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ABSTRACT: A place-labeled Petri net (pPN) controlled grammar is a context-free grammar equipped with a Petri net and7

a function which maps places of the net to the productions of the grammar. The language consists of all terminal strings that8

can be obtained by simultaneously applying of the rules of multisets which are the images of the sets of the input places of9

transitions in a successful occurrence sequence of the Petri net. In this paper, we study the generative power and structural10

properties of pPN controlled grammars. We show that pPN controlled grammars have the same generative power as matrix11

grammars. Moreover, we prove that for each pPN controlled grammar, we can construct an equivalent place-labeled ordinary12

net controlled grammar.13

KEYWORDS: Petri nets, context-free grammars, Petri net controlled grammars, computational power, structural properties14

INTRODUCTION

Petri nets1, “dynamic” bipartite directed graphs with two sets of nodes, called places and transitions, provide an15

elegant and powerful mathematical formalism for modeling concurrent systems and their behavior. Since Petri16

nets successfully describe and analyze the flow of information and the control of action in such systems, they can17

be very suitable tools for studying the properties of formal languages. If Petri nets are initially used as language18

generating/accepting tools2–8, in recent studies, they have been widely applied as regulation mechanisms for19

grammar systems9, automata10–15, and grammars16–32.20

A Petri net controlled grammar is, in general, a context-free grammar equipped with a (place/transition)21

Petri net and a function which maps transitions of the net to productions of the grammar. Then, the language22

consists of all terminal strings that can be obtained by applying of the sequence of productions which is the23

image of an occurrence sequence of the Petri net under the function. Several variants of Petri net controlled24

grammars have been introduced and investigated:25

Refs. 18, 19, 24 introduce k-Petri net controlled grammars and study their properties including generative26

power, closure properties, infinite hierarchies, etc.27

Refs. 20, 22 consider a generalization of regularly controlled grammars: instead of a finite automaton a Petri28

net is associated with a context-free grammar and it is required that the sequence of applied rules corresponds29

to an occurrence sequence of the Petri net, i.e., to sequences of transitions which can be fired in succession.30

Refs. 21, 23 investigate grammars controlled by the structural subclasses of Petri nets, namely state31

machines, marked graphs, causal nets, free-choice nets, asymmetric choice nets and ordinary nets. it was32

proven that the family of languages generated by (arbitrary) Petri net controlled grammars coincide with the33

family of languages generated by grammars controlled by free-choice nets.34

Refs. 26–28 continue the research on Petri net controlled grammars by restricting to (context-free, extended35

or arbitrary) Petri nets with place capacities. A Petri net with place capacity regulates the defining grammar by36

permitting only those derivations where the number of each nonterminal in each sentential form is bounded by37

its capacity. It was shown that several families of languages generated by grammars controlled by extended cf38

Petri nets with place capacities coincide with the family of matrix languages of finite index.39

In all above-mentioned variants of Petri net controlled grammars, the production rules of a core grammar are40

associated only with transitions of a control Petri net. Thus, it is also interesting to consider the place labeling41

strategies with Petri net controlled grammars. Theoretically, it would complete the node labeling cases, i.e., we42
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study the cases where the production rules are associated with places of a Petri net, not only with its transitions.43

Moreover, the place labeling makes possible to consider parallel application of production rules in Petri net44

controlled grammars, which allows to develop formal language based models for synchronized/parallel discrete45

event systems.46

Informally, a place-labeled Petri net controlled grammar (a pPN controlled grammar for short) is a context-47

free grammar with a Petri net and a function which maps places of the net to productions of the grammar. The48

language consists of all terminal strings that can be obtained by parallelly applying of the rules of multisets49

which are the images of the sets of the input places of transitions in a successful occurrence sequence of the50

Petri net. In this paper, we study the effect of the place labeling strategies to the computational power, establish51

the lower and upper bounds for the families of languages generated by pPN controlled grammars, and investigate52

their structural properties.53

PRELIMINARIES

We assume that the reader is familiar with the basic concepts of formal language theory and Petri nets. In this54

section we only recall some notions, notations and results directly related to the current work. For more details55

we refer the reader to Ref. 33 and Refs. 4, 5, 34.56

Throughout the paper we use the following general notations. The symbol ∈ denotes the membership of an57

element to a set while the negation of set membership is denoted by /∈. The inclusion is denoted by ⊆ and the58

strict (proper) inclusion is denoted by ⊂. The empty set is denoted by ∅. The cardinality of a set X is denoted59

by |X |.60

Grammars61

Let Σ be an alphabet. A string over Σ is a sequence of symbols from the alphabet. The empty string is denoted62

by λ which is of length 0. The set of all strings over the alphabet Σ is denoted by Σ∗. A subset L of Σ∗ is called63

a language. If w = w1w2w3 for some w1, w2, w3 ∈ Σ∗, then w2 is called a substring of w. The length of a64

string w is denoted by |w|, and the number of occurrences of a symbol a in a string w by |w|a.65

A multiset over an alphabet Σ is a mapping π : Σ → N. The alphabet Σ is called the basic set of a multiset66

π and the elements of Σ is called the basic elements of a multiset π. A multiset π over Σ = {a1, a2, . . . an} is67

denoted by68

π = [a1, . . . , a1
︸ ︷︷ ︸

π(a1)

, a2, . . . , a2
︸ ︷︷ ︸

π(a2)

, . . . , an, . . . , an
︸ ︷︷ ︸

π(an)

].

