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1 Introduction

The classic mean-variance approach to portfolio optimization proposed by Markowitz (1952)
constitutes a breakthrough in finance. This is the first mathematical model that formalizes
the concept of diversification. This model allows investors to attain lower risk for a pre-
specified level of return. But it also requires the knowledge of the distributional moments
of stock returns, which are usually unknown. Therefore, they have to be estimated with
sample information via maximum likelihood estimation. Usually, maximum likelihood es-
timators carry a lot of estimation error, making the investor’s choice problem even more
uncertain. In fact, the classical mean-variance model turns out to offer estimated portfolios
below the true efficient frontier (see Jobson and Korkie (1981)). The effects of estimation
error is one of the main drawbacks that practitioners have found in portfolio optimization
and it has been one of the most active areas of the last decades. To study this issue, many
authors have study the effect of estimation error in practice. For instance, Best and Grauer
(1991) show that mean-variance portfolios are quite sensitive to small changes on the vec-
tor of means. Britten-Jones (1999) proposes a statistical procedure to test mean-variance
portfolios. He showed that the sampling error of an international portfolio formed by 11
countries is large. DeMiguel et al. (2009) show that an “inefficient” equally weighted port-
folio might outperform estimated optimal portfolios due to estimation error. To address the
issue of estimation error, the researcher might attack either the inference about the inputs
that form the portfolio weights or the portfolio weights themselves. In this paper we focus
on the special case of shrinkage estimators, which arise from the well known literature of
James-Stein estimators (see James and Stein (1961)).

As pointed out by Ledoit and Wolf (2003), maximum likelihood estimators are “the
most likely parameter values given the data. In other words: let the data speak (and only
the data)”. Therefore, when the data is not enough to estimate, maximum likelihood might
result very cumbersome and erratic. At this point, shrinkage estimators arise as a potential
alternative to maximum likelihood estimation. In general, these methods dominate classical
estimators in terms of quadratic loss. Moreover, shrinkage estimators have been shown to
perform much better than naive estimators in the out-of-sample analysis (see Brandt (2004)
for a revision of the literature).

Shrinkage estimators have been widely studied to diminish the estimation error on the
estimation of the moments of asset returns. Frost and Savarino (1986) estimate the vector
of means with the mean of a posterior density defined by a Normal-Wishart conjugate prior.
Jorion (1986) proposes an empirical Bayes-Stein estimator for the vector of means. The
author estimates it as the mean of the posterior density function defined by an informative
prior which belongs to the class of exponential families. Both works, Frost and Savarino
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(1986) and Jorion (1986), hold the underlying concept of inadmissibility of the sample
mean (see Stein (1956)). More studies on the estimation of the vector of means based on
shrinkage estimators have been made by Jobson et al. (1979) and Jorion (1985). In this
paper, we propose a new class of shrinkage estimator for the vector of means constructed
as a convex combination between the sample mean and a and a given target. The convex
parameter or shrinkage intensity is computed to minimize a quadratic loss function.

Although some work has been devoted to study the estimation error in the vector of
means, since Merton (1980) it is well known that variances are more stable along time
and therefore, they are easier to be estimated. This issue prompted many investment man-
agers to drop the vector of means out of their models. But even covariance matrices are
deeply affected by estimation error, in particular in high-dimensional data sets. To deal
with this problem, practitioners have implemented portfolio constraints which help to ob-
tain better out-of-sample performance. Until Jagannathan and Ma (2003), it was not clear
why portfolio constraints improved the performance of the minimum-variance portfolios.
These authors show that implementing portfolio constraints is equivalent to solve an un-
constrained minimum-variance portfolio problem where the covariance matrix is shrunk by
the lagrange multipliers of the constrained problem. The literature of shrinkage estimators
for the covariance matrix is one of the main practical streams in portfolio optimization.
Ledoit and Wolf (2003) propose a shrinkage estimator for the covariance matrix which is
a weighted average of the sample covariance matrix and a single-index covariance matrix
implied by the market factor model (see Sharpe (1963)). In the same manner, Ledoit and
Wolf (2004a) propose a shrinkage estimator for the covariance matrix where the sample co-
variance matrix is shrunk towards the identity matrix. They show that the resulting matrix
is well-conditioned, even if the sample covariance matrix is not. The shrinkage intensity
given in Ledoit and Wolf (2004a) is obtained under asymptotic results. On the other hand,
DeMiguel et al. (2009) introduce a new class of portfolio constraints in the minimum-
variance portfolio problem, where the norm of portfolio weights must be less or equal than
a given threshold. They show that these constraints have a shrinkage effect over the sample
covariance matrix.

The main motivation of using shrinkage estimators is to reduce the estimation error.
When dealing with naive estimators (i.e. maximum likelihood estimators), optimal es-
timated portfolio weights might be very damaged by the estimation error. The first work
where we find analytical expressions defining the estimation error of portfolio weights goes
back to Jobson and Korkie (1980). In this work, the authors provide approximations to the
distributional properties of the mean-variance portfolio weights. Moreover, they also pro-
vide approximations to the portfolio mean and the portfolio variance. The study of estima-
tion error in this fashion is extended in the works of Okhrin and Schmid (2006) and Siegel
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and Woodgate (2007). Okhrin and Schmid (2006) obtain closed-form expressions for the
exact moments of the mean-variance portfolio weights. They also provide explicit expres-
sions for the multivariate density of the global minimum-variance portfolio. Siegel and
Woodgate (2007) quantify the “over-optimism” given by mean-variance portfolios. They
show that the portfolio mean tends to be biased upwards while the portfolio variance tends
to be biased downwards. They provide some adjustments to correct for the “over-optimism”
to better understand the poor out-of-sample performance of mean-variance portfolios. Kan
and Smith (2008) provide finite-sample expressions for the minimum-variance frontier.

Shrinkage methods for portfolio weights and the impact of estimation error have been
studied in the literature as well. Kan and Zhou (2007) studied a three-fund portfolio where
the optimal asset allocation is a combination of the mean-variance portfolio, the minimum
variance portfolio and a risk-free asset. They show that an optimal combination of the three
funds diminishes the effect of estimation error in the investor’s utility function. DeMiguel
et al. (2009) study another type of three-fund rule where the minimum-variance portfolio
is combined with an equally weighted portfolio. Tu and Zhou (2011) study the trade-off
between optimal mean-variance portfolios and non-contaminated equally weighted portfo-
lios1. The authors show that there exist an optimal trade-off between risky portfolios and
an equally weighted portfolio such that the equally weighted portfolio and the considered
mean-variance portfolios can be outperformed by this combination.

In this paper, we study shrinkage estimators for the vector of means, the covariance ma-
trix and portfolio weights themselves. Throughout the whole paper, the basic assumption
is that returns are independent and identically distributed with unknown vector of means
µ and covariance matrix Σ. 2. The independence assumption is required to calibrate the
shrinkage estimators.

We consider a data set R of N ≥ 2 assets over a sample of T observations, where each
observation Rt ∈ RN is independent and identically distributed. The naive estimator of the
vector of means is µ̂ = (1/T )

∑T
t=1 Rt and the naive estimator of the covariance matrix is

Σ̂ = (1/(T − 1))
∑T

t=1 (Rt − µ̂) (Rt − µ̂)′.

In the classical mean-variance formulation, the objective is to maximize a investor’s
quadratic utility which is defined as the trade-off between portfolio return and portfolio
variance. Hence, the estimation of the population moments µ and Σ is quite relevant for

1The term non-contaminated stands for the case case where estimation of moments is not required to
construct the portfolio, which is the case of the equally weighted portfolio. Due to the absence of estimation
error, this portfolio can be seen as a non-contaminated portfolio.

2The independence assumption is very strong with high frequency data like weekly, daily or tick by
tick data. In the empirical analysis we work with monthly data where the independence assumption is less
unrealistic.
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the investor’s choice. The population optimal mean-variance portfolio is w = 1
γ
Σ−1µ

and its naive estimator counterpart is ŵmv = (T−N−2)
(T−1)

1
γ
Σ̂−1µ̂3, where γ is the investor’s

risk aversion level. In this portfolio, investors can allocate/borrow part of their budget
in/from the risk free asset. Throughout the paper, we assume that there is no risk free
asset, therefore we normalize the estimated optimal mean-variance portfolio obtaining the
tangency portfolio (TP) ŵTP = Σ̂−1µ̂

ι′Σ̂−1µ̂
.

We also pointed out that many investors were prompted to drop the vector of means
out of their models since Merton (1980). In this case, the objective is to minimize the
portfolio variance. The population global minimum-variance (GMV) portfolio is defined
as wGMV = Σ−1ι

ι′Σ−1ι
, and its naive estimator counterpart is ŵGMV = Σ̂−1ι

ι′Σ̂−1ι
, where ι is a

proper vector of ones. This portfolio adds up to one because of the denominator ι′Σ−1ι,
which normalizes the element Σ−1ι. In the following sections, whenever we mention the
estimated minimum-variance portfolio, we refer to the non-normalized element, which is
ŵmin = (T−N−2)

(T−1)
Σ̂−1ι. In general, and for notational simplicity, we set x̂ as the estimator

of the random variable x. This statement holds for the following sections.

Our contribution to the literature is threefold: first, we propose new procedures to ob-
tain the shrinkage intensities of the shrinkage estimators for the vector of means and the
covariance matrix. We obtain closed form expressions of the shrinkage intensities under
the assumption of independent and normally distributed asset returns. We find a more ro-
bust calibration method for the shrinkage vector of means, which gives better empirical
results than the bayes-stein shrinkage estimator for the vector of means proposed by Jorion
(1986). We also propose two different methods to obtain the shrinkage intensities of the
shrinkage covariance matrix. In the first one, we obtain a closed form expression which
allows us to understand its dependence with the number of assets and observations under
consideration. In the second, we come up with a calibration method that accounts explic-
itly for the condition number of the covariance matrix. As we will show in the empirical
analysis, this procedure is very convenient in high-dimensional data sets. Furthermore, we
propose a new class of shrinkage estimator over the inverse covariance matrix.

Second, we make an extensive empirical study of four different calibration criteria for
shrinking portfolio weights. We apply each calibration method through three different
shrinkage portfolios across six different real data sets. Moreover, we account for the impact
of transaction costs. To the best of our knowledge, this is the first paper that makes such
a empirical analysis in the study of shrinkage portfolios. After adjusting for transaction
costs, we find that the expected portfolio variance minimization technique is more robust

3We multiply the sample mean-variance portfolio wmv = 1
γ Σ̂−1µ̂ by a factor (T−N−2)

(T−1) to correct the bias

implied by the inverse of Σ̂ when returns are assumed to be normally distributed.
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across every data set in terms of Sharpe ratio. Moreover, we also observe that when the
shrinkage portfolio does not consider the vector of means, a mean-squared loss criteria to
calibrate the shrinkage portfolio is very convenient in terms of Sharpe ratio and turnover.

Third, we propose two different methods to calibrate shrinkage portfolios. In the first
one, we assume that asset returns are independent and normally distributed (i.e. N (µ,Σ)).
This assumption allows us the obtain closed form expressions of the optimal shrinkage in-
tensities in general. These closed form expressions allows us to study the dependence of the
shrinkage intensities with respect to the number of assets and observations under consider-
ation. The second method to calibrate shrinkage portfolios does not make any assumption
about the distribution of asset returns. In this case, the optimal shrinkage intensities are
obtained via smoothed bootstrap. We show that this calibration method gives good results
in high-dimensional data sets.

The paper is organized as follows. Section 2 study and extend the analysis of shrinkage
estimators of the moments of stock returns. Section 3 study the mixture of portfolios,
understood as an alternative way of shrinking portfolio weights, and their calibration. In
Section 4, we make an extended empirical analysis of shrinkage estimators. Section 5
concludes.

2 Shrinkage estimators of moments

We first address the problem of estimation error within the estimation of moments. This is
a natural approach to deal with the poor performance of classical methods in portfolio opti-
mization. Because of estimation error within naive sample moments4, portfolio weights are
highly contaminated and this is why classical methods perform badly in real life. Through-
out this section, we study shrinkage estimators which try to alleviate the effect of estimation
error of the naive sample moments. We closely follow the shrinkage framework described
in Ledoit and Wolf (2004a), where the naive estimator is shrunk toward a target element.
The shrinkage intensity is chosen to be the optimal shrinkage that minimizes the mean-
squared loss of the shrinkage estimator with respect to the true value. Hence, if we want
to estimate some population property µx of a random variable x, such that µ̂x is the naive
estimator, we define its mean-squared loss as follows:

MSE (µ̂x) = E
(
(µ̂x − µx)2) = E

(
(µ̂x − E (µ̂x))

2)︸ ︷︷ ︸
Variance

+ (µx − E (µ̂x))
2︸ ︷︷ ︸

Squared Bias

. (1)

4For the rest of the paper, naive estimator are understood as maximum likelihood estimators.
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Therefore, our criteria to select the shrinkage intensity is the expected mean-squared loss.
This section deals with the estimation of the moments of stock returns. To diminish the
estimation error, we study shrinkage estimators for the vector of means and the covari-
ance matrix. In Section 2.1, we derive a shrinkage estimator for the vector of means. In
Section 2.2 we derive a shrinkage estimator for the covariance matrix. We also derive a
shrinkage estimator for the inverse covariance matrix. Throughout this section and Sec-
tion 3, we understand shrinkage estimators as a convex combination of some naive sample
estimator and a target element:

Shrinkage Estimator = (1− α)× Sample Estimator + α× Target, (2)

where α is the shrinkage intensity. This parameter determines the “strength” under which
the naive sample estimator is shrunk towards the target element. This value is between zero
and one. Therefore, the maximum “strength” is one, being the shrinkage estimator equal to
the target element. If α is zero, the “strength” is zero and therefore the shrinkage estimator
corresponds with the naive sample estimator. The optimal shrinkage intensity α is defined
by a mean-squared loss criteria.

2.1 Estimation of the vector of means

Shrinkage rules to diminish the estimation error of the vector of means have been a matter
of study in the literature. Frost and Savarino (1986) assume an informative prior where all
stocks have the same expected values, variance and covariances, such that the predictive
mean turns out to be a weighted average of the sample mean and a grand mean equal to
the historical average return for all stocks. Jorion (1986) estimates the vector of means by
integrating a predictive density function defined by an exponential prior which is only spec-
ified for the vector of means. DeMiguel et al. (2009) study the performance of James-Stein
shrinkage estimators for the mean, defined as a weighted average of the naive sample mean
µ̂ and the portfolio mean of the minimum-variance portfolio. The James-Stein shrinkage
intensity parameter is in general expressed as follows:

αJS =
N + 2

(N + 2) + T (µ− µtarget) Σ−1 (µ− µtarget)′
, (3)

where µtarget is a target vector. Expression (3) is estimated with sample information to
construct the shrinkage estimator µ̂JS = (1− α̂JS)µ̂+ α̂JSµ

target. This estimator belongs to
the class of estimators with lower expected quadratic loss than the usual sample estimator
µ̂ (see James and Stein (1961)).
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We propose another type of shrinkage estimator where the mean is also a weighted
average of the sample vector of means and the target ι = 1 ∈ RN , scaled by a scalar
factor ν. The scale factor ν is introduced to approach the target to the true vector of means.
Since the considered target has zero variance, its squared bias defines the mean-squared
loss. Therefore, to control for the bias we include the scale factor ν. The optimal shrinkage
intensity α and scale factor ν, are obtained by solving the following problem:

min
α,ν

E
[
‖µ̃− µ‖2

2

]
(4)

s.t. µ̃ = (1− α)µ̂+ ανι, (5)

where ‖x‖2
2 =

∑N
i=1 x

2
i , α is the shrinkage intensity and ν is the scale factor. Problem

(4) minimizes the expected squared loss of the estimated vector of means with respect to
the true vector of means. The variables of the problem are the shrinkage intensity α and
the scale factor ν. The constraint (5) shows that the estimated vector of means µ̃ is a
convex combination of the sample vector of means with the scaled target ι. We choose
the target ι = 1 ∈ RN because when the shrinkage intensity is equal to one, the solution
of the estimated mean-variance portfolio with our shrinkage estimator for the vector of
means would be the minimum-variance portfolio, which is known to perform better than
the mean-variance portfolio due to the estimation error (see Merton (1980)). On the other
hand, introducing constraint (5) in problem (4), we have that:

min
α,ν

E
[
‖µ̃− µ‖2

2

]
= (1− α)2E

[
‖µ̂− µ‖2

2

]
+ α2 ‖νι− µ‖2 . (6)

We observe that the optimal scale parameter ν is ν∗ = argminν ‖νι− µ‖
2, such that the

squared bias of the scaled target νι is minimized. The following proposition gives the
optimal values for α and ν.

