. Let {yn}n∈N be a sequence of real numbers such that y0 ≤ 0, and let {xn}n∈N be a
sequence of real numbers such that x0 = y0 and:

xn+1 = min{xn + yn+1 − yn, 0} (C.6)

for all n ∈ N. Then:
xn = yn − max

i∈[[0,n]]
{max{yi, 0}} (C.7)

for all n ∈ N, where [[0, n]] = {0, . . . , n}.

Proof. The proof proceeds by induction. Since x0 = y0 ≤ 0, (C.7) holds for n = 0. Suppose next that
(C.7) holds for some n ∈ N. According to (C.6), two cases must be distinguished. Suppose first that
xn + yn+1 − yn ≤ 0. Then, by the induction hypothesis, yn+1 ≤ yn − xn = maxi∈[[0,n]]{max{yi, 0}},
which implies that maxi∈[[0,n]]{max{yi, 0}} = maxi∈[[0,n+1]]{max{yi, 0}}. By the induction hypothesis
again, xn+1 = xn + yn+1 − yn = yn+1 −maxi∈[[0,n]]{max{yi, 0}} = yn+1 −maxi∈[[0,n+1]]{max{yi, 0}},
so that (C.7) holds for n+ 1. The case xn + yn+1 − yn > 0 can be handled by similar considerations,
and the result follows by induction. k

The intuitive interpretation of Lemma C.1 is that the sequence {xn}n∈N recursively defined by
(C.6) is part of the solution to a discrete version of the Skorokhod problem associated to {yn}n∈N. As
shown by (C.7), the reflecting sequence is given by {maxi∈[[0,n]]{max{yi, 0}}}n∈N in analogy with the
solution to the continuous-time Skorokhod problem.

The proof now proceeds in three steps.
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Step 1. For any fixed period length h > 0, consider a modification {w̃hnh}n∈N of the utility process
{whnh}n∈N, that starts at the same value wh0 ≤ wh,r, but whose dynamics is given by (23)—(24) over
the whole interval (−∞, wh,r]. Using (1)—(2), this yields:

w̃h(n+1)h = min{(1 + ρh)[w̃hnh + λσεn
√
h], wh,r}

for all n ∈ N. Rearranging this expression, we obtain:

w̃h(n+1)h − wh,r

(1 + ρh)n+1
= min

(
w̃hnh − wh,r
(1 + ρh)n

+
ρwh,rh

(1 + ρh)n+1
+

λσεn
√
h

(1 + ρh)n
, 0

)
(C.8)

for all n ∈ N. Now define a process {yhnh}n∈N such that yh0 = wh0 − wh,r and:

yh(n+1)h = y
h
nh +

ρwh,rh

(1 + ρh)n+1
+

λσεn
√
h

(1 + ρh)n
(C.9)

for all n ∈ N. Applying Lemma C.1 path by path, it then follows from (C.8)—(C.9) that:

w̃hnh(ω)− wh,r
(1 + ρh)n

= yhnh(ω)− max
i∈[[0,n]]

{max{yhih(ω), 0}} (C.10)

for all (ω, n) ∈ Ω×N. Define continuous-time processes W̃h = {W̃h
t }t≥0 and Y h = {Y ht }t≥0 by setting

W̃h
t = w̃

h
[[t/h]]h and Y

h
t = y

h
[[t/h]]h for all t ≥ 0. By construction, W̃h and Y h have sample paths that

are right continuous with left limits. The following continuous-time version of (C.10) holds:

W̃h
t (ω)− wh,r
(1 + ρh)[[t/h]]

= Y ht (ω)− sup
s∈[0,t]

{max{Y hs (ω), 0}} (C.11)

for all (ω, t) ∈ Ω × R+. Let AY
h

be the filtration generated by Y h, and consider the AY h

—adapted

processes Xh = {Xh
t }t≥0 and Kh = {Kh

t }t≥0 defined by Xh
t = (1 + ρh)−[[t/h]](W̃h

t − wh,r) and
Kh
t = sups∈[0,t]{max{Y hs (ω), 0}} for all t ≥ 0. Then (C.11) expresses the fact that the pair (Xh,Kh)

solves the Skorokhod problem associated to Y h.

