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Constructing a prior distribution when there is no available information is usu­
ally an interesting challenge. In this paper, a new method based on bootstrap 
and non parametric density estimation ideas is proposed. Its ability to detect 
and partially correct misspecifications is illustrated with a simulation study. 
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1. INTRODUCTION 

In a bayesian context, the researcher sums up his previous information about 
the parameter of interest in a prior distribution. This procedure is very useful 
whenever there is available information. Otherwise, we need a way to build a 
prior. Some methods have been proposed in the literature such as flat priors 
and Jeffrey's priors. In this paper we propose a different way to build the 
prior: it uses part of the sample to obtain information about the parameter of 
interest, e.g., {3 in e. This information is used to construct a density function 
over the parameter space using bootstrap methods and nonparametric density 
estimation. This density function becomes the prior distribution of {3 and it is 
combined with the remaining observations to complete the bayesian analysis 
in the usual way. The proposed priors are always proper priors. This is an 
interesting point in many contexts such as the Bayesian approach to model 
selection (see Berger and Pericchi, 1993). 

In section 2 the proposed method is exposed in detail; a theoretical jus­
tification is given in section 3. The last section presents the results of an 
extensive simulation study and points out the capability to detect missespeci­
fications and to correct them partially. Finally, the appendix gives the proofs 
of the results presented in section 3. 

2. CO:\STRUCTING THE PRIOR DENSITY 

Let Xl' ... , Xn be i.i.d. random variables with density function P(X I (3),.8 in 
e. Let Tn : xn -+ e be an estimator of (3, in the classical sense, with density 
P(Tn I p). The sample Xl,·· .• In is observed and assumed to be generated 
with the specific parameter value {3 = (30. Let ~n = Tn(Xl,"" xn) be the 
estimated value of {3 based in our sample. \Ve try to define a density function 
in e which can be used as the prior density of (3, P({3). 

The proposed method is the following: 

Step 0 Choose mlO :S m :S n. Choose Xi ll ... , Xim C {Xl,"" Xn}, with i j =I 
i l if j =I [. 

(For instance, i j = j). 

Step 1 Take E bootstrap resamples of that subsample: x~(b), ... , x~b), b 

1, ... , E, and obtain E bootstrap observations of ~m : ~:nI, ... , ~:nB. 

Step 2 Estimate the density P(T m I (30) using any usual nonparametric estima­

tor based in {~;;1}f=I' Let P*(~m I (30) denote this estimation. (This 
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is only notation. In the next section we study what density is being 
estimated) . 

Step 3 Use the density obtained in Step 2 as a prior density of (3: 

or equivalently, 

P{3(U) ex: PJml{3o(u) for all U in 8. 

Step 4 Calculate the posterior distribution using the following elements: 

sample: X m +1,···, X n , 

prior of (3: the one obtained in Step 3, 

likelihood: TI7=m+l P(Xi 1 (3). 

Steps 2 and 3, denoted as the DIRECT method, can be considered a first 
approach to the problem. In Section 3, we will see that the following general 
procedure is, under certain assumptions, theoretically more appropriate. 

Suppose that there exists a pivotal quantity Q, depending on the data only 
through the statistic Tn: Q(Tn,3). Assume that the function Qb(a) = Q(a, b) 
has derivative (say (Qb)') and inverse function. 

\Ye propose the following method to estimate P(~m 1 (3), for all (3 in 8: 

Step 2' Estimate nonparametrically the density PQ(Tm.{3)I{3(u) (which does not de­

pend on (3) from observations {Q(~~, ~m)}. Calculate the value of this 
estimated density function when U = Q{3(v) and multiply it by I(Q{3)'(v)l. 
Therefore, we haye an estimation of PTml{3(v): PQ(Tm,{3)IJ(Q{3(v))I(Q{3)'(v)l. 
Finally, take t' = ~m and obtain the estimation of 

Let us denote this function of (3 by P*((3m 1 (3). 

Step 3' Use the density obtained in Step 2' as the prior density of (3: 

P((3) ex: P*(~m 1 (3) for all (3 in 8, 

that is, 
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This method will be denoted by PIVOTAL method. In Boss and Mona­
han (1986), the authors study the location parameter estimation. They use 
Q(Tm. (3) = Tm - (3 to obtain posterior parameter density functions. Our pro­
posal is essentially similar: calculate a posterior density, although we will use 
it later on as a prior. 

