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1 Introduction 

A well known problem in Information Retrieval (JR) research is the difficulty faced by 
users who try to accurately formulate queries to retrieve the documents they want. This 
problem has to do with the user's lack of familiarity with the database lexicon, and often 
results in a not very satisfactOlY retrieved document set [20,49]. In order to overcome 
this problem, many commercial databases include a thesaurus which helps users to fmd 
the precise terms that match documents they are seeking. Throughout this work, 
expressions word, term, descriptor and key word will occasionally be interchanged. 
Since the information stored in many databases (as in the case of networked information 
in Internet) changes continuously, it is not generally feasible to update a thesaurus 
manually; often, the absence of a uniform structure in databases makes this task even 
harder. In the case of networked information, the possibility of browsing documents 
makes the thesaurus an essential part of the system. If no thesaurus is used, the problem 
of documental noise arises. To illustrate this problem, let us show an example. We 
formulated a query with the term "cluster" using the Lycos program [17] in Internet. The 
system returned a set of 9390 documents. But in the sense we wanted, "cluster 
analysis", there were only 91 documents, a smaller set for visual inspection. The use of 
compound key words in queries, more specific than single descriptors, helps to simplify 
these situations [46]. 



A typical thesaurus provides for every term in it a list of broader, narrower and related 
terms. Thesauri can be manual or automatic. Automatic thesauri are dependent on the 
corpus used in their elaboration, since they use term coocurrence in documents to build 
the associations [16,46,26]. On the other hand, this feature allows them to keep up-to­
date in a changing information environment. 

Concerning previous work in compound key word generation, Salton [46] proposes a 
procedure based on word coocurrence inside sentences. To form a key word, a main 
term is chosen (imposing a frequency threshold) and then associations are made 
between this term and other terms in the same sentence. The system is strongly arbitrary 
concerning the choice of the main term, and can produce a high percentage of 
meaningless associations. In [26] some new methods for thesaurus generation and their 
performance in IR tasks are reviewed. In that paper the authors point out some problems 
of these systems, as the need to use relevance judgements to generate key words. They 
also comment on the difficulty in evaluating the performance of thesauri. 

In this paper we focus on the automatic generation of compound key words using 
frequency of words in documents. The process starts with a list of single index terms 
from the database under study. This list is automatically generated from the database 
raw text using standard, simple indexing techniques, as explained in subsection 2.1. For 
the task of generating key words, single terms are first clustered into groups of 
semantically related words. We will call these groups "semantic classes" in the sequel. 
Given a particular key word, the words that form it are semantically related and, 
therefore, they are expected to belong to the same semantic classes. Thus, given a single 
term, the search of co-ocurrent terms in key words for that term can be restricted to the 
semantic classes to which that word belongs. In this way, the search space for semantic 
associations is drastically reduced, and the risk of generating meaningless associations is 
strongly reduced too. 

The rest of the paper is as follows: the structure of document information is described in 
section 2 as well as some particularities for this type of information. In section 3 a 
neural network based clustering architecture is introduced for the task of semantic class 
formation. Compound key words are generated using information from these semantic 
classes. Section 4 is devoted to experimental work on two real databaseso Finally, 
section 5 summarizes and outlines some new research tasks. 

2 Structure of document information 

2.1 The vector space model 

In this subsection we briefly describe the "vector space model" [45,46], used in this 
paper to represent documents and terms. This model allows a symmetric treatment 
between terms and documents. We will see that, despite the duality existing between 
term and document vectors, there are differences that will prevent us from using the 
same clustering algorithms on terms that are often used on documents. 

In the vector space model both documents and terms are represented as points of a 
vector space: 
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Let tl't2, ... ,tn denote the terms used for indexing the database and DI'D2, ... ,Dm the 

documents in the database. Document D; is represented by: 

D; =(a;l'a;2"" ,a;n) 

where a is the weight of term t" in document D,". 
lj ) 

Term tj is represented by: 

tj =(ajj,a2j, ... ,amj) 

In this way the term-document matrix M results: 

DI - all a l2 
D2 - a 21 a 22 

(1) 

(2) 

(3) 

If coefficients aij are chosen so that aij = 1 when term tj is present in document D;, 

aij = 0 in other case, binary vectors are obtained. To get real-valued vectors, the TF-IDF 

(Term Frequency - Inverse Document Frequency) method [47] is broadly used. Let us 
consider the following quantities: 
nj = number of documents indexed by term tj 

m = number of documents in database 
tij = number of occurrences of term tj in document D; 

The IDF method chooses: 
m 

aij = tij ·log(-) (4) 
nj 

The IDF method has been recently justified using an information theoretic approach 
[50]. For our purposes only presence/absence information of terms in documents is 
needed, so we will adopt the binary scheme in the sequel. Queries formulated to the 
database are represented like documents in the vector space model. 