We now study the limits in law of the processes Xh and Y h as h goes to 0. Consider first Y h.

As explained in Subsection 3.2, the limit W0 = limh↓0W
h
0 is well defined and belongs to [0, wm].

Moreover, by Corollary 1, limh↓0w
h,r = wm. Given (C.9) and the definition of Y h, it follows then

from Jacod and Shiryaev (1987, Chapter IX, Theorem 4.21) that the process Y h converges in law to

a diffusion process Y = {Yt}t≥0 such that Y0 =W0 − wm and:

dYt = e
−ρt(ρwmdt+ λσdZt) (C.12)

for all t ≥ 0, where Z = {Zt}t≥0 is the standard Brownian motion in (39). Let AY be the filtration
generated by Y . From Tanaka (1979, Theorem 4.1), there exists a unique continuous AY —adapted
process X = {Xt}t≥0 starting at W0 − wm and a unique non-decreasing AY —adapted process K =

{Kt}t≥0 starting at 0 that jointly satisfy:

Xt = Yt −Kt, (C.13)

Xt ≤ 0, (C.14)

Kt =

Z t

0

1{Xs=0} dKs (C.15)
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for all t ≥ 0. That is, the pair (X,K) solves the Skorokhod problem associated to Y . Since Y h

converges in law to Y , it follows from SÃlomiński (1993, Proposition 4) that the triple (Xh,Kh, Y h)

converges in law to (X,K,Y ) over the space D(R+,R3) of functions from R+ to R3 that are right
continuous and have left limits. Since the projection mapping is continuous, Xh converges in law to

X, see Billingsley (1968, Theorem 5.1). Define the process W̃ = {W̃t}t≥0 by W̃t = wm + eρtXt for

all t ≥ 0, and consider the discounted processes W̃h,ρ = {W̃h,ρ
t }t≥0 and W̃ ρ = {W̃ ρ

t }t≥0 defined by
W̃h,ρ
t = (1+ ρh)−[[t/h]]W̃h

t and W̃
ρ
t = e

−ρtW̃t for all t ≥ 0. Note that W̃h,ρ
t = Xh

t +(1+ ρh)−[[t/h]]wh,r

and W̃ ρ
t = Xt + e

−ρtwm for all t ≥ 0. Since limh↓0wh,r = wm by Corollary 1, and since the mapping

t 7→ (1 + ρh)−[[t/h]] converges uniformly to the mapping t 7→ e−ρt as h goes to 0, it follows then from

Billingsley (1968, Theorem 4.1) that W̃h,ρ converges in law to W̃ ρ.

Step 2. We now examine what happens when one kills the processes W̃h and W̃ , respectively at

wh,l and 0. Our treatment builds on Toldo (2006, Lemma 1.13 and Proposition 1.14). We shall need

the following deterministic lemma.

Lemma C.2. Consider the functions from D(R+) to R+ ∪ {∞} defined by:

fh(y) = inf{t > 0 |y(t) < (1 + ρh)−[[t/h]]wh,l}, f(y) = inf{t > 0 |y(t) < 0} (C.16)

for all (h, y) ∈ R++ ×D(R+), with the convention inf{∅} =∞. Let y ∈ C(R+) be such that:

f(y) = inf{t > 0 |y(t) ≤ 0}. (C.17)

Suppose that as h goes to 0, yh ∈ D(R+) converges to y in the local uniform topology. Then

limh↓0 f
h(yh) = f(y) in R+ ∪ {∞}.

Proof. For each h > 0, let th = fh(yh). Extracting a subsequence if necessary, define t = limh↓0 t
h in

R+∪{∞}. We first show that t ≥ f(y). If t =∞, this is immediate. If t <∞ then, since yh converges

to y in the local uniform topology and y ∈ C(R+), limh↓0 yh(th) = y(t). For h close enough to 0, one
has th <∞ so that yh(th) ≤ (1 + ρh)−[[th/h]]wh,l as yh ∈ D(R+). Since limh↓0wh,l = 0 by Lemma 4,
it follows that y(t) ≤ 0. By (C.17), one then has t ≥ f(y), as claimed. Now suppose that t > f(y).
Two cases must be distinguished. If t = ∞, then there exists ε > 0 such that for all h close enough
to 0, yh(s) ≥ (1 + ρh)−[[s/h]]wh,l > 0 for all s ∈ [0, f(y) + ε]. However, by (C.16), there exists some

