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CONSTANT PRESSURE EXPRESSION OF POWER LAW 

NON-NEWTONIAN FLUID/SOLID MIXTURE 

 

Masashi Iwataa*, Takayuki Shimoa, Takanori Tanakaa, Mohammed Saedi Jamib  

a Department of Chemical Engineering, Faculty of Engineering, Osaka Prefecture 

University, 1-1 Gakuen-cho, Nakaku, Sakai-shi, Osaka 599-8531, Japan 
b Department of Biotechnology Engineering, Faculty of Engineering, International 
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ABSTRACT 

Expression is the separation of liquid from a two-phase solid/liquid system by 

compression due to movement of the retaining wall. Expression of non-Newtonian 

fluid/solid mixture is often encountered in the fields of polymer and food industries. 

However, a reliable method for the design of the expression process has not been 

established. In this study, we conducted expression experiments of non-Newtonian 

fluid/solid mixture under a constant pressure condition. As a model suspended particle, 

cellulose or kieselguhr powder was used. The powder was mixed with an aqueous 

solution of sodium carboxymethyl cellulose or sodium polyacrylate. The mixture was 

first preconsolidated in the compression-permeability cell that consisted of a cell 

cylinder and a piston of 6 cm diameter and then expressed under constant pressure. 

As the expression advanced, the time course of the thickness of the sample was 

measured by a dial gauge fitted on the cylinder. The basic consolidation equation was 

derived by combining the fundamental equation for power law non-Newtonian flow in 

the cake with the equation of continuity, and was solved numerically using the 

Runge-Kutta method. The progress of the expression is represented by an average 

consolidation ratio Uc. The agreement between calculated and experimental Uc was 

satisfactory when the creep deformation of the material was taken into consideration. 

It was elucidated that the consolidation time required for attaining a certain degree of 

primary consolidation depends on the (N+1)/N-th power of the total volume of the solid 

material , where N is the flow behavior index of the squeezed liquid. On the other 

hand, the creep constants B, the ratio of creep deformation to the total deformation, 

and , a measure of the rate of creep deformation, both were found to be 

-independent parameters, supporting the validity of the assumption made in the 

theoretical derivation. 

 

KEYWORDS 

Non-Newtonian Fluids, Expression, Creep Effect, Rheology, Consolidation  
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1. INTRODUCTION 

Expression is the separation of liquid from a two-phase solid/liquid system by 

compression due to movement of a retaining wall rather than pumping the solid/liquid 

system into a fixed chamber as in filtration. Although the mathematical modelling of 

expression of Newtonian fluid/solid mixtures has been established several decades 

ago [1, 2, 3], the mechanism of expression of a non-Newtonian fluid/solid mixture 

which is often encountered in the fields of polymer and food industries (e.g. 

polysaccharide is produced by expression of seaweed) is not yet explained fully.   

The principal objective of this study is to present an analytical method of a 

constant pressure expression of a homogeneous semi-solid material which consists of 

power law non-Newtonian fluid/solid mixture. 

 

2. EXPERIMENTAL 

The experimental apparatus used in this study is shown in Fig. 1. It consists 

essentially of a cell cylinder and a piston of 6 cm diameter. As a model solid/liquid 

mixture, cellulose powder (KC Flock, W-300G, Nippon Paper Industries Co.) or 

kieselguhr powder (Hyflo Super Cel, Wako) mixed with an aqueous solution of sodium 

carboxymethyl cellulose (Nacalai Tesque Co.) or sodium polyacrylate (Nacalai 

Tesque Co.) was used. The mixture was preconsolidated under a constant pressure 

ps1, resulting in a homogeneous cake of thickness L1. Then it was expressed under a 

constant pressure p. The time course of the thickness L of the sample was measured 

by a dial gauge fitted on the cylinder. The flow behavior index N and the fluid 

consistency index K of squeezed liquid were measured by using the cone-plate 

viscometer (DV2T, Brookfield).  

     

 

Fig. 1  Compression permeability cell. 
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3. THEORY  

In the design of expression operation, it is essential to understand the time 

course of the thickness L of the cake. The decrease in the cake thickness L1-L is 

equal to the total liquid volume removed per unit medium area, and it is given by Eq. 