Proposition 2.1. Assuming Rt are independent and normally distributed, the optimal finite
shrinkage parameter α and the optimal scale factor ν of problem (4) are:

ν∗µ = µ, (7)

and

α∗µ =
(1/T )σ2

(1/T )σ2 + µ2 − µ2
, (8)

where µ is the scalar average of the vector of means, µ2 = (1/N)µ′µ, and σ2 is the average
of the population variances.
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Proof. The proof of Proposition 2.1 is given in the appendix.

The optimal shrinkage intensity α∗µ for the vector of means shows some interesting
properties. First, we see that when T → ∞, the optimal shrinkage intensity converges to
zero. This confirms that the shrinkage estimator holds with the Glivenko-Cantelli theorem5.
Second, from formula (8), we observe that the larger the average population variance, the
closer the shrinkage intensity is to one. Third, it is important to point out that the optimal
shrinkage intensity does not depend on the number of assets. The advantage of our estima-
tor is twofold: first we scale the target such that the bias of the target is reduced. Second,
the computation of the shrinkage intensity does not involve the inverse covariance matrix
of asset returns Σ−1. This is an advantage because when estimating the shrinkage inten-
sity, Σ−1 might be extremely large and very erratic if the condition number6 of Σ tends to
infinite. It might happen when N is large and T is relatively small. When this happens, we
usually refer to that matrix as an ill-conditioned matrix. To control for this issue, we may
shrink the covariance matrix as well. In the following subsection, we deal with shrinkage
estimators for the covariance matrix.

2.2 Estimation of the covariance matrix

In this section, we study shrinkage estimators for the covariance matrix. There is a vast
literature of shrinkage estimator for the covariance matrix. In particular, we focus on the
shrinkage estimators which define the shrinkage intensity by a mean-squared loss criteria.
The general framework is based on a convex combination between a naive estimator of the
covariance matrix and a target matrix that imposes some structure on the naive estimator.
Ledoit and Wolf (2003) propose as a target matrix the single-index covariance matrix im-
plied by a market factor model. On the other hand, Ledoit and Wolf (2004b) propose a
target defined by a “constant correlation matrix”, where all the correlations are equal to the
average of all the sample correlations. Ledoit and Wolf (2004a) shrink the naive sample
covariance matrix toward a scaled identity matrix. Due to the high bias of the identity ma-
trix, it is scaled by a factor ν, imposing the structure that all the variances are equal to ν and
the covariances are zero. Likewise, we estimate the covariance matrix as an optimal con-
vex combination between the sample covariance matrix and a scaled identity matrix. We
focus on this shrinkage method because the target is deterministic, i.e. its variance is zero.

5The Glivenko-Cantelli theorem states that the sample probability function converges to the population
probability function when the number of sample observations tends to infinite (see Shorack and Wellner
(1986)).

6The condition number is the ratio between the largest eigenvalue and the smallest eigenvalue. Big con-
dition numbers are usually referred to define unstable systems of equations in linear algebra.
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Ledoit and Wolf (2004a) obtain an asymptotic optimal shrinkage intensity α assuming that
observations are independent and identically distributed. We instead assume normality to
obtain finite closed-form expressions for the optimal shrinkage intensity and the scale fac-
tor. Under these assumptions, we can observe how the shrinkage intensity evolves with
the number of observations. Ledoit and Wolf (2004a) propose the following minimization
problem:

min
α,ν

E

[∥∥∥Σ̃− Σ
∥∥∥2

F

]
(9)

s.t. Σ̃ = (1− α)Σ̂ + ανI, (10)

where ‖X‖2
F = tr(X ′X), tr(·) is the trace operator, α is the shrinkage intensity and ν is the

scale factor. Note in (9) that we are minimizing the expected quadratic loss of the estimator
with respect to the true moment like it was made in (4).

Ledoit and Wolf (2004a) assume that the observations are independent and identically
distributed, but they do not assume any particular distribution. They show that the optimal
shrinkage intensity can be asymptotically estimated as follows:

αa =

1
T 2

∑T
t=1

∥∥∥R′tRt − Σ̂
∥∥∥2

F∥∥∥Σ̂−mI
∥∥∥2

F

, (11)

where m = tr
(

Σ̂
)
/N .

The challenge of shrinkage estimators is to obtain an optimal shrinkage intensity with
statistical meaning. We contribute to the literature defining a finite closed-form expres-
sion for the optimal shrinkage intensity when asset returns are independent and normally
distributed. This expression allows us to understand how the optimal shrinkage intensity
is affected by the sample window length. Moreover, we can also observe how the opti-
mal shrinkage intensity might be affected by the number of assets under consideration.
Therefore, our contribution is to give a closed form expression which help us to under-
stand better the optimality of the shrinkage intensity. Thus, the finite optimal values that
minimize problem (9) are defined in the following proposition.

Proposition 2.2. When returns are independent and normally distributed, the optimal tar-
get parameter and the optimal finite shrinkage intensity parameter under a quadratic loss
criterion for the covariance matrix are:

ν∗Σ = σ2, (12)
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and

α∗Σ =

N
T−1

(
tr(Σ2)
N

+N
(
σ2
)2
)

N
T−1

(
T
N

tr (Σ2)− (T −N − 1)
(
σ2
)2
) . (13)

Proof. The proof of Proposition 2.2 is given in the appendix.

From formula (13), we observe that if T → ∞, the optimal shrinkage intensity con-
verges to zero. It confirms that the shrinkage estimator for the covariance matrix is sample-
dependent. Thus, when T converges to infinite, according with the Glivenko-Cantelli the-
orem, the sample covariance matrix becomes the population covariance matrix. Moreover,
from formula (13), we also observe that the larger the number of assets, the closer the
shrinkage intensity is to one. Unlike the vector of means, it is very important the number
of assets on the estimation of the covariance matrix. This is because for the covariance
matrix, the number of parameters to be estimated grows quadratically with the number of
assets7.

2.3 Estimation of the inverse covariance matrix

We also propose an shrinkage estimator for the estimated inverse covariance matrix. In
portfolio optimization, the inverse of the covariance matrix is rather important. This issue
has a bigger effect when we are dealing with many assets, where inverting a covariance
matrix might be very cumbersome due to the condition number. In fact, when the number
of assets N is approximately equal to the number of observations T , the covariance ma-
trix tends to be singular. In this situation, the estimation error of the naive estimator for
the inverse covariance matrix explodes to infinity. Likewise, we develop another shrink-
age estimator for the inverse of the covariance matrix. The motivation of this part is to
understand the properties of the shrinkage intensity and how it is affected by the number
of assets N and the sample window length T . This insight is important to understand bet-
ter the risk implied by the naive estimator of the inverse covariance matrix. We keep the
mean-squared loss framework to calibrate the shrinkage intensity in the estimation of the

7In fact, for N assets, the number of parameters to estimate the covariance matrix is N×(N+1)
2 .

11



inverse covariance matrix8:

min
α,ν

E

(∥∥∥Σ̃−1 − Σ−1
∥∥∥2

F

)
(14)

s.t. Σ̃−1 = (1− α)Σ̂−1
u + ανI. (15)

Problem (14) minimizes the mean-squared loss of the estimated shrinkage inverse covari-
ance matrix with respect to the true inverse covariance matrix. The shrinkage estimator
for the inverse covariance matrix is formed as a convex combination between the unbiased
estimator of the inverse covariance matrix and a scaled identity matrix.

The following proposition gives the optimal values for the shrinkage intensity and the
scale factor.

Proposition 2.3. Assuming asset returns are independent and identically distributed, the
optimal scale factor and the optimal finite shrinkage intensity under a quadratic loss crite-
rion for the inverse covariance matrix are:

ν∗Σ−1 = σ−2, (16)

and

α∗Σ−1 =
tr (Ω)− tr (Σ−1Σ−1)

tr (Ω)−
(
σ−2
)2

N
, (17)

where Ω = (T−N−2)
(T−N−1)(T−N−4)

(tr (Σ−1) Σ−1 + (T −N − 2)Σ−2), and σ−2 is the average of
the inverse population variances.

Proof. The proof of Proposition 2.3 is given in the appendix.

Proposition 2.3 gives the optimal values for the shrinkage intensity α and the scale
factor ν. We observe that the number of assets N has a deep impact on the expression of
the optimal shrinkage intensity. In fact, the larger the number of assets, the smaller the
denominator of Ω, and hence the larger the value of the shrinkage intensity.

8To simplify the computations, the sample estimator of the covariance matrix is multiplied by the factor
(T − 1)/(T −N − 2), so that the estimated inverse covariance matrix is unbiased Σ̂u = T−1

T−N−2 Σ̂.
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2.4 Estimation of the covariance matrix considering the condition num-
ber

In this section, we propose an alternative procedure to calculate the shrinkage intensity.
With this method we pretend to account for the mean-squared loss of the estimated covari-
ance matrix and its condition number. The way in which we account for both features is
by two measures. First, we consider the relative improvement in average loss (RIAL) (see
Ledoit and Wolf (2004a)) of the shrinkage covariance matrix Σ̃ = (1− α)Σ̂ + ανI:

RIAL
(

Σ̃
)

=

E

(∥∥∥Σ̂− Σ
∥∥∥2

F

)
− E

(∥∥∥Σ̃− Σ
∥∥∥2

F

)
E

(∥∥∥Σ̂− Σ
∥∥∥2

F

) . (18)

RIAL is a performance measure of the shrinkage covariance matrix Σ̃. This measure is
bounded above, being one its maximum value. This is attained when the mean-squared
loss is negligible relative to the mean-squared loss of the naive sample estimator of the
covariance matrix Σ̂. Therefore, the ideal shrinkage estimator would give a RIAL close to
one. Assuming normality, we have closed form expressions for RIAL

(
Σ̃
)

. The closed

form expressions that form the RIAL
(

Σ̃
)

are given in the Appendix.

On the other hand, the second element that we consider to compute the shrinkage in-
tensity is the condition number of the shrinkage covariance matrix:

δΣ̃ =
(1− α)λmax + α1

(1− α)λmin + α1
, (19)

where δΣ̃ is the condition number of the shrinkage covariance matrix, λmax is the maximum
eigenvalue of the naive sample covariance matrix Σ̂ and λmin is the minimum eigenvalue of
the naive sample covariance matrix Σ̂. Since we are shrinking the naive sample covariance
matrix to the identity matrix, all the eigenvalues of the identity are one and that is why α is
multiplied by one. Ideally, the smallest condition number is one, which is attained when α
is zero. In that case our shrinkage covariance matrix would be the identity.

Therefore, we propose the following problem to find an optimal shrinkage intensity
that accounts both for the mean-squared loss and the condition number of the shrinkage
covariance matrix:

α = argmin
{
δΣ̃ −RIAL

(
Σ̃
)}

. (20)
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The above formulation is ideally solved when the true covariance matrix is the identity
matrix (i.e. Σ = I). In that case, the shrinkage intensity would be one and therefore, the
value of the objective function in (20) would be zero. The RIAL is introduced in negative
because the real objective is to maximize the RIAL as much as possible, while the objective
of the condition number is to minimize it as much as possible. Since problem (20) is a very
nonlinear optimization problem, it is difficult to obtain a closed form solution. Instead, we
solve the problem with numerical methods.

2.5 Discussion of the shrinkage estimators

In this section, we illustrate the theoretical findings of the previous sections with a simu-
lation study. Our population probability distribution is defined by a data set formed with
48 industry portfolios. Then, the sample moments of this data set constitute the population
moments of the multivariate normal distribution that governs asset returns, i.e. N (µ,Σ).
We use the population moments to compute the true optimal shrinkage intensities and the
theoretical values of the mean-squared losses of the shrinkage moments. The objective
of the experiment is to measure the dependence of the shrinkage intensity and the mean
squared loss of shrinkage estimators with the sample window length T .

Figure 1 shows the evolution of the shrinkage intensities for the estimation of the mean
vector of returns, the covariance matrix and the inverse covariance matrix. The sample
moments of the data set formed by 48 industry portfolios define the multivariate normal
distribution required to compute the theoretical values. Figure 1a shows the evolution of
the shrinkage intensities for the estimator of the vector of means. In general, we observe
that our proposed shrinkage estimator is more conservative than the classical James-Stein
estimator. Our shrinkage estimator contains a higher shrinkage intensity than the James-
Stein estimator for every window’s length T . Then, we can say that it is more conservative
since the target is more weighted under our new shrinkage estimator. This might be due to
the fact that the James-Stein estimator utilizes the inverse of the covariance matrix in the
computation of the shrinkage intensity. It might give erratic values if the condition number
of the covariance matrix is large.

Figure 1b shows the shrinkage intensities of the asymptotic shrinkage estimator for
the covariance matrix (solid line) the finite-shrinkage estimator for the covariance matrix
(dashed line), the finite-shrinkage estimator for the covariance matrix that accounts for the
condition number (dotted line) and the finite-shrinkage estimator for the inverse covariance
matrix (dot-dashed line). This plot shows that the finite-shrinkage estimator for the co-
variance matrix shrinks less than the finite-shrinkage estimator for the inverse covariance
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matrix. This fact suggests that the inverse of the covariance matrix has an additional source
of estimation error and therefore, it has to be shrunk to the scaled identity matrix by a larger
quantity. The main problem of shrinking the inverse matrix is that for medium-large data
sets it gives too much weight to the scaled identity matrix, loosing some information about
the covariances among assets.

Figure 2 shows the results of the experiment made to compute the theoretical mean-
squared loss9 of the shrinkage moments (µ̃, Σ̃, Σ̃−1). Figure 2a depicts the mean-squared
loss for the vector of means when it is computed by the James-Stein estimator (dashed
line) given in (3) and the finite shrinkage estimator (dot-dashed line) given by problem (4)-
(5). Since the shrinkage estimator minimizes the mean-squared loss, it is obvious that the
mean-squared loss of this estimator will be lower than the mean-squared loss of the James-
Stein estimator. Figure 2b shows the mean-squared loss of the finite shrinkage estimator
for the covariance matrix (dashed line), finite shrinkage estimator for the covariance matrix
that accounts for the condition number (dotted line) and the asymptotic shrinkage estimator
for the covariance matrix (dot-dashed line). We can observe that the finite and asymptotic
shrinkage estimators offer very similar losses and both of them are very small. Finally,
Figure 2c depicts the mean-squared loss of the finite-shrinkage estimator for the inverse
covariance matrix (dot-dashed line) given by problem (14)-(15). We have also computed
the mean-squared loss of the inverse for the shrinkage covariance matrices obtained by the
asymptotic shrinkage estimator (solid line), the finite shrinkage estimator (dashed line) and
the finite shrinkage estimator that accounts for the condition number (dotted line). The
mean-squared loss of the last three estimators cannot be computed theoretically10, thus
we make a Monte Carlo simulation to compute the mean-squared loss of the estimated
inverse covariance matrix. Then, for each window’s length T , we generate 1000 samples
R ∈ RT×N from a multivariate normal distribution defined with the population moments
obtained from the 48 industry portfolios. Then, we compute the sample mean-squared loss
of the estimated inverse covariance matrix as follows:

MSE
(
Σ−1

)
=

∑1000
i=1

∥∥∥Σ̃−1
i − Σ−1

∥∥∥2

F

1000
, (21)

where Σ̃ is the estimated shrinkage covariance matrix. Figure 2c shows that the mean-
squared loss of the shrinkage inverse covariance matrix considered in problem (14)-(15)
is lower than the mean-squared loss of the inverse matrix of the shrinkage estimators for

9In the case of the asymptotic shrinkage estimator, we compute the shrinkage intensity with the opti-
mal asymptotic shrinkage intensity, but the mean-squared loss is computed assuming normality and a finite
sample.

10It is because it is not clear which is the distribution of the estimator
(

(1− α)Σ̂ + ανI
)−1

.
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the covariance matrix (both the asymptotic and the finite shrinkage estimators). It means
that shrinking first the covariance matrix and then invert it will give higher mean-squared
loss than making the shrinkage directly over the inverse covariance matrix. The problem
of shrinking the inverse covariance matrix is that the shrinkage intensity is high, as we can
see from Figure 1b. It implies too much structure over the naive sample inverse covariance
matrix, and it makes us loose information about the covariances among assets.