s ∈ [f(y), f(y) + ε] such that y(s) < 0. Thus yh cannot converge uniformly to y over [0, f(y) + ε], a

contradiction. If t <∞, then by (C.16) again, there exists some s ∈ [f(y), f(y)+ε] such that y(s) < 0,

where ε ∈ (0, [t− f(y)]/2) is fixed. Take η = ε∧ [−y(s)]. Since limh↓0 th = t and yh converges to y in
the local uniform topology, it follows that |th − t| < η and |yh(s)− y(s)| < η for h close enough to 0.

Fix any such h. On the one hand, one has th − s > t− η − s ≥ t− f(y)− 2ε > 0, so that th > s. On
the other hand, one has yh(s)− (1 + ρh)−[[s/h]]wh,l < y(s) + η ≤ 0, so that yh(s) < (1 + ρh)−[[s/h]]wh,l

and th ≤ s, a contradiction. Thus t ≤ f(y), and the result follows. k

Since W̃h,ρ converges in law to W̃ ρ, Skorokhod’s representation theorem implies that there exists

a probability space (Ω̄, Ā, P̄) and processes W̄h,ρ = {W̄h,ρ
t }t≥0 and W̄ ρ = {W̄ ρ

t }t≥0 inducing the same
probability measures over D(R+) as W̃h,ρ and W̃ ρ, and such that limh↓0 W̄

h,ρ = W̄ ρ P̄—almost surely
in D(R+). From Jacod and Shiryaev (1987, Chapter VI, Proposition 1.17), since W̄ ρ has sample paths

that are P̄—almost surely continuous, one has limh↓0 W̄h,ρ = W̄ ρ P̄—almost surely for the local uniform
topology. Moreover, since W̄ ρ is a diffusion process, the stopping times inf{t > 0 | W̄ ρ

t < 0} and
inf{t > 0 |W̄ ρ

t ≤ 0} coincide P̄—almost surely. Applying Lemma C.2 path by path, it then follows that
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limh↓0 (W̄
h,ρ, fh(W̄h,ρ)) = (W̄ ρ, f(W̄ ρ)) P̄—almost surely. Using the fact that W̄h,ρ and W̄ ρ induce

the same probability measures over D(R+) as W̃h,ρ and W̃ ρ, it is easy to check that this implies in

turn that (W̃h,ρ, fh(W̃h,ρ)) converges in law to (W̃ ρ, f(W̃ ρ)) over the space D(R+) × R+. Defining
the stopping times τ̃h = fh(W̃h,ρ) and τ̃ = f(W̃ ρ) and the killed processes W̃h,ρ

·∧τ̃h = {W̃
h,ρ
t∧τ̃h}t≥0 and

W̃ ρ
·∧τ̃ = {W̃

ρ
t∧τ̃}t≥0, one obtains that W̃

h,ρ
·∧τ̃h converges in law to W̃

ρ
·∧τ̃ .

Step 3. We now deal explicitly with the liquidation region [0, wh,l). Define the discounted version

Wh,ρ = {Wh,ρ
t }t≥0 of Wh by Wh,ρ

t = (1 + ρh)−[[t/h]]Wh
t for all t ≥ 0. By Proposition 1, Wh,ρ is a

supermartingale. Moreover, from Step 2, W̃h,ρ
·∧τ̃h converges in law to W̃ ρ

·∧τ̃ . It follows then from

Billingsley (1968, Theorem 4.1) that, in order to establish that Wh,ρ converges in law to W̃ ρ
·∧τ̃ , it is

sufficient to prove that δ(Wh,ρ, W̃h,ρ
·∧τ̃h) converges to 0 in probability, where δ is the standard Prokhorov

metric on D(R+) (Jacod and Shiryaev (1987, Chapter VI, Section 1c)). By construction, the processes
Wh,ρ and W̃h,ρ

·∧τ̃h coincide up to time τ̃
h. Using the definition of δ, one then has, for any ε > 0:

P
h
δ(Wh,ρ, W̃h,ρ

·∧τ̃h) > ε
i
≤ P

"
sup

t∈[τ̃h,∞)
{|Wh,ρ

t − W̃h,ρ
τ̃h
|} > ε

#

≤ P

"
sup

t∈[τ̃h,∞)
{Wh,ρ

t } > ε

#
+ P

h
W̃h,ρ

τ̃h
> ε

i

≤
E
h
Wh,ρ

τ̃h

i
ε

+ P
h
Wh,ρ

τ̃h
> ε

i
,

where the first inequality follows from the definition of δ and the last one from the fact that Wh,ρ is

a supermartingale that coincides with W̃h,ρ
·∧τ̃h up to time τ̃

h. Since Wh,ρ
τ̃h
∈ [0, (1 + ρh)−[[t/h]]wh,l) by

construction and limh↓0 w
h,l = 0 by Lemma 4, it follows that limh↓0 P [δ(Wh,ρ, W̃h,ρ

·∧τ̃h) > ε] = 0 for all

ε > 0, which establishes that Wh,ρ converges in law to W̃ ρ
·∧τ̃ . We now show that this implies that W

h

converges in law to W̃·∧τ̃ , where W̃·∧τ̃ = {W̃t∧τ̃}t≥0 and W̃ is defined as in Step 1. For any t ≥ 0 and
h > 0, let a(t) = eρt and ah(t) = (1+ρh)[[t/h]]. By construction, W̃·∧τ̃ = aW̃

ρ
·∧τ̃ and W

h = ahWh,ρ. It

is easy to check that the function from D(R+) to D(R+) that maps any y ∈ D(R+) into the product
ay is continuous. Since Wh,ρ converges in law to W̃ ρ

·∧τ̃ , it follows from Billingsley (1968, Theorem 5.1)

that aWh,ρ converges in law to aW̃ ρ
·∧τ̃ = W̃·∧τ̃ . Thus, by Billingsley (1968, Theorem 4.1), all we need to

prove to establish thatWh converges in law to W̃·∧τ̃ is that δ(W
h, aWh,ρ) = δ(Wh, aWh/ah) converges

to 0 in probability. Using the definition of δ, it is easy to see that a sufficient condition for this to occur

is that δlu(W
h, aWh/ah) converges to 0 in probability, where δlu is the metric associated to the local

uniform topology on D(R+) and defined by δlu(y, y
0) =

P∞
n=1(1/2

n)min{supt≤n |y(t) − y0(t)|, 1} for
all (y, y0) ∈ D(R+)2. This in turn follows at once from the fact that the processes Wh are uniformly

bounded for h close to 0, and that the function a/ah converges to 1 in the local uniform topology

as h goes to 0. Hence, Wh converges in law to W̃·∧τ̃ , as claimed. To complete the proof, consider

the processes W = {Wt}t≥0 and L = {Lt}t≥0 defined by Wt = W̃t∧τ̃ and Lt =
R t∧τ̃
0

eρs dKs for all

t ≥ 0, where K is given by (C.15). Note that the events {Xt = 0} and {Wt = w
m} coincide and that

τ = inf{t ≥ 0 |Wt = 0} = inf{t ≥ 0 | W̃t < 0} = τ̃ P—almost surely. Since K has bounded variation

and W̃t = w
m + eρtXt for all t ≥ 0, it follows from (C.12)—(C.15) and a straightforward application

of Itô’s formula that (W,L) is the unique continuous solution to the Skorokhod problem (40)—(42), as

required. Hence the result. Using SÃlomiński (1993, Corollary 11), one can further show that the pair

(Rh,Wh) converges in law to (R,W ) over D(R+,R2), where Rh and R are defined by (38)—(39). k
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APPENDIX D

Proof of Corollary 2. Define W̃ ρ
·∧τ̃ and W

h,ρ as in Steps 2 and 3 of the proof of Proposition 5,

and define the discounted version Mh,ρ = {Mh,ρ
t }t≥0 of Mh by Mh,ρ

t = (1 + ρh)−[[t/h]]Mh
t for all

t ≥ 0. By construction, mh
nh = (

Qn−1
i=0 x̂

h
ih)m̂

h
nh = (

Qn−1
i=0 x̂

h
ih)ŵ

h
nh/λ

h for all n ∈ N. It follows

then from (A.11) that Mh,ρ is a supermartingale, just as Wh,ρ. Since limh↓0 λ
h = λ, Step 2 of the

proof of Proposition 5 implies that Wh,ρ/λh converges in law to W̃ ρ
·∧τ̃/λ. Thus, by Billingsley (1968,

Theorem 4.1), Mh,ρ converges in law to W̃ ρ
·∧τ̃/λ if δ(M

h,ρ,Wh,ρ/λh) converges to 0 in probability.

