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Abstract

In this paper, we apply independent component analysis (ICA) for prediction and signal
extraction in multivariate time series data. We compare the performance of three differ-
ent ICA procedures, JADE, SOBI, and FOTBI that estimate the components exploiting
either the non-Gaussianity, or the temporal structure of the data, or combining both, non-
Gaussianity as well as temporal dependence. Some Monte Carlo simulation experiments
are carried out to investigate the performance of these algorithms in order to extract com-
ponents such as trend, cycle, and seasonal components. Moreover, we empirically test the
performance of those three ICA procedures on capturing the dynamic relationships among
the industrial production index (IPI) time series of four European countries. We also com-
pare the accuracy of the IPI time series forecasts using a few JADE, SOBI, and FOTBI
components, at different time horizons. According to the results, FOTBI seems to be a good
starting point for automatic time series signal extraction procedures, and it also provides

quite accurate forecasts for the IPIs.

Keywords: ICA, Multivariate Time Series, Signal Extraction, Time Series Forecasting.

1 Introduction

In many applications of empirical sciences such as Medicine, Engineering, and Economics, when
the data are observed with a high level of noise, extracting the relevant patterns from the ob-
servations becomes an important task. The problem of estimating those underlying components
(components of interest) from the observations is known as signal extraction or feature extraction

problem. Thus, considering the additive decomposition,

Tt = Xt + V4, (1)

*Departamento de Anélisis Econémico: Economia Cuantitativa. Universidad Auténoma de Madrid. E-mail:
antonio.garcia@Quam.es

fLaboratorio de Estadistica. Max Planck Institute for Demographic Research. E-mail:  gonza-
lez@demogr.mpg.de

iDepartamento de Estadistica. Universidad Carlos III de Madrid. E-mail: daniel.pena@uc3m.es



Garcia-Ferrer, Gonzalez-Prieto & Pena 2

where x; is the observed data, x; is the set of interesting components (signal), and v, is the
noise process (not necessarily white) which is assumed to be independent of y;, the aim of signal
extraction is to isolate the signal from the noise. The estimates of the signal will be obtained by
filtering the observations, X; = Fx, in such a way that the signal estimates satisfy the minimum

mean square error (MMSE) criterion.

If x4 is a univariate time series process, model (1) might represent the decomposition of z; as
the sum of some underlying components of interest, which are usually interpreted in terms of
trend, seasonality, and cycle, among others. Then, some economic applications such as seasonal
adjustment, detrending, and analysis of the business cycles, can be seen as particular cases
of signal extraction problems, where the interesting signals (x:) are, respectively, seasonally

adjusted components, trends, and cycles.

Several approaches have been developed for solving the signal extraction problem in the
univariate framework. The first one, called ‘ad-hoc’ filter design approach, includes methods
that use moving-average smoothing filters to estimate the signal. These methods are supported
by the main central statistical agencies for trend extraction and seasonal adjustment in time
series. The X-11 filter (Shiskin et al. (1967)) for seasonal adjustment and the Beveridge-Nelson
(Beveridge and Nelson (1981)), the Baxter and King (Baxter and King (1995)), and the Hodrick-
Prescott (Hodrick and Prescott (1997)) filters, which were used to estimate the trend-cycle
components, are some well-known examples of the ‘ad-hoc’ filter design approach. The main
disadvantage of these filters is that they do not take into account the structure of the time series
process and they could produce spurious results and over/under-estimated components. Trying
to solve this important limitation, it has been developed the so-called model-based procedures,
where the filter is derived from statistical models and it is adapted to the particular structure
of the time series processes. Two directions emerge within the model-based procedures: the

ARIMA-model-based approach and the structural modelling approach.

On the one hand, the ARIMA-model-based procedures (Box et al. (1978), Burman (1980),
Bell and Hillmer (1984), Hillmer and Tiao (1982), among others) directly identify a parsimonious
ARIMA model for the observations. Then, univariate models for the components are derived
with the restriction that the aggregation of those models yields the ARIMA model identified
for the data. Because there is not a unique admissible decomposition, these methods apply the
‘canonical decomposition’ (see Box et al. (1978)) to solve identifiability problems. Within this
approach, the most popular algorithm is the SEATS/TRAMO software (Gémez and Maravall
(1996), Maravall (1993)) that is based on the filter developed by Burman (1980).