Figure 1b shows that the shrinkage intensity is very small for the finite shrinkage es-
timator. If the data set is big (say N>50), the condition number of the covariance matrix
might be very extreme, so the shrinkage intensity might be insufficient to reduce the condi-
tion number. It generates that the inverse covariance matrix used to calculate optimal port-
folios might give very unstable weights11. This is why we introduce the finite-shrinkage
estimator that accounts for the condition number. In fact, this estimator gives lower mean-
squared loss of the inverse covariance matrix for small samples as we observe in Figure 2c.
It is because in small samples it is more likely that the condition number of the sample
covariance matrix will be high. In that case it is important to shrink the covariance matrix
accounting for the condition number.

To conclude, we summarize this section about shrinkage over the moments of stock
returns in three points: first, we have obtained an alternative shrinkage estimator for the
vector of means which offers a finite shrinkage intensity higher than the one given by the
James-Stein estimator. Moreover, our shrinkage intensity does not depends on the inverse
covariance matrix, as the James-Stein shrinkage intensity, which is specially good when
the condition number of the covariance matrix of returns is large. Second, we observe
from the simulation study that the shrinkage intensity for the shrinkage covariance matrix
is small for medium-large data sets. This issue might be cumbersome when the condition
number of the sample covariance matrix is large, fact that is likely with real data. We
solve this problem by introducing a new shrinkage intensity which is optimally calculated
to minimize the relative mean-squared error of the shrinkage covariance matrix and the
condition number. Third, we observe that shrinking over the inverse covariance matrix
gives too much weight to the scaled identity matrix. Too much structure is imposed over
the naive sample inverse covariance matrix and all the information about the covariances
might be lost.

11This means that little changes on the covariance matrix would generate very different results.
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3 Shrinkage estimation of portfolio weights

In this section, we introduce an analytical study of shrinkage estimators of portfolio weights.
From a statistical point of view, shrinkage portfolios can be understood as a linear combi-
nation of portfolios which contain smaller estimation error than naive portfolios. In the
literature, combination of portfolios and its performance have been studied. Kan and Zhou
(2007) propose a three-fund portfolio which combines the risk-free asset with the mean-
variance portfolio and the minimum-variance portfolio. DeMiguel et al. (2009) propose
a mixture of minimum-variance portfolio and equally weighted portfolio. Tu and Zhou
(2011) propose a bunch of portfolio models constructed as an optimal convex combina-
tion of different mean-variance portfolios and the equally weighted portfolio. Our view of
shrinkage estimators holds with the definition of shrinkage used in the previous section and
it is related to the concept of combination of portfolios described in Tu and Zhou (2011).
We consider a shrinkage portfolio as a weighted average or convex combination of some
naive portfolio and a target portfolio. The target may be any portfolio, but in general it
must satisfy two properties: first, it has to be a portfolio with low volatility of its weights
(or even null volatility, like the 1/N rule). Second, it has to perform “well” in practice12.
The convex combination of the naive portfolio with the target portfolio offers insightful
information. The shrinkage intensity (i.e. the parameter which defines the convex combi-
nation) specifies the trade-off between the naive portfolio13 and the target portfolio. This
trade-off is optimal under some calibration criteria, which defines the value of the shrink-
age intensity. Hence, the importance of the calibration criteria. Therefore, the amount of
shrinkage is defined by the calibration method and it is crucial for the performance of the
portfolio. Then, according with the framework described above, our definition of shrinkage
portfolios is as follows:

ŵsp = (1− α)ŵn + ανwtarget, (22)

where ŵn is the naive portfolio estimator of the true portfolio w∗, wtarget is the target portfo-
lio, α is the shrinkage intensity and ν is a scale parameter. The scale parameter is the main
difference between our methodology and the methodology of Tu and Zhou (2011). We
introduce this parameter to correct for the bias of the target portfolio. Later, we go through
this topic in more detail.

12The term “well” stands for portfolios which are well known to obtain good out-of-sample results, like
the 1/N portfolio or the minimum-variance portfolio.

13Unlike DeMiguel et al. (2009), the meaning of naive stands for the sample portfolio estimator. Relying
on maximum likelihood estimators might be very “naive” for finite samples.
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We have pointed out that to fully understand the meaning of the shrinkage intensity,
we have to understand the calibration method. In this paper, we calibrate shrinkage in-
tensities from four different perspectives: expected out-of-sample utility maximization,
mean-squared loss minimization, expected out-of-sample portfolio variance minimization
and Sharpe ratio. The out-of-sample utility, or portfolio variance, is the utility, or port-
folio variance, of the estimated portfolio ŵ, given the true moments µ and Σ, that is
U(ŵ) = ŵ′µ − (γ/2) ŵ′Σŵ, or ŵ′Σŵ. From now on, and for the sake of simplicity, the
expected out-of-sample utility maximization and the expected out-of-sample portfolio vari-
ance minimization will be named as expected utility maximization and expected variance
minimization, respectively.

Thus, the following expressions define each calibration method:

max
α

E (fsl (ŵsp)) = max
α

E
(
‖ŵsp − w∗‖2

2

)
, (23)

max
α

E (fut (ŵsp)) = max
α

E
(
ŵ′spµ− (γ/2) ŵ′spΣŵsp

)
, (24)

max
α

E (fvar (ŵsp)) = max
α

E
(
ŵ′spΣŵsp

)
, (25)

max
α

E (fSR (ŵsp)) = max
α

E
(
ŵ′spµ

)
E
(
ŵ′spΣŵsp

) . (26)

Equation (23) solves for the optimal shrinkage intensity α that minimizes the mean-squared
loss. For this method, the shrinkage intensity will give us the optimal trade-off between the
naive portfolio and the scaled target portfolio which minimizes the mean-squared loss. On
the other hand, equation (24) solves for the optimal shrinkage intensity α that maximizes
the expected utility. The shrinkage intensity obtained with this method gives the optimal
trade-off between the naive portfolio and the scaled target portfolio in terms of expected
utility, that is, it is the optimal trade-off that maximizes the expected utility. Equation (25)
solves for the optimal shrinkage intensity α that minimizes the expected portfolio variance.
Hence, the shrinkage intensity gives the trade-off between the naive portfolio and the scaled
target portfolio which defines the combination that minimizes the portfolio variance of the
combined portfolio. The last calibration method considered in equation (26) solves for the
optimal trade-off between the naive portfolio and the scaled target portfolio that maximizes
the Sharpe ratio.

In any good calibration method there exist an underlying concept about investor’s pref-
erences. Therefore, the most reasonable calibration methods are the expected utility max-
imization, the expected variance minimization and the Sharpe ratio maximization. The
mean-squared loss minimization method does not represent any clear desire of investor’s
preferences. We decide to take into account this calibration method for two reasons. First,
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to be consistent with the mean-squared loss framework showed in Section 2 for the mo-
ments of asset returns. Second, and more important, because there exist an underlying
investor’s desire within this method. In fact, minimizing the mean-squared loss of any
portfolio model is the same to minimizing the expected squared error. Therefore, assuming
that returns are independent and identically distributed, the true optimal portfolio w∗ is the
same throughout time because the distribution of returns does not change. Therefore, each
time that we calibrate our model, we are minimize the expected squared error. In this way,
this calibration method penalizes big errors over small errors. Hence, penalizing big errors
over small ones is a mechanism to control for the turnover of our portfolios. But as we
have said, this reasoning is feasible when the true optimal portfolio w∗ does not change
throughout time. In general it is not true, but this might be the case when the vector of
means is not considered such that the combination of portfolios is constructed only with
the covariance matrix, which is well known to be more stable than the vector of means (see
Merton (1980)). Therefore, this calibration method is convenient to control for the turnover
only with portfolio models which do not consider the vector of means.

The calibration method is as important as the choice of portfolios that form the shrink-
age portfolio. We have pointed out that some calibration criteria might only succeed un-
der some specifications. This is why we require some specific structure in our shrinkage
portfolios. The following sections give a detailed description of the shrinkage portfolios
considered in this paper.

3.1 Shrinkage from mean-variance to minimum-variance portfolio

The combination of the mean-variance portfolio with the minimum-variance portfolio is a
well known strategy pioneered by Kan and Zhou (2007). The authors define this strategy
as a three-fund portfolio because some wealth goes to the risk free asset, and the rest of the
wealth is divided between the mean-variance portfolio and the minimum-variance portfolio.
According with our definition of shrinkage portfolios, the mixture of the mean-variance and
minimum-variance portfolios is as follows:

ŵmv-min = (1− α)ŵmv + ανŵmin, (27)

where parameter ν is a scale parameter that corrects for the bias of the naive minimum-
variance portfolio. The bias correction is not with respect to the true minimum-variance
portfolio, because it is our target, but rather we correct for the bias with respect to the true
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mean-variance portfolio, this is:

ν = arg min
ν
‖νE (ŵmin)− w∗mv‖

2
2 , (28)

where w∗mv is the true mean-variance portfolio. Deriving the first order condition of prob-
lem (28) we obtain that the optimal scale parameter is ν∗ = E(ŵmin)′w∗mv

E(ŵmin)′E(ŵmin)
. Now, we can

define the optimal value of the shrinkage intensity α given the optimal scale parameter ν∗.
The following proposition gives the expressions for the optimal shrinkage intensities for
calibration methods given in (24)-(25):

Proposition 3.1. If asset returns are independent and identically distributed, then the
shrinkage intensities of calibration methods given in (23)-(26) for the optimal combina-
tion between mean-variance and minimum variance portfolios are:

αmsl =
E
(
‖ŵmv − w∗mv‖

2
2

)
− τmv−min

E
(
‖ŵmv − w∗mv‖

2
2

)
+ E

(
‖ν∗ŵmin − w∗mv‖

2
2

)
− 2τ

, (29)

αut =
E
(
σ̂2
mv

)
− ν∗E (ρ̂mv,min)

E (σ̂2
mv) + ν∗2E (σ̂2

min)− 2ν∗E (ρ̂mv,min)
−

− E(µ̂mv)− E(ν∗µ̂min)
E (σ̂2

mv) + ν∗2E (σ̂2
min)− 2ν∗E (ρ̂mv,min)

1
γ
, (30)

αvar =
E
(
σ̂2
mv

)
− ν∗E (ρ̂mv,min)

E (σ̂2
mv) + ν∗2E (σ̂2

min)− 2ν∗E (ρ̂mv,min)
, (31)

αSR = arg max
α

(1− α)E(µ̂mv) + αν∗E(µ̂min)√
(1− α)2E (σ̂2

mv) + α2ν∗2E (σ̂2
min) + 2(1− α)αν∗E (ρ̂mv,min)

, (32)

where τmv−min = E
(
(ŵmv − w∗mv)

′ (ν∗ŵmin − w∗mv)
)
,E (σ̂2

mv) = E (ŵ′mvΣŵmv),E (σ̂2
min) =

E (ŵ′minΣŵmin), E (ρ̂mv,min) = E (ŵ′mvΣŵmin), E (µ̂mv) = E (ŵ′mvµ) and E (µ̂min) =

E (ŵ′minµ).

Proof. The proof of Proposition 3.1 is given in the Appendix.

Proposition 3.1 gives the optimal shrinkage intensities of the shrinkage portfolio formed
by the scaled naive mean-variance portfolio and the naive minimum-variance portfolio. The
shrinkage intensities of every calibration method is in general a fraction of the error/risk
of the naive mean-variance portfolio with respect to the total error/risk of the naive mean-
variance portfolio and the scaled minimum-variance portfolio. This fraction specifies how
much the naive mean-variance portfolio is shrunk to the scaled naive minimum-variance
portfolio.

Equation (29) gives the optimal shrinkage intensity that minimizes the mean-squared
loss of the considered shrinkage portfolio. For this calibration method, the shrinkage inten-
sity is defined as the ratio of the error of the naive mean-variance portfolio with respect to
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the total error formed by error of the naive mean-variance portfolio and the error of naive
scaled minimum-variance portfolio. The definition of error for the naive mean-variance
portfolio is given by the mean-squared loss and a corrector element τ which is a measure of
the dependence between the naive mean-variance portfolio and the scaled naive minimum-
variance portfolio. The definition of error for the naive scaled minimum-variance portfolio
is referred as the mean-squared loss of the naive scaled minimum-variance portfolio with
respect to the true mean-variance portfolio minus the corrector parameter τ .

Equation (30) gives the optimal shrinkage intensity that maximizes the expected util-
ity. In this case, the shrinkage intensity is defined as the ratio of the risk of the naive
mean-variance portfolio with respect to the total risk composed by the risk of the naive
mean-variance portfolio and the risk of the scaled naive minimum-variance portfolio. This
ratio is smoothed by the ratio of the expected return of the naive mean-variance portfolio,
in excess of the expected return of the scaled naive minimum-variance portfolio, divided by
the total risk. The risk of the naive mean-variance portfolio is defined as its variance minus
a corrector term defined by the covariance between the naive mean-variance portfolio and
the scaled minimum-variance portfolio. The risk of the scaled naive minimum-variance
portfolio is defined as the portfolio variance of the scaled naive minimum-variance port-
folio minus a corrector term defined by the covariance between the naive mean-variance
portfolio and the scaled minimum-variance portfolio. Therefore, the shrinkage intensity
under this calibration method is defined by the relative risk of the naive mean-variance
portfolio smoothed by the excess profitability of the naive mean-variance portfolio.

Equation (31) gives the optimal shrinkage intensity that minimizes the expected port-
folio variance. In this case, the shrinkage intensity is defined as the ratio of the risk of the
naive mean-variance portfolio with respect to the total risk. The definition of risk is the
same as in the case of the expected utility calibration method.

Problem (32) offers the optimal shrinkage intensity that maximizes the Sharpe ratio. It
has no explicit formula, but we solve problem (32) with numerical methods.

3.2 Shrinkage from mean-variance to equally weighted portfolio

In this section we introduce the shrinkage portfolio formed by the mean-variance and
equally weighted portfolios. The mixture of this portfolio has been already studied in the
literature. Tu and Zhou (2011) propose combinations of sophisticated risky portfolios with
the 1/N rule. In particular, they study four different risky portfolios to combine with the 1/N
rule:the classical mean-variance portfolio of Markowitz (1952), the Kan and Zhou (2007)
three-fund portfolio, the bayesian mean-variance portfolio of Jorion (1986) and the implied
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mean-variance portfolio derived from a factor model of MacKinlay and Pastor (2000). In
this paper we focus on the simplest one, the combination of the classical mean-variance
portfolio with the equally weighted portfolio. As we have mentioned, our main motivation
is the calibration of portfolios. Therefore, any good calibration method could be extended
to more sophisticated combination of portfolios. Thus, the shrinkage portfolio formed by
the mean-variance and equally weighted portfolios is defined as follows:

ŵmv-ew = (1− α)ŵmv + αν
ι

N
, (33)

where the scale parameter ν is a bias correction term which we define by:

ν∗ = arg min
ν

∥∥∥ν ι
N
− w∗mv

∥∥∥2

2
. (34)

Deriving the first order conditions of problem (34, we obtain that the optimal scale factor
is ν∗ = ι′w∗mv. The following proposition gives the optimal shrinkage intensities of the
calibration methods (23)-(26):

Proposition 3.2. Assuming that returns are independent and identically distributed, the
shrinkage intensities for the optimal combination of the mean-variance portfolio with the
equally weighted portfolio are:

αmsl =
E
(
‖ŵmv − w∗mv‖

2
2

)
− τmv−ew

E
(
‖ŵmv − w∗mv‖

2
2

)
+ ‖ν∗wew − w∗mv‖

2
2

, (35)

αut =
E
(
σ̂2
mv

)
− ν∗E (ρ̂mv,ew)

E (σ̂2
mv) + ν∗2σ2

ew − 2ν∗E (ρ̂mv,ew)
− E(µ̂mv)− ν∗µew
E (σ̂2

mv) + ν∗2σ2
ew − 2ν∗E (ρ̂mv,ew)

1
γ
, (36)

αvar =
E
(
σ̂2
mv

)
− ν∗E (ρ̂mv,ew)

E (σ̂2
mv) + ν∗2σ2

ew − 2ν∗E (ρ̂mv,ew)
, (37)

αSR = arg max
α

(1− α)E(µ̂mv) + αν∗µew√
(1− α)2E (σ̂2

mv) + α2ν∗2σ2
ew + 2(1− α)αν∗E (ρ̂mv,ew)

, (38)

where τmv−ew = E ((ŵmv − w∗mv))
′ (ν∗wew − w∗mv) σ2

ew = 1
N2 ι

′Σι is the equally weighted
portfolio variance,E (σ̂mv) = E (ŵ′mvΣŵmv) is the expected mean-variance portfolio vari-
ance, E (ρ̂mv,ew) = E (ŵ′mvΣwew) is the covariance between mean-variance and equally
weighted portfolio, µew = w′ewµ = µ is the equally weighted expected portfolio return and
E (µ̂mv) = E (ŵ′mvµ) is the mean-variance expected portfolio return.