When a query is formulated, a "similarity measure" is used for ranking documents 
according to relevance to the query. Some commonly used similarity measures are the 
inner product and the cosine measure for real-valued vectors, and the Dice coefficient or 
the Jaccard coefficient for binary-valued vectors. For a more comprehensive list, see 
[46]. 

An open question is how to select the single index terms tj ,t2 , ••• ,tn • The most commonly 

used method for this task [11,46] works as follows: first of all, an stop-word list is used 
to remove common words from the database, such as "the", "that", "of', etc. Next, both 
rare words and too frequent words are removed using cut thresholds in the term 
frequency distribution. In this way, words with maximum semantic discrimination 
power are expected to remain.To date, there is no general rule to choose these frequency 
thresholds. 
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Here, this method for index term selection will be used, but introducing a modification. 
The method just described removes very frequent words from the vocabulary. Assuming 
empty words have been removed, frequent words are often present in key words. If we 
remove frequent words such as "information", "higher" or "needs", important key words 
such as "information retrieval", "higher education" or "user needs" will be lost. This is 
why we will not impose an upper frequency threshold to exclude frequent terms from 
databases. It is appropriate to say here as well that single words are not previously 
stemmed, and that the empty-word list used remains unchanged in all experiments. 

2.2 Asymmetry between rows and columns in the term-document matrix 

Considering equations 1 and 2, it is apparent the duality existing between term and 
document vectors: documents are the rows of M (eq. 3) and terms are the columns. 
Suppose now we want to perform a cluster analysis on a given document set. Let us 
denote sij the similarity between document i-th and document j-th. All the information 

needed to carry out a clustering process is contained in the similarity matrix S=(sij)' 

For example, Jaccard's coefficient is computed by: 

• ",n _ aikaj'k s .. = L..k-l 

Ij L:n 
2 L:n 

2 L:n 
a, + a, - a, a 

k=l Ik k=l jk k=l Ik jk 

(5) 

where IDd = number of ajj ~O, i.e., number of present terms in Dj, and IDj /\Djl = number 
of common terms between Dj and DJ. Sjj is used for binary vectors and Sjj' for real-valued 
vectors. 

We see that computation of Jaccard's coefficient only requires vector representations for 
each Dj E9tn

• This is true for all commonly used similarity measures [1,19,25]. For this 
reason the same algorithms can equally be used to cluster documents and terms. Some 
references on clustering documents are [7,22,28]. 

A word of caution on the duality between terms and documents is necessary however. It 
is well known that word frequencies in documents roughly follow a Zipfs law [52]: If 
terms are arranged by descending occurrence order, where occurence is the number of 
documents containing the given word, the frequency of term in position r (r=l ,2,3, ... ), 
fer) say, verifies 

fer) r ~ k , where k is a constant. (6) 

More accurate forms of this law can be found in [38,39]. From Zipfs law it follows that 
in any database there will be many rare terms but just a few very frequent terms. A 
concrete example is shown in figure 1. The feature used to produce the histogram is the 
number of documents in which terms occur. The histogram is made from the vocabulary 
(near 6000 different words) of the database used in example 4.1, which contains more 
than 5000 documents covering the common topic 'information retrieval'. The apparent 
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positive skewness indicates that most words occur in few documents, i.e., they are rare 
words. It is readily seen that there are very few words occurring more than in 100 
documents (despite the fact that all documents deal with the same main topic). 

Binary representations of rare terms will have many O's and very few l's; the inverse 
situation will happen for very frequent terms. Consider now a concrete example. Let 
A='statistics' and B='regression analysis' be two key words from an hypothetical 
mathematical database. B is a more specific term than A in the same field (i.e., B cA). 
Suppose that the collection has 2000 documents, 300 of which deal with statistics and 
only 10 deal specifically with regression analysis. Assume that in these 10 documents 
the word statistics also occurs. Thus, the vector representing A will have l's in every 
position where B does and, therefore, lA 1\ BI = IBI. The similarity between A and B, 
measured by Jaccard's coefficient, is: 

s = I A 1\ El = .@l = ~ ~ 0.03 
AB IAI+I EI-J A 1\ El IAI 300 

Hence, the strength of the association between A and B, measured with Jaccard's 
coefficient, is very small. The situation is essentially the same for the rest of similarity 
measures mentioned above. The result is that every clustering algorithm using such 
measures will rarely join A and B in the same cluster, and the association between A 
and B will therefore not be detected. 

