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Abstract. A statistical analysis was performed to evaluate the effect of factor and to obtain the 

optimum configuration of Kraft paper honeycomb. The factors considered in this study include 

density of paper, thickness of paper and cell size of honeycomb. Based on three level factorial 

design, two-factor interaction model (2FI) was developed to correlate the factors with specific 

energy absorption and specific compression strength. From the analysis of variance (ANOVA), 

the most influential factor on responses and the optimum configuration was identified. After 

that, Kraft paper honeycomb with optimum configuration is used to fabricate foam-filled paper 

honeycomb with five different densities of polyurethane foam as filler (31.8, 32.7, 44.5, 45.7, 

52 kg/m3). The foam-filled paper honeycomb is subjected to quasi-static compression loading. 

Failure mechanism of the foam-filled honeycomb was identified, analyzed and compared with 

the unfilled paper honeycomb. The peak force and energy absorption capability of foam-filled 

paper honeycomb are increased up to 32% and 30%, respectively, compared to the summation 

of individual components.  

1. Introduction 

Honeycomb sandwich structure has been used extensively as an energy absorber or a cushion to resist 

external loads due to its lightweight and high energy absorbing capability. However, its weakness due 

to impact loading, hygro-thermal and others becomes a significant preoccupation for its application in 

the industry. Extensive work has been carried out on the structural and failure behavior of honeycomb 

sandwich structure. Aktay et al. [1] developed several numerical techniques for modeling transverse 

crush behavior of honeycomb core materials and compared with test data on aluminum and Nomex 

honeycomb. Ajdari et al. [2] investigated in-plane dynamic crushing of two dimensional honeycombs 

with both regular hexagonal and irregular arrangements. Furthermore, the critical buckling loads for 

various core densities and materials of honeycomb composite panels were studied both experimentally 

and analytically by Kaman et al. [3]. In addition, Zhang et al. [4] investigated the crashworthiness of 

kagome honeycomb sandwich cylindrical column under axial crushing loads and presented the new 

type of kagome honeycomb sandwich in order to expand the plastic deformation zones and improve 

the energy absorption efficiency.   

 Petrone et al. [5] reported that energy absorption in honeycomb cores is minimally dependent on 

the height of the cell walls but predominantly dependent on geometrical parameters of the honeycombs, 
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essentially the cell wall thickness-to-length ratio (t/l) or the relative density of the core. In the case of 

compressive loads, the critical buckling load is dependent on the bending of the cell wall that is related 

by (t/l3). Therefore, by increasing the relative density of the core, an increase of energy absorption in 

these cores can be expected. In addition, Xu et al. [6] reported that cell wall thickness to edge length 

ratio, t/l also plays the dominant role in the dynamic properties of honeycomb materials. In their work 

on the experimental study of out-of-plane dynamic compression of hexagonal honeycombs, they found 

that the tangent modulus increased towards the end of the crushing process, especially for honeycombs 

with small values of wall thickness to edge length ratio (t/l). For large cell size honeycombs, the plastic 

buckling is more likely to occur in the middle region of the specimens under quasi-static and dynamic 

compression, indicating that the deformation pattern is influenced by the dimension of the honeycomb 

cells. Other noteworthy studies on the effect of parameters of honeycomb on the energy absorption 

capability include Zhang et al. [4], Alavi and Sadegia [7] and Dongmei Wang [8]. 

 The compression deformation behavior of polymer foam is one of the characteristics that make the 

material desirable in energy absorption applications. In particular, the ability of the foam to undergo 

large amounts of plastic deformation at nearly constant stress is advantageous. Therefore, polymeric 

foams have been investigated extensively as fillers for hollow cores [7, 9–11]. The results have shown 

that these low density foams have positive effect on strengthening the cell walls of panel and also has 

been credited with improving energy absorption capability and damping properties of the honeycombs 

[10, 12–13]. Alavi and Sadega [7] found that foam filling of hexagonal cell can increase their mean 

crushing strength and energy absorption capability up to 300%. In addition, the mean crushing strength 

of foam filled panel is always greater than summation of individual component. Aktay et al. [14] also 

reported that the restraining effect of filler shifted the deformation mode of Al tube from diamond to 

concertina in larger diameter tube. Besides, energy absorptions in foam-filled tube were increased with 

increasing filler density and higher than the summation of the energy absorption of empty tube (alone) 

and filler (alone).  