Proof. The proof of Proposition 3.2 is given in the Appendix.

Proposition 3.2 gives the optimal shrinkage intensities of the shrinkage portfolio formed
by the naive mean-variance portfolio and the scaled equally weighted portfolio. For this
shrinkage portfolio, we also observe that the optimal shrinkage intensities are defined as the

22



relative error/risk of the naive mean-variance portfolio with respect to the total error/risk of
the naive mean-variance portfolio and the scaled minimum-variance portfolio.

Equation (35) gives the optimal shrinkage intensity that minimizes the mean-squared
loss. The shrinkage intensity is a ratio defined as the error of the naive mean-variance
portfolio relative to the total error formed by the error of the naive mean-variance portfolio
and the error of the scaled equally weighted portfolio. In this shrinkage portfolio, the
error of the naive mean-variance portfolio is defined by its mean-squared loss. The error
of the scaled equally weighted portfolio is defined by the mean-squared loss with respect
to the true mean-variance portfolio w∗mv. In this case, there is no corrector term because
the equally weighted portfolio and the naive mean-variance portfolio are independent with
each other. Since the scaled equally weighted is deterministic (i.e. zero variance) and the
naive mean-variance portfolio is unbiased, the optimal shrinkage intensity gives the optimal
trade-off between bias and variance.

Equation (36) gives the optimal shrinkage intensity that maximizes the expected util-
ity. The shrinkage intensity is defined as the ratio of the risk of the naive mean-variance
portfolio with respect to the total risk of the naive mean-variance portfolio and the scaled
equally weighted portfolio. This ratio is smoothed by the ratio of the expected return of
the naive mean-variance portfolio, in excess of the expected return of the scaled equally
weighted portfolio, divided by the total risk. The risk of the naive mean-variance portfolio
is defined as its variance minus a corrector term defined by the covariance between the
naive mean-variance portfolio and the scaled equally weighted portfolio. The risk of the
scaled equally portfolio is defined as the portfolio variance of the scaled equally weighted
portfolio minus the portfolio covariance between the naive mean-variance portfolio and the
scaled equally weighted portfolio. Therefore, the shrinkage intensity under this calibration
method is defined by the relative risk of the naive mean-variance portfolio smoothed by the
excess profitability of the naive mean-variance portfolio.

Equation (37) gives the optimal shrinkage intensity that minimizes the expected port-
folio variance. The shrinkage intensity is defined as the ratio of the risk of the naive mean-
variance portfolio with respect to the total risk of the naive mean-variance portfolio and the
scaled equally weighted portfolio.

Problem (38) offers the optimal shrinkage intensity that maximizes the Sharpe ratio.
Like for the previous shrinkage portfolio, it has no explicit formula, but we again solve
problem (38) with numerical methods.
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3.3 Shrinkage from minimum-variance to equally weighted portfolio

In this section, we study the shrinkage portfolio formed by the minimum-variance and
equally weighted portfolio. Likewise to the previous shrinkage portfolios, this mixture of
portfolios has been studied in DeMiguel et al. (2009). The authors provide a linear combi-
nation of portfolios formed by the minimum-variance portfolio and the 1/N rule or equally
weighted portfolio. We use the same portfolios to study the third shrinkage portfolio of the
paper. It takes the following expression:

ŵmin-ew = (1− α)ŵmin + αν
ι

N
, (39)

where the scale parameter ν is a bias correction term which is optimally defined by:

ν∗ = arg min
ν

∥∥∥ν ι
N
− w∗min

∥∥∥2

2
. (40)

Developing the first order conditions in (40), we obtain that the optimal scale parameter is
ν∗ = ι′w∗min. Once again, we obtain the optimal shrinkage intensities for the calibration
methods illustrated in (23)-(26). The following proposition gives the expressions.

Proposition 3.3. Assuming that returns are independent and identically distributed, the
shrinkage intensities for the optimal combination of the minimum-variance portfolio with
the equally weighted portfolio are:

αmsl =
E
(
‖ŵmin − w∗min‖

2
2

)
− τmin−ew

E
(
‖ŵmin − w∗min‖

2
2

)
+ ‖ν∗wew − w∗min‖

2
2

, (41)

αut =
E
(
σ̂2
min

)
− ν∗E (ρ̂min,ew)

E (σ̂2
min) + ν∗2σ2

ew − 2ν∗E (ρ̂min,ew)
− E(µ̂min)− ν∗µew
E (σ̂2

min) + ν∗2σ2
ew − 2ν∗E (ρ̂min,ew)

1
γ
, (42)

αvar =
E
(
σ̂2
min

)
− ν∗E (ρ̂min,ew)

E (σ̂2
min) + ν∗2σ2

ew − 2ν∗E (ρ̂min,ew)
, (43)

αSR = arg max
α

(1− α)E(µ̂min) + αν∗µew√
(1− α)2E (σ̂2

min) + α2ν∗2σ2
ew + 2(1− α)αν∗E (ρ̂min,ew)

, (44)

where τmin−ew = E ((ŵmin − w∗min))′ (ν∗wew − w∗min), σ2
ew = 1

N2 ι
′Σι is the equally

weighted portfolio variance, E (σ̂min) = E (ŵ′minΣŵmin) is the expected variance of
the minimum-variance portfolio, E (ρ̂min,ew) = E (ŵ′minΣwew) is the covariance between
minimum-variance and equally weighted portfolio, µew = w′ewµ = µ is the equally weighted
expected portfolio return and E (µ̂min) = E (ŵ′minµ) is the minimum-variance expected
portfolio return.

Proof. The proof of Proposition 3.3 is given in the Appendix.
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Equation (41) gives the optimal shrinkage intensity that minimizes the mean-squared
loss. The shrinkage intensity is a ratio defined as the error of the naive minimum-variance
portfolio relative to the total error formed by the error of the naive minimum-variance port-
folio and the error of the scaled equally weighted portfolio. In this shrinkage portfolio, the
error of the naive minimum-variance portfolio is defined by its mean-squared loss. The
error of the scaled equally weighted portfolio is defined by the mean-squared loss with
respect to the true minimum-variance portfolio wmin. In this case, we again do not have
corrector term because the equally weighted portfolio and the naive minimum-variance
portfolio are independent with each other. Since the scaled equally weighted is determinis-
tic (i.e. zero variance) and the naive minimum-variance portfolio is unbiased, the optimal
shrinkage intensity gives the optimal trade-off between bias and variance.

Equation (42) gives the optimal shrinkage intensity that maximizes the expected utility.
The shrinkage intensity is defined as the ratio of the risk of the naive minimum-variance
portfolio with respect to the total risk of the naive minimum-variance portfolio and the
scaled equally weighted portfolio. This ratio is smoothed by the ratio of the expected
return of the naive minimum-variance portfolio, in excess of the expected return of the
scaled equally weighted portfolio, divided by the total risk. The risk of the naive minimum-
variance portfolio is defined as its variance minus a corrector term defined by the covariance
between the naive minimum-variance portfolio and the scaled equally weighted portfolio.
The risk of the scaled equally portfolio is defined as the portfolio variance of the scaled
equally weighted portfolio minus the covariance between the naive minimum-variance
portfolio and the scaled equally weighted portfolio. Therefore, the shrinkage intensity
under this calibration method is defined by the relative risk of the naive mean-variance
portfolio smoothed by the excess profitability of the naive mean-variance portfolio.

Equation (43) gives the optimal shrinkage intensity that minimizes the expected port-
folio variance. The shrinkage intensity is defined as the ratio of the risk of the naive
minimum-variance portfolio with respect to the total risk of the naive minimum-variance
portfolio and the scaled equally weighted portfolio.

Problem (44) offers the optimal shrinkage intensity that maximizes the Sharpe ratio. It
has no explicit formula, but we solve problem (44) with numerical methods.

So far, we have assumed that returns are independent and identically distributed. In the
next section, we give closed form expressions for the defined optimal shrinkage intensities.
To obtain closed form expressions of the optimal shrinkage intensities we have to assume
that returns are normally distributed. Finally, we drop the normality assumption to propose
an alternative method for calibrating shrinkage portfolios.
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3.4 Parametric calibration

In this section, we give closed form expressions to the expected values that define all the
optimal shrinkage parameters. To do that, we assume that asset returns are independent and
normally distributed (i.e. N (µ,Σ)). The objective of this section is to give the implemen-
tations details of the shrinkage intensities and discuss how they evolve when the estimation
window T increases. Then, we first define the expected values that we need to compute the
optimal shrinkage intensities.

Proposition 3.4. Assuming that returns are independent and normally distributed, i.e.
N(µ,Σ), we can obtain closed-form expressions for the following elements:

The mean-squared loss of the naive mean-variance portfolio:

E
(
‖ŵmv − wmv‖2

2

)
=

a

γ2

[
tr
(
Σ−1

)((T − 2)

T
+ µ′Σ−1µ

)
+

+(T −N − 2)µ′Σ−2µ
]
− 1

γ2
µ′Σ−2µ. (45)

The mean-squared loss of the naive minimum-variance portfolio with respect to the true
mean-variance portfolio:

E
(
‖νŵmin − wmv‖2

2

)
= ν2a

[
tr
(
Σ−1

)
ι′Σ−1ι+ (T −N − 2)ι′Σ−2ι

]
+

+
1

γ2
µ′Σ−2µ− 2

ν

γ
ι′Σ−2µ. (46)

The mean-squared loss of the naive minimum-variance portfolio:

E
(
‖ŵmin − wmin‖2

2

)
= a

[
tr
(
Σ−1

)
ι′Σ−1ι+

+(T −N − 2)ι′Σ−2ι
]
− ι′Σ−2ι. (47)

The expected value of the naive mean-variance portfolio variance:

E (σ̂mv) = E (ŵ′mvΣŵmv) =
1

γ2

(
a(T − 2)

(
N

T
+ µ′Σ−1µ

))
. (48)

The expected value of the naive minimum-variance portfolio variance:

E (σ̂min) = E (ŵ′minΣŵmin) = a(T − 2)ι′Σ−1ι. (49)
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The expected value of the covariance between the naive mean-variance and naive
minimum-variance portfolio:

E (ρ̂mv,min) = E (ŵ′mvΣŵmin) = a(T − 2)
1

γ
µ′Σ−1ι. (50)

The corrector term τmv−min:

τmv−min = ν∗
(
a

γ

[
tr
(
Σ−1

)
µ′Σ−1ι+ (T −N − 2)µ′Σ−2ι

]
− 1

γ
µ′Σ−2ι

)
, (51)

where a = (T−N−2)
(T−N−1)(T−N−4)

.

Proof. The proof of Proposition 3.4 is given in the appendix.

Proposition 3.4 introduces some of the elements which form the optimal shrinkage
parameters. As we observe, all of them are affected by the window’s length T and the
number of assets N . All the expressions show that when N ≥ 4 and the ratio N/T tends
to zero, the expressions showed in Proposition 3.4 tends to the population counterpart14. In
the case of E

(
‖ŵmv − wmv‖2

2

)
and E

(
‖ŵmin − wmin‖2

2

)
, the population counterparts will

be zero in both cases.

3.4.1 Discussion of optimal shrinkage intensities

In this section, we make an experiment to study how the optimal shrinkage intensities and
the theoretical mean-squared losses of shrinkage portfolios evolve with different window’s
length T . In the experiment we take again the sample formed with 48 industry portfolio
as the population. We use the sample moments as the population elements that define the
multivariate normal distribution, N (µ,Σ), and governs the dynamics of the stock returns.
Figure 3 shows the results of the experiment.

Figure 3a shows the shrinkage intensities given for the shrinkage portfolio formed by
the mean-variance portfolio and the minimum-variance portfolio. In this case, we ob-
serve that the shrinkage intensities obtained by the mean-squared loss minimization, the
expected utility maximization and the Sharpe ratio maximization methods offer similar
values. Moreover, from Figure 3a we observe that they seem to converge at the same rate.
On the other hand, we observe that the shrinkage intensity obtained via expected portfolio

14Here, what we mean by population counterpart is that the expected values converge to the expressions
where the estimated quantity is replaced by the population one. For instance, in E

(
‖νŵmin − wmv‖22

)
, the

population counterpart will be ‖νwmin − wmv‖22 .
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variance minimization is always near one, which means that the minimum-variance port-
folio has always a much lower variance than the mean-variance portfolio, independently of
the window’s length T .

Figure 3b shows the shrinkage intensities given for the shrinkage portfolio formed by
the mean-variance portfolio and the equally weighted portfolio. In this shrinkage portfolio,
we observe that the portfolio variance minimization is again the most conservative method.
This calibration method gives a higher weight to the equally weighted portfolio than the
other two calibration methods. DeMiguel et al. (2009) show that an equally weighted port-
folio has a good out-of-sample performance in terms of Sharpe Ratio. One of the main
reasons why it happens is that the equally weighted portfolio has a small portfolio vari-
ance. Therefore, it is reasonable to find that the shrinkage intensity obtained via portfolio
variance minimization is higher. Moreover, we observe that the shrinkage intensity given
by the Sharpe ratio maximization method gives the lowest value among all the considered
calibration methods.

Figure 3c shows the shrinkage intensities given for the shrinkage portfolio formed with
the minimum-variance portfolio and the equally weighted portfolio. In this case, we ob-
serve that the most conservative calibration method is the mean-squared loss minimization
method up to T ≈ 550. From that point onwards, the most conservative calibration method
is the Sharpe ratio maximization. Thus, up to T ≈ 550, the mean-squared loss mini-
mization method offers a higher shrinkage intensity than the three other methods. This
is because the equally weighted is a portfolio with a very low estimation error. Since the
equally weighted portfolio is deterministic, the bias of this portfolio is the element that
defines its squared-loss. Moreover, with the scale parameter ν∗, it is expected to reduce the
bias and this is why the shrinkage intensity of this method is higher. On the other hand, we
observe that the shrinkage intensities obtained via utility maximization and portfolio vari-
ance minimization are the same. It is because the smoothing element of expression (42)
given by the ratio proportional to the profitability of the minimum-variance portfolio µmin
in excess to the profitability of the equally weighted portfolio µew is negligible. Therefore,
both portfolios must offer a similar expected return in this example.

Figures 3d, 3e and 3f obviously show that the mean-squared loss minimization offers
the best shrinkage intensities to minimize the mean-squared loss. By definition, αmsl is
obtained to minimize the mean-squared loss. In Figure 3d, we observe that the mean-
squared loss of the expected utility maximization, the mean-squared loss minimization and
the Sharpe ratio maximization converge at the same rate. Actually, we can see that their
values are quite similar. In Figure 3e, we observe that the mean-squared loss of the Sharpe
ratio maximization method increases while the sample window’s length T is small. This
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is because in small samples, the shrinkage intensity of this method decreases faster than
it should be decreasing. Then, it gives more weight to the naive mean-variance portfolio,
which is well know to be highly contaminated by estimation risk, and this is why the mean-
squared loss increases. Finally, in Figure 3f, we observe that the mean-squared losses of
the four calibration methods converge with a similar rate.

3.4.2 Performance of calibrated portfolios

In this section, we study two performance measures which are interesting for an investor.
The first performance measure that we study is the Sharpe ratio, defined by the expected
value of the portfolio return divided by the square root of the expected value of the portfolio
variance. This is a classical performance measure which represents the expected profit per
unit of risk. Therefore, we define the expected Sharpe ratio as follows:

SRt =
E
(
rtp
)√

V ar
(
rtp
) , (52)

where rtp = ŵ′t−1Rt is the portfolio return at time t that corresponds with the estimated
portfolio ŵt−1 at time t− 1.

The second performance measure that we study is the relative improvement in average
loss (RIAL, see Ledoit and Wolf (2004a)) of each calibrated shrinkage portfolio. This
performance measure is defined as:

RIAL(ŵsp) =
E
(
‖ŵn − w∗‖2

2

)
− E

(
‖ŵsp − w∗‖2

2

)
E
(
‖ŵn − w∗‖2

2

) , (53)

where ŵsp is the shrinkage portfolio composed by a naive estimator of the true portfolio
w∗ and an scaled target portfolio wtarget. This measure gives an idea of the relative im-
provement of the shrinkage portfolio with respect to the estimated benchmark portfolio. If
RIAL is near 1, it means that the mean-squared loss of the shrinkage portfolio is negligible
compared with the mean-squared loss of the estimated reference portfolio ŵn. If RIAL is
negative, it means that the estimated reference portfolio ŵn has a smaller mean-squared
loss than the shrinkage portfolio. This performance measure gives an idea of the statisti-
cal error that contains the shrinkage portfolio relative to the statistical error of the naive
estimator, which is assumed to be high in small samples.

