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1. INTRODUCTION 

The development of statistical inferences on structural change points has been of major 

concern in the statistic and econometric literature. Among survey papers on this topic 

we mention Zacks (1983), Wolfe and Schechtman (1984), Deshayes and Picard (1986), 

Huskova and Sen (1989), Krishnaiah and Miao (1988), Csorgo and Horvath (1988), Per­

ron (1993) and Stock (1997). There are also several monographs, like Broemeling (1982), 

Broemeling and Tsurumi (1986), Hackl (1989), Hackl and Westlund (1989, 91), and 

Brodsy and Darkhhansky (1994). The problem is to test whether or not a change in 

the parameters of the model has occurred, and if so, to estimate when and by how much. 

Much has been v.Titten about testing for structural breaks, but comparatively little 

is known about estimation of the location point. Hinkley (1971), Bhattacharya (1987) 

and Yao (1987) consider the maximum likelihood estimation of the break date for i.i.d. 

variables with a simple shift, Picard (1985) for a Gaussian autoregressive process, and 

Feder (1975) for segmented regressions. Bai (1994) estimates the unknown change point 

by the method of least squares in a linear process. But these classical estimators are 

sensitive to deviations from the model distribution, to outlying observations, and to model 

misspecifications, which can produce disastrous effects on the estimates. Departures from 

the assumed model can be solved, in part, estimating nonparametrically the underlying 

regression model, as proposed by Carlstein (1988), Dumbgen (1991), Chu and Wu (1994), 

and Delgado and Hidalgo (1997) among others. Alternatively, robust methods, which 

are insensitive to small deviations from the assumptions, can also be applied. Bai (1995) 

proposes the use of LAD estimation, which has good properties in terms of robustness 

(qualitative robustness, B-robustness and maximum breakdown point). However, this 

estimator is not robust in the presence of leverage, and is very inefficient under normality. 

Antoch and Huskova (1997) propose an M-estimator for the location of a change in the 

mean of LLd. variables, obtaining the best trade-off between efficiency under the true 

model and robustness, but with breakdown zero if we consider stochastic regressors. 

This paper generalizes the existing literature on the estimation in three aspects. First, 

we study M-estimation of the break points in the context of regression models with struc­

tural change, obtaining the asymptotic behavior for the estimators of the location and size 

of the break date, such as both pre-break and post-break parameters, which allows per-
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forming inferences. The above mentioned estimators can be considered as particular cases 

of this one. Second, most of the existing estimation procedures are constructed based on 

the i.i.d. assumption which, unfortunately, often does not hold in real world analyses. 

Thus, we introduce general conditions on serially dependence. At last, we discuss the 

problem of robust estimation under leverage, studying the extension to T-estimators, 

considered as a particular class of globally robust estimators, with maximum breakdown 

point. 

The rest of the paper is organized as follows. Section 2 introduces the model and regu­

larity conditions. The asymptotic properties of the M-estimators are studied in Section 3, 

under two assumptions about the size of the jump, fixed and converging to zero with the 

sample size. In Section 4, we discuss the extension to T-estimators, which are robust in 

the presence of leverage. Section 5 shows the results of Monte Carlo experiments, which 

illustrates the performance of the asymptotic approximations in practice. 

2. MODEL AND ASSUMPTIONS 

Let {Zt = (yt, X t ) , t 1, ... , T} be a sample of a R x RP -valued stochastic process de­

fined on the probability space (fl, F, P). We are interested in estimating the parameter 

vector ~o ({3~0,/:1~0, TO)' where {3jO E 0 C RP, j = 1,2, {31O =/:. {320' and TO E IT c (0,1), 

defined by means of the moment condition 

where 

~O =Arg min Lim ST (~) , 
~Ee2 xIT T--+oo 

ST (~) 

SIT ({3, T) 

SIT ({3I' T) + S2T ({32. T) , 
[TT] 

~ L p(yt - X;(3), 
t=l 

1 T 
T L p(yt - X;(3). 

t=[TT]+l 

(1) 

(2) 

(3) 

(4) 

[.] means the nearest integer, and p : R --+ R is a function which identifies the parameters 

of the model. That is, each p function defines a particular linear predictor of yt given 

Xt. with changing parameters at a given moment of time TO. For instance, p(u) = u2 

defines the least squares predictor, p (u) = lul the least absolute deviation predictor, and 
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P (u) = ~u2 I ([u[ ~ c) + [u[ I ([u[ > c) is the Huber predictor, a compromise between the 

two above, where I (A) is the indicator function of the event A, and c is a suitable chosen 

constant. Different p functions may define different parameter values, except in certain 

circumstances. For instance, when the conditional distribution of Yt given X t is symmetric 

with respect to its mean, which is a linear combination of the X t with changing parameters 

at Xt, least squares, least absolute deviations and Huber predictors are identical. However, 

the resulting estimators will have very different statistical properties. 

Natural estimates of ~o are defined as the sample analogues of (1), 

~T =Arg min ST (~) , 
~Ee2xn 

and can be obtained by means of an iterative procedure, using the fact that 

where 

13jT (T) =Argmin SjT (/3,T), \IT E (0,1), j = 1,2 
(3Ee 

which are estimating 

/3j(T)=Argmin Lim SjT(/3,T), j=1,2 
(3Ee T~oo 

(5) 

(6) 

Thus, 13jT = 13jT (TT)' for j = 1,2 and the size of the jump AO = /310 - /320 is estimated 

by ~T = 13IT -132T' 

Remark 1 In order to get a scale-invariant estimator, we must consider the objective 

function (2)-(4), with SjT W replaced by 

1 [Tr) (Yi - XI/3) 
TLP 0- ' 

t=l T 

1 ~ (Yi - XI/3) 
T 6 P , , 

t=[Tr)+l O"T 

where o-T is the scale estimate of the error, which can be obtained either separately or 

simuitaneously with ~T' These estimators are called M-estimates with general scale. A 

consistent and robust estimator of the scale can be obtained from a preliminary estimator 

~T of ~o· For instance, the median absolute deviations, defined as 

1 [TTT) _ 1 T .. 

o-T =Argamin T L IIYt - X:/3ITI- 0"1 + T L IIYi - X:/32TI- cri, 
t=l t=[TTT)+ I 
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assuming that ~o is identified by p (u) = lul. In cases where we want to allow different 

scales for each subsample, it can be defined 

T 

X:,glTI- eTll + ~ L 11ft 
t=[TTrJ+l 

and aT = aITI (t ::; [TTT]) + a2T (t > [TTTD. By Lemma 5.1 of Yohai (1985), it can be 

shown that, with a consistent estimator of the scale, the asymptotic behavior of the esti­

mates are equivalent with the scale estimated or assumed known. For simplicity henceforth, 

we will consider the objective function composed by (3) and (4) instead of the previous 

one. 

The properties of the estimators will be derived assuming' Near Epoch Dependence'. 

This class of dependence goes back to Ibramigov (1962), and has been formalized in 

different ways by Billingsley (1968), McLeisch (1975), Bierens (1981), Wooldridge and 

White (1988), Andrews (1988), and Potscher and Prucha (1991), among others. In order 

to obtain the asymptotic properties of the estimators, it is necessary to make the following 

assumptions: 

A.I Assumptions on p (.) 

A.I.I Let pO be a convex real function twice continuously differentiable in R, with 

first derivative 1jJ, such that 

Lim p(x) = 00. 
x-->±oo 

A.I.2 1jJ(.) is a bounded and strictly negative (positive) function for large negative 

(positive) values of its argument; ;P(u) d1jJ(u)jdu. 

A.2 Model assumptions. 

Define the sequence {1]t (8) = 1jJ (Ut + 81 X t ) X" Vt ::; T} VB E 0, and 1], = 1], (8) 10=0, 

'it ::; T. 

A.2.I 0 C RP, is a convex set. 

A.2.2 TO E IT C (0,1). 
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A.2.3 {Zt = (yt, X t )' : t ~ T} , is a random vector with domain in Z, LO N ED 

on a strong mixing base {Wt : t = ",,0,1, ",}, where Z is a Borel subset of RP+!, 

Let Ft(zj be the distribution function of Zt and F';'z) (I/T) Ei Ft(z); then 

{ F';'Z) , T 2: I} is tight on Z, 

A.2.4 For some r > 2, {"7t: t ~ T} is a random vector sequence of mean zero, 

L2 - N ED of size -1/2 on a strong mixing base {Wt : t = .. ,,0,1, ".} of size 

-r/ (r - 2) and SUPt5;T E l"7tl r < 00, 

A.2.5 "7t (B) is Borel measUIable in Zt VB E e, and O"7t (B) /oB', that is continuous 

in (Zt, B) E Z x e by A.I.l, satisfy that, 

Sup E [sup 11 O"7t ~B) 11

1

+°] < 00, 
t5;T !1E8 oB 

for some £ > 0 : 
(TT] 

A.2.6 The Lim + E E [O"7t (B) /oe'] exists uniformly in (B, T) E e x IT and 
T-+oo t=:1 

equals TM (B) V(B,T) E e x IT, where 

T 

M (B) f!..r:;, ~ ~ E [o~B\e)] , (7) 

a positive definite matrix. For notational convenience, define M = M (e) 18=:0. 

A.2.7 VT E (0,1) \ve assume that: 

[ 

1 [TT] 1 
f!..r:;, VaT JT ~ "7t = T S, 

where 

SLim Var [ ~ t "7t] 
T-+oo yT t=l 

(8) 

is a finite and positive P x P matrix. 

Assumptions A.l are standard in robust estimation. The differentiability of p allow us 

to express (6) by the first order conditions, 
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estimators of 

{~Ee 
IT,.] 

0}-{{31(T)} / Lim I: "1t ({3o - f3) T-+oo t=1 

{~Ee 
T 

{{32(T)} = / Lim I: 'I< (~O - ~) ~ 0 } , T-+oo 
t=[T'1"J+1 

Thus, {~1T(T)} and {~2T(T)} define the subsets such that, for fixed T, the objective 

function is minimized. The convexity of p (.) implies the convexity of these subsets. 

Under A.l, the subsets of e, {{31(T)} and {{32(T)}, are non empty, convex and compact. 

If p (-) is strictly convex, these sets shrinks to an unique point (Huber, 1964). But, this 

property, although would simplify the problem, rules out estimators like Hubers, which 

are of interest. The same occurs with the continuous assumption of the second derivative 

of p (-) , that we make in A.I.I. However, in order to solve this, we obtain, in Proposition 

1 below, an uniformly convergent smoothed version of the Huber score function. 

In order to derive the asymptotic properties of estimator parameters, we suppose con­

vexity of the parametric space, by assumptions A.2.1 and A.2.2, that also consider the 

shift location far away of the interval extremes. A.2.3 and A.2.4 are standard of weak 

dependence for this case of robust regression, and A.2.5, A.2.6 and A.2.7 are covariance 

stationary conditions. 

Proposition 1 Given the Huber J/!-function, 

we obtain the following sequence of twice differentiable functions, 

c 

t 

hT (t) = t, 

t+ 

-c 

( TI' 2 c 1) 
T C -:2 + 8T" , 

t>c+ 

c - 2i" ::; t ::; c + 2i,. 
1 t 1< c - 2i,. 

-c < t < -c + _1_ - - 2T" 

t < -c - 2i" 
SlLch that hT (t) converges to J/! (t) uniformly in t, for p > 0 and fixed c. 
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Thus, the asymptotic results derived for smooth 1/1 functions can apply as in Theorem 2 

of Bloomfield and Steiger (1983) for LAD estimation. This is an alternative way to solve 

the problem of non-differentiability of the objective function, which have been already 

analyzed by others, such as Jureckova (1996), who considers this type of functions as a 

sum of three functions with different degrees of smoothing, and studies the asymptotic 

behavior of each one. The proposition can be extended to another non differentiable 

functionals. 

3. ASYMPTOTIC PROPERTIES 

In order to establish the asymptotic distribution of the estimators, firstly we need to 

derive their rate of consistency. This is obtained in Theorem 1 below. 

Theorem 1 Assume A.l and A.2, then 

(l3jT - (3jo) Op (~), j = 1,2, 

(TT - TO) = Op (T 11~0112 ) , (9) 

where Ilxll represents the Euclidean norm of the vector x. 

To obtain the previous results, we analyze the global behavior of the objective function 

ST (~) over the whole parameter space. To this end observe that the parameter estimator 

(5) can be also defined as 

(10) 

and we want to prove that VE > 0, :lC > 0 such that 

Toll> C 2)} < 3E. 
TllAol1 

(11) 

The upper bound of 3E is only for notational convenience and, without loss of generality, 

it corresponds to one E: for each of the three sets. By definition of ~T in (10), (~T ) -
ST (~o) ::::; 0, so the left side of (11) is upper bounded by 

Pr { Inf (ST (~) - ST (~o)) < o} = Pr { Sup (ST (~o) ST (~)) < o} , 
AuBuD AuBuD 
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where the sets A, Band D are defined as follows 

A (12) 

B (13) 

D (14) 

Thus, Theorem 1 is a consequence of the following result. 

Theorem 2 Under A.1 and A.2, Vc > 0, :le > 0 such that 

Pr { Sup (ST (~o) - ST (0) < o} < 3c, 
AuBuD 

where A, Band D are defined in (12), (13) and (14) respectively. 

