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Abstract 

Synthesized iron oxide, α-Fe2O3 used for CO2 capturing was prepared by a simple mixing method and calcined at temperatures 

in a range of 350 – 850 °C. CO2 adsorption isotherms at 25 °C and 1 atm found that the sample namely s450 that calcined at 450 

°C gave the highest CO2 adsorption activity with the adsorption capacity of 17.0 mgCO2/gadsorbent. Monodentate carbonate, 

bidentate carbonate and bicarbonates formation were observed on s450 through the IR spectra. The basicity of s450 was 

identified by chemisorption of CO-TPD which contains weak, medium and strong basic sites with CO total adsorbed amount of 

1.99 cm3/g.  It was found that s450 calcined at 450 °C has certain crystallite peaks that abruptly increased through the XRD 

diffractogram. The texture properties of s450 generated high porosity and more uniform sphere shape particle size with high 

surface area (50.5 m2/g). Furthermore, it is composed of trimodal distribution for pore size distribution curve desirable for CO2 

adsorption.  

 

Keywords:  CO2 capture, adsorption, iron oxide, solid adsorbent, porosity 

 

Abstrak 

Penjerapan CO2 terhadap ferum oksida, α-Fe2O3 yang disintesis melalui kaedah campuran ringkas dan dikalsin pada suhu 350-

850 °C. Penjerapan isoterma CO2 pada suhu bilik, 25 °C and 1 atm mendapati sampel s450 yang dikalsin pada suhu 450 °C 

menunjukkan aktiviti penjerapan CO2 paling tinggi dengan keupayaan penjerapan sebanyak 17.0 mgCO2/gpenjerap. Spektrum IR 

telah membuktikan pembentukan spesis monodentat karbonat, bidentat karbonat dan bikarbonat pada s450. Sifat bes s450 yang 

dikenalpasti menggunakan jerapan kimia CO-TPD dimana jumlah CO yang dijerap oleh tapak bes lemah, sederhana dan kuat 

adalah 1.99 cm3/g.  Difraktogram XRD pula menunjukkan terdapat beberapa puncak kekisi yang meningkat. Tekstur s450 pula 

mempunyai keporosan yang tinggi dan bentuk sfera yang lebih sekata serta luas permukaan yang tinggi (50.5 m2/g). Tambahan 

lagi, graf taburan saiz liang s450 juga terdiri daripada taburan jenis trimodal yang menjadi salah satu faktor penting dalam 

penjerapan CO2. 

 

Kata kunci:  penjerapan CO2, penjerapan, ferum oksida, penjerapan pepejal, keporosan 
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Introduction 

The main concern worldwide over the recent years is renewable energy which could generate for the rest of decades 

without worrying about the depletion of sources in the earth. Human population and consumption are directly 

proportional with the addition of technology provided and yet keep growth explosively which completed with 

extensive research and development in the industry and academic.  This progressive situation made human realized 

with considerable attentions were paid to the green technology by using the anthropocentric environmental ethics 

which is people centered as an approach to reduce environmental pollutions and save the earth and future 

generation. It gave rise to anthropocentric individuals to feel the environment should be protected because of its 

value in maintaining or enhancing the quality of life for human [1]. 

 

Rapid growth development resulting in harmful air pollutants released into the atmosphere which became the major 

contribution in the global warming and several issues on urban smog, acid rain, and health problems contributed 

from emission of anthropogenic CO2 [2]. The CO2 in atmosphere, one of the major greenhouse gases, is now higher 

than the safety limit for the atmospheric CO2 level of 350 ppm. According to the National Oceanic and Atmospheric 

Administration (NOAA) in U.S, the CO2 level was higher than the safety limit since 80’s and to date on September 

2015 was approximately 397.63 ppm. Furthermore, the increased CO2 growth rate about 2.0 ppm/year gives rise to 

the mitigating measure of capturing CO2 [3].  

 

According to Freund and Roberts [4], chemisorbed species is connected with the formation of CO2
δ-

, the anionic 

molecule, which involves the charge transfer from the metal to the molecule. Consequently, the α-Fe2O3 decorated 

as the basic oxide where the CO2 chemisorption involves the basic sites that act as electron donors and are 

associated with O2
−
 ions localized on surface defects [5].  The physisorption is found in almost all cases whereas the 

chemisorbed species are only observed under very specific conditions: the surfaces have to be either atomically 

rough, containing a high defect: density in order to stabilize the chemisorbed species, or are alkali metal modified 

surfaces [4].  