The experiment consists on computing the Sharpe ratios and the RIAL’s, given by ex-
pressions (52)-(53), of the studied shrinkage portfolios under every different calibration
method and for different data sets. We consider four data sets: 5IndP, 10IndP, 38IndP,
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48IndP and 100FF. All the data sets are defined in Table 1. The objective of including data
sets with different dimensions is to observe whether calibration methods are robust or not
along different data sets with different characteristics. To make the experiment closer to
reality, we consider an estimation window’s length T=150, which is quite reasonable when
we deal with monthly data. In the experiment, we consider the sample moments obtained
across every the data set as the true population moments of a multivariate normal distribu-
tion. Therefore we are computing the theoretical values of the Sharpe ratio and the RIAL.
In Table 3, we have the values obtained for the Sharpe ratio. Table 3 gives important in-
sights about the shrinkage portfolio considered. First, we can obviously see that the Sharpe
ratio maximization method gives gives the best Sharpe ratio across every data set. After
this calibration method, the expected utility maximization method gives the best Sharpe
ratio across every data sets in all shrinkge portfolios except for the min-ew portfolio in the
5IndP data set, where the mean-squared loss minimization gives a slightly better value.

Table 4 gives the RIAL’s of the considered shrinkage portfolios calibrated with the
methods presented in this section. For this performance measure, the upper bound is es-
tablished by the values given by the mean-squared loss minimization method. It is easy
to observe that minimizing the mean-squared loss is equivalent to maximize the RIAL. In
Table 4, we observe three important issues. First, for the shrinkage portfolio formed by
the mean-variance and minimum-variance portfolios, the RIAL obtained for the expected
utility calibration method offers similar values with respect to the RIAL obtained for the
same portfolio calibrated via mean-squared loss minimization, except for the data set 5IndP.
Moreover, we also observe that this portfolio obtains slightly worse RIAL’s when it is es-
timated via portfolio variance minimization. Second, the shrinkage portfolio formed by
the mean-variance and equally weighted portfolio obtains slightly worse RIAL’s when it is
calibrated via Sharpe ratio maximization, except for the data set 5IndP. Moreover, we also
observe that the values obtained with the portfolio variance calibration method are very
similar to the values obtained by the mean-squared loss minimization method. Third, the
shrinkage portfolio formed by the minimum-variance and equally weighted portfolio obtain
very similar RIAL’s when the portfolio is calibrated either by the expected utility maximiza-
tion method or the portfolio variance minimization method. Both calibration methods give
better RIAL’s throughout every data set than the values obtained for the shrinkage portfolio
calibrated via Sharpe ratio maximization except for the data sets 38IndP and 48IndP.

Finally, to complete the analysis, we make the same experiment but this time, instead of
changing the number of assets under consideration, we fix the number of assets and change
the window’s length T . Figure 4 shows the results of the evolution of the expected Sharpe
ratio and the RIAL’s when the estimation window’s length T changes. In this experiment,
we take the data set formed by 48 industry portfolios (48IndP data set of Table 1) and take
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the whole sample as the population distribution. The sample moments are considered the
population moments that define the multivariate normal distribution required to compute
the theoretical values of the expected Sharpe Ratio and the RIAL. Figures 4a, 4b and 4c
confirms the evidences found in the previous experiment. Obviously, the upper bound in
all the shrinkage portfolios is established by the Sharpe ratio obtained with the calibration
method that maximizes the Sharpe ratio. Like in the previous experiment, we observe that
for the mv-min portfolio, the Sharpe ratio attained by the mean-squared loss minimization
method and the expected utility maximization method are very similar and slightly higher
than the results obtained by the expected variance minimization method. Moreover, we
observe that the expected utility maximization is the second best calibration method for the
mv-ew shrinkage portfolio. For the min-ew shrinkage portfolio, we can see that the mean-
squared loss minimization method is slightly worse that the other calibration methods in
terms of Sharpe ratio.

On the other hand, Figures 4d, 4e and 4f depicts the RIAL’s of the considered shrink-
age portfolios under every different calibration method. Figure 4d shows the RIAL’s of the
shrinkage portfolio formed by the mean-variance and the minimum-variance portfolio. We
observe that the RIAL’s of the shrinkage portfolio calibrated via mean-squared loss mini-
mization, expected utility maximization and Sharpe ratio maximization evolve in a similar
manner. It holds with the results obtained in Figure 3a, where the shrinkage intensities cor-
responding to these calibration methods are similar. On the other hand, we observe that the
RIAL of the shrinkage portfolio calibrated via portfolio variance minimization is negative
when the window’s length is larger than 600 observations. It is because this calibration
method gives a shrinkage intensity of near one independently of the window’s length T , so
that the portfolio is practically the minimum-variance portfolio. It means that with 600 ob-
servations we can estimate fairly well the mean-variance portfolio and therefore shrinking
too much to the minimum-variance portfolio gives bad results in terms of RIAL.

Figure 4e shows the RIAL’s of the shrinkage portfolio formed by the mean-variance
and the equally weighted portfolio. We observe that the RIAL’s of this shrinkage portfolio
evolves in a similar manner for the mean-squared loss minimization method and the ex-
pected utility maximization method. On the other hand, we observe that the Sharpe ratio
maximization method to calibrate the mv-ew portfolio gives lower RIAL that the other three
calibration methods up to T ≈ 650. For that window’s length, the expected variance min-
imization method gives worse results and it even attains negative values when T ≈ 1355.
It means that under that calibration method, the mean-squared error of the sample mean-
variance portfolio is better than the combination of the mean-variance portfolio with an
equally weighted portfolio. But it does not mean that there is no a better combination of
the mean-variance portfolio and the equally weighted portfolio. In fact, we observe that
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the shrinkage portfolios calibrated via expected utility maximization or mean-squared loss
minimization offer a lower mean-squared error than the sample mean-variance portfolio.

Figure 4f shows the RIAL’s of the shrinkage portfolio formed by the minimum-variance
and the equally weighted portfolio. We observe that the mean-squared error offers a lower
RIAL than the other two calibration methods. Moreover, we observe that the RIAL’s of
the three calibration method calibrated via expected utility maximization is the same as the
RIAL of the shrinkage portfolio calibrated via portfolio variance minimization. It holds
with the resutls obtained in Figure 3c. We also observe that the RIAL of every calibration
method converge faster to zero than any of the shrinkage portfolios considered in the study.
It is because this shrinkage portfolio does not consider the vector of means, which is usually
more difficult to estimate. Therefore, the benchmark portfolio is fairly well estimated for
small window’s length and therefore, the shrinkage intensity must go faster to zero as well.
This is exactly what we observe in Figure 3c.

We observe that results do not differ too much in terms of Sharpe ratio when the sample
size T is small compared with the number of assets. Moreover, we have also observed that
in general, a mixture of portfolios formed by the mean-variance and minimum variance
portfolios give bad results in terms of Sharpe ratio for a moderate samples size of T = 150.
Therefore, we can assume that, in general, it is better to consider a mixture of some risky
portfolio (either the mean-variance portfolio or the minimum-variance portfolio) and the
equally weighted portfolio.

3.5 Non-Parametric calibration of portfolios

In this section, we propose an alternative procedure to calibrate shrinkage portfolios. This
framework only requires that stock returns must be independent and identically distributed15,
but we do not specify any particular distribution. This method is based on the well-known
non-parametric technique of bootstrap (Efron (1979)). This technique was originally pro-
posed to study the statistical properties of some statistic of interest. Then, let us assume
that we want to study some characteristic θ of some probability distribution F , such that
this characteristic of interest is expressed as θ(F ). Then, let us assume that we have a
sample X ∈ RT×N which has been randomly drawn from F . Therefore, we estimate θ(F )

from the sample X , which constitutes what is called the empirical distribution F̂ . There-
fore, the value of our estimator is completely specified by the empirical distribution F̂ ,
hence we express it as θ

(
F̂
)

. Of course, this statistic, θ
(
F̂
)

, is a random variable and
its randomness is defined by the true probability distribution F . It means that F defines

15Again, the independence assumption is very unreal for high frequency data. This is why in the empirical
study we only focus on monthly data.
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the probability distribution of θ
(
F̂
)

as well, this is F → θ
(
F̂
)

. Therefore, the main
goal of bootstrap is to approximate that relation as much as possible. To do that, B (boot-
strap) samples Xb ∈ RT×N , where b = 1, . . . , B, are drawn from the empirical distribution
F̂ . Each (bootstrap) sample Xb is constructed by drawing random observations with re-
placement from F̂ . For each (bootstrap) sample Xb, we calculate the statistic of interest,
which is now defined as θ

(
F̂b

)
, where F̂b is the empirical distribution of sample Xb. The

B statistics obtained from each (bootstrap) sample should define the randomness of the
statistic, which is now defined by the original empirical distribution F̂ . Therefore, with the
bootstrap procedure, we are defining F̂ → θ

(
F̂b

)
, and it must approach F → θ

(
F̂
)

as
much as possible.

Then, we use bootstrap to obtain the optimal shrinkage intensities established in sec-
tions , and . As we have seen, the optimal shrinkage intensities are defined by a bunch of
some expected values. Up to that point, there is no assumption about the distribution of
stock returns and they are only assumed to be independent and identically distributed. But
to obtain closed form expressions of those expected values, we need to assume some dis-
tribution. In this section, we do not make any specification about that distribution. Instead,
we use bootstrap to estimate the expected values of the optimal shrinkage intensities given
in the previous section. In essence, each expected value correspond to the mean of some
random statistic θ

(
F̂
)

. Thus, we construct B (bootstrap) samples and for each sample we

compute the desired statistic θ
(
F̂b

)
. Once the B statistics have been computed, we take

the average of those statistics as an approximation of the expected value:

µθ(F̂) =

∑B
b=1 θ

(
F̂b

)
B

, (54)

where µθ(F̂) is the bootstrap estimator of the expected value of the statistic of interest.

One of the main problems with bootstrap is that the empirical distribution F̂ is a discrete
probability function. Therefore, randomly draws from F̂ might gives many repeated ob-
servations. This issue turn out to be quite cumbersome when we are trying to estimate
the inverse covariance matrix because too many repeated observations might turn out in a
sample with singular covariance matrix. Thus, to correct this problem we add an error term
for each extracted observation. This is what is called smoothed bootstrap. We apply the
multivariate version of the smoothed bootstrap described in Efron (1979) (page 7). Then,
now each extracted observation is defined as follows:

X∗i = µ̂+ (I + ΣZ)−1/2
[
Xi − µ̂+ Σ̂1/2Zi

]
, (55)
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where I is the identity matrix,Xi is the i-th row observation fromX ∈ RT×N , µ̂ is the sam-
ple vector of means of X , Σ̂ is the sample covariance matrix of X , and Zi is a multivariate
random variable having zero vector of means and covariance matrix ΣZ . The peculiarity of
this technique is that X∗i is a random variable which has mean µ̂ and covariance matrix Σ̂

under the empirical distribution F̂ .

Furthermore, we consider another non-parametric method to estimate the expected val-
ues that form the optimal shrinkage intensities. In this case, we estimate the expectations of
the shrinkage intensities obtained from the calibration criteria given in (24)-(26) via cross-
validation. Cross-validation consists on splitting the sample data into two parts. In the first
part, which is called the “training data”, we compute the naive portfolio. This portfolio is
then evaluated in the remaining data, which is usually defined as the “validating data”. In
our experiments, the training data is formed by the whole sample minus one given obser-
vation. The portfolio that is computed from the training data is evaluated in the remaining
observation, which give us an out-of-sample portfolio return defined as follows:

rip = R′iŵ
i, (56)

where Ri is the i-th sample return and ŵi is the estimated portfolio computed without
return Ri. Then, we do the same for i = 1, . . . , T , obtaining a time series of T out-of-
sample portfolio returns. We use that time series to estimate the expected values that form
the optimal shrinkage intensities. We do not report the results of this method because they
are similar or worse than the results obtained with the smoothed bootstrap calibration.

In this section we do not consider to make a simulation experiment as we did with the
parametric calibration to discuss the evolution of the shrinkage intensities and the perfor-
mance of the shrinkage portfolios. It is mainly because we have closed form expressions for
the parametric shrinkage intensities, which makes the discussion much cheaper in compu-
tational terms. Thus, to make the comparison between the performance of the parametric
calibration and the non-parametric calibration, we make an empirical analysis across six
different real data sets.

4 Empirical Results

In this section, we study the out-of sample performance of portfolios formed with shrink-
age estimators considered in section 2. We also study the out-of-sample performance of the
shrinkage portfolios considered in section 3. Table 2 lists the portfolios considered in the
analysis. Panel A list the existing benchmark portfolios which constitute our benchmark
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portfolios in the empirical analysis. The first portfolio is the classical mean-variance portfo-
lio of Markowitz (1952). The second portfolio is the classical mean-variance portfolio with
shrinkage moments proposed by Jorion (1986). The next portfolios are the combination
of portfolios proposed in the literature. The first one is the mixture of the mean-variance
and minimum-variance portfolio of Kan and Zhou (2007). The second is the mixture of
the mean-variance and equally weighted portfolios of Tu and Zhou (2011). The third is the
mixture of the minimum-variance and equally weighted portfolio of DeMiguel et al. (2009).
The sixth portfolio is the global minimum-variance portfolio. The seventh portfolio is the
global minimum-variance portfolio formed with the shrinkage covariance matrix of Ledoit
and Wolf (2004a). The eighth portfolio is the naive equally weighted portfolio and the ninth
portfolio is the value weighted or market portfolio. Panel B list the portfolios constructed
with the new shrinkage estimators of moments proposed in section 2. Thus, the tenth
portfolio is the global minimum-variance portfolio formed with the shrinkage covariance
matrix of Ledoit and Wolf (2004a) using the finite optimal shrinkage intensity proposed
in section 2. Portfolio eleven is the global minimum-variance portfolio formed with the
shrinkage covariance matrix of Ledoit and Wolf (2004a) using the finite optimal shrinkage
intensity that account for the matrix condition number. Portfolio twelve is a mean-variance
portfolio where the vector of means is estimated with the shrinkage estimator proposed in
section 2. The last three portfolios that we study are the shrinkage portfolios proposed in
section 3. In the empirical analysis, we calculate the shrinkage intensities of these portfolio
using the three calibration methods defined in section 3. The empirical analysis is made
across six different data sets. Table 1 list the various data sets that we consider in the analy-
sis. There are three types of data sets: small data set (less than 25 assets), medium data sets
(between 25 and 50 assets) and large data sets (more than 50 assets). Small and medium
data sets consider all the stocks from NYSE, AMEX and NASDAQ, and they are pooled
in industry portfolios to form each of the data sets. On the other hand, 100FF is the one
hundred Fama and French (1992) portfolios of firms sorted by size and book-to-market.
The last portfolio, SP100 is formed by 100 random assets taken from the S&P500.

4.1 Out-of-sample performance evaluation

We compare the out-of-sample performance of the shrinkage portfolios to the portfolios in
the literature using three different criteria: (i) out-of-sample portfolio Sharpe ratio account-
ing for transaction costs, (ii) portfolio turnover (trading volume), and (iii) out-of-sample
portfolio variance. We use the “rolling-horizon” procedure to compute the out-of-sample
performance measure. The “rolling-horizon” is defined as follows: first, we choose a win-
dow over which to estimate the portfolio. The length of the window is M < T , where T
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is the total number of observations of the data set. In the empirical analysis, our estimation
window has a length of M = 150, which corresponds with 15 years of data (with monthly
frequency). Second, we compute the various portfolios using the return data over the es-
timation window. Third, we repeat the “rolling-window” procedure for the next month by
including the next data point and dropping the first data point of the estimation window. We
continue doing this until the end of the data set. Therefore, at the end we have a time series
of T −M portfolio weight vectors for each of the portfolios considered in the analysis; that
is wit for t = M, . . . , T − 1 and portfolio i.

The out-of-sample returns are computed by holding the portfolio weights for one month
wit evaluated with the asset-return vector of the next month: rit+1 = R′t+1w

i
t, where Rt+1

denotes the asset-return vector at time t+1 and rit+1 is the out-of-sample portfolio return at
time t+ 1 of portfolio i. We use the times series of portfolio returns and portfolio weights
of each strategy to compute the out-of-sample variance, Sharpe ratio and turnover:

(σ̂i)2 =
1

T −M − 1

T−1∑
t=M

(
wi
′

t Rt+1 − ri
)
, (57)

with ri =
1

T −M

T−1∑
t=M

(
wi
′

t Rt+1

)
, (58)

ŜR
i

=
ri

σ̂i
, (59)

Turnover =
1

T −M − 1

T−1∑
t=M

N∑
j=1

(∣∣wij,t+1 − wij,t+
∣∣) , (60)

where wij,t denotes the estimated portfolio weight of asset j at time t under policy i and
wij,t+ is the estimated portfolio weight of asset j accumulated at time t + 1, which implies
that the turnover is equal to the sum of the absolute value of the rebalancing trades across
the N available assets over the T −M − 1 trading dates, normalized by the total number
of trading dates.