The estimators of the regression coefficients are, as usual, vT-consistent. For the rate 

of convergence of the structural break point estimator, we can consider two interesting 

cases of AO = (/310 - /320), when AO is constant and when it depends on the sample size, 

AO = AT with IIATII ---+ 0, but T IIATI12 ---+ 00, which is satisfied trivially for the constant 

AO case. From (9), we observe that the rate of convergence of TT is Op (T-I) when AO 

is fixed, and Op (T- I IIATII-2) otherwise. Finally, we can obtain as a direct result, the 

vT-consistency of the jump size estimator ).T = PIT - P2T . 

As viewed before, Theorem 2 describes the global behavior of ST (/31' /32' T) in the 

whole set 8 2 x IT. Next, the limiting distribution is obtained by studying the local 

behavior of this objective function in a compact set determined by Theorem 2. Thus, 

/3j, j = 1,2, is constrained to be in a T- I / 2 neighborhood of the true parameters values, 

/3jO, j = 1,2 respectively, and a similar comment applies to the estimated shift point, in a 

T- I neighborhood of TO. In order to derive the asymptotic distribution, it is necessary to 

obtain the rate of convergence previously, because the argmin functional, used to obtain 

the location estimate, is not continuous when the minimized function is defined in an 

unbounded set. 

Therefore, it is convenient to reparametrize the objective function in the following way: 
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for v = (v~, v~, V3)' E VN , the argument of this new function, such that 

VN {v: IVjl < N, j = 1,2,3}, 

is a compact set defined for every N > O. Thus, 

v· 
f3 jO + Jr j = 1,2, 

T TO + v3 ~, where P>. 0 (11)'011-2
) ; (15) 

so that considering (15), we have P>'T = 0 (11)'TII-2) for >'0 = >'T decreasing case, and 

P>. = 1 for constant >'0. 

The weak convergence results for the estimators follows taking into account that: 

and 

( " " ')' A . A ( ) v1,v2,V3 = rgm1n TV, 
VEVN 

defined in a compact set. This is obtained in Theorem 3 bellow. 

Theorem 3 Assume Ai and A2, then, 

(i) 

(16) 

where" .:!.. " represents convergence in distribution, j'v[ and S are defined in (7) and 

(8) respectively, and B (-) is a p-vector of independent Brownian motions defined in 

[0, 1J. 

(ii) Assuming >'0 constant, 

V3 :::::}Argwmax { ~S1/2W* (w) - ~>'~M (>'0) >'0 Iwl}, (17) 

where M (0) is defined by (7) and W* (-) represents a process on Z, the integer set, 

such that: 

W*(w) 

o w=O 
-1 

I: ''It w = -1,-2, ... 
t=v 

v 
I: ''It w 1, 2, .... 
t=1 
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(Hi) Assuming,\o = '\T -+ 0 with T II'\TII2 -+ 00, 

(,\1 M,\ )2 {I } 
(;~S,\:) V3 =>Argwmax W (w) - '2lwl , (18) 

where W (.) represents an independent two-sided standard Brownian motion defined 

in R. 

(iv) Finally, we obtain that (Vi,V~)' and V3 are asymptotically independent both, when 

'\0 is fixed or converging to zero. 

The limiting distribution for the estimated regression parameters is standard, and is 

the same as if the true change point were known. For the shift estimator, we only obtain 

a free-distribution under the assumption of '\0 decreasing with T. A two sided Brownian 

motion is represented by 

W(w) 
{ 

Wl (-w), w < 0 }, 

W2 (w) , W ~ 0 

with {Wl (t) : t E [0, oo)} and {W2 (t) : t E [0, oo)} being independent standard Brownian 

processes. The explicit form of distribution (18) is given by: 

f (t)=-+-vte 'S" +-e<I> --vt - -t+- <I> --vt _ 1 1 17 _It 3 t ( 3 17) (1 5) ( 117) 
2 v'2T. 2 2 2 2 2' 

(19) 

for t > O. See, e.g., Bai (1994) or Antoch and Huskova (1997), and references in there. 

It can be easily seen, in the local change case, that the asymptotic variance of the shift 

estimators depends on the ratio 

(~M'\T)2 
('\~S'\T ) 

('\~M (F, 'ljJ)'\T )2 
('\~S(F,'ljJ),\T) , 

i.e., depends on the distribution F and the score function 'ljJ. The larger is the ratio, the 

smaller is the asymptotic variance. Thus, the smallest variance corresponds to 'ljJ (x; (3) = 
Bf}'(;1jBe, x E RP, (3 E 0, and f (.; (3) the density function of F (.; (J) . If this density 

were unknown, an estimator of the optimal score function could be developed and this 

estimator can be used as the proper score function. 

Corollary 1 Considering part (i) of Theorem 2 , it is possible to derive the asymptotic 

distribution of the jump size M-estimator: 

'\0) ~ (B (TO) - T oB(l)) , 
TO (1 - TO) 

defined as the genemlized Bessel tied-down distribution of order p. 

11 

(20) 



Corollary 2 The following particular cases are worth mentioning: 

(i) The regressors {Xt : t ~ T} are i.i.d. Then we obtain that: 

T 

M f!..r:! ~ LE [,ptXtX:] = E [,p(Ut)] E[XtXn, 
t=1 

S = f!..r:! Var [Jr t, 1,&t Xt ] E [1,&2 (Ut)] E[XtX:J, 

and therefore, 

where D = E [XtXfl. 

(21) 

(ii) The regressors {Xt : t ~ T} are functions of time trends. Let be X t = g (tiT), 

where g is a bounded vector valued-function defined on (0,1) and is continuously differen­

tiable. Then 
T T 

M = f!..r:! ~ LE [,pt XtX:] = E [,p(Ut)] f!..r:!~ L (g(tIT)g(tIT)') , 
t=1 t=1 

S = Lim Var [ ~ t 1,&tXt] = E [1,&2 (ud] Lim T1 t (g (tiT) g (tiT)') , 
T-oo vT t=1 T-oo t=1 

and therefore, 

(22) 

T 
where D = Lim + L: (g (tiT) g (tiT)') . 

T-oo t=1 

Using the expressions (21) and (22) in (16) and (20) we can derive the limit distribution 

of the regressor coefficients and the jump size, for both cases (i) and (ii) respectively. 

Corollary 3 We consider the limit distribution of the shift estimator for the two cases 

of {Xt : t ~ T}, i.i.d. and function trends. Assuming that the jump size decreases with 

T, we obtain that, 

(i) For the i.i.d. case we have, 

(,x;'MAT)2 _ (A;'DAT) E [,p (ut)r 

(A;'SAT) - E [1,&2 (Ut)] 

where D = E [XtXt ]. Therefore, 

(,x;'D,xT) T (TT - TO) '* E [~2 (Ut)! Argrnax {w (v) - 4 I v I}. 
E [1,& (Ut)] tI 
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(ii) For the trending case with the function g as in Corollary 2, we obtain that 

a result that cannot be derived directly by Theorem 2. The proof is given in Appendix 2. 

In order to make inferences about the parameters of the model, we need to estimate 

the asymptotic variance. In particular, M, defined in (7), can be consistently estimated 

by, 

where, 

1 [TT] • 

Tf L:: 1fJ (It 131T (fT)' Xt) XtX;, 
t=1 

1 T 

T _ Tf L:: ~ (It -132T (fT)' X t ) XtX:, 
t=[TfTJ+l 

and S, defined in (8), is consistently estimated by, 

(23) 

(24) 

(25) 

(26) 

such that, the estimation will depend on the serial dependence of the process. Thus, if 

{ TJt, t ?: 1} is a sequence of zero mean and uncorrelated random vectors, then: 

T 

S =Lim T1 " E(TJtTJ~), 
T-oo ~ 

t=l 

and, therefore, its estimator will be defined by 

where: 

1 [TTTJ 

SI = Tf L:: (1fJ(It-131T(fT)'Xt)Xt m lT (fT)) 
t=l 

x (1fJ (It -131T (TT)' Xt) X t mlT (TT))', 

1 T 

T _ TT L:: (1fJ (It 132T (fT)' X t ) X t - m2T (fT)) 
t=[TTTJ+l 

x (1fJ ( yt -132T (TT)' X t ) X t - m2T (TT) )' , 
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T 

T ~ TT L: 1jJ (Yt - P2T (TT)' X t ) X t • 

t=[TtTJ+l 

On the other hand, if {'lIt, t 2: I} is a zero mean and serially dependent random vectors, 

then 
00 00 

S=L:rv+ L:r~, 
v=O v=l 

where: 

and the estimator will be defined by 

where k (-) is a real-valued kernel and l (T) is a bandwidth parameter (possibly data­

dependent). This class of estimators corresponds to Parzens's (1957) class of kernel es­

timators of the spectral density matrix at frequency zero of the random vectors {1jJ(Yt 

,B~oXt)Xt, t ~ [Tro]} and {1jJ(Yt - ,B~oXdXt, t > [Tro]}. It be developed by Andrews 

(1990), who finds an asymptotically optimal choice of both bandwidth and kernel pa­

rameters, and applied by Andrews (1993) in tests for parameter instability under the 

same weak dependence conditions we are considering here. The consistency property is 

formalized in the following theorem. 
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Theorem 4 Assume A.l and A.2, then 

where if is defined in (23), (24) and (25), and S, in (26), (21) and (28), or in (26), (29) 

and (30), depending on the temporal structure of data generating process. 

4.- ON ESTIMATORS WITH BOUNDED INFLUENCE FUNCTION AND 

HIGH BREAKDOWN POINT 

The M-estimators discussed before protects against outlying yt, but cannot cope with 

leverage points, namely outliers in the factor space, which may have large influence on 

the fit. This could be a problem when we consider stochastic regressors, with a possible 

contaminated distribution. Therefore, is advisable to consider robust estimators under 

possible leverage points. 

The T-estimators, defined by Yohai and Zamar (1988), have the following properties: 

(a) they are qualitatively robust, (b) their breakdown-point is maximum in the presence 

of contamination in both axes, and (c) they are highly efficient for regression models with 

normal errors. Asymptotically, a T-estimator is equivalent to an M-estimator with a score 

function 'if; given by a weighted average of two 'if; functions, one corresponding to a very 

robust estimate and the other to a highly efficient estimate. The weights are auaptative 

and depend on the underlying error distribution. 

The T-estimators are defined by the minimization of a particular residual scale esti­

mate. Thus, considering the objective function 5T (~) in (2), define 

(31) 

(32) 

where for j 1,2, 5jT ({3, T) is the T-scale estimator pre-[TT] and post-[TT] respectively, 

and ST ({3, T) is the scale M-estimator defined by Huber (1981) such that, 
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l 

with b, a constant properly defined by: 

<I> represents the standard normal distribution. For the particular case P2(U) = u2 we 

obtain the sample standard deviation (least squares), and if PI = P2 we have Snj Jbsnj, 

the corresponding to the S-estimator (Davies, 1990). 

The parameter regression estimators ~T (r) (~:T (r) '~;T (r)), work out from the 

first order conditions. Then, for each r we obtain that, 

where the first derivatives are given by Proposition 17 in Appendix 2, considering '!f;i = P~, 

1,2, and 

with ;Pi (z) = z'!f;i (z) and Pi (z) 2Pi (z) -;Pi (z), for i 1,2. In order to obtain the 

asymptotic properties for this new estimators, we need to replace assumption A.l and A.2 

by B.l and B.2 below: 

B.l Let PI and P2 be two real functions satisfying the same properties of P in A.l and, 

additionally assume that, 

(i) Pi (0) = O. 

(ii) Pi (-u) = pdu) . 

(Hi) 0::; u ::; v implies Pi (u) ::; Pi (v). 

(iv) P is even and twice continuously differentiable. 

(v) Let a = sup Pi (u), then 0 < a < 00. There exist a constant m such that Pi (u) 

is constant for lul > m. 
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l 

(vi) If p(u) < a and 0 ::; u < v, then Pi (U) < Pi (V). 

for i = 1,2, and P2 also satisfies that, 

B.2 Assume that Zt = (yt, X t ) is an i.i.d. random vector distributed as Z = (Y, X) E 

RV+ 1, such that, 

F(Y,X) H(X)G(Y -{1~X), 

and it holds the following conditions: 

(34) 

(35) 

Assumption A.l is standard in the context of 7-estimators (see Yohai and Zamar 

(1988), Assumption 1), and, for the sake of presentation, we consider the i.i.d. case, 

without loss of generality. In the next theorem we obtain the asymptotic behavior for this 

type of estimators. 

Theorem 5 Under B.l and B.2, we obtain that Theorems 2 and 3 holds for the 7-estimatoTs, 

and the asymptotic distribution is given by (16), (17) and (18) such that 

M (AO) 

with 

Wo 

and 0"0 is defined by 

~o (:J WO~l (:J + ~2 (:J ' 
2EFo [P2 (~)] -EFo [~2 (~) (~)] 

EFo [~1 (:0) (:0)] 
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Finally the matrix M is given by M (AO) for AO = Op, and therefore, 

The previous theorem allows us to consider the T-estimator as an M-estimator type 

with a particular score function 'I/; = '1/;0' given by (36). 

6.- MONTE CARLO EXPERIMENTS 

In this section, simulations are performed in order to verify some theoretical properties 

of the change point estimator for a finite sample situation. First, we compare, in terms 

of bias and mean square error (MSE), the performance of the Least Squares (LS), Least 

Absolute Deviations (LAD) and Huber estimators under different distribution scenarios 

for the error term. We also compare the sample and asymptotic distribution of the location 

estimators, obtaining the proportion of times that the estimate is outside the asymptotic 

confidence intervals at different confidence levels. Computational costs have prevented us 

for including the T-estimators in this simulation study. Nevertheless, we perform a small 

exercise to illustrate Section 4, generating a model with structural change, and analyzing 

the sensitivity of the different location estimators in the presence of a solely outlier in 

both, OX and OY axes. 