Let τh = inf{t > 0 |Wh,ρ
t < (1+ρh)−[[t/h]]wh,l}. By (27)—(29) and (A.10)—(A.12), Mh,ρ coincides with

Wh,ρ/λh up to time τh. Using the definition of δ, one then has, for any ε > 0:

P
∙
δ

µ
Mh,ρ,

Wh,ρ

λh

¶
> ε

¸
≤ P

"
sup

t∈[τh,∞)

(¯̄̄̄
¯Mh,ρ

t − W
h,ρ
t

λh

¯̄̄̄
¯
)
> ε

#

≤ P

"
sup

t∈[τh,∞)
{Mh,ρ

t } > ε

#
+ P

"
sup

t∈[τh,∞)

(
Wh,ρ
t

λh

)
> ε

#

≤
2E
h
Wh,ρ

τh

i
ελh

,

where the first inequality follows from the definition of δ and the last one from the fact that Mh,ρ

and Wh,ρ/λh are supermartingales that coincide up to time τh. Since Wh,ρ
τh
∈ [0, (1 + ρh)−[[t/h]]wh,l]

by construction and limh↓0w
h,l = 0 by Lemma 4, it follows that limh↓0 P [δ(Mh,ρ,Wh,ρ/λh) > ε] = 0

for all ε > 0, which establishes that Mh,ρ converges in law to W̃ ρ
·∧τ̃/λ. Proceeding as in Step 3 of the

proof of Proposition 5, one can then verify that this implies that Mh converges in law to W/λ. k

Proof of Proposition 6. Let W0 = w and suppose that w ∈ [0, wm]. Since L is continuous with

bounded variation, it follows from (40) and Itô’s formula that, for each T ≥ 0,

e−rT∧τWT∧τ = w +

Z T∧τ

0

e−rt(ρ− r)Wt dt+

Z T∧τ

0

e−rtλσWt dZt −
Z T∧τ

0

e−rt dLt. (D.1)

We first take expectations in (D.1) and then let T go to ∞. Since Wτ = 0 by definition of τ , and

since the third term on the right-hand side of (D.1) is a martingale, we obtain that:

w = E(w,0)
∙Z τ

0

e−rt[dLt − (ρ− r)Wtdt] ,̧

where E(w,0) is the expectation operator induced by the process (W,L) starting at (w, 0). Dividing
by λ and using the fact that M =W/λ, this implies that:

m = E(m,0)
∙Z τ

0

e−rt
∙
1

λ
dLt − (ρ− r)Mtdt

¸
,̧ (D.2)

where m = w/λ and where E(m,0) is the expectation operator induced by the process (M,L) starting
at (m, 0). From (44) and (D.2), and using the definitions (48) and (52) of S and B together with the

fact that S and B are deterministic functions of M , we obtain that:

F (w) +m = (1− λ)E(m,0)
∙Z τ

0

e−rt
1

λ
dLt

¸
+ E(m,0)

∙Z τ

0

e−rt[μ− (ρ− r)Mt] dt

¸

= (1− λ)S(m) +D(m),
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which implies the result. k

Proof of Proposition 7. At any date t ≥ 0, St = S(Mt), where S is given by (49)—(51). Note that the
homogenous equation (49) is simply (B.2) with λ = 1. A basis (H0,H1) of the space of solutions to

(49) is characterized by the initial conditions H0(0) = 1, H0
0(0) = 0, H1(0) = 0 and H0