(X 1000) 

2 ,-

1.6 c 

>. 
(J 

1.2 '-I: 
m 
:l 
c-
m ... ..... 0.8 

0.4 

0 

0 100 200 300 400 500 

Number of documents 

Fig. 1. Frequency histogram for terms in the database used in section 4.1. "Number of documents" is the 
number of documents containing a given word in the document collection. Terms present in more than 
500 documents (right side of the histogram) are excluded for the purpose of a better visualization. 

If real-valued vectors are used the problem remains, since zeroes in term vectors stay in 
the same positions. Real-valued similarity measures behave like their binary 
counterparts, as it is easy to verify.Some additional comments on this subject are made 
in section 3.3. 

5 



The mentioned problems do not arise with documents because of two reasons. Firstly, 
frequency distributions for documents described by abstracts do not follow Zipfs law, 
because the number of zeroes in document vectors is by far more homogeneous than for 
term vectors. Secondly, problems caused by subsethood relations among terms will not 
occur with documents: there is no sense in saying that a document is a subset of another 
document. In term space, these relations are possible via the identification of terms to 
fuzzy subsets introduced in subsection 3.1. This is just the case for descriptors A and B 
in the preceding example. 

The above argument motivates the elaboration of specific algorithms for clustering 
descriptors which do not suffer the outlined drawbacks. This is done in the next section. 

3 Compound key words generation 

In this section a method for key word generation is proposed. In subsection 3.1 
associations between words are modelled using fuzzy set theory. The asymmetric nature 
of these relations is also noted. In subsection 3.2 a specific architecture to produce 
semantic classes and extract compound key words is introduced. Finally, in subsection 
3.3 alternative methods for producing semantic classes are briefly discussed. 

3.1 Modelling of term relations using Fuzzy sets 

Every descriptor $tj$ defines a fuzzy subset of documents as follows: 

Dtj = { Relevant documents for term tj} 

F or instance, if tj = 'text databases', Dtj is the set made up of documents related to the 
subject 'text databases'. Membership degrees of documents to the Dtj sets will vary from 
o (no relation at all with topic tj) to 1 (perfect fitting to the topic). Therefore, it seems 
appropriate to handle these document sets using fuzzy set theory [27,51]. A few 
references on fuzzy sets and information retrieval are [5,6,35,37,44]. 

Given the correspondence between terms and fuzzy sets ti ~ Dti , it is coherent to 
consider the membership degree of a term to another. Let us numerically define this 
membership degree by: 

m 

It; 1\ t;l= Lmin(akOak) 
k=1 

m 

It;l= Llakil 
k=1 

(7) 

(8) 

(9) 

When binary term vectors used, Iti 1\ tjl is the number of documents in which terms ti 
and tj coincide. In this particular problem, it is not necessary to use the absolute value 
operator, but it will be used for the sake of coherence with the fuzzy set general theory. 
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From now on, we will use the function defined in eq. 7 to measure semantic closeness 
between term vectors. Hence, Sij will denote membership degree of fuzzy subset Dti to 
fuzzy subset Dtj. The choice for Sij is a natural one: if two terms ti and tj do not coincide 
in any document, then Sij = O. Ifti occurs in every document where tj does, then Sij = 1. In 
addition, sets Dtj match Kosko's definition of fuzzy subset, that is just now reviewed for 
the sake of completeness. Given a set C with m elements Cl, ... , Cm, every vector x E 

[0, l]m can be viewed as a fuzzy set on C, interpreting vector component Xi as the 
membership degree of element Ci to the set defined by x. In our case, C is the document 
set, and term vectors tj play the role of the x's vectors. To finish off this reasoning, 
Kosko's fuzzy subset theorem states that membership degrees must be as defined in eq. 
7 (for details, see [32]. 

Function Sij defines two different similarity measures for terms: Sij = degree (ti C 9 = Iti 
/\ tjj / \ti\ and Sji = degree (tj C ti) = \ti /\ tj\ / \tJ In general, Sij :f:. Sji. The adoption of Sij to 
model similarities between documents implies the assumption that associations between 
terms are not symmetric in general. This is a sensible assumption: if we consider for 
instance the key word 'fuzzy set', many people will relate 'fuzzy' to 'set' stronger than 
conversely. There are lots of similar examples of this situation. Thus, it is natural to 
model similarities between terms using two different measures. This asymmetry in term 
relations has been noted in [10], and is supported by psychological research [2]. It is 
worth noting that commonly used similarity measures (like Jaccard's coefficient, defined 
in eq. 5) verify Sij = Sji and, therefore, define a single association measure between terms. 

A last remark is in order. If term ti occurs in every document where tj does, then Sij= 1 
(maximum membership degree). Thus, it is implicitly assumed that fuzzy subset Dti is 
entirely contained in fuzzy subset Dtj, i.e. ti c tj, only as far as our document collection 
is concerned. If empty words are left out of consideration and the document collection is 
not very small, this assumption will not cause any trouble, since the probability for two 
terms to coincide at random in every document where they occur will be very small. 