6.1. Simulation results 

Data are generated according to the following model: 

Yi = 1 + X t + ATI(Tt > TO) + Ut, t = 1, ... ,T 

,,"here TO = 0.5, Xt ~ i.i.d.N (0, 1) and Ut ~ i.i.d.F (u), with F generated as an standard 

llormal, double exponential, t3, ts, 0.9N(0, 1) + O.lN(O, 9) and 0.75N(0, 1) + 0.25N(0, 9), 

which will be denoted by N90 and N75 respectively. The error term is standardized in 

order to get a variance equal to one in all the distribution cases. The size of the jump AT 

is considered decreasing with the sample size, at a rate such that T 11 AT 112 --; 00. Thus, 

for T = 100, 200 and 500, the value of AT = 2.1892, 2.0 and 1.79527 respectively (we 

fixed the value of AT = 2 for T = 200, and the other ones were obtained considering the 

dependence with T). For each type of distribution F (u), 5000 replications are performed 
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and the LS, LAD and Huber estimators are considered, in order to compare them under 

these different scenarios. The computed Huber estimator is scale-invariant, considering 

the MAD as the scale estimator, and the constant c, that defines the estimator, is equal to 

1.345, corresponding to the minimax version. The programs are written in FORTRAN90 

Double Precision, and the IMSL routines were used for the random number generation. 

I TABLES 1 AND 2 ABOUT HERE I 

Respect to the point estimation performance, the results are as expected in terms of 

:MSE. For the standard normal case, LS is the best estimator in all the cases of T. The 

same occurs for the LAD estimator under the double exponential dist.ribution. Under 

the mixed and t-distributions, the LS estimator performs comparatively rather badly, and 

the other ones are very similar. Huber estimator is better than LAD estimator for the 

distributions t5 and N90 in all cases of T, and the difference between them for the rest 

of the cases are not meaningful. 

Vole also report the proportion of times that the estimator is outside the asymptotic 

confidence intervals constructed from the asymptotic distribution (18), where the standard 

errors are estimated as indicated in Theorem 4. The asymptotic critical values Ca, are 

equal to 7.69, 11.035 and 19.78 for a 0.1, 0.05 and 0.01 respectively. Inspecting the 

tables 1 to 3, we can observe that LAD estimator underestimates the tail probabilities in 

all the distribution scenarios, and this problem is not be solved increasing the sample size. 

Otherwise, LS and Huber estimators approximate rather well the probabilities, obtaining 

a good result for the biggest sample size. In order to gain a bet.ter understanding about 

t he sample distribution of the break estimator in the whole range, not only in the tails, we 

estimated nonparamet.rically its density, considering a bandwidth a ~ T-l/5. Although 

not reported here, we obtained that the fit of the sample densities to the theoretical ones 

is quite good for all the estimators, and near the sample mean, it looks that the LAD 

estimators is better for the smaller sample sizes. However for T = 500 the behavior of all 

the estimators is very similar. 

Finally, it is worth mentioning that, in this simulation study, we have supposed that the 

jump size is decreasing with T, and we have compared the estimated probabilities with 

respect to the asymptotic distribution of the break estimator only for this case, which, as 

"we know, is free-distribution. However, it would be of interest to compare them with the 
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asymptotic distribution under the assumption of a jump size constant, as we can see in 

Bai (1994) for LAD estimator. In fact, he concludes that the approximation in this case 

is better than in the first one. 

Although not reported here, we also considered another possible designs, with the pos­

sibility of a change in the slope too. The results does not change in a significative way. 

6.2. Outlier sensitivity analysis 

This exercise has been performed in order to illustrate the sensitivity that particular 

break estimators has in presence of outliers in both, OY or OX axes. To this end, we 

generated a sample of the following model: 

t 1, ... ,T70 

t T70+1, ... ,T 

where Xt rv i.i.d.N (0, 0.1), Ut rv i.i.d.N (0,0.1), 70 0.5 and T = 30. Table 3 shows the 

sample data, which is drawn in Figure 1. 

I TABLE 3 AND FIGURE 1 ABOUT HERE I 

For illustrative purposes, as in Hampel (1986), we the point corresponding to 

t = 22, e.g., P = (2.84,22,0.06) , to H = (-0.80,22,0.08), an outlier in OY axis. Next, 

the same point was changed to P2 = (0,22,2.0), an outlier in OX axis or leverage point. 

For this three sample date, we estimate, with L5, LAD, Huber and 7-estimutors the 

break point TT and the regression parameters pre-[TTTl and 

ill Table 4. 

I TABLE 4 ABOUT HERE I 

. This is shown 

The results are as expected. In absence of outliers, all the estimators behaves identically, 

and the estimates of the break are situated in the true break point. In the presence of 

all outlying observation in the error term, PI, the L5 estimator results very sensitive, in 

such a way that the break estimator corresponds to t 22, the outlying observation. The 

same occurs in presenee of a leverage point, P2, which affects in the same way to all the 

estimators except the 7 -estimators, the only one which prevents against observations of 
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this nature. This can be observe clearly in Figures 2, 3 and 4, which draw the dependent 

variable and the fit respect the variable time in the three data cases. 

I FIGURES 2, 3 AND 4 ABOUT HERE I 
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APPENDIX 1: PROOF OF THEOREMS. 

In order to get more clarity in the proofs the subscript T of the estimators is omitted. 

Proof of Theorem 2. 

The proof of this theorem is based on Propositions 1 to 16, at the end of this proof, and 

will be made simultaneously for both cases of"\ (fixed and decreasing); we will distinguish 

only when needed. 

'We want to prove that 

Pr { Sup (ST (~o) ST (~» > a} < 36'. 
AUBUC 

(1) 

From the definition of ST (0, after some straightforward calculations, 

1 [TToJ 1 T 

ST (0 = T 2:: p (yt ,8~oXd + T 2:: p (yt - ,8;oXt ) 

t=1 t=[TToJ+l 
(2) 

1 [TToJ 1 T 

-T 2:: p(yt -,8~Xt) - T 2:: p(yt -,8;Xt) 
t=l t=[TToJ+l 

(3) 

where we have assumed, with no loss of generality, that T ::; TO (the T :? TO case is similar 

and can be proved by identical methods). 

Because by A.1.1, P is a twice continuously differentiable function, applying the Mean 

Value Theorem (MVT) up to the second term, we obtain that, 

1 [TTOJ 
(2) + (3) = - (,810 ,(1)' T 2:: 'rJt 

t=l 

1 1 [TTOJ 
-- (,810 ,8d T 2:: r,tC81 (,810 ,(1» (,810 - ,(1) 

2 t=1 

,(2)' 2:.. 
T 

(,820 2:: 'rJt T 
t=[TToJ+l 

1 
,(2)' 2:.. 

T 
-- (,820 2:: r, tC 82 (,820 ,(2»)(,820 - ,(2) 2 T 

t=[TToJ+l 

where 0 < 81,82 < I, r,t (e) = a'rJt (e) / ae', and we have used that [TT] = k and [TTO] ko, 

for notational convenience. 
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Next, adding and subtracting ~ p(Ut) in (4) we obtain that 

(5) 
t=k+l 

1 1 ko 

+2" (tJlO - (31)' L ~t (83 ({31O (31)) ({31O {3l) 
t=k+l 

(6) 

1 ko 

- ({31O - (32)' T L "It 
t=k+l 

1 1 ko 

-"2 ({31O (32)' T L ~t (84 ({31O (32)) ({310 (32) , 
t=k+l 

by the MVT up the second term, where 0 < 83 ,84 < 1. Observe that ({31O - (32) = 

).. + ({320 - (32) , so the previous expression becomes: 

(4) = (5) + (6) 

1 ko 1 ko 

-)..' T L "It - ({320 - (32)' T L "It 
t=k+l t=k+l 

ko 

-~)..'~ L ~d84({31O (32))).. 
t=k+l 

1 ko 

_)..f
T 

L ~t(84({31O (32)) ({320 (32) 
t=k+l 

1 1 ko 

-"2 ({320 - (32)f T L TJt (84 ({3l0 (32))({320 - (32)' 
t=k+l 

Gathering (2), (3) and (4) and arranging the terms, we obtain that, 

where 
k 

MIt=+ LTJt(Ol), 
t=l 

T 
M2t = ~ L ~t (B2) , 

t=ko+l 
ko 

M4t = ~ L ~t (04) , 
t=k+l 
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k 

NIt = ~ L "It. 
t=l 

T 

N2t = ~ L "It, 
t=ko+l 

ko 

N4t = ~ L "It! 
t=k+l 

(7) 

(8) 

(9) 

(10) 

(11) 

I • 
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l 

and 

Finally, observe that the parameter space, 

AUBUD [(A U B) n DJ U [(A U B) n D] U [(A U B) nD] 

Cl UC2 U C3, (13) 

a union of disjoint sets, where E denotes the complementary set of E. The left side of (1) 

is upper bounded by 

with ST (~o) - ST (~) defined in (7) (10). Thus, it suffices to show that each of the terms 

of the above expression is bounded by e for C large enough. This is obtained below. 

1st Case: Cl = [(A U B) n DJ 

In order to bound the probability (1) restricted in this parametric set, we need to 

consider the following possible cases of /32 : 

h.1 Fl = {(/320 

h.2 F2 = { (/320 

• (/320 - /32) = -,x 

/32) ¥= -..\, 11/320 - /3211 < ~ } . 

/32) ¥= -,x, 11/320 /32 11 > ~ }. 

h.3 F3 = {(/320 /32) 11/320 /32 11 < ~ } . 

h.4 F4 = {(/320 /32) -..\, 11/320 - /3211 > ~ }. 

Observe that (A U B) implies 11/31 /31011 > ~ and/or 11/32 /32011 > ~. First, con-

sider 11/31 - /31011 < ~; in this case we have B n D, because of Cl' In this parametric 

subset, the probability (1) will be upper bounded by 

Pr {S~p (7) > o} + Pr {~~h «8) + (9) + (10» > o} , 
where the first term is asymptotically negligible by Proposition 4. Because B = F2 U F4 , 

an union of disjoint sets, an upper bound for the second term is given by: 

Pr {sup (8) > o} + Pr {sup (9) + (10) > o} + Pr {sup (9) + (10) > o} , (14) 
B F2nD F,nD 
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which tends to zero for large enough C, because of each of its terms are asymptotically 

negligible by Propositions 7, 9 and 11 respectively .. 

Next, we consider 11,61 - ,61011 > 1.r, so that may happen B n D or B n D. First, let be 

An B n D, a subset of Cl for which the probability (1) will be less or equal than: 

Pr { S~p (7) > o} + Pr {~~b (8) + (9) + (10) > O}. 
By Proposition 5, the first term converges to zero for large enough C, similar as the second 

one, bounded by the expression (14) as in the previous case .. 

Finally, it remains the subset An B n D. Observe that B = F1 U F3, where F1 n F3 = 0, 

and then (1) is bounded by 

Pr {sup (7) > o}+pr {S1!P (8) > o}+pr {Sup (9) + (10) > o}+pr {Sup (9) + (10) > o} , 
A B ~nD ~nD 

which converges to zero by Propositions 5, 6, 8 and 13 respectively. 

2nd Case: C2 = [(A U B) n D] 
Proceeding as above we have that if .4, then B n D. In this case we obtain that, in this 

subset, (1) is bounded by 

Pr { S~P (7) > o} + Pr {~~b (8) + (9) + (10) > o} , 

which converges to zero by Propositions 4 and 15. 

Next, if A then we have B n D or B n D. In the firs case (1) is bounded by 

Pr { S~P (7) > o} + Pr {~~b (8) + (9) + (10) > o} , 

and each of the terms converge to zero by Propositions 5 and 15 respectively. In the 

second case, An B n D, (1) will be less or equal to, 

Pr { S~P (7) > o} + Pr { S~P (8) > o} + Pr {~~b (9) + (10) > o} , 

which tends to zero by Propositions 5, 6 and 16. 

ard Case: C3 = [(.4 n B) n D] 

As in the first case, observe that B = F1 U F3, where F1 n F3 = 0, and then (1) is 

bounded by 

Pr {S1!P (7) > o}+pr {S1!P (8) > o}+pr {sup (9) + (10) > o}+pr {suP (9) + (10) > o} , 
A B ~nD ~nD 

which converges to zero by Propositions 4, 6, 8 and 13 respectively. 

We conclude the proof of the theorem. • 
Propositions 1 to 16 below are used for the proof of Theorem 2, and they are obtained 

under the Assumptions A.1 and A.2. We assume, with no loss of generality, that 7 ~ 70. 
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l 

Proposition 1 

TM (Bd + op(l), 

(1 TO) M (B2 ) + op(l), 

M (B4) + op(l). 

where M (0) is defined by the Assumption A.2.6, and, for i = 1,2 and 4, Mit and Bi given 

in {11} and {12}. 

Proof: By Lemma 1. 

Proposition 2 '10: E RP, 

JTo:'Nlt => (o:'So:)1/2 B(T), 

JTo:'N2t => (o:'So:) 1/2 B(l- T o), 

T 1/20:'N4t =>(o:'So:)1/2 B (1). 
(ko - k) 

where, Nit is defined in {11} for i 1,2 and 4, and B(·) is a Brownian motion process 

on (0,1). 