69

We also “abuse” the set–membership notation by using it for multisets. We write a ∈ [a, a, a, b] and c /∈70

[a, a, a, b]. The set of all multisets over Σ is denoted by Σ⊕.71

A context-free grammar is a quadruple G = (V,Σ, S, R) where V and Σ are disjoint finite sets of72

nonterminal and terminal symbols, respectively, S ∈ V is the start symbol and a finite set R ⊆ V × (V ∪Σ)∗73

is a set of (production) rules. Usually, a rule (A, x) is written as A → x. A rule of the form A → λ is called an74

erasing rule. A string x ∈ (V ∪Σ)+ directly derives a string y ∈ (V ∪Σ)∗, written as x ⇒ y, iff there is a rule75

r = A → α ∈ R such that x = x1Ax2 and y = x1αx2. The reflexive and transitive closure of ⇒ is denoted76

by ⇒∗. A derivation using the sequence of rules π = r1r2 · · · rn is denoted by
π
=⇒ or

r1r2···rn======⇒. The language77

generated by G is defined by L(G) = {w ∈ Σ∗ | S ⇒∗ w}.78

A matrix grammar is a quadruple G = (V , Σ, S, M) where V,Σ, S are defined as for a context-free79

grammar,M is a finite set of matrices which are finite strings over a set of context-free rules (or finite sequences80

of context-free rules). The language generated by G is L(G) = {w ∈ Σ∗ | S
π
=⇒ w and π ∈M∗}. The families81

of languages generated by matrix grammars without erasing rules and by matrix grammars with erasing rules82

are denoted by MAT and MAT
λ, respectively.83

Theorem 1 (Ref. 35)84

CF ⊂ MAT ⊂ CS and MAT ⊆ MAT
λ ⊂ RE85

where CF, CS and RE denote the families of context-free, context-sensitive and recursively enumerable86

languages, respectively.87
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Petri Nets88

A Petri net (PN) is a construct N = (P, T, F, φ) where P and T are disjoint finite sets of places and transitions,89

respectively, F ⊆ (P × T )∪ (T ×P ) is the set of directed arcs, φ : F → N is a weight function.90

A Petri net can be represented by a bipartite directed graph with the node set P ∪T where places are drawn91

as circles, transitions as boxes and arcs as arrows. The arrow representing an arc (x, y) ∈ F is labeled with92

φ(x, y); if φ(x, y) = 1, then the label is omitted.93

An ordinary net (ON) is a Petri net N = (P, T, F, φ) where φ(x, y) = 1 for all (x, y) ∈ F . We omit φ from94

the definition of an ordinary net, i.e., N = (P, T, F ).95

A mapping µ : P → N0 is called a marking. For each place p ∈ P , µ(p) gives the number of tokens96

in p. Graphically, tokens are drawn as small solid dots inside circles. The sets •x = {y | (y, x) ∈ F} and97

x• = {y | (x, y) ∈ F} are called pre- and post-sets of x ∈ P ∪ T , respectively. For X ⊆ P ∪ T , define98

•X =
⋃

x∈X
•x and X• =

⋃

x∈X x•. For t ∈ T (p ∈ P ), the elements of •t (•p) are called input places99

(transitions) and the elements of t• (p•) are called output places (transitions) of t (p).100

A sequence of places and transitions ρ = x1x2 · · ·xn is called a path if and only if no place or transition101

except x1 and xn appears more than once, and xi+1 ∈ x•
i for all 1 6 i 6 n− 1.102

A transition t ∈ T is enabled by marking µ if and only if µ(p) > φ(p, t) for all p ∈ •t. In this case t103

can occur (fire). Its occurrence transforms the marking µ into the marking µ′ defined for each place p ∈ P by104

µ′(p) = µ(p)− φ(p, t) + φ(t, p). We write µ
t
−→ to denote that t may fire in µ, and µ

t
−→µ′ to indicate that105

the firing of t in µ leads to µ′. A marking µ is called terminal if in which no transition is enabled. A finite106

sequence t1t2 · · · tk ∈ T ∗, is called an occurrence sequence enabled at a marking µ and finished at a marking107

µ′ if there are markings µ1, µ2, . . . , µk−1 such that µ
t1−→µ1

t2−→ . . .
tk−1

−−−→µk−1
tk−→µ′. In short this sequence can108

be written as µ
t1t2···tk−−−−−→µ′ or µ

ν
−→µ′ where ν = t1t2 · · · tk. For each 1 6 i 6 k, marking µi is called reachable109

from marking µ. R(N,µ) denotes the set of all reachable markings from a marking µ.110

A marked Petri net is a system N = (P, T, F, φ, ι) where (P, T, F, φ) is a Petri net, ι is the initial marking.111