On the other hand, the structural modelling approach (Harvey (1989), Young et al. (1999),
Bujosa et al. (2007), among others), instead of using a-priori information to specify a model for
the observations, directly assumes different stochastic linear models for the unobserved compo-
nents. These models are formulated within an stochastic state space setting, and the Kalman
filter is used to estimate the parameters. STAMP (Koopman et al. (1995)) is a well known soft-
ware that directly specifies structural models for the components of interest in the time domain
framework. Another implementations of this approach, such as the CAPTAIN MatLab Toolbox
program (Young and Pedregal (1999), Taylor et al. (2007)) and the linear dynamic harmonic

regression algorithm (Bujosa et al. (2007)), are developed in the spectral framework assuming
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that the data are periodic time series.

When we move to the multivariate framework, where the issue of information redundancy in
the observed data set is usually arising, capturing the most ‘interesting’ features of the data
might be as important as (or even more than) it was in the univariate case. In particular, when
we observe multiple time series data where dynamic relationships are involved, the components
of interest might be common to different time series. Thus, extracting those underlying com-
mon components, which probably may have a useful interpretation in terms of common trends or
common seasonality, becomes an important task in multivariate time series analysis. Dynamic
factor models (see Forni et al. (2000) and Pena and Poncela (2006), among others) and multi-
variate structural time series models (Harvey (1989)) have traditionally dealt with this topic.
However, it is hard to develop ‘automatic’ (or quasi-automatic) procedures for signal extraction
in the multivariate framework, and STAMP (Koopman et al. (1995)) is the only model-based

procedure that can handle this problem.

As an alternative to model-based procedures, principal component analysis (PCA) is usually
applied to multivariate data sets with the aim of noise and/or dimension reduction, and signal
extraction. PCA can be seen as an ‘automatic’ procedure for signal extraction, where the
relevant information is given by those components that explain the largest amount of variance
in the data. PCA is quite successful in multivariate linear data but, when the data are non-
Gaussian (non-linear), PCA has difficulty in separating the underlying components. Empirical
applications show that, under non-Gaussianity assumption, the components extracted by PCA
are quite far away from the real ones (see for example, Oja (1982) and Sareld and Valpola (2005),
among others). Moreover, these empirical results reveal that independent component analysis

(ICA) estimates the underlying components better than PCA does.

In this chapter, we explore the performance of ICA in multivariate time series signal extraction,
and analyze how the ICA components could be useful to predict the observations. ICA seems
to be appropriate when we observed several economic time series data, where some components

of interest, such as trend or seasonal variations, can be assumed to be fairly independent.

This paper is organized as follows. Section 2 reviews the main approaches that have been
presented in the literature for signal extraction. Then, we introduce the procedure to forecast
the data using a set of ICA components. In Section 4, we carry out some simulation experiments
to support the idea that ICA could be seen as the first step for automatic signal extraction pro-
cedures. Next, we apply ICA to extract the components of interest in the industrial production
indexes of several European countries. In addition, we analyze how these data are forecasted

using a few ICA components. Finally, Section 6 gives some concluding remarks.

2 Model-based methods for signal extraction

Most of the latest signal extraction algorithms are model-based procedures where the obser-
vations are decomposed as the sum of some components of interest, such as trend, cycle, and
seasonal components. For example, for time series data, estimating the trend and the season-

ality is important to analyze the main movements of the time series, and to obtain seasonal
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adjusted data, respectively. In general, since an infinite number of decompositions is possible,

the identification of the components is not unique, and additional assumptions should be made.

An attractive feature of model based-approaches is that, since they are based on specific
statistical models for the observations and/or the components, model-based approaches could
facilitate analysis and inference. Next, we review the ARIMA-model based and the structural

modelling approaches, paying attention to some of their well-known implementations.