 In this research, honeycomb structure made from Kraft paper for load bearing application was used 

and manufactured manually in order to obtain the desired thickness, density and cell size. Optimum 

configuration of the unfilled Kraft paper honeycomb on both specific energy absorption and specific 

compressive strength was determined through statistical analysis of variance (ANOVA). Then, Kraft 

paper honeycomb with optimized parameters was filled with low density polyurethane foam in order 

to strengthen the cell walls. Series of quasi static experimental tests were carried out to investigate the 

force and specific energy absorption capability of foam filled kraft paper honeycomb. 

2. Experiment materials and methods 

 

2.1. Materials 

The kraft paper honeycomb was fabricated from commercial kraft paper with three different densities 

(80gsm, 120gsm, 175 gsm) by using handmade honeycomb maker. The kraft paper honeycomb were 

coated with resin and cured at room temperature for 24 hours. Polyurethane foam were used as filler in 

the kraft paper honeycomb structure and it was made by mixing polyol and isocyanate in liquid foam. 

Five different types of polyol were used to produce five different density of polyurethane. However, 

only one type of isocyanate was used namely Maskiminate 80. The type of polyol and density of foam 

are shown in Table 1. 

 

2.2. Design of experiment method 

The full factorial design using Design-Expert Software was used to evaluate the effect of factors and to 

obtain the optimum configuration of Kraft paper honeycomb on specific energy absorption (SEA) and 

specific compressive strength(SCS). Full factorial design is a collection of statistical and mathematical 

techniques that are useful for the modeling and analyzing problems in which a response of interest is 

influenced by several variables and the objective is to optimize this response [15].  
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Table 1. Foam density and polyol type of polyurethane foam 

Polyol type Foam density (kg/m3) 

788B/4x2 31.8 

788B/8 32.7 

788B/2 44.5 

788B/9/45 45.7 

788B/9/68 52.0 

 

 Design-Expert software fitted four models; linear, two-factor interaction (2FI), quadratic and cubic 

polynomials to the responses and displayed a measure of progress during calculation. Linear models 

are generally used in most studies to assess the independent and dependent factors. In this model, the 

behavior of the dependent variables (response) can be expressed as Equation 1 [15]. 

 

(1) 

 

where ɛi is independent random variables, βo is the mean of observations,  βj is unknown constant, J is 

the factor and n is the number of observations. 

 The non-linear models are important and necessary to consider an experimental design that allows 

one to fit the experimental data to quadratic model. The general model presented in Equation 2 is used 

to describe the non-linear model [15]. 

 

(2) 

 

 

2.3. Foam filled kraft paper honeycomb 

The Kraft paper honeycomb with the optimized configuration is used to fabricate the foam-filled Kraft 

paper honeycomb by using dipping process. The dipping process gave a uniform foam-filling inside 

the honeycomb cell for bigger cell size, hence this method is more practical manufacturing process in 

comparison to foam injection as proposed by [12]. The foam-filled paper honeycombs were subjected 

to quasi-static compression loading by using SHIMADZU Autograph AG-X 250 compression machine. 

The bottom plate was fixed and the upper plate was subjected to vertical downward displacement up to 

22.5mm (50% of the honeycomb height) with a displacement rate of 0.5 mm/min. The force acting on 

the specimens was measured by load cell and force-displacement curve was plotted for further analysis.  

3. Results and discussion 

3.1. Analysis of design of experiment of unfilled kraft paper honeycomb 

Analysis of variance (ANOVA) was conducted on the collected data to investigate the main effects of 

density of paper (A), thickness of cell (B) wall and also cell size of honeycomb (C), with three level 

interaction effects on the specific energy absorption (SEA) and specific compression strength (SCS). 