1(0) = 1. As for

H1 in the proof of Lemma 5, one can show that H0
1 > 0 over R+. Since S(0) = 0 and S 0(wm/λ) = 1,

one must have S(m) = H1(m)/H0
1(w

m/λ) for all m ∈ [0, wm/λ] and thus S is strictly increasing over
[0, wm/λ]. To complete the proof, we need only to show that H1 is strictly concave. Using the fact
that H1 is smooth, one obtains by differentiation of (49):

rH0
1(m) = ρH0

1(m) + ρmH00
1 (m) +

σ2

2
H0001 (m)

for all m ≥ 0. Since ρ > r and H0
1 > 0 over R+, it follows that H000

1 (m) < 0 at any point m ≥ 0 where
H00
1 (m) = 0. Hence H00

1 is strictly decreasing at its zeros over R+. Since H1(0) = 0 and H0
1(0) = 1

imply that H00
1(0) = 0 by (49), one thus has H00

1 < 0 over R++, and the result follows. k

Proof of Proposition 8. At any date t ∈ [0, τ), Dt/St = D(Mt)/S(Mt), where S and D are given

by (49)—(51) and (53)—(55). For any m ∈ [0, wm/λ], let WS,D(m) = S(m)D0(m) − D(m)S 0(m). To
establish the result, we show that WS,D < 0 over (0, w

m/λ). It is easy to check that:

ρmWS,D(m) = −
σ2

2
W 0
S,D(m)− [μ− (ρ− r)m]S(m)

for all m ∈ [0, wm/λ]. Since μ − (ρ − r)m > 0 and S(m) > 0 for all m ∈ (0, wm/λ), it follows that
W 0
S,D(m) < 0 at any point m ∈ (0, wm/λ) where WS,D(m) = 0. Hence WS,D is strictly decreasing at

its zeros over (0, wm/λ), if any exists. Since WS,D(0) = 0, we therefore need only to check that WS,D

is strictly negative in a right neighborhood of 0. From (49)—(50), one has:

S 00(0) = 0,

S 000(0) = 2(r − ρ)

σ2
S 0(0),

Similarly, from (53)—(54), one has:

D00(0) = −2μ
σ2
,

D000(0) = 2(r − ρ)

σ2
[D0(0)− 1].

As a result of this, Taylor-Young expansions yield:

S(m) = S 0(0)m+ o(m2),

S 0(m) = S 0(0) + r − ρ

σ2
S 0(0)m2 + o(m2),

and similarly:

D(m) = D0(0)m− μ

σ2
m2 + o(m2),

D0(m) = D0(0)− 2μ
σ2
m+

(r − ρ)

σ2
[D0(0)− 1]m2 + o(m2).
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It follows that WS,D(m) = −μS 0(0)m2/σ2+ o(m2), which is strictly negative in a right neighborhood

of 0. Hence WS,D(m) < 0 for all m ∈ (0, wm/λ), so that D/S is strictly decreasing over this interval.
Since S is a strictly increasing function of M by Proposition 7, the result follows. k

Proof of Proposition 9. At any date t ∈ [0, τ), Bt = B(Mt) = [S(M0) +Mt −M0]/S(Mt), where

S is given by (49)—(51). Thus, for any m ∈ (0, wm/λ), B0(m) = φ(m)/S(m)2, where by definition
φ(m) = S(m)−S 0(m)[S(M0) +m−M0]. Since S is strictly concave over [0, wm/λ] by Proposition 7,
and since S 0(wm/λ) = 1 by (51), one has S 0 > 1 over [0, wm/λ). From this and S(0) = 0, it follows
that S(M0) −M0 > 0, and thus φ(0) < 0. Similarly, one has S(wm/λ) − wm/λ > S(M0) −M0,

and from this and S 0(wm/λ) = 1, it follows that φ(wm/λ) > 0. Furthermore, φ is strictly increasing
as φ0(m) = −S 00(m)[S(M0) + m −M0] > 0 for all m ∈ (0, wm/λ). Hence, there exists a unique
m ∈ (0, wm/λ) such that φ(m) = 0, and B is U-shaped, as claimed. Since S is a strictly increasing
function of M by Proposition 7, the result follows. k

Proof of Proposition 10. By (62), ∆t is a strictly increasing and strictly convex function of Tt, that

vanishes at 0. Moreover, Tt = T (Mt) at any date t ∈ [0, τ ], where T is given by (63)—(65). To

establish the result, we show that T > 0 and T 00 > 0 over [0, wm/λ], and that T 0 < 0 over [0, wm/λ).
The homogenous equation (63) is the same as (49). One can thus write:

T (m) = β0H0(m) + β1H1(m)

for all m ∈ [0, wm/λ], where H0 and H1 are defined as in the proof of Proposition 7. To pin down the
coefficients β0 and β1, we impose the boundary conditions T (0) = 1 and T 0(wm/λ) = 0. This yields:

T (m) = H0(m)−
H0
0(w

m/λ)

H0
1(w

m/λ)
H1(m). (D.3)

We now prove that T 0 < 0 over [0, wm/λ). Note from (D.3) that T (wm/λ) > 0 since the Wronskian
WH0,H1 = H0H0

1 −H1H0
0 of H0 and H1 is strictly positive. It follows then from (63) and (65) that

T 00(wm/λ) = 2rT (wm/λ)/σ2 > 0. Since T 0(wm/λ) = 0, this implies that T 0 < 0 over an interval

(wm/λ − ε, wm/λ) for ε > 0 small enough. Now suppose that T 0(m) ≥ 0 for some m < wm/λ − ε,

and let m̃ = sup{m < wm/λ − ε | T 0(m) ≥ 0}. Then T (m̃) > 0 since T 0 < 0 over (m̃, wm/λ) and

T (wm/λ) > 0. Moreover, T 0(m̃) = 0 and T 00(m̃) ≤ 0. However, by (63), these two last conditions
imply that T (m̃) ≤ 0, a contradiction. Hence T 0 < 0 over [0, wm/λ), as claimed. Since T (wm/λ) > 0,
it follows that T > 0 over [0, wm/λ]. Using (63) again, we obtain that T 00 > 0 over [0, wm/λ], which
concludes the proof. k

Proof of Proposition 11. Since W = λM , we shall hereafter use M , rather than W , as the state

variable. Define accordingly a mapping F : R+ → R by F(m) = V (λm) − λm for all m ≥ 0. Note
that, by construction, F is strictly concave over [0, wm/λ]. Fix the initial wealth A of the entrepreneur.
Then, since the entrepreneur is assumed to have all the bargaining power at date 0, the investment

capacity of the firm is maxm∈R+{F(m)} + A. Moreover, for a fixed investment outlay I, the initial
level of cash reserves is max {m ∈ R+ | F(m) ≥ I − A}, and F is decreasing at this point. We need

therefore only to check that, over (0, wm/λ], F is strictly increasing with respect to μ, and strictly

decreasing with respect to λ and σ2. From (33)—(36), F satisfies:

rF(m) = μ+ ρmF 0(m) + σ2

2
F 00(m) (D.4)
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for all m ∈ [0, wm/λ], with boundary conditions:

F(0) = 0, (D.5)

F 0
µ
wm

λ

¶
= −λ, (D.6)

F 00
µ
wm

λ

¶
= 0. (D.7)

Consider first Fμ = ∂F/∂μ. From (D.4)—(D.7), Fμ satisfies:

rFμ(m) = 1 + ρmF 0μ(m) +
σ2

2
F 00μ (m) (D.8)

for all m ∈ [0, wm/λ], with boundary conditions:

Fμ(0) = 0, (D.9)

F 0μ
µ
wm

λ

¶
= 0. (D.10)

Using Itô’s formula as in the proof of Proposition 4, together with the dynamics (45) of M , one

can check from (D.8)—(D.10) that Fμ(m) = E [
R τ
0
e−rt dt] for all m ∈ [0, wm/λ], where E(m,0) is the

expectation operator induced by the process (M,L) starting at (m, 0). Thus Fμ(m) > 0 for all

m ∈ (0, wm/λ], and F is strictly increasing with respect to μ over (0, wm/λ].

Consider next Fλ = ∂F/∂λ. From (D.4)—(D.7), Fλ satisfies:

rFλ(m) = ρmF 0λ(m) +
σ2

2
F 00λ (m) (D.11)

for all m ∈ [0, wm/λ], with boundary conditions:

Fλ(0) = 0, (D.12)

F 0λ
µ
wm

λ

¶
= −1. (D.13)

Comparing (D.11)—(D.13) with the boundary value problem (49)—(51) solved by S, it is immediate
that Fλ(m) = −S(m) for all m ∈ [0, wm/λ]. Thus Fλ(m) < 0 for all m ∈ (0, wm/λ], and F is strictly

decreasing with respect to λ over (0, wm/λ].