2.1 ARIMA-model based methods

The ARIMA-model based methodology (Box et al. (1978), Hillmer and Tiao (1982), Burman
(1980), Maravall and Pierce (1987), amongst others) came up as an alternative procedure for
seasonal adjustment of time series data. The ARIMA-model based approach starts by applying
the Box and Jenkins methodology to specify an ARIMA model that describes the behavior of
the time series data. Then, univariate models for the components are derived so that their
aggregation should be consistent with the original ARIMA model. Two assumption are made to
guarantee the unique identification of the components: first, it is assumed that the components of
interest are mutually uncorrelated; second, it is applied the canonical principle (Box et al. (1978))
which maximizes the variance of the noise component and leads the ‘interesting’ components to
be as stable as possible (Hillmer and Tiao (1982)). The underlying components are computed
by the Wiener-Kolmogorov filter (Box et al. (1978)) that provides the MMSE estimators of the

components, even for non-stationary time series (Bell (1984)).

Popular procedures that take the ARIMA-model based approach are the X-11-ARIMA (Dagum
(1980)), the X-12-ARIMA (Findley et al. (1998)) and the SEATS/TRAMO software (Gémez
and Maravall (1996), Maravall (1993)). These methods are commonly used by official statisti-
cal agencies to get seasonally adjusted data (for example, Statistics Canada, US Bureau of the

Census, and Bank of Spain are well-known examples of official agencies that apply, respectively,
X-11-ARIMA, X-12-ARIMA, and SEATS/TRAMO programs, to seasonal adjustment).

The first two procedures, the X-11-ARIMA and X-12-ARIMA, are based on moving averages
filters and then, they are not ARIMA-model based procedures themselves. However, since at the
first stage the two procedures identify an ARIMA model for the observations and the definitions
of the signals are ‘implicit’, the X-11- and the X-12-ARIMA are considered as ARIMA-model
based procedures. Both X-11- and X-12-ARIMA uses the X-11 filter (Cleveland and Tiao
(1976)), that applies a set of centered moving averages to estimate the seasonal components. The
problem is that when moving averages filters are used, many observations of the beginning and
the end of the series are lost and the seasonal effect could be underestimated. The X-11-ARIMA,
trying to avoid the loss of observations, uses the ARIMA model fitted to the original series for
extending the length of the data set (forecasting and backcasting). The X-12-ARIMA follows
the same idea that the X-11-ARIMA but introduces a pre-adjustment program, REGARIMA,
that is applied to the original time series data (before the identification of the ARIMA model)

to detect outliers and to estimate some deterministic effects (for example, the calendar effect).

The SEATS/TRAMO programs (Gémez and Maravall (1996), Maravall (1993)) are efficient

and automatic procedures which are mainly applied for seasonal adjustment and trend-cycle
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estimation. First, TRAMO (Time series Regression with ARIMA noise, Missing values and
Outliers) is a pre-adjustment program that is applied to the univariate time series data to pre-test
for the log-level specification, to detect and correct outliers (additive outliers, transitory changes,
and level shifts), to interpolate missing values, and to correct other deterministic effects such as
Trading Day, Leap Year, and Easter effects. Then, TRAMO specifies a set of possible models
for the pre-adjusted data, estimates them by maximum likelihood, and selects the ‘optimal’ one
based on AIC and BIC criteria. Finally, according to the selected model, TRAMO forecasts the
data to extend the time series and thus, it reduces the bias when a new observation enters to
the model. Next, SEATS (Signal Extraction in ARIMA Time Series) derives univariate ARIMA
models for the stochastic components so that they reflect the usual structures associated to
trend, cyclical (or trend-cycle), and seasonal components. SEATS uses the canonical principle
(Box et al. (1978)) to avoid identifiability problems and applies the Burman-Wilson algorithm
(Burman (1980)) to estimate the components (MMSE estimators). The final estimates for the
unobserved components are obtained by the aggregation of the deterministic effects (computed

by TRAMO) of each individual component to the stochastic components given by SEATS.