\~/hen m = 0 we are in the usual bayesian inference with a flat prior, and 
if m = n, we are in a pure bootstrap study. Therefore, the proposed methods 
can be seen as midpoints between those two extremes. 

A different methodology to estimate likelihood functions using boots trap 
and nonparametric density estimation is proposed in Davidson et al. (1992). 
They use nested bootstrap and they can to estimate the likelihood in wider 
contexts. This methodology could be introduced in the algorithms described 
here to substitute steps 2 or 2'. 

3. THEORETICAL JUSTIFICATION 

In bayesian analysis the following steps are equivalent: 

(i) Constructing the posterior distribution of (3 from both the likelihood 
using the \vhole sample and a prior Po((3). 

(ii) Diyiding the sample into two subsamples; proceed as in (i) with one of 
the subsamples and use the obtained posterior as the prior in the analysis 
of the other one. 

This equivalence is obvious because 

P(B I Xl, ... ,Xn) ex: P(Xl' ... , Xn I (3)PO((3) 

ex: P(Xm+l .... 'Xn I X l , ... ,Xm,(3)P(Xl , ... ,Xm I (3)PO((3) 

ex: P(Xm+l ,··· ,Xn I Xl,··· ,Xm,(3)P((31 Xl,'" ,Xm) 

\Ve propose to replace P((3 I Xl, .. ·, Xm) by a nonparametrically estimated 
density based on a bootstrap sample of an estimator of (3. 

Observe that if T m : xm --+ 0 is a sufficient statistic for (3, then 

Taking a flat prior Po((3) ex: 1, P((31 Xl, ... ,Xm) ex: P(Tm I (3), that is, 

PiJlxl, ... ,Xm(u) ex: PTmlu(~m) for all u in 0, 
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where (3m = Tm(Xl, ... ,Xn). 

Therefore, we are interested in the estimation of PTm lu (/3m). If nonparamet­
ric methods are used, likelihood especification for the first part of the sample 
is not needed. This fact may be an advantage over the usual bayesian anal­
ysis: if the model is missespecified (i.e., P(X I (3) is not the density of the 
data) the true posterior density of (3, given the first observations, may be a 
better approximation to P(Tm I (3) than to P(X1 , ... ,Xm I (3) (we omit the 
constants). This is because T m may be a sufficient statistic for {3 in a wide 
range of models, including the true model. So, the nonparametric part of our 
proposal partially corrects model missespecifications. 

The sample has been randomly divided into two subsamples. There are 
several reasons for this randomness. It guarantees the independence between 
the two subsamples which is needed for the equivalence of statements (i) and 
(ii). Moreover, the first su bsample extraction is essentially symmetrical since 
each possible subsample has the same probability to be selected. True symme­
try is hard to get if we do not want to loose independence. A feasible way is 
to draw all possible first subsamples and take some average of the posteriors 
as the final posterior. This procedure is computationally very expensive if n 
is moderate and m is far from 0 and n. \Ve could select the first subsample 
according to a sensible criterion. So, we would loose the independence between 
first and second subsamples. However, in the simulation study (see Section 4) 
we have tested one of these procedures: we select the subsample of size m 
having the same quantiles i/m. i = 0, ... ,m as the original sample. We are 
looking for the subsample wich is most simil~r to the whole sample. We will 
name these ways to select the first subsample RANDOM and NON-RANDOM 

extractions. respectively. 

The procedures presented in Section 2 need some assumptions to provide 
good approximations of PTm lu(/3m) as a function of u in 8. 

Let us first examine the method described in Steps 2 and 3. There we use 

{3;nY=1 to estimate a density. Then we estimate the following density: 

where T;;" is the bootstrap version of Tm: T;;" is the statistic Tm applied to 
(X;, . .. ,X~), i.i.d. with distribution function Fm, the empirical distribution 
associated to the sample (Xl,.'.' Xm). 

l\ext reasoning ignores two important problems: the nonparametric den­
sity estimation of PT;' Ibm (u) and the bootstrap approximation PT;' Ibm (u) ::::: 
PTmI6o(U). We suppose known the density PTml,6o(u), for all u in 8, where {30 
is the fixed parameter value used to generate the sample. Thus, the approxi-
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mation obtained from the DIRECT method is 

where /3m Tm(XI, ... , xm) is the statistic value in our sample (we might 
have the left side, and the method provides us the right side). Let us denote 
PTml,,(V) by f,,(v). We are assuming that 

Let us also assume that /30 is near /3m (i.e., /3m ~ (30)' then we must assume 
that 

f,,(v) = fv(u) for all u, v in e. 