Table 2 shows the factors and levels of kraft paper honeycomb. The height for all specimens was 

45mm. According to full factorial design method, 27 configurations of kraft paper honeycomb are 

generated considering three factors with three levels and the experimental results are shown in Table 3. 
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Table 2. The three factors and their levels 

Factor Code Unit Level 1 Level 2 Level 3 

Density of paper A gsm 80 120 175 

Thickness of cell wall B ply 1 2 3 

Cell size of honeycomb C mm 10 15 20 

 

Table 3. The experimental results obtained based on full factorial design 

Run A B C 
Specific compression 

strength (Mpa/kg) 

Specific energy 

absorption (J/kg) 

1 175 2 10 16.79 1128.41 

2 80 2 20 9.25 657.42 

3 80 2 10 23.10 535.93 

4 120 3 15 6.69 203.55 

5 175 3 20 7.64 808.94 

6 80 3 15 3.50 71.69 

7 120 2 10 12.79 325.15 

8 120 1 20 7.87 436.98 

9 120 2 15 14.48 458.22 

10 120 3 10 15.59 270.64 

11 80 1 20 1.70 81.09 

12 80 3 20 6.06 426.57 

13 175 2 20 4.09 452.96 

14 80 1 10 7.59 97.67 

15 175 1 20 7.09 560.30 

16 175 2 15 11.16 647.34 

17 120 1 10 14.91 266.13 

18 120 1 15 16.69 421.35 

19 80 2 15 16.44 595.467 

20 80 3 10 22.15 569.33 

21 175 1 10 17.50 559.68 

22 120 3 20 4.87 332.11 

23 175 3 20 9.50 661.96 

24 175 1 15 8.02 337.70 

25 120 2 20 6.06 472.63 

26 175 3 10 13.422 601.65 

27 80 1 15 7.29 335.18 

 

3.1.1. Analysis of specific energy absorption. According to the sequential model sum of squares, the 

models were selected based on the highest order polynomials where the models were not aliased and 

the additional terms were significant. From the analysis, it found that the two-factor interaction model 

come out the best for specific energy absorption (SEA). This is because it exhibits a high R-square 

values of 0.8496. The predicted R-square of 0.5717, is in reasonable agreement with adjusted R-square 

of 0.7556. Adequate precision measures the signal to noise ratio and the ratio greater than 4 is 

desirable. The ratio for SEA is 11.819 and this indicates that an adequate signal and model can be used 

to navigate the design space. 

The result of ANOVA analysis for SEA is presented in Table 4. For each response, the probability 

(Prob>F) was examined to check if it falls below 0.05. The model for SEA was developed with 99% 

confident level and P-value less than 0.001, which indicates that this model are highly significant. A, B 
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and C refers to density of paper, thickness of cell wall and cell size of honeycomb, respectively. Based 

on the P-value, density of paper, thickness of cell wall and cell size of honeycomb were found to have 

significant effect on SEA. Values greater than 0.1000 indicate the model terms are not significant. 

The F-value for each factor is simply a ratio of the mean of squared deviations to the mean of the 

squared errors. A larger F-value means that the factor has greater significance for SEA. From Table 4, 

it reveals that thickness of cell wall, B as most significant factor with F-value of 24.10, followed by 

density of paper, A and cell size of honeycomb, C with F-value of 12.13 and 4.77, respectively. The F-

value for interaction between density of paper, A and cell size of honeycomb, C is 2.10, which implies 

a weak influence of the two factor interaction to SEA value. The two-factor interaction model for SEA 

is given in Equation 3. 