3.2 A hierarchical ART architecture for key word generation 

In this section we develop a modular term processing system made up of unsupervised 
ART neural networks. ART stands for Adaptive Resonance Theory [8]. The specific 
ART model used here is Fuzzy ART [9]. A general scheme of Fuzzy ART architecture 
is shown in figure 2. 
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t Input vector 

Fig. 2. Fuzzy ART architecture 

The first layer in figure \ref{ fig:idart} is called F I layer in Fuzzy ART nomenclature. 
The circles in FI layer represent nodes ofFI. If input vector x lies in Rn, then there will 
be n nodes, node ith containing component Xi of X. Thus, layer F I acts as a buffer for 
input vectors. Nodes in F2 layer play the role of clusters in clustering algorithms. The 
number of F2 nodes is determined in running time, and each node j has an associated 
vector Vj E Rn, distributed along the connections from that node to nodes in FI layer. Vj 
is called prototype vector for cluster jth. A comprehensive exposition of Fuzzy ART 
model can be found in [9]. There is a relation between unsupervised ART models and 
clustering algorithms, stated for ART 1 model [8] in [40]. This relation will be used 
here to explain the operation of Fuzzy ART" 

Fuzzy ART makes use of Kosko's point of view about fuzzy sets, via eq. 7. To cluster 
input vectors Fuzzy ART uses two similarity measures, essentially Sij and Sji. The only 
difference lies in Sij, which is replaced by Sij' = Iti /\ tjll (~ + Itil), where ~ is a positive 
constant. There is a control for each measure to determine when a pattern x is too far 
from any given cluster prototype V. These controls are: 

I V /\ xl I xl + n ' 
fJ +IVI < fJ + n ' ~ ER, X ER, for measure Sij 

Sjl < P , 0 ~ p < 1 , for measure Sji 

(10) 

(11) 

p is called the vigilance parameter of Fuzzy ART. The operation of the algorithm is as 
follows [9,40]: 
1, Start with an empty list of prototype vectors (There are no clusters yet). 
2. Let x be the next input vector. 
3. Find the cluster prototype vector closest to x using Si/. Let V be this vector. 
4. If V is too far from x using measure Sij' (or if there are no cluster prototype vectors), 
then create a new cluster with prototype vector V = x. 
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5. If Y is too far from x using measure sij, deactivate Y and go to step 3 to try another 
prototype. 
6. If Y is close enough to x according to both measures, then modify Y by moving it 
closer to x. Go to step 2. 

Prototype vectors are adapted using the following equation: 

y(new) = A (x 1\ y(old) + (1 - A) y(old) where 0 < A ~ 1 (12) 

Thus, after training, clusters (nodes of F2 using Fuzzy ART terminology) contain 
patterns that are close enough to each other using the two measures. If Fuzzy ART is 
used to cluster term vectors, this latter fact means that, given two patterns x and y 
assigned to the same node, both x c y and y c x to the extent determined by Fuzzy 
ART parameters. 

There are several aspects of Fuzzy ART that make it an interesting model to cluster 
terms: 

- Fuzzy ART algorithm makes use of two different similarity measures. Thereby, the 
asymmetric character of term associations is taken into account in a natural manner. 
- The number of clusters is automatically determined in running time, without direct 
human intervention. This is a useful feature because of the specific nature of this 
problem. First, explorative analysis is complicated by sparsity and high dimension of 
term vectors. On the other hand, some experiments presented in subsection 3.3 seem to 
indicate a lack of structure in term spaces. Some comments in the pioneering work of J. 
Sammon [48] point out in the same direction. 
- The particular way in which terms distribute in documents permits to optimize Fuzzy 
ART algorithm for the task of clustering terms, making it suitable for large database 
processing. Details are given at the end of this subsection. 

Nonetheless, problems mentioned in 2.2, related to term distribution in documents, 
remain. If a single Fuzzy ART network is used to process the full term set from a 
database, then two undesirable situations can happen: (I) The most frequent words will 
form isolated classes for most values of the ART vigilance parameter p (including cases 
when p is near zero). (2) If a class gathers both very frequent and rare terms, intersection 
of all these terms will usually boil down to a non zero component (i.e., a single 
document in common). Moreover, the grouping of terms in the class will likely be 
haphazard. We have experimentally verified the occurrence of both situations. 

In order to solve these problems, the whole term set T is first divided into frequency 
groups by descending frequency ordering. 