 

Metal oxides of calcium oxide (CaO) were among the earliest studies in the CO2 capture that has promising 

properties of high adsorption capacity [6]. However, it consumed high energy during the desorption process up to 

900 °C which is economically not favourable. Thus, the capability of the alternative adsorbents from the metal 

oxides was studied. The desorption process that required heat to dissociate formed carbonate can be explained by 

the interaction of CO2 as adsorbate on the adsorbent which depends on its binding energy. In fact, others than alkali 

metal and alkali earth metal oxides, several metal oxides have been reported for a single crystal oxide that shows its 

capability in the CO2 capture. Kwon et al. [7] reported the dissociation carbonate product on lanthanum sesquioxide 

(La2O3) using the IR frequencies at 500°C. Furthermore, the desorption temperature was increased to 700 °C when 

higher pressure was used during the CO2 adsorption [8]. Silver oxide (AgO) exhibited desorption temperature at 

247°C that was observed under the scanning tunnelling microscopy (STM) [9]. Meanwhile, Yoshikawa [10] 

discovered the order of dissociation of the different carbonate species (bicarbonate, monodentate, bidentate and 

polydentate carbonate) on cerium oxide (CeO2) at the temperature range of 50 – 450 °C. Among the copper oxides 

(CuO and Cu2O), it was found that copper (II) oxide (CuO) showed a higher adsorption capacity by physisorbed of 

17.7 mg CO2/g adsorbent and chemisorbed of 9.5 mmol/g with three times regeneration without significant loss of 

performance [11]. Our works reported that NiO exhibited adsorption capacity of 14.1 and 87.0 mg CO2/g adsorbent 

by physio- and chemisorption respectively, with the desorption temperature range of 400 – 460 °C [12].  

 

Previous studies of iron oxides, α-Fe2O3 as adsorbent showed evidence on the presence of various carbonate species 

formations such as monodentate, bidentate, and bicarbonate forms on the metal oxides adsorbent surface [13-17]. 

These studies described carbonates formation using the Fourier transfer infra red (FTIR) spectroscopy to analyze the 

configuration of C-O interaction with iron oxide surface. Ismail et al. [18] reported CO2 adsorption by using the iron 

material from a steel-pickling waste (97 wt% FeSO4.7H2O). The original material was roasted at 700 °C for 5 hours 

in air, oxygen, and nitrogen prior to the adsorption process. However, none of these researches reported the basicity 

active site that contributes to CO2. 
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In this study, α-Fe2O3 was synthesized by using a simple mixing method in order to obtain the preferable surfaces. 

The α-Fe2O3 was synthesized by using a low cost method to identify the optimum calcination temperature and 

quantify the basicity properties. Hence, the amount of CO2 adsorbed physically at room temperature, 25°C and 1 

atm was measured using the volumetric adsorption technique. 

 

Materials and Methods 

Sample preparation 

The analytical grade iron (III) nitrate nonahydrate (Fe(NO3)3·9H2O, 98%) and ethanol (C2H5OH, 99.7%) were 

purchased from Sigma-Aldrich, USA and Systerm, Malaysia respectively. The bulk α-Fe2O3 obtained from BDH, 

United Kingdom was treated by calcined under nitrogen flow at 150 °C for 1 hour. The simple mixing method is 

very useful to produce α-Fe2O3 nanoparticles with low cost of starting materials. This method was modified from 

literature reported by Dong et al. [19]. The Fe(NO3)3·9H2O was weighed to 16.16 g and dissolved in 20 ml distilled 

water to have concentration of 2 M. To this solution, ethanol was added with a volume percentage of 25% from the 

distilled water used and stirred for 1 hour at room temperature. The concentration of 2 M precursor was found to be 

the shortest time formation with a connection of large number of Fe(OH)3 fine particles. Ethanol acts as a stabilizer 

for the colloidal particles avoid aggregation [19]. The solution was sonicated for 20 minutes to obtain better 

homogeneous condition and dried with vigorous stirring at the temperature of 80 – 100 °C. The dried solid was 

ground and kept in an oven for 24 hours at 110 °C. Finally, it was calcined under the air flow at the temperature 

ranging from 350 – 850 °C. The samples were labeled by the calcination temperatures namely: bulk, s350, s450, 

s550, s650, s750 and s850. 