ARIMA-model based procedures have two important drawbacks: first, since the models for
the components are not directly specified (they are derived from the original ARIMA model
for the observations and should be consistent with it) those components could not be easily
interpretable, a-posteriori, in terms of trend or seasonality; second, since the ARIMA-model
based procedures consider a common noise for all the components, the components’ estimates
could be correlated, and therefore, the assumption of uncorrelated components would not be
satisfied. In structural modelling procedures, this problem is solved considering independent

noises for each component.

2.2 Structural modelling approach

The structural modelling approach is an alternative model-based methodology for signal extrac-
tion that is based on unobserved components models. Contrary to the ARIMA-model based
methodology the structural modelling procedures directly specify univariate stochastic models
for the underlying components and then, their interpretability in terms of trends, seasonalities

and cycles is guaranteed.

We distinguish two structural modelling specifications: the structural time series approach
(Harvey (1989)) that is implemented in the STAMP software (Koopman et al. (1995)), and
the dynamic harmonic regression approach (Young et al. (1999)), that is implemented in the
CAPTAIN Toolbox for Matlab (Young and Pedregal (1999), Taylor et al. (2007)) as well as
in the new linear dynamic harmonic regression algorithm (Bujosa et al. (2007)). The main
differences between the dynamic harmonic regression model (Young et al. (1999)) and Harvey’s
structural model (Harvey (1989)) rely on the model specification for the periodic components
and the optimization method used to estimate the parameters. In the following, we discuss these

two approaches.
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2.2.1 Structural time series approach

Structural time series models (Harvey (1989)) are formulated in terms of unobserved components
which have a direct interpretation. According to Harvey (1989), the structural time series models
‘are not more than regression models in which explanatory variables are a function of time and
the parameters change with time’. These explanatory variables represent dynamic features of
the data (such as stochastic trends, cycles, and/or seasonalities). The starting point in structural
time series models is to identify those features and model them in such a way that we can obtain
useful predictions for the time series data. Structural time series models are usually formulated
as state space models and the parameters of the unobserved components models are estimated
using the Kalman filter and related algorithms (see Harvey (1989) for a detailed description of
the state space and the Kalman filter methodologies).

STAMP (Structural Time Series Analyzer, Modeler and Predictor) (Koopman et al. (1995))
is a standard signal extraction procedure that is implemented according to structural time series
models (as they are defined in Harvey (1989)). STAMP, contrary to alternative signal extraction
procedures that are only developed in the univariate framework (e.g. SEATS/TRAMO), can
be applied to extract the components of interest in both univariate as well as multivariate time

series data.

The basic structural time series model assumes that univariate time series can be decomposed

into additive stochastic components as

Yo = it + Ve + e+ € (2)

where pi; represents the trend, 14 the cycle, 4 the seasonality, and ¢; the irregular component (a
structural time series model should not be necessarily defined in terms of these four UCs; it may
be defined only by some of them). There are different specifications to formulate the stochastic
process for each component. By default, for univariate time series data, STAMP considers a
basic structural time series model which chooses the local linear trend (LLT) model for the
trend, a stochastic cyclical component, a stochastic trigonometric model for the seasonality, and

a white noise process for the irregular term, ¢, ~ NID(0,02).

According to the LLT model, the stochastic trend is given by

pit = pe—1 + Be—1 + e, ne ~ NID(0,07),

_ 2 (3)
Br = Bi—1+ &, & ~ NID(0,0%),

where (; is the stochastic slope of the trend. Here, the two noises, 1; and &, and the irregular
component in (2), ¢, are assumed to be mutually uncorrelated. Different specifications for
the trend are possible: either the level () or the slope () could be deterministic instead of
stochastic, and the slope might not be included in the model (see Harvey (1989) for a complete

revision of different specifications).