Proof: By Lemma 3. 

Proposition 3 Let M (B)pxp' be the finite and positive definite matrices, by assumption 

A.2.6, with eigenvalues aj,j 1, ... ,p. Then, VI E RP: 

I'M (B) 12 q Ihl1 2 > 0, 

where q =Min {aj}. 
J 

Proof: By the Courant Theorem, 

I'M (Bb I'M (Ob 
I'M(Bb2Inf , l'I2Inf , Inf 1'1 =Min {aj}lhll qlhIl 2 >0 . 

..., II ..., 11..., J 

Proposition 4 Define the event 

{Ed {s~p [-~ (.8lO - .81)' Mlt (BlO - .81) - (.8lO .81)' NIt] > o} , 
then it holds that Pr {El} < lE for C large enough. 

Proof: For .81 E A, 
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by Propositions 1 and 2. Thus, by definition, if Xt = Op (T- 1), then for every c > 0, 

exists a constant C> 0 such that Pr {IXtl > T- 1C} < c, therefore, the result follows for 

all C. • 
Proposition 5 Define the event 

then it holds that Pr {E2} < c for C large enough. 

Proof: Observe that {E2} implies the event 

and given that (.810 - .81)' Mlt (.810 - .81) (15) will imply that, 

by Proposition L The symbol "=" indicates equivalence of events in probability. Using 

Proposition 3 we obtain that: 

where q1 is the least eigenvalue of the matrix M (B 1). Thus, (16) implies the event: 

and then, we obtain that Pr {Ed is upper bounded by 

by Lemma 4. From here the conclusion is standard. • 
Proposition 6 Define the event 

the it holds that Pr {E3} < c for large enough C. 

30 



l 

Proof: By Propositions 1 and 2, the result follows as in Proposition 4. • 
Proposition 7 Define the event, 

{E4} = { S~p [-~ (1120 - 112)' M2t (1120 112) (1120 - 112)' N2t] > o}, 
then it holds that Pr {E4} < c for C large enough. 

Proof: By Propositions 1 and 2, and Lemma 5, the result follows as in Proposition 5 .• 

Proposition 8 Define the event 

then it holds that Pr {Eo} < c for C large enough. 

Proof: Observe that, considering the subset F l , the event {Eo} implies that 

and therefore, 

{ Sup I (A' + (1120 
F,nD 

11 )') TN4t 2 (1 A' 1 (11 11 ),) T M4t 
2 IIAII (ko k)1/2 > 2 + 2 20 - 2 IIAII (ko k) (

1 1 
-A + - (1120 2 2 

(17) 

because the absolute value argument on the right side is strictly positive. Given F I , 

(1120 - 112) = Op(T-1/2), and then, (17) will imply that, 

{S~p I (A' + Op (T-1
/

2
)) IIAII (:::-tk ) 1/2 I 

>Inf 2 (~A' + ~Op (T- 1/2)) (ko - k)1/2 TM4t (~A' + ~Op (T-1/2)) } 
D 2 2 IIAII (ko - k) 2 2 

{ I 
A' + Op (T-1/2) T (ko - k)1/211 1/2 (1 , ( -1/2)) 

=} S~p IIAII (ko _ k)1/2N4t >I~f 2 IIAII (M (04) + op(I)) 2A + Op T 

by Proposition 1. In this context" =}" indicates implication of events. Let q4 be the least 

eigenvalue of M (04 ), finite and positive definite, therefore, 

by Proposition 3, so that (18) implies the event 
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:::} { S~p I (II~II + op (1)) (k
o 
~k)1/2N4tl > ICl/2~ (1 + op (1))1} . 

From this result, we obtain that Pr {E5} is upper bounded by 

{ I 
>..' T I q4 1/2} - (.!.) 

Pr S~p 11>"11 (k
o 

_ k)1/2N4t > 2 C - 0 C ' 

by Lemma 4. Standard arguments implies the result. • 
Proposition 9 Define the event 

then it holds that Pr {E6} < c for C large enough. 

Proof: Observe that {E6} implies the event 

and therefore, will imply that, 

by Propositions 1 and 3. Now observe that, 

such that, in F2, we must consider two possible cases for /32: 

a) (/320 - (32) > ->... Given that, >.. > 0, it holds that, 

thus, 

b) (/320 - (32) < ->... Given that (/320 - (32) < 0, we obtain: 

therefore, 
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So, considering first the case a), we obtain that (19) implies the event 

{ 
>.' + (1320 - 132)' T Iq4 (ko - k)1/2 I} 

~~b 11>'11 + 111320 - 13211 (ko _ k)1/2N4t > £~~ 2 (111320 - 13211 -11>'11) 

=> {~~b 111~t+(~~:o-!~~'11 (ko ~k)1/2N4tl > £~~ Iq;~~;12 (C;; -11>'11) I}· 

With this result, we obtain that Pr {E6} will be less than or equal to, 

{ I 
>.' + (1320 - 132)' T I I q4C1/2 (C1/2 ) I} 

Pr ~~b 11 >'11 + 111320 - 13211 (ko _ k )1/2 N4t > £~~""2'jfij"" ..ff - 11 >'11 , 

o (( Tr _1:>'11)' m.,) ~ 0 (( 7.[:(/-1)' G) , 
by Lemma 5, and thus, 0(1) for arbitrary large C. Following equivalent arguments for the 

case b), we can also obtain an upper bound of the probability of interest, let be 

Proposition 10 Define the event 

{E7} = { S~P [~>.' M4t>' - >.' N4t] > ° }, 
then it holds that Pr {E7} < E for C large enough. 

Proof: The above event implies that: 

{su [T a>.' M4t>' - >.' N4t ) 1 > o} 
D

P 11>'11 (k - kO)1/2 ' 

and, since >.' M4t>' > 0, will imply 

{ I>.' T I 1
1 ,(ko -k)1/2 T I} 

S~P W (k _ k
O

)1/2 N4t >I~f"2>' 11>'11 (ko _ k) M4t>' 

=> {s~p III~II (k _ :0)1/2N4t l > C
1
/
2 

(q4 + OP(1))} , 

and thus, we obtain that Pr {E7} is less than or equal to 

p, {sgP III~II (k _ :0) 'I' N" > G'I'.,} ~ 0 (~) , 

• 

which tends to zero for large enough C. Lemma 5 and Propositions 1 and 3 has been 

used. • 
33 



Proposition 11 Define the event 

{Es} = {~~~ [-~ ({320 - (32)' M4t ({320 - (32) - ({320 - (32)' M4t A - ({320 - (32)' N4t] > o} , 
then it holds that Pr {Es} < t for C large enough. 

Proof: {Es} imply the event 

{
Sup [ T 1 2 -~ ({320 - (32)' M4t ({320 - (32) - ({320 - (32)' M4t A - ({320 - (32)' N4t] > o} 
F3 nD (k - ko) / 11{320 - {3211 

(20) 

Observe that ({320 - (32) = -A, and therefore: 

strictly negative. Thus, (20) will imply that: 

therefore, the probability of the event {Es} will be upper bounded by 

by Lemma 5, and thus, tends to zero for arbitrary large C. • 
Proposition 12 Define the event 

{Eg} = {~~~ [-~ ({320 - (32)' M4t ({320 - (32) - ({320 - (32)' M4t A - ({320 - (32)' N4t]} , 

then it holds that Pr {Eg} < t for C large enough. 

Proof: The proof is as in Proposition 11, given that the parametric space {32 belongs to, 

is not used for the proof. The result is established taking into account only the equality 

condition respect to A. • 
Proposition 13 Define the event {ElO} as 

{~~~ [-2 (~A' + ~ ({320 - (32)') M4t (~A' + ~ ({320 - (32)') - (A' + ({320 - (32)') N4t] > o} , 
then it holds that Pr {ElO} < t for large enough C. 

34 



Proof: The above probability is less than or equal to: 

Pr {S~p [-~ A'M4t>,' - A' N4t] > 0 } 

+ Pr {~~b [-~ ({320 - ,82)' M4t ({320 - (32)' ({320 - (32)' M4t A' - ({320 - (32)' N4t] > o} , 
and the results follows by Propositions 10 and 11. • 

Proposition 14 Define the event {Ell} as 

{f.~b [-2 (~A' + ~ ({320 (32)') M4t (~A' + ~ ({320 - ,82)') - (A' + (,820 - ,82)') N4t] > o}, 
then it holds that Pr {Ell} < I': for large enough C. 

Proof: Similar to Proposition 13, an upper bound of this probability is given by: 

and the result follows by Propositions 10 and 12. 

Proposition 15 Define the event {E12} as 

({320 - ,82)' M4t A' - ({320 - (32)' N4t] > o} 
• 

{ SuI! [- ({320 - (32)' N2t - ~ ({320 - (32)' M2t (820 ,82) 
BnD 

-2 (~A' + ~ (,820 (32)') M4t (~A + ~ (,820 - (32)) - (A' + ({320 - (32)') N4t] > o} , 
then it holds that Pr {E12 } < I': for large enough C. 

Proof: Observe that {E12} implies the event 

{ S I 
({320 (32)' tmTN A' + ({320 - (32)' tm I 

B~b 11{320 - {3211 v 1 2t + 11{320 _ ,8211 vTN4t 

> Inf JT (,820 ,82)' M2d{320 (32) + 2v'T (~A' + ~ ({320 - (32)') M4e(!A + ~ ({320 - ,82)(d1\ 
BnD 211{320 - {3211 11.820 - {3211 11 

- C 
for the set D, 17 - 701 < TII>'II" and therefore: 

and thus, 

ha k 
~ L (iiJ«()4) a = ko; a'M«()4)a+op(l) 

t=h+l 

o (1Ia
I12

) 
p T IIAI12 ' 

ho ("0 k)1/2 
= )ra' L 71t= + (a'Sa)I/2 B (I) 

T t=h+l 

o ( Ilall ) 
p v'T1lA11 ' 

o (1 1 ) - 0 (1) 
P vT!I{320 {3211 + vTlIAII - p , 
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Then, by Proposition 3, (21) will imply the event 

Therefore, Pr {E12 } is less than or equal to 

by Lemma 6. Standard arguments conclude the proof. • 
Proposition 16 Define the event {E13 } as 

{~~b [-2 (~>.' + ~ (1320 - 132)') M4t (~A + ~ (1320 - 132)) - (A' + (1320 - 132)') N4t] > o} 
then it holds that Pr {E13 } < E for large enough C. 

Proof' {E13 } implies that 

{~~b [-vT (~X M4t A + ~ (1320 - 132)' M4t (1320 - 132) + A'M4t (1320 - 132)) - (A' + (1320 - 132)') vTN4t] > 0 

Observe that, in this subset, 

(A' + (1320 - 132)') vTN4t = (Op (IIAII) + Op (Jr) ) Op (vT\AII) = op(l), 

by Proposition 2, and 

;;:;; , ( ;;:;; 11 AI12 ) VTA M4tA = Op vT--2 = op(l), 
TIIAII 

vT (1320 - 132)' M4t (1320 - 132) = Op ( ~) Op (_1_2) = op(l), 
vT TIIAII 

vTA'M4t (1320 - 132) = Op (_1_2) Op (v'~II) = op( 1), 
TIIAII T 

by Proposition 1. Then by definition, if a random vector X t is op(l), then it holds that 

VE> 0, VC> 0, Pr {IXtl > C} < E, that proves the result for all C. • 
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Proof of Theorem 3. 

Again, we will only consider the case of V3 < 0, without loss of generality because of 

symmetry, and for notational convenience [V3PA] will be denoted by V3PA' 

By (7)-(10), we obtain that, 

TAT (v) 

ko ( ) 1 I 1 . VI 
--Vl- '" 1] 81- VI 

2 T6 t ..ff 

where for the terms (22) and (23) we have employed that 

Lemma 2 and Assumption A.2.1, 

Hence, as T -l> 00 : 

~V~ ( M
V
3;A + OP(l)) VI op(l), 

~v~ (M(>') V~A +op(l)) Vz = op(l), 

~>.' (M(>') V3
P

)" +op(l)) V2 = op(l), 
2 ..ff 
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ko 
L: . Next, by 

t=k+1 

(24) 

(25) 

(26) 

(27) 

(28) 

(22) 

(23) 



in both cases, where A is fixed or decreasing to zero with T, because 

when A decreasing: PAr = 0 ( 1 2) = 0(1), 
T T IIATII 

and 

PA (1) when A fixed: T = 0 T = 0(1). 

Thus, we obtain that, 

(24) + (25) + (26) 

-~v~ ToMv1 - ~V~ (1 - TO) MV2 - ~AI M (A) AV3 + op (1). 

Next, we analyze the terms, (27) and (28). By Lemma 3, 

and 

And, for the remaining terms is convenient to study the cases when A decreases and is 

constant, separately. 

(a) When A = AT such as T IIATI12 -+ 00. For this case: 

ko 

L 

by the invariance principle, Lemma 3, for V3 < 0 with PAr = (A~SAT) -1 ; we have that 

W (.) is a Brownian motion process in R-. When V3 > 0, the above expression converges 

to W (V3), which is a Brownian process defined on the positive half of the real line. 