(13) 

Thus, Tl will join the most common terms and, in the opposite extreme, Tr will gather 
the rare words. Second, new term sets are formed by grouping the Tis as follows: 

T12 = Tl U T2 
Tl23 = Tl U T2 U T3 

9 



(14) 

Next, a single Fuzzy ART module is dedicated to each of the Tj, i=I,2, ... ,r-l, and to each 
of the TI2.: 

Al ~ Tj ,i=l, ... ,r-1 
Al2 ~ T12 

AI23 .. r ~ TI23 .. r = T (16) 

Therefore, the proposed architecture is made up of (r-l) + (r-l) = 2(r -1) single Fuzzy 
ART modules. In the experimental section r=3 or r=4 will be used, but there is no 
general rule for partitioning the term set. 

Note that no single Fuzzy ART module is dedicated to term set Tr , since terms in Tr 
occur in very few documents and, hence, their vector representations are highly sparse. 
Use of Fuzzy ART in this situation would lead to the category proliferation phenomenon 
[9], i.e., the generation of a too high number of clusters (nodes of F 2)' 

Carpenter and Grossberg [9] propose fuzzy complement coding as a solution for this 
problem, i.e., to replace input vectors x by X = (x, XC), where Xjc = 1 - Xj. In the present 
case, fuzzy complement coding is not a solution due to the strong asymmetry between 
1 's and O's in term vectors: the fact that two terms have a zero in common (they are both 
absent from a given document) is not very informative. Therefore, fuzzy complement 
coding will not be used here. The problem can be minimized by first ranking terms by 
descending norm. Since F2 prototype vectors initialize to input patterns and these are 
presented sequentially, prototype vectors will have the largest norms possible from the 
beginning. Due to the operation of the Fuzzy ART algorithm, unnecessary proliferation 
of ART classes will be diminished: equation 12 guarantees that a zero vector prototype 
component will remain zero during training. Hence, prototype norms can only decrease 
during training. If prototype norms are large at the beginning, they are more likely to be 
large at the end. In this case, there will be easier for input patterns to fulfill the 
conditions expressed in eqs. 10 and 11 and, therefore, fewer F 2 nodes will be created. 

An example of the architecture for r=4 is shown in figure 3. 
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~ 
o 
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D 0 o 0 
T3 ~ ~ A3 

~ 
Fig. 3. Modular Fuzzy ART based architecture for semantic classes generation 

Looking at this figure, we see that a particular term t can belong up to four different 
semantic classes: one for t E T4, three for t E T3 and four for t E TI or t E T2. Since key 
words are formed from words belonging to the same semantic class, common terms will 
be present in more key words than rare terms. 

In order to create term associations to relate each term to every other in the same class is 
not a good idea; this procedure would produce, in general, too many meaningless 
associations. We must choose for every term only a few significant related terms. Given 
a word t E Ti (where Ti can be any of the foHowing: TI ,T2 , ... , Tr-I , T\2 , ... , T123.r ), 
we will accept four associations (t, tj) inside class Ti where indexes j are given by: 

.* It/\t;1 
}, T = argmax-

I
-
I
-

, , ; t 

.* It/\t;1 .* It/\t;1 
}2 T = argmax-

I
-

I
-

, , j t j 
h,c;(I) = argmax-

I

-

I

-

} tj 

where 
Ci(t)= semantic class of t in Fuzzy ART Ai. 
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In words, tj*I,Ti is the most closely related broader term for t in T_i; tj*I,ci(l) is the most 
closely related broader term for t in the semantic class of t (regarding ART Ai). 
Similarly, tj*2,Ti represents the closest narrower term for t in Ti, and tj*2,ci(l) the closest 
narrower term for t within Ci(t). Moreover, Sij gives a measure for the strength of 
association between terms tj and tj-

A final computational consideration is called for. As it has been already stated, eq. 12 
implies that a zero vector prototype component will remain zero during training. Hence, 
only non zero prototype components need to be considered during Fuzzy ART 
operation. Besides this, by Zipfs law, most of the terms in any database are rare terms 
and, therefore, almost every component of these term vectors will be zero. Since ART 
prototype vectors initialize their values to input term vectors, vector prototypes sparsity 
is guaranteed too. Thus, for most of the terms, only a few non-zero components need to 
be considered for ART calculations. In consequence, increasing the number of 
documents (and thereby the dimension of the term vector space) has little practical 
influence in the processing speed. The number of terms is determined by the number of 
documents in the database, and the ART training time is not considerably affected by 
this parameter. For instance, the training time for the largest ART, AT, in the database 
used in subsection 4.1 is only 45 seconds. This collection has 5150 documents and 5800 
different terms. Thus, obtaining semantic classes with ART is always a fast process. 
Processing time rises when similarities between terms have to be computed, because 
both Sij and Sji have to be calculated for all pairs (ti,tj), i:;t j. In any case, this is not an 
insuperable problem: complete process of the above mentioned database does not ever 
take more than 2 hours in a 125 Mhz workstation (while other users are running their 
own programs). This time is quite acceptable for this type of tasks, because no 
document database require continuous updating. In summary, the proposed ART 
architecture is quite suitable for processing relatively large databases. The only handicap 
when handling a very large database could be the disk space required to store 
similarities Sij and Sji during the process of key words generation. In any case, with 
actual disk storage capacities, this seems not to be a problem. 