The stochastic cyclical component is given by

< wi > :p¢< cois)\cc sz‘n)\z ) ( zpi_l ) n ( ﬁi ) (@)
Y} —s5inA¢  cosA iy Ky



Garcia-Ferrer, Gonzalez-Prieto & Pena 7

where p¥ and \° represent, respectively, the damping factor and the cyclical frequency (measured
in radians) which take values 0 < p¥ < 1 and 0 < A° < 7, respectively. The period of the cycle is
given by 27/\¢. The cyclical disturbances, ; ~ NID(0,02) and k} ~ NID(0,02), are assumed

to have the same variance and to be mutually uncorrelated.

The trigonometric formulation for the seasonal component is

[s/2]
Ve = Z Vit (5)
j=1

where [s/2] = s/2, 1 S ?S even
(s—1)/2, if sisodd
and ;. is defined as a non-stationary stochastic cycle, for each j = 1,2,...,[s/2]. That is, it

(s is the number of seasonal frequencies in a period),

is given by (4) where p¥ = 1, and the frequency for 7;;, in radians, is A = \; = 2jr/s. As
an alternative to the trigonometric form, the seasonality may be formulated using the dummy

variable form (see Harvey (1989) for more details).

When we have more than one time series, dynamic interactions usually appear among most
(or all) of them and capturing those relationships requires the joint estimation of the multiple
time series within a multivariate framework. Multivariate structural time series models are
straightforward generalized from the univariate ones as follows: the data, that is now a vector
of time series, yy, decompose as in (2), but considering vector components instead of scalars.
The models that are specified for each vectorial component generalize the ones formulated in the
univariate case (for instance, models (3), (4), and (5) for the trend, the cycle, and the seasonal
components, respectively), replacing the scalar components with vectors. In the particular, for
multivariate cycles, the damping factor, p¥, and the cyclical frequency, A°, are assumed to take
the same value for all the series. This kind of models, called SUTSE (Seemingly Unrelated
Time Series Equations), assumes that the disturbances of different components are multivariate

normally distributed and mutually uncorrelated in all time periods.

In SUTSE models, the disturbance covariance matrices, in particular their ranks, play an
important role to determine the presence of common factors. On the one hand, if the disturbance
covariance matrices are of full-rank, then each individual time series of y; will have its own
components (trend, and/or cycle, and/or seasonality, and/or irregular components), and the
interactions among the different time series are reflected as non-zero off-diagonal elements in
the covariances matrices of the disturbances. On the other hand, if there is any disturbance
covariance matrix with reduced rank, then the component associated to this disturbance term
will be common to more than one series. Thus, multivariate structural time series models
consider the possibility of dealing with cointegrated time series. The cointegration restrictions,
that are interpreted as a lower rank of the disturbance covariance matrix, can be imposed a-
priori, but it may also be given by the result of the model estimation. The general multivariate
unobserved components model nests more specific models with a restricted number of common
components. For instance, the non-stationary dynamic factor models (Pefia and Poncela (2006)),

where the common factors can be formulated in terms of UC with a useful interpretation.

STAMP solves the signal extraction problem in both cases: general multivariate structural

time series models (SUTSE) and multivariate structural time series models with common factors
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and cointegration. STAMP deals with common factor models writing them in terms of SUTSE

models with reduced rank disturbance covariance matrices.

The problem of structural time series models (either univariate or multivariate) the a-priori
structure imposed to the components (which makes easier their interpretation) may not be
appropriate for the particular series at hand, and wrong specifications could produce serious

misleading errors.

2.2.2 Dynamic harmonic regression approach

As in Harvey’s structural time series approach, the dynamic harmonic regression approach
(Young et al. (1999)) directly specifies unobserved components models for the components within
an stochastic state space setting. However, whereas structural time series models formulate the
unobserved components models in the time domain (see previous section for more details), the
whole process of identification and estimation for the dynamic harmonic regression model is

formulated in the frequency domain.