 

        (3) 

Table 4. Analysis of variance (ANOVA) for SEA 

Source of data Sum of square 
Degree of 

freedom 
Mean square F value Prob >F Comment 

Model 5.967E+005 10 59669 9.04 <0.0001 Significant 

A 1.602E+005 2 80077.86 12.13 0.0006  

B 3.182E+005 2 1.591E+005 24.10 <0.0001  

C 62932.46 2 31466.23 4.77 0.0238  

AC 55395.17 4 13848.79 2.10 0.1287  

 

3.1.2. Analysis for specific compressive strength. Similarly, the best model for specific compressive 

strength (SCS) is two-factor interaction (2FI). This is due to low standard deviation (Std. Dev) of 0.75, 

high R-square value of 0.9390 and a low PRESS value of 34.61. The predicted R-square of 0.6912 is 

in reasonable agreement with adjusted R-square of 0.8678. The adequate precision is 15.95, which 

indicates that a satisfactory signal and model can be used to navigate the design. Table 5 summarizes 

the result of ANOVA analysis for SCS. The same parameters have been used for SEA analysis 

previously. Density of paper, thickness of cell wall and cell size of honeycomb were found to have 

significant effect on SCS with P-value 0.05. Thickness of cell wall resulted as most significant 

parameter for SCS with F-value of 48.91, followed by density of paper and honeycomb cell size with 

the F-value of 17.03 and 16.66, respectively. The lower F-value for interaction between AB and BC 

implies weak interaction between these parameters. The proposed models for SCS is expressed in 

Equation 4. 

 

(4) 

 

Table 5. Analysis of variance (ANOVA) for SCS 

Source of data Sum of square 
Degree of 

freedom 
Mean square F value Prob >F Comment 

Model 105.23 14 7.52 13.19 <0.0001 Significant 

A 19.43 2 9.73 17.08 0.0003  

B 55.73 2 27.86 48.91 <0.0001  

C 18.98 2 9.49 16.66 0.0003  

AC 4.94 4 1.23 2.17 0.1348  

BC 6.12 4 1.53 2.69 0.0827  

 

SEA= 426.33 – 105.03A1 + 27.55A2 -145.94B1 + 31.68B2 + 62.86 C1 – 8.35C2+ 

6.10A1C1 - 49.93A2C1 – 55.27A1C2 + 21.03A2C2 

SCS = 6.08 – 1.19A1 + 0.49A2 – 1.92B1 + 0.40B2 + 1.12C1 – 0.23C2 – 0.100A1B1– 0.54A2B1                             

+ 0.15A1B2 – 0.15A2B2 – 0.18B1C1 – 0.38B2C1 + 0.66B1C2+ 0.20B2C2 
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3.1.3. Optimization parameter of kraft paper honeycomb. The density of paper, thickness of cell wall 

and cell size of honeycomb were found to have significant effect on SEA and SCS. Both SEA and SCS 

were found to increase with decreasing of honeycomb cell size and increasing of density of paper and 

thickness of cell wall. The trend was agreed with other researchers who found that the higher cell wall 

thickness and smaller cell size increase the energy absorption and crush strength [6, 16]. The highest 

value of responses were obtained when honeycomb cell size at minimum point, while density of paper 

and thickness of cell wall at maximum point within the range of study. As a result, it was found that 

the optimum configuration of the unfilled Kraft paper honeycomb on SEA and SCS within the range 

of this study is: kraft paper density of 175 gsm, cell wall thickness of 3 ply and honeycomb cell size of 

10mm. 

 

3.2. Unfilled kraft paper honeycomb 

The force-displacement curves of selected kraft paper honeycomb compressed to the 50% deformation 

in quasi static compression are shown in Figure 1. The graphs show that there is elastic behavior at the 

beginning of the indentation until a critical load is reached. Then, sharp drop is observed after the peak 

load, which corresponds to the beginning of the vertical edge deformation. The force then decreases to 

reach a plateau, which corresponds to the succession of fold forming and ends up by condensation of 

the honeycomb [17]. The deformation of selected kraft paper honeycomb of paper can be observed in 

Figure 2. 