 

Characterization 

These samples were characterized with Bruker AXS D8 Advance type with X-ray radiation source of Cu Kα (40 

kV, 40 mA) to obtain the X-ray Diffraction (XRD) pattern. The crystal structures were verified by recording 2θ 

diffraction angle from 10° to 90° at wavelength (λ = 0.154 nm). The diffraction pattern obtained was matched with a 

standard diffraction data (JCPDS) file for identification of the crystalline phase composition.  

 

The physical surface analysis of N2 adsorption-desorption was conducted at 77 K in a Micromeritics ASAP 2020 

instrument to determine the textural surface properties of the prepared samples. The catalysts were degassed at 

200°C for 6 hours prior to analysis. The volumetric adsorption apparatus was used to determine the surface area and 

N2 adsorption-desorption isotherm using the BET equation [20]. Pore volumes and pore size distribution were 

determined by Barret–Joyner–Halenda (BJH) method and applied based on the adsorption branch. The t-plot 

method was used to calculate the non-microporous (or external) surface area considerable as the mesoporous 

surface area [21-23]. The total pore volumes were estimated to be the liquid volume of adsorbate (N2) at a relative 

pressure. All surface areas were calculated from the N2 adsorption isotherms by assuming the area of a N2 molecule 

to be 0.162 nm
2
 [20]. The CO2 adsorption behaviors of the sorbents were evaluated using the above mentioned 

instrument and evaluated at 25°C and 1 atm with circulated water bath and using 99.9% of purified CO2 gas as 

adsorbate. 

 

The particle sizes and morphology of the catalysts were measured by the transmission electron microscopy (TEM, 

CM12 Philips) which is equipped with an electron gun 200 kV. The synthesized of α-Fe2O3 before and after the 

exposure with CO2 (5% and 15% of CO2) as well as after temperature programmed desorption (TPD) at 650°C were 

examined using the Fourier transform infrared (FTIR) spectroscopy. The spectra of the samples were recorded 

between 4000 and 650 cm
-1 

in spectrum 400, FTIR Spectrometer (Perkin Elmer, UK) using the Attenuated Total 

Reflection (ATR) method for the sample preparation technique.  

 

The basicity properties of catalysts were performed by the TPD from a conventional apparatus of Chemisorption 

Analyzer, Micrometrics 2920 Chemisorb. This instrument is equipped with a thermal conductivity detector (TCD). 

Approximately 50 mg of catalyst was preheated to 150°C to remove the moisture for 30 minutes before it was 

cooled down to 30°C under the pure He gas flow rate of 30 mL/min. The catalyst was exposed with a gas mixture of 

5% CO in He in a constant temperature of 40°C under flow rate 30 mL/min for 60 minutes. The pure He gas again 

was introduced to the catalyst for the purpose of removing excess of the weak physically adsorbed CO at 50°C for 

30 minutes. The TPD required ice to trap the moisture which was placed in the container of instrument prior to the 
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measurements  and  heated  to  900°C  with  the  heating rate of 10°C/min under pure He. The samples after the 

CO2-TPD analysis by using 5% and 15% CO2 were collected using above mentioned conditions and observed 

through FTIR. 

 

Results and Discussion 

XRD pattern 

The X-ray diffractograms of bulk and synthesized α-Fe2O3 were determined and are represented in Figure 1. The 

peaks observed at d-values of 3.68, 2.70, 2.52, 2.20, 1.84, 1.69, 1.60, 1.49, 1.45, 1.34, 1.31, 1.26, 1.22, 1.19, 1.16, 

1.14, 1.10 Ǻ in all catalysts correspond to the rhombohedral phase of hematite, α-Fe2O3 with lattice parameters 

a=5.0356 and c=13.7489 (matched with JCPDS number 33-0664). The diffractograms show that the crystal 

formation of hematite phases can be seen at the calcination temperature of 350°C. Nevertheless, the crystallite peaks 

appear at this temperature had lower intensity compared to the bulk hematite especially on crystallites (018), (208), 

(10 10), (220), (306), (128), (02 10), (134) and (226). The s450 was found to have a better crystallinity of 

synthesized α-Fe2O3 among others. The crystallite peaks of (024), (116), (214) and (300) were abruptly increased 

for the calcined α-Fe2O3 at 450°C. The XRD pattern for the calcination temperatures ranging at 550 – 850 °C had 

similar intense of crystallinity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  XRD patterns of α-Fe2O3 at different calcination temperatures 

 

 

Textural properties 

The N2  adsorption-desorption  isotherms, specific surface areas,  and pore  volumes for the  bulk and  synthesized 