3.3 Other methods for semantic class formation 

An interesting question arises when we ask about the existence of structure within term 
vector space. That is, given a document database, do base terms organize into clusters 
according to their semantic meanings? Should this be the case, we could employ various 
extensively used clustering algorithms to form term groups. These groups could then be 
identified with semantic classes, in the sense used throughout this paper. To 
experimentally test this hypothesis, three types of unsupervised clustering algorithms 
were considered: 

- Hierarchical clustering algorithms. 
- Non hierarchical algorithms, such as k-means and Self Organizing Maps (SOMs). 
- Hybrid not supervised and non-hierarchical algorithms such as Fuzzy c-means 
algorithm. 

A handicap in using hierarchical clustering algorithms is that similarity measures used 
by these algorithms are symmetric: Sij = Sji. Single link and complete link methods were 
used on different test databases, including databases of section 4. Clusters produced by 
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these methods are very small (usually two elements), and very common terms tend to 
form their own isolated clusters. If associations have to be formed from words in the 
same semantic class, the result will be that general terms will not attain any association! 
The situation is similar to that produced when using a single Fuzzy ART module on the 
whole term set, with a high vigilance parameter p. 
This result seems to indicate the lack of structure in document space, and it is coherent 
with the work of R. Burgin [7]. In his paper Burgin notes that hierarchical algorithms 
tend to produce many clusters of documents with only two elements. 

On the other hand, we have extensively used Kohonen Self Organizing Maps (SOMs) 
on term and document collections to visualize the structure of the very high dimensional 
spaces in which they lie. The basic adapting structure in a SOM is a (usually 2D) 
network of interconnected neurons, each endowed with an associated n-dimensional 
pointer. We denote the connectivity pattern and the set of pointers as 't and W 
respectively. In the 2D case, 't is usually based on the square or the hexagon, in which 
case neurons not lying on edges of the network have direct links with 4 and 6 other 
neurons respectively.Pointers are subject to learning as input vectors are presented to the 
network. The set of pointers after the t-th presentation is denoted by 
W(t)= { w(iJ)(t)}; The final set of pointers is denoted as WeT) = {w(iJ)}. Further 
details can be found in [29,30]. 

In [41,43] a technique is developed to visualize pointers of SOMs in two dimensions. 
Specifically, we consider the median-interneuron-distance or MID matrix as that whose 
(iJ) entry is the median of the (Euclidean) distances between w(iJ) and all pointers in a 
neighborhood No(iJ) [31,33,43]. The MID entries can be converted to gray levels for a 
better visualization. In these images, light zones indicate large distances between neuron 
pointers. Thus, clusters in data can be identified as dark zones surrounded by lighter 
units. 

In the following experiment, two document databases were considered. The first 
collection has 1869 documents covering six main topics: 'archives preservation', 
'mathematics, statistics and regression', 'language comprehension, reading, teaching', 
'special libraries', 'chemical nomenclature' and 'database management systems'. The 
database is extracted from ERIC database (see subsection \ref{ subsec:diez} for an ERIC 
system description), and there are 3427 different terms. The second database has 502 
documents from ERIC database, covering eight topics: 'automatic indexing', 
'transformational generative grammar', 'Prolog', 'paper preservation', 'bayesian statistics 
and mathematics', 'artificial intelligence and psychology', 'radiology' and 'sport 
psychology'. There are 1460 different terms. 
In figure 4 MID matrices for the two term sets are displayed. Figure 4(a) is very similar 
to that obtained when displaying uniform random data (a figure illustrating this latter 
case can be found in [33]). Figure 4(b) reveals more structure, because the eight topics 
chosen are completely disjoint. In any case, it is very hard to say anything conclusive by 
only looking at the figure. Manual checks of term distribution in the SOMs images do 
not reveal the existence of clearly defined clusters. 
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Fig. 4. SOM gray-level image for two different IR databases. (a) Database with 6 
different topics. (b) Database with 8 different topics. 

20 25 

These gray-level images are very different when data have a clearly defined cluster 
structure. Figure 5 displays the scatter plot and the MID matrix for 200 points in R2, 
well distributed in three clusters. The structure in figure 5 is apparent. Dark rectangles 
indicate short distances between neuron pointers. Lighter rectangles indicates larger 
distances. Thus, figure 5(b) shows two close clusters, and a third, more distant. 
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(b) 

Fig. 5. SOM gray-level image for 3 clusters in R2. (a) Scatter plot. (b) SOM gray-level based image. 