A Petri net with final markings is a construct N = (P, T, F, φ, ι,M) where (P, T, F, φ, ι) is a marked112

Petri net and M ⊆ R(N, ι) is set of markings which are called final markings. An occurrence sequence ν of113

transitions is called successful for M if it is enabled at the initial marking ι and finished at a final marking τ of114

M . If M is understood from the context, we say that ν is a successful occurrence sequence.115

A Petri net N is said to be k-bounded if the number of tokens in each place does not exceed a finite number116

k for any marking reachable from the initial marking ι, i.e., µ(p) 6 k for all p ∈ P and for all µ ∈ R(N, ι). A117

Petri net N is said to be bounded if it is k-bounded for some k > 1.118

DEFINITIONS AND EXAMPLES

In this section, we define a place-labeled Petri net controlled grammar, a derivation step, a successful derivation119

and the language of a place labeled Petri net controlled grammar.120

Definition 1 A place labeled Petri net controlled grammar (a pPN controlled grammar for short) is a 7-tuple121

G = (V,Σ, R, S,N, β,M) where (V,Σ, R, S) is a context-free grammar, N is a (marked) Petri net, β : P →122

R∪ {λ} is a place labeling function and M is a set of final markings.123

Let A ⊆ P . We use the notations β(A) and β−λ(A) to denote the multisets [β(p) | p ∈ A] and [β(p) | p ∈124

A and β(p) 6= λ], respectively. Further, we define the notions of a successful derivation step and a successful125

derivation.126

Definition 2 x ∈ (V ∪Σ)∗ directly derives y ∈ (V ∪Σ)∗ with a multiset π = [Ai1 → αi1 , . . . , Aik → αik ]⊆R⊕
127

written as x
π
=⇒ y, if and only if128

x = x1Ai1x2Ai2 · · ·xkAikxk+1 and y = x1αi1x2αi2 · · ·xkαikxk+1129

where xj ∈ (V ∪Σ)∗, 1 6 j 6 k+1, and π = β−λ(
•t) for some t ∈ T enabled at a marking µ ∈ R(N, ι).130

Definition 3 A derivation131

S
π1==⇒ w1

π2==⇒ w2
π3==⇒ · · ·

πn==⇒ wn = w ∈ Σ∗, (1)132
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where πi ⊆ R⊕, 1 6 i 6 n, is called successful if and only if πi = β−λ(
•ti) for some ti ∈ T , 1 6 i 6 n, and133

t1t2 · · · tn ∈ T ∗ is a successful occurrence sequence in N . For short, (1) can be written as S
π1π2···πn=======⇒ w.134

Definition 4 The language generated by pPN controlled grammar G consists of strings w ∈ Σ∗ such that there135

is a successful derivation S
π1π2···πn=======⇒ w in G.136

With respect to different labeling strategies and the definition of final marking sets, we can define various137

variants of place labeled Petri net controlled grammars. In this work, we define the following variants:138

Definition 5 A pPN controlled grammar G = (V,Σ, S, R,N, β,M) is called139

• free (denoted by f ) if a different label is associated to each place, and no place is labeled with the empty140

string,141

• λ-free (denoted by −λ) if no place is labeled with the empty string,142

• arbitrary (denoted by λ) if no restriction is posed on the labeling function β.143

Definition 6 A pPN controlled grammar G = (V,Σ, S, R,N, β,M) is called144

• r-type if M is the set of all reachable markings from the initial marking i, i.e. M = R(N, ι).145

• t-type if M ⊆ R(N, ι) is a finite set.146

We use the notation (x, y)-pPN controlled grammar where x ∈ {f,−λ, λ} shows the type of a labeling147

function and y ∈ {r, t} shows the type of a set of final markings. We denote by pPN(x, y) and pPN
λ(x, y) the148

families of languages generated by (x, y)-pPN controlled grammars without and with erasing rules, respectively,149

where x ∈ {f,−λ, λ} and y ∈ {r, t, g}. We also use bracket notation pPN
[λ](x, y), x ∈ {f,−λ, λ}, y ∈ {r, t},150

in order to say that a statement holds both in case with erasing rules and in case without erasing rules.151

LOWER AND UPPER BOUNDS

The following inclusions immediately follow from the definitions of place-labeled Petri net controlled152

grammars.153

Lemma 1 For x ∈ {f,−λ, λ} and y ∈ {r, t}, pPN(x, y) ⊆ pPN
λ(x, y).154

Example 1 Let G1 = ({S,A,B,C}, {a, b, c}, S, R) be a context-free grammar where R consists of the155

following productions:156

r0 : S → ABC, r1 : A → aA, r2 : A → bB, r3 : AC → cC, r4 : A → a, r5 : B → b, r6 : C → c.157

•

r0

r4

r5

r6

r1

r2

r3

Fig. 1 Petri net N1.