 
Figure 1. Force-displacement curves of selected kraft paper honeycomb 

 

 

Figure 2. Condition of selected kraft paper honeycomb before (top) and after (bottom) quasi 

static compression test 

The failure mechanism of kraft paper honeycomb consists of buckling of the cell walls and vertical 

edges, wall buckling on the top or bottom surfaces and the tendency of unstable outer cells to buckle 
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towards inward or outward direction. Initially, as kraft paper honeycomb was compressed, the lower 

part of the cell walls started to buckle. The cell walls started to buckle locally at the weakest point 

along the height, which is the bottom part of the structure. This lower part of cell walls continued to 

buckle as the kraft paper honeycomb was compressed further. Then, the number of folds of walls and 

vertical edges increased until reaching the densification phase. It is also can be observed from Figure 2 

that the kraft paper honeycomb with 3 ply of thickness of paper (c) buckled only on the top surface 

compare to 1 ply (b) and 2 ply (a), where the wall buckling on both side of honeycomb. This condition 

happened due to the imperfections of the cell alignment during the manufacturing process. However, 

the fold shape is same for all samples. The folding mechanism is similar to Nomex honeycomb that 

reported by Aminanda et al. [1]. 

3.3. Foam-filled kraft paper honeycomb structure 

The Kraft paper honeycomb (Figure 3a) with optimized configuration (175gsm, 3ply, 10mm) was used 

to fabricate the foam-filled Kraft paper honeycomb (Figure 3b). Five different densities of foam was 

used with its identification using FFP1 to FFP5 respectively with increase of foam density. The list of 

the five different densities of foam and its designation are shown in Table 6. 

 
Figure 3. Condition of (a) unfilled kraft paper honeycomb (b) foam-filled kraft paper honeycomb 

Table 6. Foam density and designation of foam-filled kraft paper honeycomb 
  

Designation Foam density (kg/m3) 

FFP1 31.8 

FFP2 32.7 

FFP3 44.5 

FFP4 45.7 

FFP5 52.0 

 

The force in function of the compression displacement for all specimens are drawn in Figure 4. The 

shape of the curves is almost similar with that of unfilled kraft paper honeycomb. However, the peak 

load of the foam-filled kraft paper honeycomb is broader than unfilled honeycomb, which is due to the 

foam occupied at the fold angle that gives a higher residual resistance and less abrupt behavior. From 

the graph, the energy absorption were determined by measuring the net area under force-displacement 

curve and it was measured until 22.5mm. Meanwhile, peak force was obtained by taking the maximum 

force of each curves. Table 7 and Table 8 represent the comparison of energy absorption capability and 

peak forces between the foam-filled Kraft Paper honeycombs and the summation of their individual 

components. The specific energy of individual component were calculated using Equation 5. 

(5) 

(5) 
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where Ef and Eh, are energy absorption for foam and honeycomb, while mf and mh are mass for foam 

and honeycomb, respectively. Meanwhile, specific energy absorption of foam-filled were calculated 

using Equation 6. 

(6) 

 

where Eff is energy absorption for foam-filled, while mff is mass for foam-filled. Since the total mass of 

individual element is almost the same as compared to that of the foam-filled honeycomb, the energy 

absorption increment relates also to the specific energy absorption. 

 

 
Figure 4. Force-displacement curves of foam-filled with five densities of foam 

 

Table 7. Comparison of energy absorption capabilities between foam filled paper honeycomb and 

summation of its individual component 

Foam-filled 

honeycomb 

Energy absorbed (J) 

Unfilled paper 

honeycomb 

(a) 

Polyurethane 

foam 

(b) 

Summation 

(a) + (b) 

Foam-filled paper 

honeycomb 
% Increase   

FFP1 

24.56 

5.87 30.43 32.19 5.78 % 

FFP2 7.81 32.37 38.75 19.70 % 

FFP3 9.00 33.56 33.92 1.07 % 

FFP4 12.97 37.53 48.93 30.38 % 

FFP5 17.85 42.41 55.03 29.76 % 

 

Table 8. Comparison of peak forces between foam filled paper honeycomb and summation of its 

individual component 

Foam-filled 

honeycomb 

Peak Force (kN) 