Next, by Lemma 2, M (AT) = M for this case of A decreasing, and therefore, 

1" () 1, (' )-1 lA~MAT 
-"2/\TV3PAr M AT AT = -"2ATMATV3 AT SAT = -"2 A~SAT v3· 

Thus: 

(24) + (25) + (26) 

(27) + (28) 

1 1 1 1 1 A~MAT 
-"2V1 ToMv1 - "2 V2 (1 - TO) MV2 - "2 A~SAT v3 + op(I),(29) 

:=} _v~S1/2 B (TO) - v~S1/2 B (1 - TO) - W (-V3). (30) 
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(b) \Vhen >. is constant. Consider the process 

W" (v) = 

o v=O 
-1 

E T/t v = -1,-2, ... 
t=v 

v 

E T/t v = 1,2, .... 
t=l 

(31) 

k 
and let be W# (k) T/t' for k ::; ko (taking W# (ko) 0) and W# (k) = E T/t, 

for k > ko. Thus, W# (k) has the same distribution as W" (k 

defined by (31). For k ko = V3, V3 < 0, 

ko 

->.' 2: T/t::::} ->,'W" (V3). 

t=ko+va+1 

For V3 > 0, the limit distribution is also defined in (31). Therefore: 

t=ko+l 

ko), where W" (.) is 

(24) + (25) + (26) 

(27) + (28) 

I, 1,() -'2V1TOMvl - '2V2 1 - TO MV2 ~>" M (>.) >'V3 + op(1)(32) 

::::} -v~ S1/2 B (TO) - V;Sl/2 B (1 - TO) >,'W" (-V3) • (33) 

And the separate treatment for the cases a) and b) is concluded. 

After realizing the distribution limit of the objective function above, defined on the 

compact set {Ivd < Iv!, i = 1,2, 3}, we obtain the weak convergence of the estimators 

applying the mapping continuous theorem. Thus, ih and V2 are derived by the first order 

conditions: 

.J:...M-lSl/2B (TO), 
TO 

_1_M-lSl/2B(1_TO), 
1 TO 

while V3, under the assumption>. = >'T decreasing, is obtained by considering (29) and 

(30), thus: 

. '(11) l>'~M>'T II V3 Arg"mm ->. W v + '2 >'~S>'T v 

1 >'~M>'T 
Arg"max >.'W (Iv\) '2 >'~S>'T Ivl· 

()/ M>' )2 Using the change of variable w = >.~s>.:: v, 
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and by definition of PAT' 

(,\~M>"T)2 (') { I} , k - ko =}Argmax W (Iwl) - -21wl . 
>"T 5 >"T w 

Finally, for>.. constant, we consider (32) and (33), therefore, 

V3 Argvmin ->..'W· (v) + ~>..' M (>..) >"Ivl 

Argvmax >..'W· (v) - ~>..' M (>..) >"Ivl. 

This concludes the proof of the theorem. 

Proof of Corollary 1. 

By Theorem 3 we have obtained that 

/;;;T . 1 10 !:. TO 

[ 
l3 - (3 1 [ M-I 51/2 B(ro) 0 1 

Vl' M- 15 1/ 2 B(1-TO) • ~2 - (320 0 I-TO 

which converges in distribution to 

o 
M-I 51/2 B(I- T o) 

I-TO 

a Bessel tied down process of order p. 

Proof of Corollary 3. 

• 

• 

We only proof the part (ii) of Corollary 3. The rest of this corollary is obtained in a 

trivial way as a direct result of Theorem 3. Trending regressors X t = 9 (tiT) satisfy all 

necessary assumptions of Theorem 2. Then, to obtain the asymptotic distribution of the 

break date estimator, we only need to consider, from Theorem 3, the limiting process of 

considering again V3 < O. For the opposite case, the proof is similar. 
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Then, we have in this case that the first term of (34) is equal to 

ko ko 

L 'l/Jtg (tjT) A~ L 'l/Jtg (koIT) (35) 
t=kO+V3 PAT+ 1 

ko 
+A~ L 'l/Jt (g (tiT) 9 (koIT)) . (36) 

t=ko+vsPAT+l 

By Lemma 3, 

for V3 < 0 with PAT (A~g (TO) 8g (TO)' AT) -1 and 

8=Limvar[ 7mt'l/Jtj. 
T~oo vT t=l 

(37) 

w (.) is a Brownian motion process in R. 

The term (36) is uniformly negligible because its variance will be an op(l). To obtain 

this, observe that, an upper bound of this variance is given by 

that is an op (1) because T IIATII2 -4 00 and 9 (-) bounded. The first equality is obtained 

by (37) and PAT 0 (1IATII-2) , and the last inequality holds for a finite constant N. 

Now, we analyze the second term of (34). Observe that, 

;p (Ut + 9 (tiT)' eT) 9 (tIT)g (tiT)' AT (38) 

where eT 154 (AT + v2IVT), which converges to zero because IIATII -40 and IIv211 < N 

by definition. Thus, we have that (38) is equal to 

ko 
~A~ L ;p (Ut + 9 (tiT)' eT) (g (tiT) - 9 (koIT)) (g (tiT) - 9 (koIT))' AT 

t=kO+V3PAT+l 
(39) 
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1 , 
+-AT 

2 

ko 

L 
ko 

L 

;p (Ut + g (tiT)' eT) g (koIT) g (koIT)' AT 

;p (Ut + g (tiT)' eT) (g (tiT) - g (koIT)) g (koIT)' AT. 

and we study each of above terms. 

(39) = ~A~ ~ ;p (Ut +g(tIT)'eT) dg(x*) dg(x*)' (~_ ko)2 AT 
2 ~ x x TT' 

t=ko+v3 P"'T+1 

(40) 

(41) 

applying the mean value theorem, with x· E (tiT - koIT). An upper bound of this term 

is given by 

(S~p 11 dg ;x) Ilr (~ - ko + ;3 PAT r V3 PAT S~p l;p (Ut)1 A~AT 
< K N

2 
II A 112 ~ - 0 (1) T211 ATI1 4 T IIATI12 - P , 

with K less than infinity because of boundness of g (.) and ;p (.) . The last results holds 

by T IIATI12 -+ 00 and N, a finite constant. 

(40) = ~A~V3PAT (M + op (1)) g (TO) g (TO)' AT, 

by Lemma 2, given that g (tiT)' eT :::; Ilg (tIT)lllleTII -+ 0, because g (.) is bounded and 

eT -+ 0 and M = Lim t E [;Pt]. And, finally, 
T->OOt=l 

(41) < S~p 11 dg;x) 11 S~p 1;P (Ut)IIIATII g(TO) t (~ -~) 
t=ko+v3 P"'T+ 1 

2 N C 
< K IIATII IIAT 112 T IIATI12 = op (1) . 

Then, we have obtained that (34) converges to 

1, , M 
-'2ATV3PATMg(TO)g(TO) AT - W(-V3) = -SV3 - W(-V3) 

by definition of PAT = (A~g (TO) Sg (TO)' AT) -1 . Then, applying a similar prooffor V3 > 0, 

we obtain that, 

V3 :::}Argvmin { -W (v) + ~ ~ IVI} =Argvmax { W (v) - ~ ~ Ivl}. 

Let be w = (M2 I S2) v and, by definition, V3 = (k - ko) I PAT' Therefore, 

:::} !22 Argwmax {I! 1 W (w) + ~ ~ ~2 Iwl} 

!22 Argwmax { W (w) + ~ Iwl}, 
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and then, 

the result of the Corollary. • 
Proof of Theorem 4. 

Supose, with no loss of generality, that f > TO' However, by Theorem 2, we know that 

f = TO + Op (T- 1 ). Then, we have, 

, 1 [TT]. • I 1 [Tro] , 1 [TT] 

Ml = Tf L 1/J (Yt - 131 (f) Xt) XtX: = L r,t (1310 - 131 (f))+Tf L ilt (1320 ~1 (f)). 
t=1 t=l t=[Tro]+1 

By Theorem 2 we obtain that (~I (f) - 1310) = Op (T-1/2) and (~1 (f) 1320) Ao + 

Op (T-1/2) , and by Lemma 2, 

• _ TO f - TO TO Op (T- I
) 

M1 - -;:-M+-, -M+op(l) = 0 (T 1)M+ 0 (T 1)M+oP(1) M+op(l). 
l' l' TO + p - TO + 'P -

For M2 the result follows in a similar way. This proves the first part of the Theorem. 

Now, we consider Eh for the i.i.d. case. In particular, we have that, supposing again 

that f > TO, and using the same arguments as before, 

1 [TroJ , I 

T' L (17t(131O-131(7)) ihIdf)) x (17t(13lO-~df)) ihIT(f)) 
l' t=1 

where 

Applying the MVT in both terms of the above expression we obtain that: 

1 [TT] ,I 1 [Tt] 

ih1T(f) = T f L17t+(13lO-13df )) LiIt(61 (131O ~df))) 
t=1 t=1 

1 [TT] ,'1 [TT] , 

+Tf L 17t+(1320-13d·n) Tf L r,t (62 (1320-13d f ))) , 
t=[Tro]H t=[Tro]+1 
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l 

with 0 < lit, 62 < 1. By Lemma 3 we have that the first term plus the third term 

is Op (T-l/2). By Theorem 2 and Lemma 2 the second plus the fourth terms is an 

Op (T-l/2) term. Therefore, mlT (r) Op (T-l/2). 

Next, observe that, 

< 
1 [Tro] • 

Tf 87]t(,610-,61(r))17t (,610 

+Op (T-l) 
1 [Tt) 

Tr L 7]t7]~ - S 
t=1 

By Assumption A.2.7 we obtain that (42)2:. 0, with S = E [7]t7]~l. Also we have that (43)2:. 

0, given that, by Theorem 2, (,61 (t) ,610) Op (T-l/2) and (t TO) = Op (T-1) . 

Then, by Assumptions A.2.5 we have 

A f 1 [Tro) • 

(,610 - ,6d r)) Tt L 27]t (6 (,610 - ,6d t)) ) iTt (6 (,610 ,Bd t)) ) 
t=1 

IIOp (T- 1
/
2) 2 ~ E ['7t (Op (T- 1

/
2)) iTt (Op (T- 1

/
2))] + op (1)11 = op (1) , 

and 

A f 1 [Tt] A A 

(,620 - ,6dr») Tf- L 217t (6 (,620 - ,6df-»)) iTt (6 (,620 - ,6df-»)) 
t=[Tr o]+l 

11 (>'0 + Op (T- 1
/
2)) f [7]t (>'0 + Op (T-1/2)) iTt (>'0 + Op (T-1/2))] 11 op (1). 

Then, we have obtained that ih E [7]t7]~l = S, that proves the result of this Theorem. 

For ih, the proof is similar. To consider the case of weak dependence, see Andrews (1991), 

who gives the neccesary conditions for consistensy estimation. 

Proof of Theorem 5. 

To prove this theorem we are going to analize the objective function ST (~) for the 

i-estimators in order to obtain a equivalent form of a particular M-estimator. We use 

44 

(42) 

(43) 



Propositions 17 and 18, at the end of this proof. 

The objective function is defined as: 

where ~ = (.6~, .6;, 1') I E e2 x IT and ST (.6, 1') is such that 

[TT] (Y. la ) T (Y. Xla) 2 1 t XWl 1 t W2 
sT(.6,r) / T LPl S (.6 1') + T L PI S (.6 1') =b. 

t=l T, t=[TTJ+ 1 T, 
(45) 

For notational simplicity we express in next ST (.6, 1') = ST (.6). The estimator of ~ is given 

by: 

(46) 

where ~o = (.6~t' .6;t, 1'0)' , .61t = .6101 (t :s; Tr) and .62t .6101 (Tr :s; t :s; Tro)+.620I (Tro :s; t :s; T) . 

Thus, the objective function evaluated in ~o is as follows, 

(a ) ~ ~ (Yt - X;.6lt) 2 (a).!. ~ (Yt - X:.62t) 
I-'t T L., P2 S (.6) + ST I-'t T L., P2 S (.6) 

t=l T t t=[TT]+I T t 

1 [TT] (Y. X;.6lOI (t :s; [Tr])) 
= s~ (.6t ) T 8 P2 t ST (.6t) 

2 (a).!. ~ (Yt - X;.6IO I ([Tr] + 1 :s; t < [TroD - Xl.620I ([TroJ + 1 :s; t < T)) 
+sT I-'t T L., P2 (a) 

t=[TTJ+I ST I-'t 

with 

2 1 ~ ( Ut ) 
sT (.6t) / T ~ PI ST (.6t ) = b. 

Now, we approximate the objective function in (46) by the MVT up to the second term. 

By Propositions 17 and 18 we obtain that, 
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where (3t = ((3~t,(3~t)', (3; = ((3i~,(3;~)', with (3it (3lt + 81 ((31 - (3lt) and (3;t = 

(32t + 82 ((32 - (32t) , 0 < 81,82 < 1, and WjT = ('1jT ((3) + 'IT ((3) SjT ((3)' / DT ((3)) for 

j 1, 2. The cross product are zero because the indicator functions define disjoint sets. 

In order to obtain a equivalent form of an M-estimator, a notational change is needed. 