Figure 1 illustrates a Petri net N1 with respect to G1. Obviously,158

L(G1) = {anbncn | n > 1} ∈ pPN(f, t).159
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Example 2 Let G2 be a context-free grammar with the rules:160

r0 : S → AB, r1 : A → aA, r2 : B → aB, r3 : A → bA, r4 : B → bB, r5 : A → λ, r6 : B → λ161

Figure 2 illustrates a Petri net N2 with respect to G2. It is not difficult to see that162

L(G2) = {ww | w ∈ {a, b}∗} ∈ pPN(λ, t).163

•

r0

λ

r1 r2 r3 r4

r5

r6

Fig. 2 Petri net N2.

164

Further, we discuss the upper bound for the families of languages generated by pPN controlled grammars.165

Lemma 2 For y ∈ {r, t}, pPN
[λ](−λ, y) ⊆ MAT

λ.166

Proof : Let G = (V,Σ, S, R,N, β,M) be an (−λ, y)-pPN controlled grammar (with or without erasing rules)167

and N = (P, T, F, φ, ι) where y ∈ {r, t}. Let P = {p1, p2, ..., ps} and T∅ = {t ∈ T | •t = ∅}. Suppose,168

T − T∅ = {t1, t2, . . . , tn}. We define the sets of new nonterminals as169

P = {p | p ∈ P} and V = {A | A ∈ V },170

and set the homomorphism h : (V ∪Σ)∗ → (V ∪Σ∗) as171

h(a) = a for all a ∈ Σ, and h(A) = A for all A ∈ V.172

Consider t ∈ T − T∅, and let •t = {pi1 , pi2 , . . . , pik}. We assume that β(pij ) = Aij → αij ∈ R, 1 6 j 6 k.173

Let174

h(αi1αi2 · · ·αik) = x1B1x2B2 · · ·xlBlxl+1175
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where xi ∈ Σ∗, 1 6 i 6 l+ 1 and Bj ∈ V , 1 6 j 6 l.176

We associate the following sequences of rules with each transition t ∈ T − T∅:177

δt,λ : pi1 → λ, . . . , pi1 → λ
︸ ︷︷ ︸

φ(pi1
,t)

, pi2 → λ, . . . , pi2 → λ
︸ ︷︷ ︸

φ(pi2
,t)

, . . . , pik → λ, · · · , pik → λ
︸ ︷︷ ︸

φ(pik
,t)178

δt,h : Ai1 → h(αi1), Ai2 → h(αi2), . . . , Aik → h(αik)179

δt,B : B1 → B1, B2 → B2, . . . , Bl → Bl180
181

and define the matrix182

mt = (δt,λ, δt,h, δt,B, δt,X). (2)183

where184

δt,X : X → p
|φ(t,p1)|
1 · p

|φ(t,p2)|
2 · · · p|φ(t,ps)|

s ·X.185

We also add the starting matrix186

m0 = (S′ → S ·
∏

p∈P

p|ι(p)| ·X) (3)
187

According to types of the sets of final markings, we consider two cases of erasing rules:188

Case y = r. Then189

mp,λ = (p → λ) for each p ∈ P and mX,λ = (X → λ). (4)190

Case y = t. For each µ ∈ M ,191

mµ,λ = (p1 → λ, . . . , p1 → λ
︸ ︷︷ ︸

µ(p1)

, . . . , ps → λ, . . . , ps → λ
︸ ︷︷ ︸

µ(ps)

, X → λ). (5)

192

We consider the matrix grammar G′ = (V ′,Σ, S′,M) where M consists of all matrices (2) and (3) and193

matrices (4) for case y = r or matrix (5) for case y = t.194

Let195

D : S
π1==⇒ w1

π2==⇒ w2 · · ·
πd==⇒ wd = w ∈ Σ∗

196

be a derivation in G. Then, t1t2 · · · td where β(•ti) = πi, 1 6 i 6 d, is a successful occurrence sequence in N .197

We construct the derivationD′ in the grammarG′ simulating the derivationD as follows: we start the derivation198

D′ by applying the matrix (3) and get199

D′ : S′ m0==⇒ S
∏

p∈P

p|ι(p)|X.
200

Then, for each transition ti in the successful occurrence sequence t1t2 · · · td, we choose the matrix mti , 1 6201

i 6 d, in D′:202

D′ : S′ m0==⇒ S
∏

p∈P

p|ι(p)|X
mt1===⇒ w1z1X

mt2===⇒ w2z2X · · ·
mtd===⇒ wdzdX = wzdX

203

where zi ∈ P
∗
, 1 6 i 6 d.204

The rules δti,h and δti,B , 1 6 i 6 d, simulate the rules in the multiset πi whereas the homomorphism h205

controls that all rules in δti,h are applied only to wi−1, 2 6 i 6 d.206

By construction, the rules δti,λ and δti,X , 1 6 i 6 d, simulate the numbers of tokens consumed and207

produced in the occurrence of transition ti. The number of occurrences of each p ∈ P in string zi is the208

same as the number of tokens in place p ∈ P after the occurrence of ti. Moreover, the number of occurrences209

of p ∈ P in string zd and the number of tokens in place p ∈ P in a final marking µ ∈ M are the same.210

Further, to erase zd and X , we use the matrices (4) or (5) depending on y ∈ {r, t}. Thus, L(G′) ⊆ L(G).211