Unfilled paper 

honeycomb 

(a) 

Polyurethane 

foam 

(b) 

Summation 

(a) + (b) 

Foam-filled paper 

honeycomb 
% Increase   

FFP1 

2.381 

0.121 2.502 2.235 -10.67 % 

FFP2 0.191 2.572 2.844 10.58 % 

FFP3 0.247 2.628 2.780 5.78 % 

FFP4 0.387 2.768 2.852 3.03 % 

FFP5 0.490 2.871 3.796 32.21 % 
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From Table 7, it can be seen that energy absorbed of foam-filled honeycombs is always higher than 

the summation of their individual components. Foam-filled Kraft paper honeycomb with foam density 

45.7 kg/m3 (FFP4) shows the highest increment of energy absorbed with 30.38 % increase. It is also 

found that the percentage increase in SEA for higher density of foam filling (FFP4 and FFP5) are 

much higher compared to low density of foam (FFP1, FFP2, FFP3). This results also show agreement 

with study of Aktay et al. [14] that the energy absorption of foam-filled tube increases with increasing 

filler density and higher than the summation of the energy absorption of empty tube (alone) and foam 

filler (alone). Increment of energy absorption capability was due to the change of boundary condition 

on the top and bottom surfaces of the honeycomb from free-free to fixed-fixed boundary condition. 

The foam densification was found to occur at the buckled cell walls. This foam densification occurred 

due to the compression between one buckled wall and its neighboring walls. Therefore, after the sharp 

drop of force, the force fluctuated with number of wall buckling and densification of foam. As a results, 

the energy absorption capability of the foam-filled kraft paper honeycomb was increased and its values 

were higher than the summation of individual components.  

Comparison of peak forces between foam-filled paper honeycomb in Table 8 shows that almost all 

peak force values of foam filled are higher than the summation of their individual component except 

for the peak force of foam-filled Kraft paper honeycomb with 31.8 kg/m3 density of foam (FFP1). The 

Kraft paper honeycombed filled by the highest density of polyurethane foam (52 kg/m3) displays the 

highest increment of peak force with 32.21% increases. The foam infill has increased the bending and 

buckling resistivity of the honeycomb core cell walls. Due to this support, the peak force is increased 

and the transmitted load from the front face to the back face is increased, although the foam inside the 

cell has not compressed to its maximum value. 

The specific energy absorption of the foam-filled kraft paper honeycomb with different densities is 

plotted in Figure 5. From the graph, the optimum value of specific energy absorption is obtained at the 

maximum point of the specific energy absorption curve. It is found that the optimum specific energy 

absorption can be divided into two regions within the range of density studied for this work. For foam 

density less than 44.5 kg/m3, the optimum SEA is found for foam density of 33 kg/m3. As for density 

higher than 44.5 kg/m3, more experiments needs to be performed to reach an eventual optimum SEA 

as shown in Figure 5. It is also noted that for lower density foam filling (less than 44.5 kg/m3), it is 

almost ineffective to increase the SEA of foam-filled kraft paper honeycomb over unfilled kraft paper 

honeycomb. 

 
Figure 5. Specific energy absorption of foam-filled kraft paper honeycomb with different                                   

densities of foam 
 

Failure mechanism of foam-filled paper honeycomb is comprised by interaction between cell walls 

and foam, where the foam filled up the folds. The condition of the foam filled kraft paper honeycomb 

before and after compression can be observed clearly in Figure 6 and Figure 7.  
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Figure 6. Condition of foam-filled kraft paper honeycomb before (top) and after (bottom) quasi-static 

compression test for FFP1, FFP2 and FFP3 
 

FFP4 FFP5 

 
 

 

 

 
 

 

 

 