The next proposition gives some properties of this family of densities fu 
defined in e and indexed by elements of e. Observe the relation between the 
last assumption and the symmetry around a location parameter. 

Proposition 1. Let u be a location parameter ( f,,(1)) = f,,+k(v + k)). Then 
the following are equivalent: 

(a)f,,(r) = fv(u) for all u,v in e. 
(b)f" is symmetric around u for all u in e. 
If. moreover, we assume 0 is in e then (a) and (b) are equivalent to 

(clfo(u) = f,,(O) for all u in e. 

As a summary, the next assumptions are needed in order to apply the 
DIRECT method proposed in Steps 2 and 3: 

a. T m I 3 is a random variable which takes values in e and verifies PTm 1i3 ( u) = 

PTml,,(j3) for all u, j3 in e. 

b. Tm is an estimator such that PTm l,,((3m) ~ PTml,,(/30) for all u, /30 in e, 
when /3m is obtained applying Tm to Xl,"" Xm i.i.d. with distribution 
P(X I (30)' 

c. The conditional density of the bootstrap estimator T:n I (3m is near the 
conditional density of Tm 1/30 (i.e., the bootstrap "works" in this case). 

d. The nonparametric estimation of the bootstrap estimator density is near 
its true density. 

e. The statistic T m is sufficient for /3. 
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Sufficient conditions for c can be found in Bickel and Freedman (1981). 
There are several references about asymptotic properties of nonparametric 
estimation in Silverman (1986). Proposition 1 gives a sufficient condition for a: 
to have a location parameter and a symmetric density around it. Assumption 
b is more difficult to be verified. 

\\le examine now our second proposal to estimate the function PTml;3(~m), f3 

in 8. In Steps 2' and 3', observations {Q(~;.,i, ~m = )}f=l are used to estimate 
the underlying density function: P Q(T;,,;3mll;3m (u). 

As before, we clear away the problems derived from the density estimation 
and the bootstrap approximation. We can consider for theoretical reasoning 
that the estimator of PQ(T;',!3mll!3m (u) agree with the density obtained if we 
substitute the bootstrap terms by the population terms: PQ(Tm,;3oll;3o(U). Since 
Q is a pivotal quantity, this density is equal to PQ(T m,;3ll;3 for all f3 in 8. This 
is just the density we are looking for in Step 2'. 

Then. the following assumptions are needed to apply the general method: 

a. Q(Tm • 3) is a pivotal quantity. 

b'. The bootstrap "works" in the following sense: PQ(T;',;3mlliJm ~ PQ(Tm,;3oll;3o' 

c . \Ye can obtain a good estimation of the density PQ(T;',;3mll!3m by nonpara­
metric methods. 

d'. The statistic Tm is sufficient for $. 

To apply DIRECT method in the location parameter case we need assume 
symmetry around 13 (by Proposition 1, hypothesis a is equivalent to symmetry). 
The PI\'OTAL method does not need symmetric distributions. In this sense we 
can say that the general method is theoretically more appropriate than the 
first proposal in the location problem. 

To finish this section, we will see in a particular. case the. relationship be­
tween the two density estimators proposed. Let f D and f p the estimated 
densities by DIRECT and PIVOTAL procedures, respectively. 

Proposition 2. Let f3 a location parameter. For kernel estimators of the den­
sity. we have 

jD(U) = jp(2~m - u) for all u in 8. 

jp(u) = jD(2~m - u) for all u in 8. 

lHoreover, if one estimator is symmetric around f3m then both estimators are 
the same. 
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4. SIMULATION STUDY 

In the present simulation study we evaluate the two proposed methods. The 
involved density estimations have been constructed using kernel estimators. 
\Ve have used CURVDAT routines (see STATCOM, 1990). The bandwith 
selection came from plug-in method. The kernels orders were 2 and 6. The 
results were very similar using both orders, so we will only refer to the first 
one. Numerical integration was evaluated by Simpson method. 