Using the similar arguments in backward manner, one can show that the inverse inclusion also holds. ✷212

With slight modification of the arguments of the proof of the lemma above, we can also show that213
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Lemma 3 For y ∈ {r, t}, pPN
[λ](λ, y) ⊆ MAT

λ.214

Next, we show that every matrix language can be generated by (f, t)- and (f, r)-pPN controlled grammars.215

Lemma 4 For y ∈ {r, t}, MAT
[λ] ⊆ pPN

[λ](f, y).216

Proof : Let G = (V,Σ, S,M) be a matrix grammar with M = {m1,m2, . . . ,mn} where mi :217

(ri1, ri2, . . . , riki
), 1 6 i 6 n, 1 6 j 6 ki. We construct an (f, t)-place labeled Petri net controlled grammar218

G′ = (V ∪ {S0},Σ, R ∪ {S0 → S}, S0, N, β,M) where the Petri net N = (P, T, F, φ, ι), the place labeling219

function β : P → R∪ {S0 → S} and the final marking set M are defined as follows220

• the sets of places, transitions and arcs:221

P ={p0} ∪ {pij | 1 6 i 6 n, 1 6 j 6 ki},222

T ={t0i | 1 6 i 6 n} ∪ {tij | 1 6 i 6 n, 1 6 j 6 ki},223

F ={(p0, t0i), (t0i, pi1), (piki
, tiki

), (tiki
, p0) | 1 6 i 6 n}224

∪ {(pij , tij), (tij , pij+1) | 1 6 i 6 n, 1 6 j 6 ki−1};225
226

• the weight function: φ(x, y) = 1 for all (x, y) ∈ F ;227

• the initial marking: ι(p0) = 1 and ι(p) = 0 for all p ∈ P −{p0};228

• the transition labeling function: β(p0) = S0 → S and β(pij) = rij , 1 6 i 6 n, 1 6 j 6 ki;229

• the final marking set: M = R(N, ι).230

Remark 1 By definition of the Petri net N , it is not difficult to see that R(N, ι) is a finite set. Thus, the cases231

y = r and y = t coincide.232

Let233

w1
ri1==⇒ w2

ri2==⇒ · · ·
riki===⇒ wk, (6)234

where mi : (ri1, ri2, · · · , riki
) ∈ M , be derivation steps of a successful derivation S

∗
=⇒ w ∈ Σ∗ in G. Then,235

w1
[ri1]
===⇒ w2

[ri2]
===⇒ · · ·

[riki ]====⇒ wk (7)236

simulates by (6) and t0iti1ti2 · · · tiki
is a subsequence of a successful occurrence sequence ν ∈ R(N, ι). Thus,237

L(G) ⊆ L(G′). The inclusion L(G′) ⊆ L(G) can also be shown by backtracking the arguments above. ✷238

From the lemmas above,239

Theorem 2 For x ∈ {f,−λ, λ} and y ∈ {r, t},240

MAT ⊆ pPN(x, y) ⊆ MAT
λ, and pPN

λ(x, y) = MAT
λ.241

THE EFFECT OF LABELING STRATEGIES

In this section, we study the labeling effect to the computational power of pPN controlled grammars. The242

following lemma follows immediately from the definition of the languages determined by labeling functions.243

Lemma 5 For y ∈ {r, t}, pPN
[λ](f, y) ⊆ pPN

[λ](−λ, y) ⊆ pPN
[λ](λ, y).244

Further, we prove that the reverse inclusions also hold.245

Lemma 6 For y ∈ {r, t}, pPN
[λ](−λ, y) ⊆ pPN

[λ](f, y).246
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Proof : Let G = (V,Σ, R, S,N, β,M) be a (−λ, y)-pPN controlled grammar (with or without erasing rules)247

where N = (P, T, F, φ, ι). Let R = {ri : Ai → αi | 1 6 i 6 n}, and let248

P+ = {p ∈ P | (p, t) ∈ F} and P− = {p ∈ P | (p, t) /∈ F}.249

We set the following sets of places, transitions and arcs:250

P ={cp,t, c
′
p,t | (p, t) ∈ F},251

T ={dp,t, d
′
p,t | (p, t) ∈ F},252

F ={(p, dp,t), (dp,t, cp,t)(cp,t, d
′
p,t), (d

′
p,t, c

′
p,t), (c

′
p,t, t) | (p, t) ∈ F}.253

254

We also introduce the new nonterminals and productions for each pair (p, t) ∈ F :255

V ={Ap, Ap,t | (p, t) ∈ F},256

R ={A → Ap, Ap → Ap,t, Ap,t → α | (p, t) ∈ F, β(p) = A → α ∈ R and Ap,t ∈ V }.257
258

We define the weight function φ : F → N as follows:259

φ(p, dp,t) = φ(dp,t, cp,t) = φ(cp,t, d
′
p,t) = φ(d′p,t, c

′
p,t) = φ(c′p,t, t) = φ(p, t)260

where (p, t) ∈ F .261

Using the sets and function defined above, we construct an (f, y)-place-labeled Petri net controlled grammar262