From now on, consider that, for 0 (0~,0~,0~)' E e3 C R3p: 

[TT] ( ') [TTO] (e' x ) T (e') . 1.. "" .i. Ut+eJxt + 1.. "" ;p Ut+ 2 t + 1.. "" ;p Ut+ 3Xt 
T L.. 'f'l ST(e) T L.. 1 sT(8) 'T L.. 1 ST(e) 

t=1 t=[TT]+1 t=[TT]+1 

2 /.!. ~ (Ut+B;Xt).!. [~l (Ut+B~Xt) 1 ~ PI (Ut+BB~Xt) --b. 
sT (B) T ~ PI (B) +T ~ PI (B) ~ 

t=1 ST t=[TT]+1 ST t=[TT]+1 ST ( ) 

The same for WjT (B) , that will be given by WjT (B) = '1jT (B)+'1T (B) SjT (B) / DT (B) ,with 

'lIT (B) 

'12T (B) 

and, finally, SjT (0) -AjT (B) / DT (B) for j = 1,2, where, 

[TT] , 
.!. "" ,I. (Ut + 01 Xt ) X T ~ 0/1 (B) t, 

t=1 ST 
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DTCB) 

Then, the Taylor approximation of the objective function (47) up to the second term 

results as follows: 

[Tr] 

= - (131 1310 )' ST (Oap) ~ £; (WT (Oap) 1/;1 (ST ~~ap)) + 1/;2 (ST ~~ap)) ) Xt 

-(132 131O )'ST(Oap) 
1 

(I:] (WT (Oap )1/;1(s ~~ ))+1/;2(s ~~ )))Xt 
t=(Tr]+l T ap T ap 

-(132 -1320 )'ST(Oap)
1 t (WT (Oap)1/;l(s ~~ ))+1/;2(s ~~ )))Xt 

t=(TroJ+l T ap T ap 

1 (13 13)' (.!. ~ (w: (B) i (Ut +B~Xt) .i. (Ut +B~Xt)) X X' +2' 1 10 T ~ T '!pI sr(B) + 'f'l ST CB) t t 

+~ ~ W,de),;, (U's:~l~') x}~, ~!O) 
~ (13 13)' (.!. [81 (",y; (B) ."t. (Ut + B~Xt) :1. (Ut + B~Xt)) X X' + 2 2 10 T L." T '1-'1 S (B) + '1-'2 S (B) t t 

t=(Trl+I T T 

1 (I:I W2r(B) 1/;1 (Ut
s
: ~;~t )) Xt (132 - 1310 ) 

t=(Tr]+l 

1 (13 13)' (.!. ~ (W (B);P (Ut + B~Xt) ;p (Ut + B~Xt)) X X' 
2 20 T L." T 1 sr(B) + 2 sT (B) t t 

t=(Tr oJ+1 

1 ~ (Ut +B~Xt) ) 
t=lkoJ+1 W2T (B) 1/;1 ST (B) X t (132 - 1320 ) 

where B (B~, B~, B~)' with BI = 01 (1310 - 13 1 ), B2 = 02 (1310 132) and Ba 02 (1320 132), 

Besides, we have defined Oap = (O~, O~, O~)' , where O~ is a p-vector with all its elements 

equal to zero, and therefore, 

With this, we have obtained the expression of the objective function of a particular M-
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estimator: 

1 [Tr] 1 1 [Tr] 
- ({31 - {3lO)' T L 1Jt + 2 ({31 - {3lO)' T L (rh (Bd + iJ lt (Bd) ({31 - {31O) 

t=l t=1 
1 [Tro] 1 1 [Tro] 

- ({32 - {3lO)' T L 1Jt + 2 ({32 - {3lO)' T L (iJdB2) + iJ2t (B2)) ({32 - {31O) 
t=[Tr]+1 t=[Tr]+l 

T T 

( )' 1 ",. 1 ( )' 1 '" - {32 - {320 T L,.; 1Jt + 2 {32 - {320 T L,.; 
t=[Tro]+l t=[Tro]+1 

where, for i = 1,2,3 and j = 1,2, 

(B) (W (B) ./. (Ut + B:Xt) ./. (Ut + B:Xt)) X 
ST T 'f'l ST (B) + 'f'2 ST (B) t, 

(w (B) ./. (Ut + B:Xt ) .i. (Ut + B:Xt)) X X' 
T 'f'1 ST (B) + 'f'2 ST (B) t t, 

(B)' (Ut + B:Xt) X 
WjT 1/)1 sT (B) t, 

and, for B = 03p, we have that 1Jt (Bi) = 1Jt. 

Now, observe that to prove Theorem 2 we studied the Taylor expansion of ST (eo) -

ST (e) instead of ST (e) - ST (eo) . Then to obtain a similar form in this case we express 

the objective function as 

ST (eo) - ST (e) 
,1 , 

- ({31O - {31) Nit - 2 ({31O - {31) Mlt ({31O - {31) 

,1 , 
- ({31O - {32) N4t - 2 ({31O - {32) M4t ({31O - {32) 

,1 , 
- ({32o - {32) N2t - 2 ({32o - {32) M2t ({32o - {32) , 

taking into account that, 

[Tr] 
Nit = t E 1Jt, 

t=1 
T 

N2t = t E 1Jt, 
t=[Tro]+1 

[Tro] 
N4t = t E 1Jt, 

t=[Tr]+1 

[Tr] 
Mlt = t E (iJdB 1) + iJlt (B 1)), 

t=1 
T 

M2t = t E (iJt (B3) + iJ2t (B3)) , 
t=[Tro]+1 

[Tro] 
M4t = t E (iJt (B2) + iJ2t (B2))' 

t=[Tr]+1 

Noting that ({31O - {32) = A + ({32o - {32), we can express the term (49) by, 

(49) 

-A' N4t - ({31O - {32)' N4t - ~A' M4t A - ~ ({31O - {32)' M4t ({31O - {32) - A'M4t ({31O - {32) 

- (A + ({31O - {32))' N4t - 2 (~A' + ~ ({31O - {32)') M4t (~A + ~ ({31O - {32)) , 
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and finally, we obtain that 

an expression similar to (7)-(10) in the proof of Theorem 2. 

Thus, to obtain the results of Theorems 2 and 3 for this estimators, we only need 

to verify the Lemmas 1 to 6 for this case, which constitute the necessary and sufficient 

conditions of the mentioned Theorems. The equivalent results of Lemmas 1, 2 and 3 

are obtained in Lemmas 12, 13 and 14 respectively. The rest of the Lemmas follows in 

identical form. 

By Theorem 3, we can obtain the asymptotic distribution for the T-estimator as a 

particular case, considering that, by Lemma 14, 

S = 0"5E [1/;5 (~:)] E [XtX;] , 

with 1/;0 (u) = W0 1/;I (u) + 1/;2 (u). Following the proof of Theorem 3 for this case, we also 

obtain that M (A) is given by M (BA) + M2 (BA)' where BA = (O~, A', O~)', and then, 

M(BA) E [W(BA)~I (Uts~::~t) +~2 (Uts~::~t)] E[XtX;], (50) 

[ (
Ut + A'Xt ) ] M2 (BA) = E W2 (BA) 1/;1 s (BA) X t . (51) 

By the same way s (BA) is defined by 

TE [PI C~A))] +(TO-T)E [PI (Uts~~~t)] +(l- To)E [PI C~A))] =b, (52) 

and, given that (TO - T) = V3 PA/T, which tends to zero in both cases of A (fixed or 

decreasing), we obtain (52) equals to 

and then, s (BA) = 0"0 by definition. 

Now, with similar arguments, 
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and, to derive W2 (eA)' observe firstly that, 

an op (1) term, given that V3 PA/T ---+ 0 and the second term is equal to zero. Secondly, 

op(l) , (53) 

and finally, 

(54) 

By the results (53) and (54), we obtain that, 

because l' (e) is a finite for all e. 

Therefore, M (A) will be defined by 

and for A converging to zero, the second term of the above expression is an op(I), and 

then M = M (0) will be equal to 

This concludes the proof of the theorem. • 
The following Propositions 17 and 18 correspond to the proof of Theorem 5. 
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Proposition 17 

[TT] 
8ST (~) = _ (f3) ~ '" (w (f3) .1. (rdf3d) + .1. (rt (f3d)) X (55) 

8f3~ ST T 6 T 'I"l Sr(f3) '1"2 Sr(f3) t, 

8ST (~) 1 ~ ( (rt (f32)) (rt (f32))) 
8f3~ = -ST (f3) T t=~+l WT (f3) 1/J1 ST (f3) + 1/J2 ST (f3) X t , (56) 

where 
[TT] T 

1 '" - (~) 1 '" - (~) T L..J P2 --.-:r\iJf + T L..J P2--.-:r\iJf 
w (f3) = t=l t=[TT]+l 

T [TT] T 
.1 '" ;p (~) + .1 '" .i. (~) T L..J 1 --.-:r\iJf T L..J 'I" 1 --.-:r\iJf 

t=l t=[TT]+l 

(57) 

with;Pi (Z) = Z1/Ji (z) and Pi (z) = 2Pi (z) -;Pi (z), for i = 1,2. 

Proof: Taking into account the objective function ST (0 defined by (44) we have that, 

8ST (~) 

8f3~ 
2sT (f3) 8sT ~f3) (~ ~ P2 (rdf31)) + ~ t P2 (rt (f32))) (58) 

8f31 T t=l ST (f3) T t=[TT]+l ST (f3) 

~~) I 2 (f3) ~ '" 1/J (rt (f3 1) -XtST (f3) - rt (f31) 8sT (f3) /8f31 

+ST T ~ 2 ST (f3) s} (f3) 

+ 2 (f3) ~ ~ 1/J (rt (f32)) -rt (f32) 8ST (f3) /8f3~ 
ST T ~ 2 S (f3) s2 (f3) , 

t=[TT]+l T T 

where rt (0) = yt - X;O is the residual function. Now, the partial derivatives of the scale 

M-estimator ST (f3) , defined by (45), is given by 

and therefore 

8sT (f3) _ 
8f3~ - [TT] T 

.1 '" 1/J (~) (~) + .1 '" .1. (~) (~) T L..J 1 --.-:r\iJf --.-:r\iJf T L..J 'I" 1 ~ ~ 
t=l t=[TT]+l 

(59) 

Thus, inserting (59) in (58), we obtain the result (55). For (56) the proof is similar. • 
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where 

( ) 
sjT(f3)' 

WjT ({3) "'fjT {3 + "'fT ({3) DT ((3) , (60) 

for j = 1,2, 

[TT) 
"'fIT ({3) 1 ""'2{P (rt ({31)) (rt ({3I)) Xt (61) 

~ Z ST ({3) ST ({3) DT ({3) , 

"'fzT ({3) 1 t 2{P2 (rt ({3z)) (rt ({3z)) Xt (62) 
t=[TT]+1 ST ({3) ST ({3) DT ({3) , 

"'fT ({3) = (~ I! TT (rt ((3I)) rd{3l) + 1 t TT (re ({3z)) re ({3z)). (63) 
T t=l ST ({3) ST ({3) t=[TT]+1 ST ({3) ST ({3) 

and, finally, 
AjT ({3) 
DT ({3) 

for j = 1,2, defined by (59) for j = 1, and for j 2 obtained in a equivalent way. 

Proof: Taking into accout Proposition 17 we obtain that, 

1 ~ (rt{{31)) . , 
-ST ({3) T ~ 1Pl ST ({3) Xt WIT ({3) 

1 ~ ( ! . (rt({3I)) . (rt ({3I))) + T ~ HT ((3) 1Pl sr({3) + 1Pz sT ({3) XtXt, 

(64) 

(66) 

where SIT ({3) = OST ({3) /o{3~, VV1T ({3) = oWT ({3) /o{3~ and Wi (z) 1Pi (z) + Z{Pi (z) for 

i 1,2 with {Pi (z) 01Pi (z) /oz. 

But observe that, inserting the partial derivatives of the M-escale, given by (59), we 

obtain that (65) is equal to 

[TT] , 
~ 2: (WT ((3) WI (rt ({3I)) + Wz (rt ({3d)) X t AIT ({3) 
T t=l ST ({3) ST ((3) DT ({3) 

~ ~T (rd{3I)) X t 1 ~1P (rt ({3I)) X' 
T ~ T ST ({3) DT ((3) T ~ 1 ST ({3) t 

(67) 

where TT (z) WT ({3) Wl (z) + W2 (z). 
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For the term (66), after some algebra we obtain that, 

ST ({3) WIT ({3)' 

1 [T.,-] (({3)) X, = LT rt I t 
T t=I T ST (/3) DT ({3) 

+ (.!. ~ TT (rd {31)) rt ({31) + 1 t TT (rt ({32)) rt ({32)) SIT (/3)' 
T t=I ST (/3) ST ({3) t=[T.,-]+ I ST (/3) ST ({3) DT ({3) 

(68) 

with ~2 (x) = 1/;2 (z) - Z;P2 (z), and TT (z) = WT ({3) WI (z) - ~2 (z). Then, considering 

(67) and (68), 

1 [T.,-] (Tt ({31)) ( SIT ({3)/) 
(65) + (66) T 8 1/;1 ST ({3) X t lIT ({3) + IT ({3) DT (/3) , 

with lIT ({3) and IT ({3) defined by (61) and (63), given that TT (z) TT (z) 2Z;P2 (z). 

The result for the another derivative is obtained in a similar way. l'I 

APPENDIX 2. LEMMATA. 

Part A: 

The part A of this Lemmata corrf'-sponds only to the proof of Theorems 2 and 3, for 

M-estimators. \Ve assume, with no loss of generality, that T :::; TO. 

Lemma 1 Assume A.I and A.2 (except A.2.4), 

(69) 

where M (0) is defined by the Assumption A.2.6. 