20 

Figure 6 shows a data set with 500 points distributed into five clusters with different 
covariance structures, and some outIiers. Figure 6(a) shows the Sammon1s mapping 
\cite{bib:sammon69} to R2 for this data set. There are six outliers, five of them 
identified with crosses and the sixth with a solid dot. Figure 6(b) clearly shows the 
cluster structure in the data set. 
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Fig. 6. SOM gray-level image for 5 clusters in RIo. (a) Sammon mapping in R2. (b) SOM gray-level based 
image. 

Therefore, we are inclined to believe that there is no cluster structure in document space, 
neither in term space. 

Other overlapping clustering algorithms, such as Fuzzy c-means algorithm [3], use 
membership degrees to cluster input vectors. These membership degrees are known to 
approximate the a posteriori membership probabilities of terms to classes [4], when 
clusters are spherical and well separated. By a spherical cluster we mean that the data 
covariance matrix has the form L:2 = (52 1. Therefore, membership degrees will not be 
very informative when this is not the case. We think it is not advisable to use fuzzy 
clustering algorithms for terms represented like here. 

4 Experimental work 

Before getting involved in any concrete experiment it is convenient to make some 
observations about the way to evaluate outcomes of such experiments. 

A thesaurus can be evaluated by using a query set and measuring retrieval effectiveness 
for that query set when the thesaurus is used and when it is not used. This has been done 
over the years by means of recall and precision measures. Assuming a query has been 
formulated, recall can be defined as the proportion of relevant documents retrieved and 
precision as the proportion of retrieved documents that are relevant [46]. The origin of 
these measures lies in the pioneering IR research in the 60s: ASTIA [23], Cranfield I 
[12,13,34] and Cranfield IT [14,15]. Already in these early experiments a trade-off was 
detected between recall and precision: if recall is too improved, precision worsens and 
conversely. This inverse relation has been corroborated in recent studies [18,21,24]. An 
additional problem when using relevance and precision measures is the need to know 
which documents are relevant for queries formulated to the database. However, 
relevance is a subjective concept, as it is shown in the experiments by Lesk and Salton 
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[36] and Gomez [20]. These works demonstrate that it is not unusual the situation in 
which two experts in the same field do not agree in which documents are relevant for a 
given query. On the other hand, it is not possible to have queries available (and 
knowledge of relevant documents for them) for all potential situations. Furthermore, 
results obtained could depend on the particular retrieval engine used. These objections 
stand for manual thesauri as well. 

Therefore, we are not going to make use of a test query set and recall and precision 
measures to evaluate automatically obtained word associations. Rather, the approach 
used here is to work with databases for which good manual thesauri are available and 
thus, to study the quality of automatic term associations with respect to such manual 
thesauri. 

4.1 Information Retrieval database from ISA 

This database contains 5150 documents on the subject 'information retrieval', retrieved 
from the commercial CD-ROM database "Information Science Abstracts Plus" (from 
Silver Platter Information Inc). Articles date from 1966 to June 1993. For an example of 
the structure of the records used in this experiment, see table 1. TI stands for title, D EM 
stands for mayor descriptors, DER for minor descriptors, and AB for abstract. DER and 
DEM descriptors are used to join documents on similar topics. Major descriptors denote 
primary topics. Both DER and DEM descriptors are chosen from ERIC thesaurus (by 
the creators of the CD-ROM database). ERIC thesaurus is associated to ERIC database 
and it is briefly described in the next section, where a document set from ERIC database 
is used. 

TI: Multiversion Information Retrieval Systems and Feedback with Mechanism of 
Selection. 
DEM: * Algorithms-; *Information-Retrieval 
DER: Comparative-Analysis; Feedback-; Mathematical-Formulas; Relevance­
Information-Retrieval; Selection-; User-Needs-Information; User-Satisfaction­
Information 
AB: Discusses the design of multiversion information retrieval systems and provides a 
theoretical justification for the necessity of creating such systems to perform an optimal 
search for the user's information needs. Topics discussed include comparing query 
formulations; feedback algorithms; an experiment with a test collection; and the 
mechanism of selection. (20 references). 

Table 1. Example ofISA database record 

For each document, only its title and abstract are considered for automatic processing. 
ERIC descriptors are removed so the results cannot be altered in any way by manual 
descriptors.We want to test the ability of the proposed ART-based system for detecting 
the foremost relationships in the IR field. Examples of these relevant associations are 
'information retrieval', 'information science', 'search strategies', and others. 
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The number of different single words in the collection is 13670. After using an empty 
word list (the same for all experiments) and removing words that occur only in one or 
two documents, there are left 5800 single descriptors. Using the space vector model to 
represent these descriptors, we have a collection of 5800 term vectors in R5

)5o. 