(1) using the total decrease of the local void ratio e1-e integrated over the whole 

thickness  

 

 
0

1 1
0

dL L e e


 - -                                  (1) 

 

where L1 and e1 are the thickness and void ratio at the beginning of the expression, 

respectively, while L and e are the thickness and void ratio at time c, respectively.  is 

a moving coordinate which represents a net solid volume per unit cross-sectional area 

extending from the drainage surface up to an arbitrary position in the solid/liquid 

mixture, and 0 is the total volume of the solid per unit cross-sectional area. The 

variation of e is caused by both the change in local solid compressive pressure ps and 

the simultaneous effect of creep of the material; the former and the latter are called 

the primary and the secondary consolidations, respectively. The time rate of change in 

e at  can be written as 

 

c s

s

c s c c p

pe e e

p
  

  
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        

       

∂∂ ∂ ∂
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where the term 

c

s

s c

pe

p
 



   
   
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∂∂

∂ ∂
 represents the time rate of change in e due to the 

primary consolidation and the term 

s
c p

e



 
 
 

∂

∂
 represents the time rate of change in e 

due to the creep effect. This variation of e can be represented by the Terzaghi-Voigt 

combined model; the rheological constitution of the primary consolidation is 

represented by the Terzaghi element, while that of the creep deformation is 

represented by the Voigt element as shown in Fig. 2.  
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Fig. 2  Terzaghi-Voigt model 

 

Eq. (2) is rewritten as 

 

     
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where aE = 

c
s

e

p


 
 

 
, ac = 

2

1 e

E


, and  = 2E

G
. Detailed explanations of Eq. (3) have 

been methodically reported elsewhere [4, 5, 6]. For simplicity of calculation, we 

assume that aE, ac and  are all constant. From Eq. (3), (e1-e) in Eq. (1) can be written 

as 

 

     s
1 E c

0 0
c

d exp d
c c

c

p
e e a a p ω τ p η θ τ τ

 
 


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∂
,

∂
          (4) 

 

[4, 5, 6]. Substituting Eq. (4) into Eq. (1) gives 

 

        0 0 c/ /

1 E s c s1 c s s1 c
0 0 0

, d , exp - d d
i i

L L a i p p a i p p
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                   

 

where i is number of drainage surfaces.  

It is recognized that ps(ω,τ) in Eq. (5) can be replaced by the expression pressure 

p when the time rate of change in e due to the creep effect is much smaller than the 

time rate of change in e due to the primary consolidation for expression of a 

Newtonian fluid/solid mixture under constant pressure condition. This simplification 

(5) 
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may hold true for the expression of non-Newtonian fluid/solid mixture, since the 

experimental results shown later can be explained well under the simplification. Thus, 

Eq. (5) is rewritten as 

 

       0 0 c/ /

1 E s c s1 c s1 c
0 0 0

, d exp - d d
i i

L L a i p p a i p p
  

                   (6) 

 

At c = , Eq. (6) becomes 
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1 E c s1 E c s1 0
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i
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since  s ,p p   . Here L  is the final thickness of compressed cake at c = .  

Combining Eqs. (6) and (7), we obtain the following equation of an average 

consolidation ratio Uc, which is a measure of the progress of expression  
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Here, B is a creep constant defined by c

c E

a
B

a a



, which is the ratio of creep 

deformation to the total deformation. (1-B) is the ratio of primary consolidation to the 

total deformation. The first term of the right-hand side of Eq. (8) is the contribution of 

the primary consolidation, while the second term is the contribution of the creep 

deformation. Eq. (8) simplifies approximately to Eq. (9) when c >>0. 

 

 1
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
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 at  c >>0              (9)                            

 

Eq. (8) can be modified as                  
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                       (10) 

 

where c corrU   indicates the progress of the primary consolidation. 
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 To calculate Eq. (8) or Eq. (10), it is essential to obtain ps(, c) value. Eqs. (6) 

and (8) imply that the flow resistance in the cake affects only the progress of the 

primary consolidation, provided that the creep deformation is much slower than the 

primary consolidation. Under such condition, combining the fundamental equation for 

power law non-Newtonian flow in the cake  

 

s

s

1N p
u

K 

 
  
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               (11) 

 

[7, 8, 9,10,11] with the equation of continuity 
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∂

∂
            (12) 

 

leads to the basic Eq. (13) for primary consolidation, where u is the apparent velocity 

of fluid in the cake, is the local flow resistance in the cake, and s is the solid density. 
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where Ce is the modified consolidation coefficient defined by 

1

e

av

1 1 N

Eav s

C
a K 

 
  

 
, 

and av is the average flow resistance in the cake. Eq. (13) suggests that the time for 

attaining a specific degree of primary consolidation is proportional to  
1

0 /
N

Ni


 if 

other parameters are held constant. The time course of ps can be determined by using 

the Runge-Kutta method for solving Eq. (13) numerically. Substituting the value of ps 

into Eq. (8) yields the time course of Uc. 