To account for transaction costs in the empirical analysis, the definition of portfolio
return is slightly corrected by the implied cost of rebalancing the portfolio. Then, the
definition of portfolio return net of transaction costs is:

rit+1 = (1 +R′t+1w
i
t)

(
1− κ

N∑
j=1

∣∣wij,t+1 − wij,t+
∣∣)− 1, (61)

where κ is the chargeable fee for rebalancing the portfolio. In the empirical analysis, ex-
pressions (57)-(60) are computed using portfolio returns discounted by transaction costs.
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4.2 Discussion of the out-of-sample performance

Table 5 reports the Sharpe ratio adjusted by transaction costs of the benchmark portfolios
and the portfolios estimated with shrinkage moments. In the analysis we assume 50 basis
points of transaction costs, which are high enough to approach to reality. Panel A shows the
out-of-sample annualized Sharpe ratio of the benchmark portfolios adjusted with transac-
tion costs. Panel B reports portfolios formed with shrinkage moments, using the shrinkage
intensities proposed in this paper. We first compare the portfolios which consider the vector
of means. We observe that the mean-variance portfolio with the new proposed shrinkage
vector of means (f-mv) has higher adjusted Sharpe ratio than the classical mean-variance
portfolio (mv) and the bayes-stein (bs) mean-variance portfolio across every data set except
for the SP100 data set. Moreover, portfolio f-mv has higher adjusted Sharpe ratio than the
equally weighted portfolio in small data sets.

On the other hand, the new portfolios that do not consider the vector of means and
shrink the covariance matrix or the inverse covariance matrix, f-lw, i-lw and c-lw, have
a good performance across every data set. Although the minimum-variance portfolio with
shrinkage matrix calibrated parametrically (f-lw) does not perform better than the minimum-
variance portfolio with the Ledoit and Wolf (2004a) shrinkage covariance matrix (lw) in any
data set, portfolio f-lw has a good performance, having larger adjusted Sharpe ratio across
every data set than the portfolios which consider the vector of means and also better than
the equally weighted portfolio for small and large data sets. The minimum-variance port-
folio that shrinks the inverse covariance matrix (i-lw) is very conservative. This portfolio
is constructed using the shrinkage inverse covariance matrix proposed in Section 2.3. For
large data sets, the shrinkage intensity approaches to one, which makes it tend to the 1/N
portfolio. Finally, the new proposed minimum-variance portfolio that shrinks the covari-
ance matrix accounting for the condition number (c-lw) has an excellent performance for
medium and large data sets, beating the minimum-variance portfolio lw formed with the
shrinkage covariance matrix of Ledoit and Wolf (2004a).

Table 6 reports the annualized Sharpe ratio adjusted by transaction costs of the shrink-
age portfolios. Panel A reports the adjusted Sharpe ratios of the shrinkage portfolios cal-
ibrated via parametric assumptions (see Section 3.4). Panel B reports the adjusted Sharpe
ratios of the shrinkage portfolios calibrated via bootstrap (see Section 3.5). First, we com-
pare the results shown in Panel A. We observe that across every data set, the expected
variance minimization is the best calibration method for the mv-min and mv-ew shrinkage
portfolios. We also observe that the mean-squared loss minimization method offers the
best adjusted Sharpe ratios for the min-ew shrinkage portfolio in medium and large data
sets. This issue confirms our intuition of this calibration method. Since the min-ew shrink-
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age portfolio does not consider the vector of means, the mean-squared loss minimization
method will offer a calibration method stable and controlling for transaction costs. This
makes the adjusted Sharpe ratio greater than the adjusted Sharpe ratio for the other calibra-
tion methods.

The results given by the bootstrap calibration in Panel B are slightly different. We
observe that for the mv-min portfolio the best calibration method is the expected variance
minimization in small and medium data sets. But for large data sets, the Sharpe ratio
maximization method gives slightly better results than the expected variance minimization
method. The same occurs for the mv-ew shrinkage portfolio. For the min-ew shrinkage
portfolio, we observe that the results obtained by the mean-squared loss minimization, the
expected utility maximization and the expected variance minimization are quite similar. We
can also observe that, compared with the parametric calibration, the bootstrap procedure to
calibrate mv-ew and min-ew shrinkage portfolio is better for medium and large data sets.

Table 7 reports the turnover of the benchmark portfolios and the portfolios estimated
with shrinkage moments. Panel A shows the turnover of the benchmark portfolios. Panel
B shows the turnover of portfolios with shrinkage estimators using the calibration meth-
ods proposed in Section 2. We observe that the mean-variance portfolios estimated with
the shrinkage estimator proposed in Section 2.1 offers lower turnover than the benchmark
portfolios that consider the vector of means (mv and bs) across every data set except for the
SP100 data set, where the bayes-stein mean-variance portfolio (bs) attains a lower turnover.
On the other hand, we observe that the minimum-variance portfolio with shrinkage covari-
ance matrix calibrated parametrically (f-lw) does not improve the minimum-variance port-
folio with the shrinkage covariance matrix of Ledoit and Wolf (2004a) (lw) in any of the
data sets, although it does outperform the results obtained by the minimum-variance portfo-
lio with naive estimators (min). The minimum-variance portfolio formed with the shrink-
age inverse covariance matrix proposed in Section 2.3 (i-lw) and the minimum-variance
portfolio with a shrinkage covariance matrix that accounts for the condition number (c-lw)
offers smaller turnover than portfolio lw across every data set.

Table 8 reports the turnover of shrinkage portfolios. Panel A shows the turnover of
the shrinkage portfolios with parametric calibration. Panel B reports the turnover of the
shrinkage portfolios with bootstrap calibration. First, we compare portfolios reported in
Panel A. We observe that the expected variance minimization method offers the lowest
turnover to calibrate portfolios mv-min and mv-ew. The mean-squared loss minimization
method offers the lowest turnover to calibrate min-ew portfolio across every data set except
for the 5IndP portfolio. It confirms our interpretation of this calibration technique pointed
out in Section 3.
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From Panel B of Table 8, we observe that the bootstrap procedure to calibrate shrinkage
portfolios mv-ew and min-ew offers the lowest turnover in large data sets. It is mainly
because the non-parametric calibration shrinks these portfolios to the equally weighted
portfolio, which is the portfolio that reaches the lowest turnover among all the considered
portfolios. In Panel B, the conclusions about the calibration methods in the parametric case
hold for the bootstrap calibration method as well. Again, we observe that the mv-ew and
min-ew shrinkage portfolios attain better results with bootstrap calibration than parametric
calibration for medium and large data sets.

Table 9 reports the standard deviation of the benchmark portfolios and the portfolios es-
timated with shrinkage moments. Panel A shows the standard deviation of the benchmark
portfolios and Panel B shows the standard deviation of portfolios composed by shrinkage
estimators calibrated with the new proposed methods. We observe that among the portfo-
lios that consider the vector of means, the portfolio formed with the estimator proposed
in Section 2.1 (f-mv) offers smaller standard deviation across every data set except for the
SP100 where the bayes-stein mean-variance portfolio (bs) attains lower standard deviation.
On the other hand, we observe that the minimum-variance portfolio formed with the shrink-
age estimator for the covariance matrix that accounts for the condition number (c-lw) gives
the smallest standard deviation across every data set.

Table 10 reports the standard deviation of the shrinkage portfolios. Panel A shows the
standard deviation of the shrinkage portfolios calibrated via parametric assumptions. Panel
B reports the standard deviation of the shrinkage portfolios calibrated via bootstrap. We
observe that for the mv-min and mv-ew shrinkage portfolios, the expected variance mini-
mization offers the smallest standard deviation across every data set in Panel A. Moreover,
we also observe that for the min-ew shrinkage portfolio, the expected utility maximization
calibration technique and the expected variance minimization technique gives the same re-
sults across every data set. Furthermore, we observe that the min-ew shrinkage portfolio
calibrated via mean-squared loss minimization attains the lowest standard deviation for
medium and large data sets.

In panel B, we observe that the calibration of mv-min and mv-ew shrinkage portfolios
via bootstrap gives very similar results among the mean-squared loss minimization, the
expected utility maximization and the expected variance minimization methods.

Throughout this section, we have pointed out several key aspects. We observed the
benefits of controlling for the condition number on shrinking the covariance matrix. This
matrix property makes the resulting portfolio weights more stable. As a result, we obtain
larger Sharpe ratios with smaller transaction costs for medium and large data sets. We have
also observed that for shrinkage portfolios considering the vector of means, the expected
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portfolio variance minimization criteria is the most robust criteria. It gives better Sharpe
ratios and turnover in general. We have also observed that the mean-squared loss criteria is
very convenient for shrinkage portfolios that do not consider the vector of means.

5 Conclusions

Shrinkage estimators is a powerful tool in statistics which provide the researcher an alter-
native way of making inference less contaminated by estimation error. Apart from many
other sources of risk, estimation error is one of the main problems within portfolio opti-
mization. In this paper, we provide an extensive study of shrinkage techniques applied to
portfolio optimization. We first study and extend the shrinkage methods to estimate the
moments of a multivariate normal distribution, where we came up with a new class of
shrinkage estimator for the vector of means. We also came up with an alternative way of
calculating the shrinkage intensity of the shrinkage covariance matrix that accounts for its
condition number, which gives very good results in terms of Sharpe ratio for medium and
large data sets. We have also studied four different calibration criteria to shrink portfolio
weights. Working with real data, the expected variance minimization criteria to calibrate
shrinkage portfolios is the most robust method across every considered data set. Finally,
we have shown that the smoothed bootstrap is a practical and simple procedure to calibrate
shrinkage portfolios. Moreover, this non-parametric calibration procedure works very well
in medium and large data sets.
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A Proof of propositions

In this part, we proof all the propositions. Before going throughout all the propositions, we
state two lemmas that will be used along the proofs:

Lemma A.1. Let us x be a random vector in RN with mean µ and covariance matrix Σ,
and being A a definite positive matrix in RN×N , the expected value of the quadratic form
x′Ax is:

E(x′Ax) = tr (AΣ) + µ′Aµ. (62)

Proof. Trivial.

Lemma A.2. Given a sample R ∈ RT×N of independent and normally distributed obser-

vations, this is Rt ∼ N (µ,Σ), the unbiased sample covariance matrix Σ̂ =
∑T

t=1(Rt−R)
2

T−1
,

where R =
∑T

t=1Rt

T
, has a Wishart distribution Σ̂ ∼ W

(
Σ
T−1

, T − 1
)
. On the other hand,

the unbiased estimator of the inverse covariance matrix Σ̂−1
u = T−N−2

T−1
Σ̂−1 has an inverse-

Wishart distribution Σ̂−1
u ∼ W−1 ((T −N − 2)Σ−1, T − 1). Then, the expected values of

Σ̂Σ̂, Σ̂−1Σ̂−1 and Σ̂−1ΣΣ̂−1 are:

E
(

Σ̂Σ̂
)

=
T

T − 1
Σ2 +

1
T − 1

tr (Σ) Σ. (63)

E
(

Σ̂−1Σ̂−1
)

=
(T −N − 2)

(T −N − 1)(T −N − 4)
(
tr
(
Σ−1

)
Σ−1 + (T −N − 2)Σ−2

)
, (64)

E
(

Σ̂−1ΣΣ̂−1
)

=
(T −N − 2)(T − 2)

(T −N − 1)(T −N − 4)
Σ−1. (65)

Proof. The proof forE
(

Σ̂Σ̂
)

can be in Haff (1979), Theorem 3.1. The proof forE
(

Σ̂−1Σ̂−1
)

and E
(

Σ̂−1ΣΣ̂−1
)

are found in Haff (1979), Theorem 3.2.

A.1 Proof of Proposition 2.1

In this part, we explain the proof Proposition 2.1. To do that, we first remind which is the
objective function:

min
α,ν

E
(
‖(1− α)µ̂+ ανι− µ‖2

2

)
. (66)

With some algebra, the above expression can be expressed as follows:

min
α,ν

(1− α)2E
(
‖µ̂− µ‖2

2

)
+ α2 ‖νι− µ‖2

2 . (67)
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We observe that the optimal ν does not depend of α, and therefore we can obtain the
optimal value ν∗µ as the value that minimizes ‖νι− µ‖2

2, which is ν∗µ = µ. Once we have
the optimal value of ν, we can obtain the optimal value of α by developing the first order
conditions (FOC) of expression (67). It means that taking derivatives in (67) with respect
to α and working out some elements, the optimal α will be:

α∗µ =
E
(
‖µ̂− µ‖2

2

)
E
(
‖µ̂− µ‖2

2

)
+ ‖νµι− µ‖2

2

=
E (µ̂′µ̂)− µ′µ

E (µ̂′µ̂)− µ′µ+ ‖νµι− µ‖2
2

. (68)

Since µ̂ ∼ N
(
µ, Σ

T

)
and according with Lemma A.1, the above expression is:

α∗µ =
(1/T )σ2

(1/T )σ2 + µ2 − µ2
, (69)

and this completes the proof.

A.2 Proof of Proposition 2.2

In this part we explain the proof of Proposition 2.2. Like in the proof of Proposition 2.1,
we develop the objective function in problem (9)-(10). The resulting optimization problem
is the following:

min
α,ν

(1− α)2E

(∥∥∥Σ̂− Σ
∥∥∥2

F

)
+ α2 ‖νI − Σ‖2

F . (70)

From the above expression, we observe that the optimal scale factor ν does not depend on
α, thus applying the FOC’s to ‖νI − Σ‖2

F we obtain the optimal value of ν, which is:

ν∗Σ = σ2. (71)

On the other hand, applying the FOC’s in problem (70) we obtain the optimal value of α:

α∗Σ =

E

(∥∥∥Σ̂− Σ
∥∥∥2

F

)
E

(∥∥∥Σ̂− Σ
∥∥∥2

F

)
+ ‖ν∗ΣI − Σ‖2

F

. (72)
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Since E
(∥∥∥Σ̂− Σ

∥∥∥2

F

)
= tr

(
E
(

Σ̂Σ̂
))
− tr (ΣΣ) and according with Lemma A.2, the

optimal α takes the following form:

α∗Σ =

N
T−1

(
tr(Σ2)
N

+N
(
σ2
)2
)

N
T−1

(
T
N

tr (Σ2)− (T −N − 1)
(
σ2
)2
) , (73)

and this completes the proof.

A.3 Proof of Proposition 2.3

The proof of Proposition 2.3 is exactly as the proof made for Proposition 2.2. We first
develop the objective function of problem (14)-(15) for tractability. Then with we develop
the FOC’s to obtain the optimal values of the scale factor and the shrinkage intensity. To
obtain the optimal value of the shrinkage intensity we make use of Lemma A.2 in a similar
manner as it was done in the proof of Proposition 2.2.

A.4 Proof of Proposition 3.1

To make the proof of this proposition we simply develop the FOC’s of the calibration
functions defined by the shrinkage portfolio formed by the mean-variance and minimum-
variance portfolios. In this portfolio, the scales parameter comes from the minimization of
ν = argmin

{
E ‖νŵmin − ŵmv‖2

2

}
with respect to ν. Developing the FOC’s, we obtain that

the optimal scale factor is νmv−min =
w′minwmv

E(ŵ′minŵmin)
. First, the mean-squared loss function

of the considered shrinkage portfolio is:

E
(
‖ŵmv−min − wmv‖22

)
= E

(
‖(1− α) (ŵmv − wmv) + α (νŵmin − wmv)‖22

)
= (74)

= (1− α)2E
(
‖ŵmv − wmv‖22

)
+ α2E

(
‖νŵmin − wmv‖22

)
+ (75)

+ 2(1− α)αE
(
(ŵmv − wmv)′ (νŵmin − wmv)

)
. (76)

The third element in the right hand side can be simplified to:

E
(
(ŵmv − wmv)′ (νŵmin − wmv)

)
= ν (E (ŵ′mvŵmin)− w′mvwmin) . (77)
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Therefore, developing the FOC’s of E
(
‖ŵmv−min − wmv‖2

2

)
, we obtain that the optimal α

is:

αmsl =
E
(
‖ŵmv − wmv‖2

2

)
− τ

E
(
‖ŵmv − wmv‖2

2

)
+ E

(
‖νŵmin − wmv‖2

2

)
− 2τ

, (78)

where τ = ν (E (ŵ′minŵmv)− w′minwmv). In this expression, E (ŵ′minŵmv) =

= 1
γ

(T−N−2)
(T−N−1)(T−N−4)

(tr (Σ−1) ι′Σ−1µ+ (T −N − 2)ι′Σ−2µ). which can be obtained from
Lemma A.2.