α-Fe2O3 are presented in Figure 2 and Table 1, respectively. The isotherms for all samples are type III profile 

according to the IUPAC isotherms of classification with typical sloping adsorption and desorption branches 

covering a large range of relative pressure (P/Po) where the adsorbent-adsorbate interaction is weak, but could be 

obtained with certain porous adsorbents [24]. It was proven from the H3 type hysteresis based on the isotherms 

ascribed from plate-like particles giving rise to slit-shaped pores from the adsorbent. The adsorbents showed large 

ranges of pore diameters which do not exhibit any limiting adsorption at high P/Pο [20]. The adsorbents consist of 

mesoporous and macroporous structure in all samples based on the isotherms. It is interesting to note that s450 has 

the largest hysteresis area (Figure 2) compared to others which indicate the highest mesoporous and macroporous 

structure on the surface. The mesopore surface area with pore size ranging between 2 to 50 nm was evaluated by the 
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t-plot method. The macropore structure of bulk α-Fe2O3 was contributed more than mesopore since the mesopore 

surface area was smaller (3.9 m
2
/g) than s650 (4.2 m

2
/g) (Table 1). For s350, the temperature of 350 °C was not 

enough to create better pore structure. However, the sample s450 calcined at 450 °C created better pore structure 

which leads to a high surface area (50.5 m
2
/g). Hence, the total pore volume was increased which is desirable for the 

adsorption behavior. This ascribed to the calcined α-Fe2O3 at a particular temperature provided the capability in 

generating well pore structure nor produced fine particles. At the temperature higher than 450 °C, it was found to be 

not efficient to obtain a high porosity α-Fe2O3. The constituent crystallites of the hematite grew and sintered 

resulting from the increased of thermal exposure, eventually generated smaller pores and also reduced the BET 

surface area. The low specific surface area indicative of less-defined porosity was observed for s550 and above. The 

bulk α-Fe2O3 exhibited better adsorption rather than s650 and above.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  The effect of calcination temperature on α-Fe2O3 towards N2 adsorption-desorption isotherms 

 

 

Pore size distribution 

The highest N2 adsorption with the widest range of pore size can be seen from the pore size distribution curve 

illustrated in Figure 3. The distribution shows a wide range of pore sizes categorized under mesoporous and 

macroporous. A trimodal distribution was observed clearly for α-Fe2O3 calcined at 450 °C whereas the rest 

adsorbents established similar distribution and several multimodal distributions. The trimodal distribution has 

overcome the monomodal which appears to produce an enhancement in the surface area of the synthesized metal 

oxides [25]. It is interesting to note that s450 has three maximum pore diameter (652, 907 and 1271 Å) located in a 
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wide pore structure. These pores exhibited narrow pore size distribution compared to the others which are indicative 

of good porosity for gas adsorption retained based on the pore size distribution and BET surface area obtained. 

 

 

Table 1.  Textural parameters of the samples obtained from the N2 adsorption-desorption and 

CO2 adsorption isotherms 

 

 

 

 
 

Figure 3.  Pore size distribution of synthesized α-Fe2O3 by BJH method 

 

 

Pore structure of the adsorbents 

The bright field TEM micrographs of α-Fe2O3 prepared with increased calcination temperature are illustrated in 

Figure 4 to observe its crystallographic and morphological structure. The bulk α-Fe2O3 has larger crystallite size 

particles at 160.5 nm with aggregation and less pore structure which has agreement with the mesopore surface area 

based on N2 adsorption-desorption isotherms. For s350, it did not show very good morphology and aggregation of 

Calcination 

Temperature  

 

(°C) 

BET 

Surface 

area 

(m
2
/g) 

Mesopore 

Surface 

area 

(m
2
/g) 

Total 

Pore 

volume 

(cm
3
/g) 

Pore 

diameter  

 

(Å) 

CO2 

Adsorption 

at 25 °C 

(cm
3
/g) 

Adsorption 

Capacity 

 at 25 °C   

(mg CO2/gadsorbent) 