Figure 7. Condition of foam filled kraft paper honeycomb before (top) and after (bottom) quasi-static 

compression test for FFP4 and FFP5 
 

The buckling of cell walls starting at the middle of the structure and followed by foam densification 

at the same location. As illustrated in the figures, the most obvious observation if compared to unfilled 

kraft paper honeycomb is the condition on the top and bottom surface of the structure. There is no 

buckling at the wall on the top and the bottom surfaces of kraft paper filled with polyurethane foam 

even though the specimens were compressed until densification phase. This is in contrast with unfilled 

kraft paper honeycomb, where the numbers of buckled wall on the surface increase as displacement 

increases. On the surface of foam-filled kraft paper honeycomb, the shape of multiple hexagonal tubes 

remains as hexagonal even though they were compressed until the densification phase. Therefore, it is 

found that the failure mode was changed from wall buckling on the top and bottom surface for unfilled 
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kraft paper honeycomb to the wall buckling on the middle of the structure for foam-filled kraft paper 

honeycomb. 

The failure mechanism of foam-filled kraft paper honeycomb was divided into three stages: before 

plateau region, plateau region and end of plateau region. Before plateau region, the buckling of cell 

wall and vertical edge is less severe compared to unfilled kraft paper honeycomb and there is still no 

tearing of double thickness wall. In plateau region, the foam starts to push the bucked wall and filling 

the void between the folds. Tearing of cell wall occurs but pushed against each other. At the end of the 

plateau region, the whole cell wall bucked with bigger fold length compared to unfilled kraft paper 

honeycomb. The wall buckled at the middle of the structure, and no wall buckling at the upper and 

lower surface. It also can be seen clearly in Figure 6 that few outer cells buckled out since they were 

not supported from the outside and because they were only supported by three neighboring cells and 

only two for the cells at the end corners. 

The failure behavior of the kraft paper honeycomb was found to be similar to foam-filled Nomex 

honeycomb that was reported by Wan et al. [12]. Based on the figures, it also shows a change of the 

boundary condition from free-fixed type (local buckling) of unfilled kraft paper honeycomb to fixed-

fixed (global buckling) for foam-filled honeycomb subjected to compression loading. The change of 

the boundary conditions explains the peak force and energy absorption increment of the foam-filled 

honeycomb, together with the fact that the foam strengthens the honeycomb cell walls and cell walls 

confined the foam during the compression loading. 

4. Conclusion  

In conclusion, experimental design methodology has been shown to be a valuable tool to obtain the 

optimum configuration for kraft paper honeycomb and to explore the influences of density of paper, 

thickness of cell wall and cell sizes of honeycomb on the specific energy absorption and the specific 

compression stress. The results reveal that all factors give significant effect, however the thickness of 

cell wall has the most influence on the performance of kraft paper honeycomb. It is also found that the 

optimum configuration for kraft paper honeycomb is paper density of 175gsm, cell wall thickness of 3 

ply and honeycomb cell size of 10mm. Besides, the kraft paper honeycomb is found to collapse by the 

buckling of cell walls and vertical edges on the top and bottom surfaces when they were compressed 

under quasi-static compression. The kraft paper honeycomb with the optimum configuration was filled 

up with low density polyurethane. The results reveal that filling the kraft paper honeycomb up with 

polyurethane foam does help strengthening its cell wall, hence improves the energy absorption and 

peak force of kraft paper honeycomb. This was proven experimentally where the energy absorption 

and peak force were found to be larger for foam-filled honeycomb structure in comparison to the 

summation of individual component while the total weight of components remains the same compared 

to foam-filled honeycomb. From the experimental observation, the increment of peak force and energy 

absorption is due to change of boundary conditions from free-fixed on honeycomb structure producing 

local buckling to fixed-fixed on foam-filled producing global buckling. In addition, the effect of foam 

in strengthening the cell walls and the effect of cell walls in confirming the foam contribute to the 

higher value of peak force and energy absorption of foam-filled honeycomb structure. Furthermore, 

the change of failure deformation from wall buckling on the top and bottom surface for unfilled kraft 

paper honeycomb to the wall buckling at the middle of the structure for kraft paper honeycomb filling 

with polyurethane foam is also noted. 
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