G′ = (V ′,Σ, R′, S,N ′, β′,M ′) with263

V ′ =V ∪ V ,264

R′ =(R− {A → α ∈ R | β(p) = A → α and (p, t) ∈ F})∪R.265
266

The set components of the Petri net N ′ = (P ′, T ′, F ′, φ′, ι′) are defined as267

• the sets of places, transitions and arcs:268

P ′ = P ∪P , T ′ = T ∪ T and F ′ = (F − {(p, t)} ∈ F ) ∪F ;269

• the weight function φ′ : F ′ → N:

φ′(x, y) =

{

φ(x, y) if (x, y) ∈ F − {(p, t) ∈ F},

φ(x, y) if (x, y) ∈ F ;

• the initial marking ι′ : P ′ → N0:

ι′(p) =

{

ι(p) if p ∈ P,

0 if p ∈ P ;

• the place labeling function β′ : P ′ → R′:

β′(p) =

{

β(p) if p ∈ P−,

A → Ap if p ∈ P+,

and, for each cp,t and c′p,t in P :270

β′(cp,t) = Ap → Ap,t and β′(c′p,t) = Ap,t → α,271

where β(p) = A → α ∈ R;272
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• if y = r, then the final marking set M ′ is defined as M ′ = R(N ′, ι′), and if y = t, then for every µ ∈ M ,

we set νµ ∈ M ′ where

νµ(p) =

{

µ(p) if p ∈ P,

0 if p ∈ P .

Let us now consider a successful derivation in G:273

S
E1==⇒ w1

E2==⇒ w2
E3==⇒ · · ·

En==⇒ wn = w ∈ Σ∗ (8)274

where Ei = [ri1 , ri2 , ..., riki ] ⊆ R⊕, rij : Aij → αij , with β(pij ) = rij , pij ∈ P , 1 6 i 6 n, 1 6 j 6 ki.275

Let P ′
i = {pij | 1 6 j 6 ki} ⊆ •ti for some ti ∈ T , 1 6 i 6 n (ti and tj , 1 6 i 6= j 6 n are not necessarily276

distinct). Hence, by definition,277

ι
t1t2···tn−−−−−−→µ, µ ∈ M, (9)278

is the successful occurrence of transitions in N . Then, by definition of the set R′ of the rules, each derivation279

step wi−1
Ei==⇒ wi, 1 6 i 6 n, where w0 = S, in (8) can be simulated with the following sequence of the280

derivation steps in the grammar G′:281

wi−1

(A→Ai1
)·(A→Ai2

)···(A→Aiki
)

=====================⇒ w′
i−1 (10)282

(Ai1
→Ai1,ti

)·(Ai2
→Ai2,ti

)···(Aiki
→Aiki

,ti
)

==============================⇒ w′′
i−1283

(Ai1,ti
→αi1

)·(Ai2,ti
→αi2

)···(Aiki
,ti

→αiki
)

=============================⇒ wi.284
285

Correspondingly, by construction of the Petri net N ′, each transition ti, 1 6 i 6 n, in (9) is extended with286

the occurrence sequence287

di1,tidi2,ti · · · diki ,ti · d
′
i1,ti

d′i2,ti · · · d
′
iki ,ti

ti (11)288

where289

•dij ,ti = pij , d
•
ij ,ti

= •d′ij ,ti = {cij ,ti} and d′•ij ,ti = {c′ij ,ti} ⊆ ti.290

for all 1 6 i 6 n, 1 6 j 6 ki. Thus, L(G) ⊆ L(G′).291

Consider some successful derivation292

S ⇒∗ w, w ∈ Σ∗ (12)293

in the grammar G′ with294

ι′
··· t ···
−−−−−→µ, µ ∈ M ′ (13)295

where t ∈ T . By construction of N ′, in order to enable the transition t, the transition d′p,t ∈
•c′p,t, for each296

c′p,t ∈
•t and the transition dp,t ∈

•cp,t, for each cp,t ∈
•(•t) must be fired. Thus, if •t= {c′p1,t

, c′p2,t
, . . . , c′pk,t

},297

then, (13) will contain all the transitions298

dp1,t, dp2,t, . . . , dpk,t, d
′
p1,t

, d′p2,t
, . . . , d′pk,t

. (14)299

Accordingly, (12) contains the rules300

Ai → Api
, Api

→ Api,t, Api,t → αi, (15)301

where β(pi) = Ai → αi, 1 6 i 6 k. Without loss of generality, we can rearrange the order of the occurrence302

of the transitions in (14) and correspondingly, the order of the application of the rules in (15), and as the result,303

we construct the occurrence steps and the derivation steps similar to (11) and (10), respectively. Thus, the304

transitions (14) can be replaced with t in the grammar G and the rules (15) can be replaced with the rules305

Ai → αi, 1 6 i 6 k, which results in L(G′) ⊆ L(G). ✷306
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Lemma 7 For y ∈ {r, t}, pPN
[λ](λ, y) ⊆ pPN