Proof: By the triangular inequality, 

< SupSup I ~ f: TJt (0) E [TJt (0)] (70) 
"-EnOE9 t=I 

+ SupSup 111 f: E [TJt (0)]- TM (0)11· (71) 
.,-EnOE9 t=I 

By assumption A.2.6, (71) --+ 0, while (70)~ 0 by A.l.l, A.2.3 and A.2.5 applying Lemma 

A.3 of Andrews (1993). • 
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Lemma 2 Let eo c e be a compact subset of RP, containing neighborhoods of eo. Con­

sider a sequence {eT, T ~ I} E eo such that eT -> eo. Then, under A.l and A.2 (except 
TToo 

A.2·4), 

supllf I=ryt(eT)-TM(eo)11 ~o. 
TEll t=l 

Proof: By the triangle inequality, the left side of the above expression is bounded by 

1

1 TT 

Sup T L ryt (eT) - E [ryt (eT)] 
TEll t=l 

(72) 

+ ~~C Ilf ~ E [ryt (eT)]- E [ryt (eo)]11 (73) 

+ Sup 11 f I: E [ryt (eo)] - T M (eo) 11· 
TEll t=l 

(74) 

By A.2.6, (74)-> 0, while (72)~ 0, by A.l.l, A.2.3 and A.2.5, because 

(72) ~SupSup Ilf I: ryt (e) - E [ryt (e)] I ~ 0, 
TEIlIIE60 t=l 

by Lemma A.3 of Andrews (1993). It remains to examine (73): (i) by tightness condition 
T 

of {FT, T ~ I} we obtain that ~ 2:= P (Zt et Gj ) -> 0 as j -> 00, for some sequence of 
t=l 

compact sets {Gj,j ~ I} in Z, and (ii) Vj ~ 1 : 

~~C Ilf ~ E [ryt (eT) - ryt (eo)] I (Zt E Gj)11 

< Sup IliJt (eT) - ryt (eo)11 -> 0 for eT -> eo, 
ZtECj 

(75) 

for a function ryt (.) defined in (z,e) E Z x e, continuous by assumption A.I.1, and thus, 

uniformly continuous in the compact set Gj • So, the difference of the function, evaluated 

in eT and eo will be asymptotically negligible under the supreme metric, as we obtain in 

(75). (iii) By results (i) and (ii) : 

as eT -> eo. The lemma result follows. • 
TT 

Lemma 3 Consider VT (T) = -k 2:= 1Jt such as {VT (T), T ~ I} belongs to the bounded 
"\IT t=l 

cadlag function space in RP and is defined on IT C [0,1]. Under A.l and A.2 ( except 

A.2.5), 
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where" ::::} " denotes weak convergence, in the D ([0, 1]) space under the Skorokhod metric. 

B (r) is an p-vector independent motion Brownian process. The process can be defined in 

C ([0,1]) , for which exists an equivalence between the Skorokhod and Uniform metrics. 

Proof: To prove this lemma we use the results of Lemma AA of Andrews (1993), with 

the difference that the triangular arrays he used, are constant across the subscript T in 

our case. Then, we have to prove that the process {VT (r) , T ;::: I} is such that: 

(i) '<IQ E RP,Q'vT(r) ::::}Q'Sl/2B(r), 

(ii) {VT (r),T;::: I} has asymptotically independent increments. 

To obtain (i), under A.2.1, A.2.2 and A.2.7, we apply Cor. 3.2 of Wooldridge and 

White (1988), which utilizes the results of McLeish (1977). Noting that Cor. 3.2. yields 

weak convergence of the standard partial sum process in D ([0, l]) with the Skorohod 

metric and the iT-algebra generated by it, this can be converted into weak convergence in 

D ([0, 1)) \,,"ith the uniform metric and the iT-algebra generated by the closed balls under 

the uniform metric. This is treated by Andrews (1993). 

To obtain (ii) is enough to prove: 

By Cramer-Wold device, leads to 

To obtain above result, we use again Cor. 3.2 of Wooldridge and White (1988), 

1 TT2 1 TTO 

Q~ vT L 'TJt + Q~ vT L 'TJt 
t=TTl+l t=l 

::::} Q'lSl/2B(r2 rd+Q~Sl/2B(ro) 

:!!::. N (0, (r2 - rl) Q~SQl + rOQ~S(2)' 

And we get the desired result. • 
Lemma 4 Let VT (r) be defined as in Lemma 3. Under assumptions A.l and A.2 (except 

A.2.5), we obtain that '<IQ E RP and for any positive constant k: 

pr{ Sup o.'IVT(r)l>k}=o(II~II), 
r'!E:ro-1;;} 

where M is a positive arbitrary large constant. 
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Proof: Firstly, observe that, 

Pr { Sup a'lvT (T)I > k} ~ Pr {sup a' IVr(T) I > k} , 
'T~'TO-~ 'T~1 

and by Lemma 3 we obtain, 

a'VT (T) => (a' Sa) 1/2 B (T), 

by Cramer-Wold device. Let be Y = SUP'T IB (T)I, a process with finite second moment, 

because P {SuPTB (T) ~ d} = 2<1> (d), d ~ 0 and B (.) is symmetric around zero. Thus, 

by Markov inequality, 

Pr {~~f a'lvT (T)I > k} -> Pr {Y > k (a'Sa)-1/2} ~ E ~~2) (a' Sa). 

Considering the Cauchy-Swartz inequality, (a' Sa) = IISl/2all ~ IISl/21111all and S finite 

matrix, the result follows. • 

Lemma 5 Let VT (T) be as in Lemma 3. Under the assumptions A.I and A.2 (except 

A.2.5), we obtain that "la E RP and for any positive constant k: 

where M is a positive arbitrary large constant. 

Proof: The prooffollows as in Lemma 4, defining Y by a the absolute value of a standard 

normal variable, and therefore, with a finite second moment. • 
Lemma 6 Let VT (T) be as in Lemma 3. Under assumptions A.I and A.2 (except A.2.5), 

we obtain that "la E RP and for any positive constant k: 

, (110. 11 ) Pr {a Ivr(l) - vr(To)1 > k} = 0 ""k2 . 

Proof: The proof follows as in Lemma 5. • 
Part B: 

The part B of this Lemmata corresponds only to the proof of Theorem 5, of T-estimators. 

Lemma 7 Let e a compact set in RP and [hI, h2J a closed interval with hI > O. Then, 

under the assumptions B.I and B.2 we obtain that 

Sup 
TEn 

Sup 

Bi E e 
sE [hI, h2J 

~ ~ (Ut + B~Xt) _ E [ (Ut + B~Xt)] ':!.·O 
TT ~ PI S PI S 

t=1 
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Proof: As in Lemma 4.3 of Yohai (1986), the proof follows directly from Lemma 1 of 

Yohai (1974). • 
Lemma 8 By the assumptions B.1 and B.2 we obtain that 

Sup 1sT (0) s (0)1 0, 
8Ee3 

where, given 0 (O~, 0;, 0;)' E 0 3 , sT (0) and s (0) are such as, 

BT (0, T, ST (0)) = band B (0, T, S (0)) b, 

with 

forb (bi,b~,b3)' R3
p, S > 0 andTE (0,1). 

Proof: Define hI Inf S (0) and h2 =Sup S (0), such that hI > 0 and h2 < 00. By 
8Ee3 8Ee3 

Lemma 7 we obtain that 

Lim 
T ...... oo 

Sup IBT (0, T, s) - B (0, T, s)1 = o. (76) 

o E 0 3 

S E rh}, h2J 

Let c be such that 0 ~ c ~ hd2 and define 91 (0) = B (0, T, S (0) + c) and 92 (0) = 

B(O,T,S(O) c), then it holds that 

Given that 91 (-) and 92 (-) are continuous function, we have that 

and define 8 M in {b - 11,12 b} . If (76) holds, then 3To such that '<IT .2 To, 

Sup 
8 

IBT (0, T, s) - B (0, T, s)1 < 2. (77) 

o E 0 3 

sE [h I /2,2h2] 

Now, observe that: 
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a) Given that s (e) - c ~ hI - hd2 = hd2 then s (e) - c E [hd2,2h2J , and therefore, 

by (77), 
8 

Sup IBT (e, T, s (e) - c) - B (e, T, s (e) - c)1 ~ -, 
/lEe3 2 

inequality which also holds for the In! in e. Then, because In! lA - BI > IIn! (A) - Sup (B)I, 

where 

Ssupl ~In! BT(e,T,S(e)-c) ~ Ssup2, 
/lEe3 

8 8 
Ssupl =Sup B(e,T,S(e) -c) - -2 and Ssup2 = Sup B(e,T,S(e) -c) + -2· 

/lEe3 /lEe3 

Therefore (78) takes to 

Sinfl ~In! BT (e, T, s (e) - c), 
/lEe3 

(78) 

(79) 

where Sinf 1 is defined as Ssup 1, considering the In! instead of the Sup. However, because 

Sinfl =/2 -8/2 ~ b+8-8/2=b+8/2, by (79), 

8 
In! BT(e,T,S(e) -c) ~ b+-

2
. 

/lEe3 

b) Given that s (e) + c ~ h2 + hd2 ::; 2h2 then s (e) + c E [hd2,2h2J and therefore, by 

(77), 
8 

Sup IBT (e, T, s (e) + c) - B (e, T, s (e) + c)1 ::; -2' 
/lEe3 

and because of Sup lA - BI ~ I Sup (A - B)I ~ ISup(A) - Sup (B)I , 

S~upl ~Sup Br(e,T,S(e) +c) ~ S~up2' 
/lEe3 

with 

S~up 1 =Sup B (e, T, s (e) + c) - -2
8 

and S~up2 = Sup B (e, T, s (e) + c) + -2
8

. 
/lEe3 /lEe3 

Next observe that S~up2 = 11 + 8/2 ~ b - 8 + 8/2 = b - 8/2. 

With the results in a) and b) we have obtained that, given c > 0, 3To such that 'IT ~ To 

8 8 
Sup BT (e,T,S(e) +c) ~ b - - ~ b ~ b+ - ~In! BT (e,T,S(e) -c), 
/lEe3 2 2 /lEe3 

and taking into account that b = BT (e, T, ST (e)), the proof concludes because we have 

obtained that Vc > 0, 3To such that 'IT ~ To 

s (e) - c ~ ST (e) ~ s (e) + c, 

uniformly in e E 6 3 . • 
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Lemma 9 Under the assumptions B.l and B.2 we obtain that, for Bi E e, i 1,2,3, 

B = (B;,B~,B~)' E e3 andj = 1,2. 

SUpSUp 2. ~ .i,. (Ut + B~Xt) X X' _ E [.i,. (Ut + B~Xt) X XI] ~ 0, (80) 
TEnOE93 T t;; 'f'J ST (B) t t T 'f'J S (B) t t 

E[ (Ut+B~Xt)] 
T P2 S (B) ~ 0, (81) 

SUpSUp 2. I:;P' (Ut +B~Xt) (Ut +B~Xt) -TE [;Po (Ut +B~Xt) (Ut +B~Xt)] ~ 0, (82) 
TEnOE93 T t=l:J ST (B) ST (B) :1 S (B) S (B) 

1 [TT] ( B'X ) Ut + i t 
SUp Sup 1/Jj (B) X t 
TEnOE93 ST 

E [ I . (Ut + B~Xt) X] 
T 'IjJ J S (B) t 

~ 0, (83) 

(84) 

SupSup 112. I: 1/J. (Ut +B~Xt) (Ut +B~Xt) -TE [1/J. (Ut +B~Xt) (Ut +()~Xt)] 0, (85) 
TEnOE93 T t=1 J sT(B) sT(B) :1 s(B) s(B) 

S S 2. ~ i (Ut+B~Xt) (Ut+B~Xt)2 _ E[i. (Ut+B:Xt) (Ut+B~Xt)2l ~0,(86) 
T~KoE~ T t;; 'IjJ:1 sr(B) ST (B) T 'IjJ:1 S (B) s (B) 

Proof: We only consider the result (80) because the other ones are obtained in a similar 

way. Observe that the left side of (80) is upper bounded by 

SUp 
TEn 

SUp 

Bi E e 
sE [s (B) - c,S (B) +c] 

(87) 

because of Lemma 8. By Lemma A.3 of Andrews (1993) we obtain that (87)~ 0, given 

that for j = 1, 2 

by assumptions B.l (1/Jj (-) are bounded) and B.2 (E[XtXi] < 00). • 
Lemma 10 By assumptions B.l and B.2 we obtain that 

SUp IIWT (B) - W (B)II ~ 0, (88) 
/lE93 
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and for j = 1,2, 

where 

and 

Sup IIWjT (e) - Wj (e)11 ~ 0, 

Wj (e) 
Sj (0) 

, j (e) + , (e) D (er 

(89) 

Proof: The result (88) follows by (80) and (81) of Lemma 9. To show (89) we need 

several previous results. By (83) and (84) in Lemma 9 we obtain that 

SUpSUp ~ ~ w, (Ut + e~Xt) X E [w. (Ut + e~Xt) X] ~ 0, (90) 
-reneEEP T {;j' J ST(e) t r J s(e) t 

S S ~ ~ ,T, (Ut + e~Xt) X _ E ['T'. (Ut + e~Xt) X] 
-r~g eE~ T {;j' ';! J sr( e) t r ';! J S (0) t 