Second, the expected utility function of the shrinkage portfolio is:

E (U (ŵmv)) = (1− α)w′mvµ+ ανw′minµ− (79)

− γ

2
E
(
(1− α)2ŵ′mvΣŵmv + α2ν2ŵ′minΣŵmin + 2(1− α)ανŵ′mvΣŵmin

)
. (80)

Deriving the FOC’s of the above expression, we obtain the optimal α:

αut =
E (ŵ′mvΣŵmv)− νE (ŵ′mvΣŵmin)

E (ŵ′mvΣŵmv) + ν2E (ŵ′minΣŵmin)− 2νE (ŵ′mvΣŵmin)
− (81)

− w′mvµ− νw′minµ
E (ŵ′mvΣŵmv) + ν2E (ŵ′minΣŵmin)− 2νE (ŵ′mvΣŵmin)

. (82)

The optimal expression can be shorten by using the abbreviations used in Proposition 3.4:

αut =
E (σ̂2

mv)− νE (ρ̂mv,min)

E (σ̂2
mv) + ν2E (σ̂2

min)− 2νE (ρ̂mv,min)
− (83)

− µmv − νµmin
E (σ̂2

mv) + ν2E (σ̂2
min)− 2νE (ρ̂mv,min)

1

γ
. (84)

The proof of the variance is straightforward. From the utility framework, we assume
that the investor has an infinite risk aversion level (γ ≈ ∞), which means that this investor
concerns only about the variance and is almost indifferent with respect to the profitability of
his portfolio. In that case, the ratio µmv−νµmin

E(σ̂2
mv)+ν2E(σ̂2

min)−2νE(ρ̂mv,min)

1
γ

vanishes and therefore,

the optimal α is:

αvar =
E (σ̂2

mv)− νE (ρ̂mv,min)

E (σ̂2
mv) + ν2E (σ̂2

min)− 2νE (ρ̂mv,min)
. (85)

A.5 Proof of Proposition 3.2

We should develop the FOC’s of the calibration functions defined by the shrinkage port-
folio formed by the mean-variance and equally weighted portfolios. In this portfolio, the
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scale parameter comes from the minimization problem ν = argmin
{

E
∥∥ν ι

N
− ŵmv

∥∥2

2

}
.

Developing the FOC’s, we obtain that the optimal scale factor is νmv−ew = w′ewwmv

w′ewwew
. First,

the mean-squared loss function of the considered shrinkage portfolio is:

E
(
‖ŵmv−ew − wmv‖2

2

)
= E

(
‖(1− α) (ŵmv − wmv) + α (νwew − wmv)‖2

2

)
=

(86)

= (1− α)2E
(
‖ŵmv − wmv‖2

2

)
+ α2 ‖νwew − wmv‖2

2 , (87)

where wew = ι
N

. Now, deriving the FOC’s of the above expression, we obtain the optimal
α:

αmsl =
E
(
‖ŵmv − wmv‖2

2

)
E
(
‖ŵmv − wmv‖2

2

)
+ ‖νwew − wmv‖2

2

. (88)

Second, the expected utility function of the shrinkage portfolio is:

E (U (ŵmv)) = (1− α)w′mvµ+ ανw′ewµ− (89)

− γ

2
E
(
(1− α)2ŵ′mvΣŵmv + α2ν2w′ewΣwew + 2(1− α)ανŵ′mvΣwew

)
. (90)

Deriving the FOC’s of the above expression, we obtain the optimal α:

αut =
E (ŵ′mvΣŵmv)− νw′mvΣwew

E (ŵ′mvΣŵmv) + ν2w′ewΣwew − 2νw′mvΣwew
− (91)

− w′mvµ− νw′ewµ
E (ŵ′mvΣŵmv) + ν2w′ewΣwew − 2νw′mvΣwew

. (92)

The optimal expression can be shorten by using the abbreviations used in Proposition 3.4:

αut =
E (σ̂2

mv)− νρmv,ew
E (σ̂2

mv) + ν2σ2
ew − 2νρmv,ew

− µmv − νµew
E (σ̂2

mv) + ν2σ2
ew − 2νρmv,ew

1

γ
. (93)

To make the proof of the variance we proceed as in the proof of Proposition 3.1. From the
utility framework, we assume that the investor has an infinite risk aversion level (γ ≈ ∞),
which means that this investor concerns only about the variance and is almost indifferent
with respect to the profitability of his portfolio. In that case, the ratio µmv−νµew

E(σ̂2
mv)+ν2σ2

ew−2νρmv,ew

1
γ

vanishes and therefore, the optimal α is:

αvar =
E (σ̂2

mv)− νρmv,ew
E (σ̂2

mv) + ν2σ2
ew − 2νρmv,ew

. (94)
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A.6 Proof of Proposition 3.3

We should develop the FOC’s of the calibration functions defined by the shrinkage port-
folio formed by the mean-variance and equally weighted portfolios. In this portfolio, the
scale parameter comes from the minimization problem ν = argmin

{
E
∥∥ν ι

N
− ŵmin

∥∥2

2

}
.

Developing the FOC’s, we obtain that the optimal scale factor is νmin−ew = w′ewwmin

w′ewwew
. First,

the mean-squared loss function of the considered shrinkage portfolio is:

E
(
‖ŵmin−ew − wmin‖22

)
= E

(
‖(1− α) (ŵmin − wmin) + α (νwew − wmin)‖22

)
= (95)

= (1− α)2E
(
‖ŵmin − wmin‖22

)
+ α2 ‖νwew − wmin‖22 , (96)

where wew = ι
N

. Now, deriving the FOC’s of the above expression, we obtain the optimal
α:

αmsl =
E
(
‖ŵmin − wmin‖2

2

)
E
(
‖ŵmin − wmin‖2

2

)
+ ‖νwew − wmin‖2

2

(97)

Second, the expected utility function of the shrinkage portfolio is:

E (U (ŵmin)) = (1− α)w′minµ+ ανw′ewµ− (98)

− γ

2
E
(
(1− α)2ŵ′minΣŵmin + α2ν2w′ewΣwew + 2(1− α)ανŵ′minΣwew

)
. (99)

Deriving the FOC’s of the above expression, we obtain the optimal α:

αut =
E (ŵ′minΣŵmin)− νw′minΣwew

E (ŵ′minΣŵmin) + ν2w′ewΣwew − 2νw′minΣwew
− (100)

− w′minµ− νw′minµ
E (ŵ′minΣŵmin) + ν2E (ŵ′minΣŵmin)− 2νE (ŵ′minΣŵew)

. (101)

The optimal expression can be shorten by using the abbreviations used in Proposition 3.4:

αut =
E (σ̂2

min)− νρmin,ew
E (σ̂2

min) + ν2σ2
ew − 2νρmin,ew

− µmin − νµew
E (σ̂2

min) + ν2σ2
ew − 2νρmin,ew

1

γ
(102)

To make the proof of the variance we proceed as in the proof of Proposition 3.2. From the
utility framework, we assume that the investor has an infinite risk aversion level (γ ≈ ∞),
which means that this investor concerns only about the variance and is almost indifferent
with respect to the profitability of his portfolio. In that case, the ratio µmin−νµew

E(σ̂2
min)+ν2σ2

ew−2νρmin,ew

1
γ
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vanishes and therefore, the optimal α is:

αvar =
E (σ̂2

min)− νρmin,ew
E (σ̂2

min) + ν2σ2
ew − 2νρmin,ew

(103)

A.7 Proof of proposition 3.4

Proof. Here, we illustrate how to the prove of Proposition 3.4. We develop each element
mentioned in the Lemma. First, we show how to obtain E

(
‖ŵmv − wmv‖2

2

)
:

E
(
‖ŵmv − wmv‖2

2

)
=

1

γ2

(
E
(
µ̂Σ̂−1Σ̂−1µ̂

)
− µΣ−1Σ−1µ

)
. (104)

Due to the fact that returns are assumed to be independent and normally distributed, µ̂ and
Σ̂ are independent. Therefore, we can make use of Lemma A.1 and Lemma A.2 to compute
the expected value of E

(
µ̂Σ̂−1Σ̂−1µ̂

)
. Thus, using the independence between µ̂ and Σ̂,

the expected value of Σ̂−1Σ̂−1 given in Lemma A.2 and the expected value of quadratic
forms given in Lemma A.1, we have:

E
(
‖ŵmv − wmv‖22

)
=

1
γ2

[
tr
(
Σ−1

)
(T −N − 2)(T − 2)

(T −N − 1)(T −N − 4)T
+ (105)

+
(T −N − 2)

(T −N − 1)(T −N − 4)
[
tr
(
Σ−1

)
µ′Σ−1µ+ (T −N − 2)µ′Σ−2µ

]]
− (106)

− 1
γ2
µ′Σ−2µ. (107)

The following element is E
(
‖νŵmin − wmv‖2

2

)
:

E
(
‖νŵmin − wmv‖2

2

)
= ν2E

(
ι′Σ̂−1Σ̂−1ι

)
+

1

γ2
µ′Σ−2µ− 2

ν

γ
ι′Σ−2µ. (108)

Using the value of E
(

Σ̂−1Σ̂−1
)

given in Lemma A.2, we have that:

E
(
‖νŵmin − wmv‖2

2

)
= ν2 (T −N − 2)

(T −N − 1)(T −N − 4)

[
tr
(
Σ−1

)
ι′Σ−1ι+ (109)

+(T −N − 2)ι′Σ−2ι
]

+
1

γ2
µ′Σ−2µ− 2

ν

γ
ι′Σ−2µ. (110)

Now, we prove how to obtain the closed form expression of E
(
‖ŵmin − wmin‖2

2

)
. First,

we expand the expression as usual:

E
(
‖ŵmin − wmv‖2

2

)
= E

(
ι′Σ̂−1Σ̂−1ι

)
− ι′Σ−2ι. (111)
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Again, applying the value of E
(

Σ̂−1Σ̂−1
)

given in Lemma A.2, we obtain the following:

E
(
‖ŵmin − wmv‖2

2

)
=

(T −N − 2)

(T −N − 1)(T −N − 4)

[
tr
(
Σ−1

)
ι′Σ−1ι+ (112)

+(T −N − 2)ι′Σ−2ι
]
− ι′Σ−2ι. (113)

The remaining three elements are very straightforward to prove. Understanding how to ap-
ply LemmaA.1 and Lemma A.2, expressionsE (ŵ′mvΣŵmv),E (ŵ′minΣŵmin) andE (ŵ′mvΣŵmin)

are simple to obtain. For instance,

E (ŵ′mvΣŵmv) =
1

γ2
E
(
µ̂Σ̂−1ΣΣ̂−1µ̂

)
. (114)

Since µ̂ and Σ̂ are independent, using Lemma A.1 and the expression for E
(

Σ̂−1ΣΣ̂−1
)

given in Lemma A.2, we have:

E (ŵ′mvΣŵmv) =
1

γ2

(
(T −N − 2)(T − 2)

(T −N − 1)(T −N − 4)

(
N

T
+ µ′Σ−1µ

))
. (115)

The proof of the remaining two elements can be skipped having understood the steps of the
previous proofs.
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B Tables

Table 1: List of Data Sets:
This table list the various data sets analyzed, the abbreviation used to identify each data set, the number
of assets N contained in each data set, the time period spanned by the data set, and the source of the data.
The data set of CRSP returns (SP100) is constructed in a way similar to Jagannathan and Ma (2003), with
monthly rebalancing: in January of each year we randomly select 100 assets as our asset universe for the next
12 months.
a
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

b CRSP, The Center for Research in Security Prices

# Data Set Abreviation N Time Period Source

1 5 Industry Portfolios representing the US
stock market

5Ind 5 01/1972-06/2009 K. Frencha

2 10 Industry Portfolios representing the US
stock market

10Ind 10 01/1972-06/2009 K. French

3 38 Industry Portfolios representing the U.S
stock market

38IndP 38 01/1972-06/2009 K. French

4 48 Industry Portfolios representing the
U.S. stock market

48Ind 48 01/1972-06/2009 K. French

5 100 Fama and French Portfolios of firms
sorted by size and book to market

100FF 96 01/1972-06/2009 K. French

6 100 randomized stocks from S&P 500 SP100 100 01/1988-12/2008 CRSPb
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Table 2: List of portfolio models:
This table lists the various portfolio strategies considered in the paper. Panel A lists the existing portfolios
from the literature. Panel B list portfolios where the moments are shrunk with the methods proposed in
section 2. Panel C lists the shrinkage portfolio defined in section 3. The last columns gives the abbreviation
that we use to refer to the strategy.

# Policy Abbreviation

Panel A: Benchmark portfolios
1 Classical mean-variance portfolio mv
2 Bayes-Stein mean-variance portfolio bs
3 Kan-Zhou’s (2007) three-fund portfolio kz
4 Mixture of mean-variance and equally weighted (Tu and Zhou (2011)) tz
5 Mixture of minimum-variance and equally weighted DeMiguel et.al. (2009)) dm
6 Minimum-Variance portfolio min
7 Minimum-variance portfolio with Ledoit and Wolf (2004) shrinkage covariance ma-

trix
lw

8 Equally weighted portfolio ew or 1/N
Panel B: Portfolios estimated with new calibration procedures to shrink moments

Shrinkage minimum-variance portfolio
9 Finite optimal shrinkage intensity of Ledoit and Wolf’s shrinkage covariance matrix f-lw
10 Finite optimal shrinkage intensity of the inverse covariance matrix based on Ledoit

and Wolf (2004) framework
i-lw

11 Finite optimal shrinkage intensity of Ledoit and Wolf’s shrinkage covariance matrix
considering its condition number

c-lw

Shrinkage mean-variance portfolio
12 Mean-variance portfolio formed with the finite optimal shrinkage intensity of the vec-

tor of means
f-mv

Panel C: Shrinkage portfolios
13 Mixture of mean-variance and scaled minimum-variance portfolios mv-min
14 Mixture of mean-variance and scaled equally weighted portfolios mv-ew
15 Mixture of minimum-variance and scaled equally weighted portfolios min-ew
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Table 3: Theoretical Sharpe ratios:
This table shows an experiment where we have computed the theoretical expected values for the Sharpe Ratio
of different portfolios. We consider four data sets of N=5, 10, 38, 48 and 96 assets. Moreover, we consider a
window’s length of T=150, which is a common estimation window’s length when we deal with monthly data.

Policy 5IndP 10IndP 38IndP 48IndP 100FF

Benchmark Portfolios

mv 0.193 0.212 0.185 0.198 0.278
min 0.237 0.263 0.240 0.210 0.242
ew 0.202 0.212 0.188 0.181 0.186

Shrinkage Portfolios MSL Minimization

mv-min 0.237 0.266 0.253 0.247 0.288
mv-ew 0.217 0.240 0.216 0.228 0.261
min-ew 0.236 0.260 0.243 0.224 0.224

Shrinkage Portfolios Utility Maximization

mv-min 0.236 0.266 0.252 0.247 0.288
mv-ew 0.218 0.243 0.231 0.239 0.297
min-ew 0.235 0.262 0.247 0.226 0.266

Shrinkage Portfolios Variance Minimization

mv-min 0.225 0.266 0.240 0.210 0.242
mv-ew 0.216 0.239 0.223 0.219 0.256
min-ew 0.235 0.262 0.247 0.226 0.266

Shrinkage Portfolios Sharpe Ratio Maximization

mv-min 0.237 0.266 0.254 0.247 0.314
mv-ew 0.218 0.243 0.233 0.244 0.320
min-ew 0.238 0.263 0.247 0.228 0.268
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Table 4: Theoretical RIAL:
This table shows an experiment where we have computed the theoretical expected values for the RIAL’s of
different portfolios. We consider four data sets of N=5, 10, 38, 48 and 96 assets. Moreover, we consider a
window’s length of T=150, which is a common estimation window’s length when we deal with monthly data.