λ(−λ, y).307

Proof : Let G = (V,Σ, R, S,N, β,M) be a (λ, y)-pPN controlled grammar (with or without erasing rules). Let308

Pλ = {p | β(p) = λ} and PS = {p | β(p) = S → α ∈ R}.309

We define (−λ, y)-pPN controlled grammar310

G′ = (V ∪ {S0, X},Σ, S0, R∪ {S0 → SX,X → X,X → λ}, N ′, β′,M ′)311

where N ′ = (P ∪ {p0, pλ}, T ∪ {t0, tλ}, F
′, φ′, ι′) with the set of arcs312

F ′ = F ∪ {(p0, t0), (t0, pλ), (pλ, tλ)} ∪ {(t0, p) | β(p) = S → α ∈ R},313

the weight function

φ′(x, y) =







φ(x, y) if (x, y) ∈ F,

1 if (x, y) ∈ {(p0, t0), (t0, pλ), (pλ, tλ)},

ι(p) if (x, y) = (t0, p), p ∈ PS ,

and the initial marking

ι′(x, y) =







1 if p = p0,

0 if p ∈ PS ,

ι(p) if p ∈ P −PS .

The place labeling function β is modified as

β′(p) =







β(p) if p /∈ Pλ,

X → X if p ∈ Pλ,

X → λ if p = pλ.

Lastly, when y = t, for each final marking µ ∈ M , we set νµ ∈ M ′ as

νµ(p) =

{

µ(p) if P,

0 if p ∈ {p0, pλ}.

Further, it is not difficult to see that L(G) = L(G′). ✷314

The following theorem summarizes the results obtained above.315

Theorem 3316

pPN(f, y) = pPN(−λ, y) ⊆ pPN(λ, y) ⊆ pPN
λ(f, y) = pPN

λ(−λ, y) = pPN
λ(λ, y).317

By combining the results in Theorems 1, 2 and 3, we obtain the hierarchy of the family of languages318

generated by place-labeled Petri net controlled grammars:319

Theorem 4 The relations in Figure 3 hold; the lines (arrows) denote inclusions (proper inclusions) of the lower320

families into the upper families.321

STRUCTURAL PROPERTIES

In this section, we investigate structural properties of place labeled Petri net controlled grammars.322
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CF

MAT

pPN(f, y) = pPN(−λ, y)

pPN(λ, y)

pPN
λ(f, y) = pPN

λ(−λ, y) = pPN
λ(λ, y) = MAT

λ
CS

RE

Fig. 3 The hierarchy of the family of languages generated by place-labeled Petri net controlled grammars

A single start place323

Definition 7 Let G = (V,Σ, R, S,N, β,M) with N = (P, T, F, φ, ι) be an (x, y)-pPN controlled grammar324

where x ∈ {f,−λ, λ} and y ∈ {r, t}. We say that N has a single start place p0 if ι(p0) = 1 and ι(p) = 0 for all325

p ∈ P − {p0}.326

Lemma 8 For every (x, y)-place-labeled PN controlled grammar G = (V,Σ, R, S,N, β,M) with a Petri net327

N = (P, T, F, φ, ι), where x ∈ {f,−λ, λ} and y ∈ {r, t}, there exists an equivalent (x, y)-pPN controlled328

grammar G′ = (V ′,Σ, R′, S′, N ′, β′,M ′) such that the Petri net N ′ = (P ′, T ′, F ′, φ′, ι′) has a single start329

place.330

Proof : Let G = (V,Σ, S, R,B, β,M) is a (x, y)-pPN controlled grammar (with or without erasing rules). We331

introduce a new place p0, a new transition t0 and new arcs332

F = {(p0, t0)} ∪ {(t0, p) | p ∈ P, ι(p) > 0}333

and define the (x, y)-pPN controlled grammar G′ = (V ∪ {S0},Σ, S0, R ∪ {S0 → S}, N ′, β′,M ′) with the334

Petri net N ′ = (P ∪ {p0}, T ∪ {t0}, F ∪F , φ′, ι), where335

• the weight function φ′ : F ∪ F → N:

φ′(x, y) =

{

φ(x, y) for all (x, y) ∈ F,

ι(p) for all (x, y) ∈ F ;
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• the initial marking ι′ : P ∪ {p0} → {0, 1, 2, . . .}:

ι′(p) =

{

1 if p = p0,

0 if p ∈ P.

Further,336

• the place labeling function β′ : P ∪ {p0} → R ∪ {S0 → S} is defined as

β′(p) =

{

S0 → S if p = p0,

β(p) if p ∈ P ;

• for every µ ∈ M , we set νµ ∈ M ′ with νµ(p0) = 0 and νµ(p) = µ(p), µ ∈ M for all p ∈ P .337

Then, it is not difficult to see that L(G) = L(G′). ✷338

Removal of dead places339

Definition 8 Let N = (P, T, F, φ, ι) be a marked Petri net. A place p ∈ P is said to be dead if p• = ∅.340