Bulk 5.7 3.9 0.022 154 1.53 3.0 

s350 23.1 20.6 0.124 215 2.91 5.7 

s450 50.5 27.0 0.227 371 8.66 17.0 

s550 9.3 8.9 0.039 168 1.17 2.3 

s650 5.0 4.2 0.012 96 1.11 2.2 

s750 2.6 1.7 0.006 91 0.94 1.8 

s850 1.2 1.9 0.003 98 0.76 1.5 
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the particles with particle size range 12.6 to 57.0 nm. Nonetheless, small and uniform particle sizes of α-Fe2O3 

particles with range of 24.5 to 56.0 nm were generated for s450. The pore structures well distributed on the particles 

surface are also easily seen from Figure 4. The one-hour calcination temperature of 550 °C was enough to make the 

particle size of s550 became larger (44.2 to 90.3 nm). At 650 °C, s650 exhibited more particles changing to ellipsoid 

with larger particle range of 73.0 to 119.2 nm and fine pore structure was observed. According to Dong et al. [19], 

particles changed at a higher temperature of 700 °C for longer calcination time of three hours. The porous images in 

Figure 4 for synthesized α-Fe2O3 by using simple mixing method could provide improvement in the porosity rather 

than bulk sample. The high porosity surfaces provide more active sites and space which are responsible in attracting 

CO2. 

 

 

 
 

Figure 4.  TEM view of synthesized α-Fe2O3 particles 

 

 

Base strength distribution by CO-TPD analysis 

The s450 was chosen based on the morphology studies, and used for the basicity measurement by TPD with CO as 

the probe molecule due to having the desirable properties in the CO2 adsorption. Although CO2 has been used 

worldwide for this purpose, somehow it could appear to be proper probe molecule because of its acidic in nature. 

The basic of adsorbent would attract the acidic gas easily to form various interaction modes. The CO-TPD profile in 

the literatures varies depending on the adsorption condition of CO. The broad desorption or high intensity peak 

indicative of CO has been adsorbed. The CO-TPD peaks represent the base strength distribution of the adsorbent are 

shown in Figure 5. The range of weak, medium and strong basic sites were estimated from the area under their TPD 

curve of 40 – 200, 200 – 400, >400 °C respectively. The temperature ranges chosen for the weak, medium and 

strong basic sites are CO-TPD observed from the most catalyst [26, 27].
 
The strengths of the basic sites are 

expressed in the temperature range wherein the CO2 chemisorbed on the basic sites was desorbed. The CO-TPD 

curve showed maximum temperature of 170 °C (weak base), 314°C (medium base) and 641 °C (strong base) with 

the desorption quantity of 0.14, 0.42 and 1.43 cm
3
/g respectively. This adsorbent had total amount of 1.99 cm

3
/g 

resulting a potential adsorbent in CO2 adsorption.  
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Figure 5.  Base strength distribution from TPD profile of CO adsorption (CO-TPD) for s450 

 

 

Formation of carbonate  

The IR spectra for s450 obtained before and after being exposed to CO2, and after desorption of CO2 are shown in 

Figure 6 and vibrational frequencies assignments are tabulated in Table 2. The position of the bands at 1226 and 

1630 cm
−1

 are indicative of the bicarbonate species for C-OH bending mode and asymmetry O-C-O vibrational 

modes of adsorbed bicarbonates respectively [15-17, 28]. The bicarbonate can be easily identified by its OH peak at 

3639 cm
−1

 [15-17, 28].  Other peaks observed at 1038 and 1399 cm
−1

 were associated with the monodentate 

structures of carbonate from IR spectra with C-O stretches and symmetry O-C-O vibrational mode respectively [15-

17]. The 1399 cm
−1

 peak only appeared for α-Fe2O3 with 5% CO2 of exposure. The weak contributions around 1245 

and 1554 cm
−1

 agreed with the formation of surface bidentate carbonate species with symmetry (O-C-O) and 

asymmetry (O-C-O) stretching respectively [15-17, 29] as a consequence of the adsorption of CO2 on a metal oxide 

surface.  In all spectra, the CO band from bridging CO2 at 2035 cm
−1

 was more intense for α-Fe2O3 exposed with 

15% CO2 [30]. The intensity pattern of peak 2162 cm
−1

 was similar where C=O bonded with hydroxyl groups 

having weak acidic properties [31]. The broad IR absorption band at 3370 cm
−1

 was the characteristic of H-O-H 

bonding of the H2O molecules which shows the presence of hydroxyl groups [32]. The intensities of hydroxyl group 

were found to be reduced and partially removed after CO2-TPD at 650 °C due to the thermal exposure. 