Policy 5IndP 10IndP 38IndP 48IndP 100FF

Shrinkage Portfolios MSL Minimization

mv-min 0.886 0.764 0.839 0.809 0.787
mv-ew 0.514 0.682 0.843 0.824 0.869
min-ew 0.106 0.251 0.398 0.469 0.780

Shrinkage Portfolios Utility Maximization

mv-min 0.865 0.763 0.838 0.809 0.787
mv-ew 0.496 0.669 0.817 0.816 0.860
min-ew 0.074 0.208 0.282 0.348 0.632

Shrinkage Portfolios Variance Minimization

mv-min 0.634 0.763 0.820 0.779 0.774
mv-ew 0.435 0.681 0.840 0.821 0.869
min-ew 0.074 0.208 0.282 0.348 0.632

Shrinkage Portfolios Sharpe Ratio Maximization

mv-min 0.885 0.763 0.838 0.809 0.738
mv-ew 0.503 0.657 0.785 0.783 0.781
min-ew -0.536 0.049 0.318 0.424 0.548
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Table 5: Annualized Sharpe ratio with transaction costs (50 basis points) of benchmark
portfolios and portfolios estimated with shrinkage moments:
This table reports the out-of-sample annualized Sharpe ratio of benchmark portfolios and portfolios calculated
using shrinkage estimator calibrated with the new techniques proposed in this paper. Moreover, we adjust the
Sharpe ratio with transaction costs, assuming 50 basis points.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100

Panel A: Benchmark Portfolios

Portfolios that consider the vector of means

mv 0.593 0.599 0.004 -0.003 -0.463 -0.102
bs 0.735 0.824 0.294 0.213 -0.205 0.275
Portfolios that do not consider the vector of means

min 0.841 0.945 0.528 0.378 -0.014 0.399
lw 0.863 0.955 0.731 0.651 1.003 0.687
Portfolios that do not make optimization

1/N 0.761 0.780 0.695 0.688 0.712 0.328
Existing mixture of portfolios

kz 0.714 0.807 0.284 0.208 -0.208 0.273
tz 0.673 0.704 0.301 0.360 0.083 0.195
dm 0.813 0.941 0.603 0.508 0.104 0.472

Panel B: New portfolios with shrinkage estimators

Portfolios that consider the vector of means

f-mv 0.809 0.880 0.402 0.269 0.017 0.257
Portfolios that do not consider the vector of means

f-lw 0.845 0.945 0.643 0.553 0.762 0.641
i-lw 0.877 0.907 0.716 0.693 0.713 0.337
c-lw 0.852 0.947 0.805 0.766 1.152 0.700
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Table 6: Annualized Sharpe ratio with transaction costs (50 basis points) of shrinkage
portfolios:
This table reports the out-of-sample annualized Sharpe ratio of shrinkage portfolios. Moreover, we adjust the
Sharpe ratio with transaction costs, assuming 50 basis points.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100

Panel A: Shrinkage portfolio with parametric calibration

Shrinkage portfolios: MSL Minimization

mv-min 0.702 0.812 0.313 0.274 -0.198 0.307
mv-ew 0.647 0.760 0.483 0.437 0.028 0.188
min-ew 0.844 0.954 0.658 0.587 0.435 0.509
Shrinkage portfolios: Utility Maximization

mv-min 0.708 0.790 0.303 0.305 -0.025 0.388
mv-ew 0.691 0.738 0.386 0.436 0.205 0.234
min-ew 0.847 0.949 0.593 0.472 0.165 0.483
Shrinkage portfolios: Variance Minimization

mv-min 0.820 0.925 0.527 0.374 -0.054 0.414
mv-ew 0.773 0.796 0.594 0.670 0.425 0.277
min-ew 0.847 0.949 0.593 0.472 0.165 0.483
Shrinkage portfolios: Sharpe Ratio Maximization

mv-min 0.714 0.807 0.284 0.208 -0.208 0.273
mv-ew 0.685 0.715 0.249 0.254 -0.188 0.111
min-ew 0.817 0.955 0.606 0.508 0.104 0.472

Panel B: Shrinkage portfolios with bootstrap calibration

Shrinkage portfolios: MSL Minimization

mv-min 0.708 0.795 0.277 -0.356 -0.612 0.398
mv-ew 0.657 0.769 0.575 0.596 0.713 0.329
min-ew 0.853 0.952 0.711 0.675 0.712 0.330
Shrinkage portfolios: Utility Maximization

mv-min 0.714 0.771 0.264 0.158 -0.471 0.399
mv-ew 0.701 0.750 0.514 0.615 0.712 0.328
min-ew 0.844 0.945 0.688 0.662 0.712 0.328
Shrinkage portfolios: Variance Minimization

mv-min 0.821 0.931 0.528 0.374 -0.093 0.399
mv-ew 0.757 0.798 0.641 0.685 0.712 0.328
min-ew 0.855 0.948 0.684 0.660 0.712 0.328
Shrinkage portfolios: Sharpe Ratio Maximization

mv-min 0.702 0.793 0.261 0.050 -0.471 0.153
mv-ew 0.689 0.714 0.308 0.401 0.714 0.331
min-ew 0.824 0.955 0.627 0.590 0.713 0.335
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Table 7: Turnover of benchmark portfolios and portfolios estimated with shrinkage mo-
ments:
This table reports the out-of-sample Turnover of benchmark portfolios and portfolios calculated using shrink-
age estimator calibrated with the new techniques proposed in this paper.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100

Panel A: Benchmark Portfolios

Portfolios that consider the vector of means

mv 0.287 0.369 1.336 2.311 8.791 2.075
bs 0.150 0.197 0.693 1.111 5.257 1.262
Portfolios that do not consider the vector of means

min 0.081 0.124 0.395 0.567 2.775 1.156
lw 0.056 0.089 0.240 0.321 0.793 0.279
Portfolios that do not make optimization

1/N 0.018 0.025 0.032 0.033 0.023 0.054
Existing mixture of portfolios

kz 0.167 0.208 0.709 1.130 5.291 1.265
tz 0.175 0.242 0.717 1.009 3.626 0.708
dm 0.124 0.120 0.310 0.424 2.334 0.847

Panel B: New portfolios with shrinkage estimators

Portfolios that consider the vector of means

f-mv 0.096 0.149 0.491 0.807 3.686 1.271
Portfolios that do not consider the vector of means

f-lw 0.065 0.102 0.297 0.402 1.224 0.350
i-lw 0.044 0.051 0.042 0.039 0.024 0.058
c-lw 0.051 0.080 0.186 0.237 0.453 0.216
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Table 8: Turnover of shrinkage portfolios:
This table reports the out-of-sample Turnover of shrinkage portfolios.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100

Panel A: New shrinkage portfolios with parametric calibration

Shrinkage portfolios: MSL Minimization

mv-min 0.173 0.228 0.716 1.004 4.772 1.260
mv-ew 0.177 0.173 0.516 0.726 3.416 0.621
min-ew 0.074 0.103 0.279 0.350 1.389 0.580
Shrinkage portfolios: Utility Maximization

mv-min 0.197 0.241 0.694 0.945 3.454 1.177
mv-ew 0.155 0.200 0.592 0.821 2.944 0.636
min-ew 0.072 0.112 0.340 0.474 2.165 0.822
Shrinkage portfolios: Variance Minimization

mv-min 0.119 0.132 0.398 0.571 2.965 1.178
mv-ew 0.076 0.115 0.279 0.356 1.970 0.517
min-ew 0.072 0.112 0.340 0.474 2.165 0.822
Shrinkage portfolios: Sharpe Ratio Maximization

mv-min 0.167 0.208 0.709 1.130 5.291 1.265
mv-ew 0.163 0.222 0.786 1.213 5.495 0.991
min-ew 0.109 0.113 0.308 0.424 2.334 0.847

Panel B: New shrinkage portfolios with bootstrap calibration

Shrinkage portfolios: MSL Minimization

mv-min 0.181 0.250 0.786 4.119 7.627 1.157
mv-ew 0.171 0.159 0.371 0.399 0.023 0.054
min-ew 0.071 0.093 0.192 0.181 0.023 0.054
Shrinkage portfolios: Utility Maximization

mv-min 0.211 0.263 0.776 10.763 4.236 1.156
mv-ew 0.143 0.182 0.411 0.408 0.023 0.054
min-ew 0.093 0.097 0.228 0.222 0.023 0.054
Shrinkage portfolios: Variance Minimization

mv-min 0.117 0.135 0.395 0.589 3.003 1.156
mv-ew 0.098 0.107 0.181 0.146 0.023 0.054
min-ew 0.090 0.097 0.230 0.221 0.023 0.054
Shrinkage portfolios: Sharpe Ratio Maximization

mv-min 0.178 0.224 0.758 1.510 7.953 1.437
mv-ew 0.159 0.222 0.694 0.868 0.025 0.055
min-ew 0.102 0.111 0.275 0.317 0.024 0.056
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Table 9: Standard deviation of benchmark portfolios and portfolios estimated with shrink-
age moments:
This table reports the out-of-sample standard deviation of benchmark portfolios and portfolios calculated
using shrinkage estimator calibrated with the new techniques proposed in this paper.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100

Panel A: Benchmark Portfolios

Portfolios that consider the vector of means

mv 0.161 0.157 0.244 0.336 0.417 0.267
bs 0.142 0.133 0.159 0.201 0.276 0.176
Portfolios that do not consider the vector of means

min 0.138 0.126 0.131 0.137 0.179 0.171
lw 0.136 0.124 0.120 0.124 0.125 0.122
Portfolios that do not make optimization

1/N 0.154 0.148 0.166 0.165 0.174 0.169
Existing mixture of portfolios

kz 0.144 0.135 0.161 0.203 0.277 0.176
tz 0.150 0.143 0.174 0.202 0.222 0.149
dm 0.136 0.125 0.126 0.132 0.166 0.142

Panel B: New portfolios with shrinkage estimators

Portfolios that consider the vector of means

f-mv 0.138 0.128 0.139 0.169 0.205 0.178
Portfolios that do not consider the vector of means

f-lw 0.136 0.125 0.124 0.128 0.137 0.125
i-lw 0.138 0.132 0.159 0.161 0.174 0.167
c-lw 0.136 0.124 0.120 0.123 0.122 0.121
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Table 10: Standard deviation of shrinkage portfolios:
This table reports the out-of-sample standard deviation of shrinkage portfolios.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100

Panel A: New shrinkage portfolios with parametric calibration

Shrinkage portfolios: MSL Minimization

mv-min 0.145 0.137 0.159 0.183 0.251 0.173
mv-ew 0.152 0.140 0.157 0.177 0.216 0.149
min-ew 0.138 0.125 0.126 0.130 0.146 0.134
Shrinkage portfolios: Utility Maximization

mv-min 0.145 0.137 0.158 0.177 0.195 0.170
mv-ew 0.149 0.140 0.165 0.186 0.198 0.147
min-ew 0.137 0.125 0.127 0.132 0.160 0.142
Shrinkage portfolios: Variance Minimization

mv-min 0.141 0.127 0.131 0.137 0.184 0.172
mv-ew 0.146 0.138 0.155 0.162 0.174 0.145
min-ew 0.137 0.125 0.127 0.132 0.160 0.142
Shrinkage portfolios: Sharpe Ratio Maximization

mv-min 0.144 0.135 0.161 0.203 0.277 0.176
mv-ew 0.150 0.142 0.181 0.228 0.297 0.162
min-ew 0.136 0.124 0.126 0.132 0.166 0.142

Panel B: New shrinkage portfolios with non-parametric calibration

Shrinkage portfolios: MSL Minimization

mv-min 0.144 0.137 0.160 0.335 0.264 0.171
mv-ew 0.151 0.140 0.153 0.160 0.174 0.168
min-ew 0.137 0.125 0.132 0.142 0.174 0.168
Shrinkage portfolios: Utility Maximization

mv-min 0.144 0.137 0.161 0.971 0.183 0.171
mv-ew 0.149 0.140 0.155 0.161 0.174 0.169
min-ew 0.138 0.125 0.129 0.140 0.174 0.169
Shrinkage portfolios: Variance Minimization

mv-min 0.140 0.127 0.131 0.138 0.181 0.171
mv-ew 0.148 0.140 0.159 0.162 0.174 0.169
min-ew 0.138 0.125 0.129 0.140 0.174 0.169
Shrinkage portfolios: Sharpe Ratio Maximization

mv-min 0.145 0.135 0.166 0.231 0.373 0.189
mv-ew 0.149 0.142 0.171 0.193 0.174 0.168
min-ew 0.137 0.124 0.127 0.135 0.174 0.167
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C Figures

(a) Shrinkage parameter evolution for µ (b) Shrinkage parameter evolution for Σ and Σ−1

Figure 1: This plot shows the evolution of the shrinkage parameter for µ, Σ and Σ−1. To calculate the
shrinkage intensities we use the sample moments of a data set formed by 48 industry portfolios (48IndP).
The left plot shows the evolution of the shrinkage intensities for the James-Stein shrinkage estimator (dashed
line) and our proposed shrinkage estimator for the mean (dot-dashed line). The right plot shows the evolution
of the shrinkage intensities for the asymptotic shrinkage estimator (solid line), the finite shrinkage estimator
(dashed line), the finite shrinkage estimator for the inverse covariance matrix (dot-dashed line) and the finite
shrinkage estimator for the covariance matrix accounting for the condition number (dotted line).
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(a) Mean-Squared Loss of µ̃ (b) Mean-Squared Loss of Σ̃ (c) Mean-Squared Loss of Σ̃−1

Figure 2: This plot shows the evolution of the mean-squared loss of the shrinkage estimator for µ, Σ and Σ−1. To compute the mean-squared loss, we use the sample
moments of a data set formed by 48 industry portfolios (48IndP). Figure 2a depicts the evolution of the mean-squared loss of the shrinkage estimators for the vector
of means of the James-Stein shrinkage estimator (dashed line) and our proposed shrinkage estimator for the mean (dot-dashed line). Figure 2b depicts the evolution of
the mean-squared loss of the shrinkage estimator for the covariance matrix of the asymptotic shrinkage intensity (dot-dashed line), the finite shrinkage intensity (dashed
line) and the finite shrinkage intensity accounting for the condition number (dotted line). Figure 2c depicts the evolution of the mean-squared loss of estimators of the
inverse covariance matrix. The dot-dashed line represents the evolution of the mean-squared loss of the shrinkage estimator for the inverse covariance matrix. The
dashed line represents the evolution of the mean-squared loss for the inverse of the shrinkage estimator of the covariance matrix with finite shrinkage intensity. The solid
line represents the evolution of the mean-squared loss for the inverse of the shrinkage estimator of the covariance matrix with asymptotic shrinkage intensity. The dotted
line represents the evolution of the mean-squared loss for the inverse of the shrinkage estimator of the covariance matrix with finite shrinkage intensity accounting for
the condition number.
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(a) Shrinkage parameter evolution for mv-min (b) Shrinkage parameter evolution for mv-ew (c) Shrinkage parameter evolution for min-ew

(d) Mean-Squared Loss of mv-min (e) Mean-Squared Loss of mv-ew (f) Mean-Squared Loss of min-ew

Figure 3: These plots show the evolution of the optimal shrinkage parameters and the Mean-Squared Loss (MSL) against sample’s length. To calculate the shrinkage
intensities and MSL’s, we use the sample moments of a data set formed by 48 industry portfolios (48IndP). In the first row, we have the plots of the shrinkage intensities
for the shrinkage portfolios considered in the study. In the second row, we have the plots of the MSL’s for the shrinkage portfolios considered in the study. In every
figure, the solid line depicts the value of interest when the portfolio is calibrated via mean-squared loss minimization, the dot-dashed line depicts the value of interest
when the portfolio model is calibrated via expected utility maximization, the dashed line depicts the value of interest when the portfolio model is calibrated via portfolio
variance minimization and the dotted line depicts the value of interest when the portfolio model is calibrated via Sharpe ratio maximization.
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(a) Sharpe Ratio of mv-min (b) Sharpe Ratio of mv-ew (c) Sharpe Ratio of min-ew

(d) RIAL of mv-min (e) RIAL of mv-ew (f) RIAL of min-ew

Figure 4: These plots show the evolution of the expected Sharpe Ratios (SR) and the relative improvement in average loss (RIAL) against sample’s length. To
calculate the SR’s and RIAL’s we use the sample moments of a data set formed by 48 industry portfolios (48IndP). In the first row, we have the plots of the SR’s for
the shrinkage portfolios considered in the study. In the second row, we have the plots of the RIAL’s for the shrinkage portfolios considered in the study. In every figure,
the solid line depicts the value of interest when the portfolio is calibrated via mean-squared loss minimization, the dot-dashed line depicts the value of interest when the
portfolio model is calibrated via expected utility maximization, the dashed line depicts the value of interest when the portfolio model is calibrated via portfolio variance
minimization and the dotted line depicts the value of interest when the portfolio model is calibrated via Sharpe ratio maximization.
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