\Ve work with a location parameter (3. The Tn statistics used through this 
section are sufficient statistics in each case. We assume a certain likelihood 
for the data: X rv N((3,(j),(j = 1, or X - (3 + 1/)" rv Exp()..),).. = 1. In the 
normal case we take out data from normal distributions with the same mean 
and standard deviation (j = .8(.05)1.2. The values (j = .6, .7, 1.3, 1.4 were also 
examined. In the shifted exponential case, we draw data with the same mean 
as in the nominal model and)" = .96( .01 )1.04. We adjust the simulated cases 
to the required hypotheses as much as possible. 

The range of models is different in the normal and the exponential cases 
because in the second one the probability is very concentrated in the right 
neighborhood of the point (3 - 1/).., so slight changes in ).. lead to significant 
variations in the probability mass distribution. 

Two sample sizes are used: n = 40 and n = 100. The first subsample 
size m is taken in the following \\lay: with n = 40, m = 0,10,20,30,40, with 
n = 100. m = 0,20,40,60,80,100. The number of bootstrap replications of 
the first subsample is B = 400 when n = 40, and B = 1000 when n = 100. 
Finally. 200 replications of each case have been made. The values we will show 
are the mean values for all replications. 

Our interest is concentrated in the Ll distance between two posterior densi­
ties of 3: the first one is obtained under the supposed likelihood using DIRECT 

and/or PIVOTAL methods, and the second one is obtained using a flat prior 
and the true likelihood. \\'e hope this two posterior densities are close if (j = 1 
or ).. = 1 and, in any other case, their distances decrease as m increases. 

In the normal case we use the sample mean as statistic Tn. It is a sufficient 
statistic. Moreover, the central limit theorem guarantees that the bootstrap 
,,"orks in this case. In Table 1 we can see the results for (j = 1 (i.e., the 
nominal model is the true model). We build the prior distribution of location 
(3 by the two methods given in Section 2: DIRECT and PIVOTAL. No significant 
differences are found between them. This is true also for all the considered 
values of (j. Then, from now on we only show the outcomes for the PIVOTAL 

method in the normal case. 
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DIRECT method PIVOTAL method 
Subsampling: RANDOM NON-RANDOM RANDOM NON-RANDOM 

m = 10 .13614336 .06800597 .14108823 .06178522 
n = 40 20 .11760730 .07819342 .12468031 .07903041 

30 .11991236 .09990099 .11858867 .09867791 
40 .11581332 .11274376 .11637762 .11227307 

m = 20 .09569074 .04334227 .09397230 .03731273 
n = 100 40 .09182197 .04977523 .08714055 .04951791 

60 .08614807 .06298065 .08339045 .05985488 
80 .08380556 .07173784 .08055644 .07310174 

100 .08096730 .08213384 .07820505 .07991870 

Table 1: Standard normal distribution: L1 distances between posterior built 
u'ith a fiat prior and the posteriors obtained by the proposed methods. For 
m = 0 this distance is always O. 

Always with a = L we examine before the RANDOM way to choose the first 
subs ample. The proposed ways to build the prior lead to posteriors that are 
not very far from the true posterior in L1 sense. Moreover the results are quite 
uniform in m (approximately .12 if n = 40 and .09 if n = 100). 

The \'o\' -RAKDOM way of drawing the first subsample gives better results. 
For n = 40 and m = 10 (resp., n = 100 and m = 20) the L1 distances are 
reduced to .6 (resp., .04). The L1 distances increase with m and they are even 
smaller than the obtained with RAKDOM selection. 

Let us leave the true model (a = 1). In Figures 1,2 and 3 we can see 
a summary of outcomes for n = 100 and a = .8(.05)1.2. The cases for a = 
.6 .. 7.1.3, 1.4 have also been carried out. The results for n = 40 are essentially 
similar. but the distance between true and supposed a should be larger with 
n = 100 to observe the advantages of a specific value of m. For instance, if 
a = .9 m = n is better than m = 0 for n = 100. If n = 40 this is false and 
a = .85 is needed to observe m = n beat m = O. 

For the RANDOMLY selected subsample (see Figure 1) the most important 
conclusions of the experiment are the following: pure bootstrap procedure 
(m = n) is uniformly better than mixtures (0 < m < n); the L1 distance 
to the true posterior is constant in a for pure bootstrap; for n = 100 when 
la - 11 ~ .1 pure bootstrap (m = n) is better than flat prior (m = 0); the 
non-extreme cases (0 < m < n) are also better than m = 0 for some a. For 
instance. for n = 100 the value m = 60 is better for a ~ .85 or a ~ 1.2, and 
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m = 20 is better for a :S .6 (this last result is not included in Figure 1). 