Lemma 9 For an (x, y)-pPN controlled grammar G = (V,Σ, S, R,N, β,M), x ∈ {λ,−λ, f} and y ∈ {r, t},341

there exists an equivalent (x, y)-pPN controlled grammar G′ = (V,Σ, S, R,N ′, β′,M ′) where N ′ is without342

dead places.343

Proof : Let G = (V,Σ, R, S,N, β,M) be an (x, y)-place-labeled Petri net controlled grammar with N =344

(P, T, F, φ, ι) where x ∈ {f, λ,−λ} and y ∈ {r, t}. Let345

P∅ = {p ∈ P | p• = ∅} and F∅ = {(t, p) ∈ F | p• = ∅}.346

We construct an (x, y)-place-labeled Petri net controlled grammar in normal form G′ =347

(V,Σ, S, R,N ′, β′,M ′) where the Petri net N ′ is obtained from N by removing its dead places and the348

incoming arcs to these places, i.e., N ′ = (P − P∅, T, F − F∅, φ
′, ι′) where349

φ′(x, y) = φ(x, y) for all (x, y) ∈ F − F∅,350

and351

ι′(p) = ι(p) for all p ∈ P − P∅.352

We define the labeling function β′ : (P −P∅) → R by setting353

β′(p) = β(p) for all p ∈ P − P∅.354

For every µ ∈ M , we set νµ ∈ M ′ as355

νµ(p) = µ(p) for all p ∈ P − P∅.356

Let357

ι
t1t2···tn−−−−−−→µ, µ ∈ M (16)358

be a successful occurrence sequence of transitions in N . Then, for any place p ∈ •ti, 1 6 i 6 n, we have359

p /∈ P∅. Thus, (16) is also successful occurrence sequence in N ′. ✷360
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A reduction to ordinary nets361

Here, we show that for each pPN controlled grammar we can construct an equivalent place-labeled ordinary net362

(pON) controlled grammar.363

Lemma 10 Let G = (V,Σ, R, S,N, β,M) with N = (P, T, F, φ, ι) be an (x, y)-pPN controlled grammar,364

where x ∈ {f,−λ, λ} and y ∈ {r, t}. Then, there exists an equivalent (λ, y)-place labeled ordinary net365

controlled grammar G′ = (V ′,Σ, R′, S′, N ′, β′,M ′).366

Proof : Let G = (V,Σ, S, R,N, β,M) with N = (P, T, F, φ, ι) be an (x, y)-pPN controlled grammar (with or367

without erasing rules) where x ∈ {f,−λ, λ} and y ∈ {r, t}. We set368

P+ =
⋃

(p,t)∈F

{bipt | 1 6 i 6 φ(p, t)},
369

P− =
⋃

(t,p)∈F

{bitp | 1 6 i 6 φ(t, p)},
370

T+ =
⋃

(p,t)∈F

{dipt | 1 6 i 6 φ(p, t)},
371

T− =
⋃

(t,p)∈F

{ditp | 1 6 i 6 φ(t, p)},
372
373

and374

F+ =
⋃

(p,t)∈F

{(p, dipt), (d
i
pt, b

i
pt), (b

i
pt, t) | 1 6 i 6 φ(p, t)},

375

F− =
⋃

(t,p)∈F

{(t, bitp), (b
i
tp, d

i
tp), (d

i
tp, p) | 1 6 i 6 φ(t, p)}.

376
377

We define the (λ, y)-pPN controlled grammar G′ = (V,Σ, S, R,N ′, β′,M ′) with the Petri net N =378

(P ′, T ′, F ′, φ′, ι′) where379

• the set of places, transitions and arcs are constructed as380

P ′ = P ∪ P+ ∪P−, T ′ = T ∪ T+ ∪ T−, and F ′ = F+ ∪ F−;381

• the weight function φ′ : F ′ → N is set as φ′(x, y) = 1 for all (x, y) ∈ F ′;382

• the initial marking is defined as

ι′(p) =

{

ι(p) if p ∈ P,

0 otherwise.

Further, we set383

• we set the place labeling function β′ : P ′ → R as β′(b1pt) = β(p) for each (p, t) ∈ F and β′(p) = λ if384

p ∈ P ∪P− ∪ (P+ − {b1pt | (p, t) ∈ F}, and385

• define the final markings νµ ∈ M ′ when y = t as:

νµ(p) =

{

µ(p) if p ∈ P,

0 otherwise.

Further, one can easily show that L(G) = L(G′). ✷386
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CONCLUSION

In this paper, we defined place-labeled Petri net (pPN) controlled grammars, and investigated their computa-387

tional power and some structural properties. We showed that388

• pPN controlled grammars have at least the computational power of matrix grammars without erasing rules389

and at most the computational power of matrix grammars with erasing rules;390

• the labeling strategies do not effect to the generative capacities of pPN controlled grammars with erasing391

rules. Though free- and lambda-free-pPN controlled grammars without erasing rules have the same392

computational power, the “lambda” case remains open;393

• control Petri nets can be reduced to ”canonical forms” without effecting to the generative capacity of pPN394

controlled grammars.395

The strictness of the inclusions in Theorem 4 is an interesting topic for future research, since it may lead to396

the solution of a classical open problem MAT
?
⊂ MAT

λ.397
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