0, (91) 

by (85) and (86) of Lemma 9, 

[T-r] ( /) ( /) rE [w. (Ut + e~Xt) (Ut + O~Xt)] SUp Sup ~ LW' Ut + e;xt Ut + eixt 
-rEITeE83 T t=l J ST (0) ST (0) J S (e) S (0) 

[T-r] ( /) ( /) rE[liI. (ut+e~xt) (ut+e~xt)] SUp Sup ~ L liI· Ut + eixt Ut + eixt 
-rEITeE8 3 T t=l J ST(e) ST(e) J s(e) s(e) 

such that, these last two results together with (88) imply that, 

SUp Sup I 1 I:1'T(Ut+e~Xt) (Ut+tXXt)_rE[1'(Ut+e~Xt) (Ut+e~Xt)] ~o, 
-rEITeE83 I t=l ST(e) sr(e) s(e) s{O) 

for l' (z) = W (0) W1 (z) -liIz (z) , and then, 

(92) 

where 

,CO) = rE[1'(Ut;(:~Xt) (Ut;(:~Xt)] +(ro r)E[1'(Ut;(:~Xt) (Ut;(:~Xt)] 

+(l-ro)E [1' (Ut ;(:~Xt) (Ut ;(:~Xt)]. 
Next, by (83) and (84) we have that, 

SUp IISjT (e) - Sj (e)11 ~ 0, 
eE93 

(93) 
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for j 1,2 where 

with 

Al (0) TE [~I (Ut :(~)Xt) X t] , 

A2 (0) (TO - T) E [~I (Ut :(~~Xt ) Xt] + (1- TO) E [~1 (Ut :(~~Xt ) X t ] , 

and 

And, finally we obtain that, by (84) 

(95) 

for j 1,2 where 

11 (0) 
2TE [~2 (u'~(J(') (u'~(~,x,) Xt] 

= 
D (0) 

2 (To - T) E [~2 (u'~te{t ) (Ut~(~~Xt ) Xt] + 2 (1- TO) E [~2 (Ut~tj,xt ) (Ut~te{') Xt] 

D (0) 

Then, taking into account (92), (93), (94) and (95) the proof is concluded. • 
Lemma 11 By assumptions B.l and B.2 we obtain that 

Proof: By Lemma 8, the result follows as in Lemma 5.1 of Yohai (1985), taking into 

account that, for this case, the part (i) holds by invariance principle of Donsker. • 

Lemma 12 Under B.l and B.2 

1 [Tr] 

SupSup T L (ildOi)+iljt(Od) -T(M(O)+Mj(O)) 
rETI9Ee3 t=1 

where 

0, 

M (0) E [(W (0) .), (Ut + O~Xt) + :" (Ut + O~Xt)) X XI] 
'PI s(O) 'P2 s(O) tt, 

[ (
Ut + O~Xt) ] Mj (0) = E Wj (0) ~l S (0) X t • 
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Proof: By triangular inequality (96) upper bounded by 

[TT] f 1:: (ilt (Oi) + 1]jt (Oi)) - 7 (M (0) + Mj (0)) SUp SUp 
TEllOEEl3 

< SUpSUp 
TEllOEEl3 

t=1 

[TT] 

~ 1:: 1]1 (Oi) - 7M (0) 
t=1 

[TT] 

+ SupSup 1 1:: 1]jdOi) - 7Mj (0) 
TEllOE83 t=1 

(97) 

(98) 

(97)~ 0 by (80) and (88), in Lemmas 9 and 10 respectively, while (98)~ 0 by (83), in 

Lemma 9 and (89), in Lemma 10. • 

Lemma 13 Under B.I, B.2, and the conditions of Lemma 2, given that OT Tt:, 00 , 

OT,OO E e3, 

for i 1,2,3, and j 1,2, where 

P 
~O, 

M (00) = E [ ( W (00) ~1 (Ut :(:~)Xt) + ~2 (Ut :(:~)Xt) ) XtX:] , 

Mj (00 ) E [Wj (00 ) ~1 (Ut :(:~)Xt ) Xt] . 
Proof: By Lemma 12, the proof is as in Lemma 2. 

[TT] 

• 
Lemma 14 Consider VT (7) = 7r L 'TJIJ such that {VT (7), T 2: I} belongs to the 

t=1 
bounded cadlag functions space in RP and is defined in IT C [0,1]. Under B.I and B.2, it 

holds the result of Lemma 3. 

Proof: By Lemma 8, Sup 1ST (0) 
o 

s (0)1 -!' 0, and for 0 = (O~, O~, o~)' = 03p E R3
p

, we 

obtain that ST (0) ~ 0"0, with 0"0 such that 

By Lemma 11, we have that 

Jr ~ ~1 (STu(O)) X t and Jr ~ ~2 CTU(O)) Xt 

are asymptotically equivalent to 

1 ~ ~1 (;~) X t and 1 ~ ~2 (;~) Xt, 
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respectively, and therefore 

where "~" denotes asymptotic equivalence, with 

(99) 

Then by the invarianza principle of Donsker and Slutzky theorems we obtain that 

with S ufiE [1/16 (Ut)] E [XtX:] . The rest of the proof is similar to Lemma 3. • 

63 



APPENDIX 3: TABLES AND FIGURES 

TABLE 1 

Bias and mean squared for LS, LAD and Huber estimators of structural break point, based on 5000 replications of the 

model yt = 1 + X t + AT! (Tt> TO) + Ut, with Tt = tiT, t = 1, ... , T, T = 100,200 and 500, with AT = 2.189, 2.0 and 1.795 

respectively. Several distribution for Ut are considered: standard normal, double exponential, t3, t5 and two mixed standard 

normal distribution, N90 and N75, with a 10% and 25% of a normal distribution with variance equal to 9 respectively. The 

values corresponding to Bias and MSE must be divided by 100. 

POINT ESTIMATION T=100 T=200 T=300 

MODEL ESTIMATOR Bias MSE Bias MSE Bias MSE 

LS 0.292 2.252 0.418 0.426 0.656 0.312 

N (0, 1) LAD 0.390 3.819 0.379 0.738 0.544 0.593 

Huber 0.180 2.395 0.418 0.453 0.583 0.356 

LS -0.364 2.166 -0.062 0.900 -0.037 0.318 

~ exp (lul) LAD -0.018 0.987 -0.005 0.351 -0.173 0.138 

Huber -0.026 2.166 -0.058 0.534 -0.273 0.198 

LS -1.544 2.972 -0.144 1.527 0.042 0.443 

t3 LAD -0.306 0.590 -0.084 0.263 0.229 0.089 

Huber --0.474 0.653 0.084 0.307 0.192 0.104 

LS -1.000 2.119 -0.189 0.954 0.214 0.311 

t5 LAD -0.246 1.610 -0.065 0.669 0.359 0.254 

Huber -0.136 1.283 0.114 0.527 0.296 0.237 

LS -0.156 1.943 -0.525 0.958 -0.028 0.326 

N90 LAD -0.070 1.339 -0.085 0.621 -0.014 0.217 

Huber -0.184 1.099 0.027 0.535 -0.025 0.160 

LS 0.820 2.039 -0.267 0.949 -0.005 0.032 

N75 LAD -0.384 0.777 -0.144 0.362 -0.067 0.012 

Huber -0.122 1.013 -0.228 0.447 -0.012 0.014 

64 



TABLE 2 

Interval estimation for LS, LAD and Huber estimators of structural break point, based on 5000 replications of the model 

yt = 1 + X t + AT! (Tt> TO) + Ut, with Tt = tiT, t = 1, ... , T, T = 100,200 and 500, with AT = 2.189, 2.0 and 1.795 

respectively. Several distribution for Ut are considered: standard normal, double exponential, t3, t5 and two mixed standard 

normal distribution, N90 and N75, with a 10% and 25% of a normal distribution with variance equal to 9 respectively. The 

values corresponding to Bias and MSE must be divided by 100. 

INTERVAL ESTIMATION T=lOO T=200 T=500 

MODEL ESTIMATOR a = 0.1 a = 0.05 a = 0.01 a = 0.1 a = 0.05 a = 0.01 a = 0.1 a = 0.05 a = 0.01 

LS 0.158 0.091 0.036 0.130 0.074 0.018 0.121 0.065 0.016 

N (0, 1) LAD 0.120 0.073 0.026 0.088 0.044 0.009 0.088 0.046 0.009 

Huber 0.157 0.096 0.037 0.127 0.073 0.018 0.122 0.067 0.016 

LS 0.145 0.093 0.031 0.125 0.070 0.022 0.114 0.062 0.018 

~ exp (lul) LAD 0.068 0.034 0.007 0.056 0.028 0.004 0.067 0.030 0.006 

Huber 0.148 0.086 0.026 0.118 0.067 0.018 0.114 0.061 0.016 

LS 0.149 0.087 0.032 0.125 0.075 0.025 0.111 0.064 0.016 

t3 LAD 0.052 0.021 0.004 0.058 0.022 0.003 0.057 0.024 0.004 

Huber 0.140 0.078 0.02 0.119 0.067 0.016 0.115 0.062 0.014 

LS 0.144 0.084 0.027 0.127 0.071 0.018 0.116 0.063 0.016 

t5 LAD 0.079 0.038 0.012 0.066 0.034 0.008 0.071 0.032 0.006 

Huber 0.138 0.080 0.023 0.126 0.067 0.017 0.116 0.064 0.018 

LS 0.140 0.081 0.029 0.136 0.080 0.021 0.114 0.066 0.015 

N90 LAD 0.076 0.039 0.009 0.078 0.034 0.006 0.070 0.034 0.005 

Huber 0.144 0.084 0.026 0.135 0.078 0.023 0.113 0.061 0.016 

LS 0.147 0.085 0.032 0.133 0.077 0.021 0.111 0.065 0.018 

N75 LAD 0.061 0.094 0.064 0.064 0.030 0.005 0.061 0.028 0.003 

Huber 0.151 0.084 0.028 0.133 0.075 0.021 0.113 0.062 0.015 
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TABLE 3 AND FIGURE 1 

Sample data corresponding to the model Yt = 1 + X t + I (t > TTO) + Ut where Xt '" i.i.d.N (0,0.1), Ut rv i.i.d.N (0,0.1) , 

TO 0.5 and T 30. 

Time Y X Time Y X Time Y X 

1 1.03 -0.30 11 0.83 -0.14 21 2.08 -0.27 

2 0.67 -0.21 12 1.45 -0.00 22 2.84 0.08 

3 0.17 -0.16 13 0.87 0.43 23 3.17 0.54 

4 1.27 0.06 14 0.98 0.17 24 1.24 -0.41 

5 0.87 -0.06 15 1.47 0.08 25 2.50 0.45 

6 1.59 0.33 16 1.57 -0.14 26 2.41 0.30 

7 1.43 -0.04 17 1.39 -0.28 27 1.34 -0.43 

8 0.98 -0.08 18 2.31 0.26 28 1.07 -0.48 

9 0.57 -0.04 19 1.89 0.20 29 2.30 0.32 

10 1.06 0.07 20 2.18 0.17 30 2.47 -0.37 
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TABLE 4 

LS, LAD, Huber and T- estimator of the break, [TTTJ, and the regresion parameters pre-break and post-break for the 

model lit 1 + X t + I (t > TTO) + Ut where Xt f"V i.i.d.N (0,0.1), Ut f"V i.i.d.N (0, 0.1), TO = 0.5 and T 30. 

SAMPLE DATA WITH P 

PARAMETER HUBER 'T'-EST. 

Break 15 15 

Constant pre--break 0.99 1.05 1.02 1.03 

Constant post-break 2.05 1.89 1.90 1.90 

Slope pre--break 0.97 1.62 1.17 1.44 

Slope post-break 1.34 1.59 1.51 1.56 

SAMPLE DATA WITH PI 

PARAMETER LS LAD HUBER 'T'-EST 

Break 22 15 15 15 

Constant pre--break 1.16 1.06 1.02 1.03 

Constant post-break 2.07 1.89 1.87 1.89 

Slope pre--break 0.60 

Slope post-break 1.38 

SAMPLE DATA WITH P2 

PARAMETER LS LAD 'T'-EST 

Break 22 22 15 

Constant pre--break 1.26 1.25 1.22 1.03 

nstant post-break 1.91 1.89 

Slope pre--break -0.36 -0.50 -0.42 1.40 

Slope post-break 1.38 1.64 1.51 1.55 
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FIGURE 2 

Dependent variable and fit respect to the time for the L8, LAD, Buber and T- estimators. The model is yt = 1 + X t + 
I (t > TTO) + Ut where Xt f'V i.i.d.N (0, 0.1), Ut rv i.i.d.N (0, 0.1), TO = 0.5 and T = 30, and the sample data corresponds to 

P. The dotted vertical line corresponds to the lQcation break estimate. 
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FIGURE 3 

Dependent variable and fit respect to the time for the LS, LAD, Huber and T- estimators. The model is yt = 1 + X t + 
I (t > TTO) + Ut where Xt rv i.i.d.N (0, 0.1), Ut rv i.i.d.N (0, 0.1), TO 0.5 and T = 30, and the sample data corresponds to 

PI. The dotted vertical line corresponds to the location break estimate. 
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FIGURE 4 

Dependent variable and fit respect to the time for the LS, LAD, Huber and T- estimators. The model is It = 1 + X t + 
I (t > TTO) + Ut where Xt r'V i.i.d.N (0, 0.1), Ut rv i.i.d.N (0,0.1), TO = 0.5 and T = 30, and the sample data corresponds to 

P2. The dotted vertical line corresponds to the location break estimate. 
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