The results improve if we use a NON-RANDOMLY selected first subsample 
(see Figure 2). The non-extreme cases (0 < n < m) are better than pure 
bootstrap (m = n) for values of a near 1, the true value. The smaller m is, the 
better results for these values of a are. The opposite happens when a is far 
from 1: big m are better. We can say that NON-RANDOM selection is better 
than RANDOM for all m (of course, 0 < m < n) and for all a. 

In Figures 2.b and 2.c we can see Ll distance as a function of m. Each 
curve corresponds to a value of a. For a < 1 we have increasing functions of m 
(a near 1) and decreasing functions of m (a far from 1). If a > 1 the functions 
have a minimum for some value of m. This optimum value of m is bigger if a 
is farther from 1. Then if the data are farther from the supposed likelihood we 
need a bigger first subsample size to improve the results. The Figures 1. band 
1. c show analogous functions in the RANDOM first subsample case. There, all 
functions han' their minimum in m = n (pure bootstrap) or m = O. 

The capability to detect deviation from the nominal model is other use­
ful utility of the methodology proposed here. Vie can calculate the distance 
between the generated posteriors and the obtained posteriors if we take the 
nominal likelihood, the whole sample and a fiat prior. These distances will be 
different for different true models and it is hopped that the more different the 
models are the bigger the distances are. 

Only known elements are involved in these calculations. It is possible to 
reproduce them from the observed data and from simulated data under the 
nominal model. Two functions of m are then obtained and their comparison 
may help to decide if the proposed model is appropriate to the data. The 
really different profiles of LI distance as a function of m for several values 
of parameter a are shown in Figure 3. We can see that both RANDOM and 
l\O\,-RANDO~1 selection detect well the cases with a a far from 1. The values 
of a > 1 are better detected. 

In the shifted exponential case we use the estimator Tn = mini Xi + 1/ Aa 
(>.0 is the supposed value for A and will be 1 in our study). The nonparametric 
bootstrap does not reproduce the density of Tn. It is known that this is an 
example of bootstrap failure (see Efron, 1993, page 81). This is the reason 
why a parametric bootstrap was used. The value of j3 was estimated assuming 
A = Aa and then several subsamples of size m were drawn under the model 
Xi "-' Exp(>.o) - 1/ Aa + $m. A bootstrap value $:n was obtained for each new 
subsample. 

Only PIVOTAL procedure is considered because the hard asymmetry of this 
distribution provokes that the likelihood function and the bootstrap prior built 
by DIRECT method have not supports intersection. 
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The results are less satisfactory than in the normal case. For A > 1, the L1 
distances between the true posteriors (with flat prior) and the one obtained 
using bootstrap are almost constant for 0 :::; m :::; n. Slight improvements 
for m > 0 are found if A < 1. The advantage for m > 0 is clearer in the 
NON-RANDOM selection case. There, m = 10 (resp., m = 20) is recommended 
for n = 40 (resp., n = 100). In Figure 4 are shown the L1 distance values 
for n = 100 and NON-RANDOM selection. The detection of missespecifications 
performs also badly in the exponential case. 

The main reason for this performance in the exponential case is the next 
one: the statistic Tn = mini Xi + 1/ AD, is not appropriated for A =I AD. The 
differences between the densities of mini Xi + 1/ AD and mini Xi + 1/ A are very 
important between 1/ AD and 1/ A and the probability is highly concentrated 
there. But this is the best statistic we can use if we assume the right model is 
for A = AD and we do not know in which sense the data are far from it. 

'Ye ha\'e shown two examples of performance of the proposed techniques. 
In the first one (normal distributions) the results are highly satisfactory. The 
e,rponcntial case is not so satisfactory because only slight improvements are 
achiewd using bootstrap. In both cases the supremacy of NON-RANDOM se­
lection for the first subsample had been stated. 

5. APPENDIX 

Proof of Proposition 1,' 

(b) =} (a): 

The second equality is true because the symmetry and the third one because 
\Ye ha\'e a location parameter. 

(a) =} (b): 
fu(u - v) = fu-v(u) = fu(u + v) 

The first equality follows due to assumption (a) and the second one because 
\Ye have a location parameter. 

If 0 is in 8: 

(a) =} (c): obvious. 