Additionally, there was also a broad OH stretching region of 2700 to 3706 cm
−1

 for all spectra but more intense for 

those exposed with 5% and 15% CO2 which was caused from moisture in the gas mixture. The adsorption band at 

918 cm
−1

 was corresponded to the Fe-O-H deformation due to the source of gas containing traces amount of 

moisture that led to the hydroxide compound formation on metal oxide surface [33, 34].  
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Figure 6.  IR spectra of (a) s450 before CO2 adsorption, (b) α-Fe2O3 at 450 °C exposed with 5% CO2, (c) α-Fe2O3 at 

450 °C exposed with 15% CO2 and (d) α-Fe2O3 at 450 °C after CO2-TPD at 650 °C 

 

 

Table 2.  Vibrational modes of IR spectroscopy for s450 adsorbed product after CO2 adsorption 

and CO2-TPD at 650 °C 

 

 

 

 

 

 

 

 

 

 

 

Vibrational Modes Frequency 

(cm
-1

) 

References
*  

(cm
-1

) 

References 

Bicarbonate (HCO3
-
)    

Asymmetry O-C-O 1630 1555-1720 [15-17, 28] 

C-OH 1226 1220-1269 [15-17, 28] 

O-H 3639 3600-3627 [15-17, 28] 
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Table 2 (cont’d).  Vibrational modes of IR spectroscopy for s450 adsorbed product after 

 CO2 adsorption and CO2-TPD at 650 °C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2 adsorption 

CO2 adsorption isotherms of the adsorbents at 25 °C and 1 atm are shown in Figure 7 and the adsorption capacity is 

tabulated in Table 1. The CO2 adsorption branch began from the monolayer that was on the adsorbent surface and 

continued with the multilayer adsorptions that is known as physisorption. The bulk α-Fe2O3 shows the adsorption 

capacity was 1.53 cm
3
/g. For the synthesized α-Fe2O3, the CO2 adsorption capacity varies with the different 

calcination temperature parameters. s450 exhibited the highest BET surface area and total pore volume, showed the 

highest CO2 adsorption capacity (17.0
 
mgCO2 / gadsorbent) at 25 °C and 1 atm. The amounts of CO2 adsorbed onto the 

synthesized α-Fe2O3 decreased progressively as the calcination temperature was increased which was influenced by 

poor surface area as a consequence of the sintering effect of the adsorbent. It also has a higher volume of narrower 

pores with trimodal distribution of the pore size as shown in Figure 3, that provides more spaces to capture CO2. 

The adsorption capacity for s350 was rather higher than the rest of temperatures ascribed to crystallite grew and not 

exposed to the high thermal treatment that lead to sintering. The adsorption capacity for bulk α-Fe2O3 which was 

treated at 150 °C under N2 recorded a higher value than s550 and above. In addition, the adsorbed weights (CO2) of 

all the adsorbents are in the following order: 450 > 350 > bulk > 550 > 650 > 750 > 850. In fact, a linearly 

proportional relationship between the adsorptive capacity and surface area is suggested. Higher surface area 

provides more active sites to attract CO2 which resulting in high adsorption capacity. Overall, the simple mixing 

method could save more energy on the calcination temperature compared to Ismail et al. [18] work which required 

700°C for the CO2 adsorption purpose. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vibrational Modes Frequency 

(cm
-1

) 

References
*  

(cm
-1

) 

References 

Carbonate (CO3
2-

)    

Monodentate     

C-O 1038 1040 [15-17] 

Symmetry O-C-O 1399 1380-1395 [15-17] 

Bidentate     

Symmetry O-C-O 1245 1243-1355 [15-17, 29] 

Asymmetry O-C-O 1554 1535-1670 [15-17, 29] 

Bridging  CO2 2035 2035 [30] 

CO2 bonded to O-H  2162 2160-2162 [31] 

H-O-H 3370 3370 [32] 

Fe-O-H 918 800-920 [33, 34] 
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Figure 7.  The effect of calcination temperatures on CO2 adsorption isotherms at 25 °C and 1 atm 

 

 

Conclusion 

The calcination temperature of α-Fe2O3 at 450 °C by using a simple mixing method generated sphere particle size of 

fine particles with high BET surface area, mesopore surface area, and total pore volumes. These features provide an 

enhancement in CO2 adsorption at 25 °C and 1 atm with the highest adsorption capacity among all adsorbents was 

17.0
 
mgCO2/gadsorbent. Furthermore, the total basic site presence for all three weak, medium and strong basic site was 

1.99 cm
3
/g.  The striking peak was observed at strong base site with amount of 1.43 cm

3
/g.  The IR spectra 

described various configurations of CO2 interacted with α-Fe2O3 surface by monodentate, bidentate and bicarbonate 

forms although exposed with low concentration of 5% of CO2. 
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