The dynamic harmonic regression model assumes that the univariate time series, y;, can be
decomposed as in (2). According the dynamic harmonic regression approach, these additive
unobserved components (trend, cycle, seasonal and irregular components) have a so-called dy-
namic harmonic representation. That is, each component is defined by a linear combination of
sines and cosines with time varying coefficients, which are modelled as generalized random walk
(GRW) stochastic processes (Young et al. (1999)). More formally, the general definition of the

dynamic harmonic regression components is given by
st = ajicos(wjt) + bjsin(w;t) (6)

where p; and w; = 1/p; are, respectively, the period and the frequency associated with the jth
dynamic harmonic regression component, and {aj¢, bj;} follow generalized random walk (GRW)
processes, that include the random walk (RW), integrated random walk (IRW), and smoothed
random walk (SRW) processes as special examples. The trend component corresponds to the

zero frequency component, s7°, that is described by a GRW process of the form:
1t o a f He—1 § 0 nt Nt N 0 g2 0
(5 )= )0 ) = (0 ) (e ) () (05 %))
where u; and B; are, respectively, the changing level and the slope of the trend component.

The periodic components (cycle, ¢, and seasonality, ;) are given by
R
TptE%‘/:ZSfJa (8)
j=1

where j = 1,2, ..., R are the associated periodic frequencies and s? are defined as in (6). The
time varying coefficients, {a;s, bj;}, that define the seasonal component, are usually assumed to
be random walk (RW) processes,

ajr = aj—1 + n?t, where n;?t ~ N(0,0’%a)v

9)
bjt = bji—1 + 17?,57 where 77275 ~ N(0, U%b).
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From the state space formulation of the dynamic harmonic regression model, Young et al.
(1999) derive an algorithm that combines the Kalman filter and the fixed interval smooth-
ing to estimate the structural parameters (usually called hyper-parameters) of the unobserved
components models. The dynamic harmonic regression algorithm estimates the autoregressive
spectrum of the observed time series, and computes the hyper-parameters as the minimum
non-linear least squares estimates of the difference between the logarithmic pseudo-spectrum
of the dynamic harmonic regression model and the logarithmic autoregressive spectrum of the
data (see Young et al. (1999) for more details). The dynamic harmonic regression algorithm
is implemented in the CAPTAIN Toolbox for Matlab (see Young and Pedregal (1999), Taylor
et al. (2007), among others). An alternative algorithm for the identification and estimation of
dynamic harmonic regression models is the linear dynamic harmonic regression (Bujosa et al.
(2007)) that simplifies and reduces the computational complexity of the basic dynamic harmonic
regression algorithm by using an alternative cost function. The advantages of the linear dynamic
harmonic regression algorithm are twofold: first, it eliminates the poles in the objective function
of the dynamic harmonic regression algorithm by considering a quadratic cost function (that it is
obtained by a linear algebraic transformation, using the ARIMA reduced-form representation of
the components). Second, it requires less input information than other existing alternatives. In
fact, the linear dynamic harmonic regression only needs the time series data (in a row) and the
nature of its periodicity to extract the dynamic harmonic regression components (for a detailed

description of the linear dynamic harmonic regression algorithm see Bujosa et al. (2007)).

3 ICA for prediction and signal extraction

In the literature, we can find many applications which use ICA to separate the components
of interest in multivariate data sets (see, for example, Bingham (2001), Funaro et al. (2001)
Hyvérinen (1999), and Vigario et al. (1998), among others). However, ICA has never been
applied to extract the basic components in time series data. In this chapter, we explore the
performance of ICA for decomposing multivariate time series data in terms of trend, cycle, and
seasonal components. Moreover, we present an alternative procedure to forecast multivariate

time series data using a small number of independent components (ICs).

3.1 Definition and estimation procedures

Let x; = (214, - .., Tme)’ be an m-dimensional vector of time series processes. It is assumed that
there are some underlying components, s; = (1, ..., Sx)’, with 7 < m, which are statistically
independent, that affect approximately linearly to the m observed time series, but with different

impact from one series to another. That is:
xt=Asy, fort=1,...,T (10)

where A is a full rank m x r matrix whose elements, {a;; }g;l o represent the effect of each
independent component (IC), s;¢, on the observations, x;. If A is known, the unobserved com-

ponents, s¢, can be easily obtained just by (pseudo)inverting the matrix A. If the loading matrix
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is unknown, the basic idea of ICA is that both, A and s;, can be estimated only from the ob-
servations, assuming statistical independence of the underlying components. Thus, the solution
to the ICA problem computes the estimates of the components as those linear combinations of

the data that are maximally independent. That is,
/S\t = WXt (11)

where W is an 7 X m matrix that maximizes the statistical independence of S;. To avoid
identifiability problems, additional assumptions such as that the ICs have unit variance and
that no more than one IC can be Gaussian distributed, should be made (Comon (1994)).