(c) =} (a): 
fv(u) = fv-u(O) = fo(v - u) = fu(v) 

The first and last equalities are true because u is a location parameter, and 
the central equality is obtained using the assumption (c) .• 
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Proof of Proposition 2: 

The kernel estimator of P(T,7, I ~m) given by the DIRECT method is 

The density estimator provided by the PIVOTAL method is 

what is calculated in the points with the pattern v = x - u, with x = /3m, 
giving the following function of u: 

Therefore, 
.iD(U) = jp(2~", - u) for all u in 8, 

jp(u) = jD(2~m - u) for all u in 8. 

Moreover, if we assume .iD(U) is symmetric respect to ~"" then 

jD(11) = .iD(~m + (11 - ~",)) = .iD(~'" - (u - ~m)) = 

= .iD(2~", - 11) = .ip(u) fQr all 11 in 8, 
A A 

and similaTly if fp(11) is symmetric respect to /3", .• 
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Figure 1: l\'ormal case, n = lOO, PIVOTAL method, RANDOM selection. 

(a) L1 distance between built posteriors (assuming a = 1 and using 
different sizes rn for the first subsample) and true posterior (using 
true a and fiat prior) versus true values of a. 
m = 0: ; m = 20: - - -; rn = 60: ..... ; rn = 100: 

(b) L1 distances versus size rn, for different values of a :::; 1. 
a = 1.0: (starting at 0); a = .95: -. -. -; a = .90: ..... ; 
a = .85: - - -; a = .80: (starting at .214). 
(c) L1 distances versus size rn, for different values of a ~ 1. 
a = 1.0: (starting at 0); a = 1.05: -. - . -; a = 1.10: 
..... ; a = 1.15: - - -; a = 1.20: (starting at .173). 
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figure 2: Sormal casE. n = 100, PIVOTAL method, NON-RANDOM selection. 

(a) L1 distance between built posteriors (assuming er = 1 and using 
different sizes m for the first subsample) and true posterior (using 
true er and flat prior) versus true values of er. 
n? = 0: ; m = 20: - - -; m = 60: ..... ; m = 100: 

(b) L1 distances versus size m, for different values of er ~ 1. 
er = l.0: (starting at 0); er = .95: -. -. -; er = .90: ..... ; 
er = .85: - - -; er = .80: (starting at .214). 
(c) L1 distances versus size m, for different values of er ~ 1. 
er = 1.0: (starting at 0); er = 1.05: -. - . -; er = 1.10: 
..... ; er = l.15: - - -; er = l.20: (starting at .173). 
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Figure 3: J\'ormal case. n = 100, PIVOTAL method. 

(a) RAl\'DO~1 selection and different values of (7 ::; 1: L1 distance 
between built posteriors (assuming (7 = 1 and using different sizes 
m for the first subsample) and false posterior (using (7 = 1, the 
u'holc sample and fiat prior) versus size m. 
(7 = 1.0: (finishing at .078); (7 = .95: - . - . -; (7 = .90: 

(7 = .85: - -; (7 = .80: (finishing at .170). 
(b) RAI'·mo~,! selection and different values of (7 ~ 1: L1 distance 
between buil: posteriors (assuming (7 = 1 and using different sizes 
m for the first subsample) and false posterior (using (7 = 1, the 
whole sample and fiat prior) versus size m. 
(7 = 1.0: (finishing at .078); (7 = 1.05: _. - . -; (7 = 1.10: 
••••• ; (7 = 1.15: - - -; (7 = 1.20: (finishing at .203). 
(c) and (d) are equivalent to (a) and (b) for NON-RANDOM selec­
tion. 
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Figure 4: Erponential case. 11 = 100, PIVOTAL method, NON-RANDOM selection. 

(a) L1 distance behreen built posteriors (assuming,X = 1 and using 
different sizes m for the first subsample) and true posterior (using 
true ,X and fiat prior) versus true values of 'x. 
m = 0: ---; 711=20: - - -; m = 60: ..... ; m = 100: 

(b) L1 distances versus size m, for different values of ,x ~ l. 
,x = 1.0: (starting at O);'x = .99: -. _. -; ,x = .98: ..... ; 
,x = .97: - - -;'x = .96: (starling at 1.95). 
(c) L1 distances versus size m, for different values of,X 2: l. 
,x = 1.00: (starting at 0); ,x = 1.01: -. - . -; ,x = 1.02: 
..... ; ,x = 1.03: - - -;'x = 1.04: (starting at 1.95). 
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