Consider finally Fσ2 = ∂F/∂σ2. From (D.4)—(D.7), Fσ2 satisfies:

rFσ2(m) =
1

2
F 00(m) + ρmF 0σ2(m) +

σ2

2
F 00σ2(m) (D.14)

for all m ∈ [0, wm/λ], with boundary conditions:

Fσ2(0) = 0, (D.15)

F 0σ2
µ
wm

λ

¶
= 0. (D.16)

In analogy with Fμ, one can check from (D.14)—(D.16) that Fσ2(m) = E(m,0) [
R τ
0
e−rtF 00(Mt) dt]/2

for all m ∈ [0, wm/λ]. Moreover, F is strictly concave over [0, wm/λ]. Thus Fσ2(m) < 0 for all

m ∈ (0, wm/λ], and F is strictly increasing with respect to σ2 over (0, wm/λ]. The result follows. k
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Proof of Proposition 12. Since ∆t is a strictly increasing function of Tt by (62), and Tt = T (Mt) at

any date t ∈ [0, τ ], we need only to check that, over (0, wm/λ], T is strictly decreasing with respect

to μ, and strictly increasing with respect to λ. Note that T depends on μ and λ only through wm/λ.

We first determine how wm/λ varies with μ and λ. Define H1 as in the proof of Lemma 5, and H1 as
in the proof of Proposition 7. From the proof of Lemma 5, wm is the unique solution to the equation:

[ρwH 0
1(w)− rH1(w)] exp

µ
ρw2

λ2σ2

¶
= μ.

As a result of this, wm/λ is the unique solution to the equation:

[ρλmH 0
1(λm)− rH1(λm)] exp

µ
ρm2

σ2

¶
= μ. (D.17)

Define H1(m) = H1(λm) for all m ≥ 0. Then, since H1 solves (B.2), H1 solves (49), just as H1.
Moreover, since H1(0) = H1(0) = 0, and since H0

1(0) = 1 and H
0
1(0) = λ, one must have H1 = λH1.

Thus (D.17) can be rewritten as:

[ρmH0
1(m)− rH1(m)] exp

µ
ρm2

σ2

¶
=

μ

λ
. (D.18)

The left-hand side of (D.18) is a strictly increasing and strictly convex function of m, that vanishes at

0. Since H1 is independent of μ and λ, it is immediate from (D.18) that wm/λ is strictly increasing

with respect to μ and strictly decreasing with respect to λ. Finally, let Twm/λ = ∂T /∂(wm/λ). From
(63)—(65), Twm/λ satisfies:

rTwm/λ(m) = ρmT 0wm/λ(m) +
σ2

2
T 00wm/λ(m) (D.19)

for all m ∈ [0, wm/λ], with boundary conditions:

Twm/λ(0) = 0, (D.20)

T 0wm/λ
µ
wm

λ

¶
= −T 00

µ
wm

λ

¶
. (D.21)

Comparing (D.19)—(D.21) with the boundary value problem (49)—(51) solved by S, it is immediate
that Twm/λ(m) = −T 00(wm/λ)S(m) for all m ∈ [0, wm/λ]. Thus Twm/λ(m) < 0 for all m ∈ (0, wm/λ],
and T is strictly decreasing with respect to wm/λ over (0, wm/λ]. The result then follows from the

fact that wm/λ is strictly increasing with respect to μ, and strictly decreasing with respect to λ. k

Proof of Proposition 13. Since St = S(Mt) at any date t ≥ 0, we need only to check that, over

(0, wm/λ], S is strictly increasing with respect to μ, and strictly decreasing with respect to λ. As

shown in the proof of Proposition 7, one has S(m) = H1(m)/H0
1(w

m/λ) for all m ∈ [0, wm/λ], where
H1 is a positive, strictly increasing and strictly concave function. Thus S is strictly increasing with
respect to wm/λ over (0, wm/λ]. The result then follows from the fact that wm/λ is strictly increasing

with respect to μ, and strictly decreasing with respect to λ, as shown in the proof of Proposition 12.

k
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