Different approaches such as using higher-order statistics, temporal structure, or mutual infor-
mation criteria, among others, have been used in the literature to develop algorithms for solving
the ICA problem. Although those ICA algorithms are based on different optimization criteria,
all of them often begin by a pre-processing step that standardizes the data and transforms them
into a set of uncorrelated components. This transformation, that is always possible, is usually
performed by PCA. After applying PCA, the dimension of the data may be reduced and the

new loading matrix will be orthogonal.

Here, we will use three different ICA algorithms to estimate the underlying components: JADE
(Cardoso and Souloumiac (1993)), SOBI (Belouchrani et al. (1997)), and FOTBI (Garcia-Ferrer
et al. (2011)). JADE and SOBI are well-known algorithms which obtain the ICs estimates
by utilizing information of higher-order statistics and time structure of the data, respectively.
On the one hand, JADE looks for the independence of the components by maximizing their
non-Gaussianity. Since second-order information is not enough to achieve independence under
non-Gaussianity assumption, JADE introduces higher-order statistics in terms of fourth-order
cumulants. Cardoso and Souloumiac (1993) define the fourth-order cumulant matrices, whose
off-diagonal elements are given by linear combinations of several fourth-order cross-cumulants,
and they propose to estimate the ICs by the simultaneous diagonalization of several cumulant
matrices. Then, since the independence of a set of variables is achieved when their cross-
cumulants, of order higher than two, are equal to zero, it is clear that the JADE ICs will be as

independent as possible (see Cardoso and Souloumiac (1993) for more details).

On the other hand, SOBI seeks the solution to the ICA problem exploiting the temporal struc-
ture of the data. It can be seen as a de-correlation method (then, it is based on second-order
moments) that obtain the ICs as in (11), where the separation matrix, W, is the joint diagonal-
izer of a set of time-delayed covariance matrices. Thus, the underlying components estimated
by SOBI will be instantaneous and temporally uncorrelated, but under non-Gaussianity, they
will be not statistically independent (see Belouchrani et al. (1997) a complete explanation of the
SOBI algorithm).

The third algorithm, FOTBI (Garcia-Ferrer et al. (2011)), combines both, higher-order infor-
mation as well as temporal structure, to obtain the ICs estimates. FOTBI can be seen as an
extension of JADE that incorporates temporal dependence. FOTBI introduces the time-delayed
fourth-order cumulant matrices and proposes to estimate the ICs by the joint diagonalization
of some of them. Then, according to that estimation principle, if the data are non-linear and

have significant autocorrelation structure (like multivariate time series data are), FOTBI may
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provide good estimates for the underlying components in the sense that they will be maximally

temporally independent under non-Gaussianity assumption.

3.2 Signal extraction with ICA

The ICA model given by (10) is quite realistic for being applied in many practical situations. In
particular, the classical problem of time series signal extraction, where the time series data are
given by the sum of some basic unobserved components, such as trend, cycle, and seasonality,
fits to the ICA model formulation. The motivation for applying ICA to multivariate time series
signal extraction is twofold: we are looking for the trend, the cycle, and the seasonal components

that should be non-Gaussian and statistically independent

The main advantage of ICA with respect to existing signal extraction procedures is that it is
‘automatic’ in the sense that it is able to extract the components without assuming any a-priori
structure either in the components nor in the loading matrix. ICA identifies the signal compo-
nents as those linear combinations of the data that are maximally independent. In addition, it
requires that each of the components explains the largest amount of variance in the data. Thus,
if we apply ICA to extract the basic components in multivariate time series data, the estimates
for the trend, cycle and seasonal components will be mutually independent. Then, ICA can
be seen as an ‘automatic’ procedure for time series decomposition where the ICA components
do not share common information and each of them represent different features of the data.
Throughout this chapter, we will explore the idea of presenting ICA as an automatic method

for multivariate time signal extraction.