 

4. RESULTS AND DISCUSSION 

The creep constants B and  and the modified consolidation coefficient Ce can be 

determined from experimental data. Fig. 3 illustrates the experimental result of 

consolidation of a homogeneous cake of KC Flock mixed with a sodium polyacrylate 

aqueous solution. This result supports the validity of Eqs. (8) and (9), since the slope 

of ln(1-Uc) vs. c is a straight line when c >> 0. In consideration of Eq. (9), the values 

FILTECH 2016 - L10 - Short Oral + Poster Presentations - Cake Filtration

FILTECH 2016 - 11.-13. October - Cologne - Germany



of both B and  can be graphically determined from the later stage of the experimental 

result of ln(1-Uc) vs. c as illustrated in Fig. 3. The effect of total solid volume per unit 

area 0 on the creep constants B and  is shown in Figs. 4 and 5. Both B and  seem 

not to depend on 0.  is the ratio of Young's modulus E2 of the spring and the 

viscosity G of the dash pot of the Voigt element shown in Fig. 2, and a measure of the 

rate of the creep deformation. The fact that  does not depend on 0 implies that the 

liquid flow resistance through the material is not a rate-determining factor in the later 

part of expression process and the expression rate depends only on the creep 

deformation of the solid network [12].  
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Fig. 3  Determination of creep constants, B and . 
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Fig. 4  Effect of the amount of total solid on creep constants 

for Hyflo Super Cel-SPA aq. sol. mixture. 
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Fig. 5  Effect of the amount of total solid on creep constants 

for Hyflo Super Cel-CMC aq. sol. mixture. 
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Fig. 6  Determination of Ce value by fitting method.  

 

In determining the value of Ce, a fitting method was used. The time course of 

calculated c corrU   was obtained by assuming the value of Ce and evaluating Eqs. (10) 

and (13) simultaneously. In Fig. 6, the calculated value of c corrU   is shown. Ce value 

was determined as the calculated value of c corrU   coincides with the empirical one at 

c corr 0.5U   . The theoretical values of Uc calculated from Eq. (8) are compared with 

experimental results as shown in Figs. 7 and 8. In the figures, the solid line represents 

when the creep effect of the materials is taken into consideration, while the broken line 

represents when it is neglected (B = 0). The agreement between calculated and 

experimental Uc is satisfactory when the creep effect is considered.  
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Fig. 7  Average consolidation ratio Uc of KC Flock-SPA (0.2 wt%) aq. sol. mixture. 
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Fig. 8  Average consolidation ratio Uc of KC Flock-CMC (1.9 wt%) aq. sol. mixture. 

 

Figs. 9 and 10 illustrate the relationship between the consolidation time c 

required for attaining a certain amount of primary consolidation and 0. In the figures, 

c40, c50, c60 are the time required for attaining 40%, 50%, 60% of c corrU  , respectively. 

Since the agreement between slopes of these figures and calculated (N+1)/N was 

satisfactory, Figs. 9 and 10 support the validity of Eq. (13) which implies that the time 

for attaining a specified degree of primary consolidation is proportional to  
1

0 /
N

Ni


 

if other parameters are held constant.  
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Fig. 9  Relationship among c40, c50, c60 and 0. 
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Fig. 10  Relationship among c40, c50, c60 and 0. 

 

 

 

5. CONCLUSIONS  

The basic equation for the expression of non-Newtonian fluid/solid mixture has 

been derived and solved numerically by using the Runge-Kutta method. The 

agreement between calculated and experimental Uc was satisifactory when the creep 

effect was considered. It has been elucidated that the consolidation time required for 

attaining a certain degree of primary consolidation depends on the (N+1)/N-th power of 
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the total volume of the solid material. The model equation developed in this study 

could be used in the design of the expression process for a non-Newtonian fluid/solid 

mixture. 

 

NOMENCLATURE 

B creep constant 

Ce modified consolidation coefficient, m(N+1)/N/(Pa1-1/N
s) 

e    void ratio at consolidation time c 

e1 void ratio at the beginning of consolidation period 

i number of drainage surfaces 

K fluid consistency index, PasN 

L thickness of cake at consolidation time c, m 

L1 thickness of cake at the beginning of consolidation period, m 

L∞        final thickness of compressive cake, m 

N flow behavior index 

ps local solid compressive pressure, Pa  

ps1 preconsolidation pressure, Pa 

u apparent liquid velocity, m/s 

Uc average consolidation ratio 

Greek Letters 



av        

local flow resistance, m2-N/kg 

average flow resistance, m2-N/kg 

 creep constant, s-1 

c        consolidation time, s 

s        solid density, kg/m3 

 net solid volume per unit cross-sectional area extending from the 

drainage surface up to an arbitrary position in the solid–liquid 

mixture, m3/m2 

0        total volume of the solid material per unit cross-sectional area, 

m3/m2 
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