Previous empirical applications proposed in the ICA literature assume that the ICs are sta-
tionary stochastic processes. However, our proposal applies ICA to extract the trend, cycle,
and seasonal component in multivariate economic time series and some of the components could
be non-stationary. Therefore, we propose applying ICA to perform the separation of possible
non-stationary components but, does it make sense to think about non-stationary ICA? This is

an open question that we will try to explore next.

One of the first approaches to deal with non-stationary unobserved components was proposed
by Pefia and Poncela (2006). They present the non-stationary dynamic factor model (DFM) that
extends the stationary factor model introduced by Pena and Box (1987) to the non-stationary
case. The non-stationary DFM assumes that the dynamic structure of a vector of time series can
be explained by a small number of stationary and/or non-stationary latent factors. Pena and
Poncela (2006) define the generalized covariance matrices, Cx(k), that converges to a random
matrix which can be diagonalized. Moreover, since ICA can be seen as dynamic factor model
(DFM) with non-linear latent factors (see Section 2.2.3), it may have sense to think about non-
stationary ICA. That is, ICA could be seen as a dynamic factor model with non-linear ICs that
may be non-stationary. In the simulation experiments of the previous chapter (in particular,
in the third experiment) we explore how ICA could deal with non-stationary components, and
it seems that it performs quite well. However, from a theoretical point of view, non-stationary

ICA is an open question that should be studied deeply.
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3.3 Forecasting with ICA

In this section, we present the procedure that we will use to forecast multivariate time series
data with some components of interest, that are estimated by ICA. This approach was firstly
applied by Malaroiu et al. (2000) to forecast financial time series data. The idea is to make
the forecasts in the space of the unobserved components, and then transforming back to the
observed dataset. The main advantage of this methodology, in comparison to other procedures
that also used a small number of factors to forecast large dataset, is that here the components
are statistically independent. Then, they can be forecasted separately, fitting different univariate

models for each one of them. In the following, we summarize this three-steps procedure:

1. We apply any ICA algorithm to the observations (it is convenient to choose the algorithm
which, a-priori, fits better to the features of the data), and we obtain estimates for both
the ICs, 8;, and the loading matrix, A.

2. In this step, we make the ICs forecasts. Since the ICs are statistically independent, they
can be modelled separately. Then, we fit a univariate ARIMA(p,d, q) x (P, D, Q)s model

for each sy, for j =1,...,7,
(1- ¢V B —...— oY BPAALS; = (1- 6B~ ...~ 60 BYay, t =1,.,T. (12)

For each ARIMA model, we estimate the parameters and, according to (12), the h-step-

ahead forecasts for each IC are given by,
sir(h) = E[sj(r4n) 1]

3. The forecasts of the observed data set, X7 (h), are obtained by weighting the ICs forecasts,
s7(h), with the loading matrix. That is, according to model (10),

xr(h) = ASr(h), (13)

or equivalently,

Tit(h) = Z az?jgjt(h)- (14)
j=1

4 Simulation Study

In this section we present some simulation experiments to illustrate the performance of ICA as an
automatic procedure in multivariate time series signal extraction. Since PCA is commonly used
to estimate the components of interest in large data set, we will also apply PCA to the simulations
in order to compare the performance of the two methodologies. We design four simulation
experiments where the components are generated by the two different unobserved components
formulations: whereas in two experiments the components are defined according to Harvey’s
structural model (Harvey (1989)), in the other two, they follow the dynamic harmonic regression
specifications (Young et al. (1999)). For each experiment, we generate R = 1000 realizations,

and the components are generated with three different sample sizes, T' = 150, 300, 500.
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The procedure to design the Monte Carlo experiments is summarized as follows: once the
m components are