As explained in subsection 3.2, the whole term set has to be divided into r frequency 
regions. As pointed out in section 2, there is no general rule to do this. In preliminary 
work on a smaller database [42] we used r=3 so that, using the notation of subsection 
3.2, T) joined very frequent terms, T2 joined moderately frequent terms, and T3 joined 
rare words. This time we shall use r=4, splitting the very frequent term group T) in two, 
for the sake of a better frequency resolution. 

The frequency cutpoints are chosen so that, roughly, most frequent terms (T)) 
correspond to the 5-upper percentile term frequency distribution, very frequent terms 
(T 2) correspond to the 15-upper percentile, moderately frequent terms (T 3) to the 50-
upper percentil, and the rest (50%) are considered rare terms. Table 2 shows the 
frequency distribution for this database. For instance, the first column of table 2 shows 
that there are 291 terms in the very frequent term class T), they represent a 5% of the 
whole term set T, and each of these terms occurs in at least 139 documents. 

We have carried out some other similar experiments using different frequency partitions 
ofT using r=3 and r=4. If the test database is relatively small (it has no more than 1000 
documents, say), there are not significant differences. But if the database is not too small 
(larger than 1000 documents, say), better results are obtained for r=4. The explanation is 
simple: if the database is small, then the number of index terms will be small, and there 
is no significant difference in splitting the very frequent term class. But if the index term 
set is large, there are appreciable differences between the most frequent term set T) and 
the very frequent term set T2. 
In this latter case, there is not too much difference in the following frequency partitions: 
5%-10%-35%-50% (used here), 5%-10%-30%-55% and 5%-10%-25%-60%; that is, 
results are similar for all these partitions. 

Term sets T) T2 T3 T4 
% 5% 10% 35% 50% 
Total 291 588 1962 2959 
Frequency of term ~ 139 [53,159) [10,53) [3,10) 

Table 2. Frequency partition for ISA database 

In all experiments made in this work, ART parameters are set to A,=1 (fast learning in 
ART terminology), ~=O in control devices for similarity measures, and p = 0.001, that 
is, a very low vigilance paramenter, so that the system can stabilize at the minimal 
attainable number of classes. In fast learning mode, Fuzzy ART needs only two cycles 
over the whole term set. Neither the number of Fuzzy ART nodes nor the prototype 
vectors will change in successive cycles. After every Fuzzy ART module has been 
trained, associations are made as explained in section 3.2, and joined together in a 
common database. 
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Table 3 shows the relationship between the number of terms in a frequency class and the 
number of nodes of the corresponding ART module. 

Term set Number of terms ART module Number of nodes 

TI 291 Al 31 
T2 588 A2 84 
T12 = TI U T2 879 AJ2 84 
T3 1962 A3 356 
T123=TI uT2 UT3 2841 A I23 349 
T 1234 = T I U T 2 U T 3 U T 4 5800 AI234 979 

Table 3. Tenn subsets by frequency and the corresponding ART modules 

As it is readily seen in this table, the rise in the number of ART nodes is not only due to 
a higher number of terms (compare A2 to AI2 or A3 to Am), but also to the increasing 
sparsity of term vectors. Furthermore, the relation between the number of terms in a 
frequency term class and the number of nodes of the corresponding ART module is not 
linear. Rather, the hierarchical division of the term set is reflected by the number of 
classes in the corresponding Fuzzy ART modules. This seems to indicate the adequacy 
of the proposed ART hierarchical model to cluster the particular vectors used here. 
Terms in T3 are more sparse than terms in TI or T2. This is the cause of the strong rise 
on the number of ART nodes, as table 3 shows. This fact corroborates our caution of not 
employing a dedicated ART moduled on the rare term class (T4) alone. 

An odd fact is that increase in the number of terms do not always gives rise to an 
increment in the number of ART nodes (compare T2 to T12 and T3 to T123). As pointed 
out at the end of section 3 .2, ART classes prototypes initializes with the highest norm 
input vectors, Therefore, initial prototypes for nodes of A12, for instance, will have less 
zeroes than prototypes in A2, and this is an stabilizing mechanism that prevents the 
category proliferation phenomenon, as expected. 

Next, the percentage of key words from ERIC thesaurus present in the set of 
automatically extracted key words is computed. Single key words, as 'simulation' for 
instance, will not be taken into account in the sequel because their production is not 
related to the method under study, but previous to it. The proportion of single key words 
from ERIC present in the automatic term set is about 95% for the databases considered 
in this study. This is not surprising since the bulk of ERIC single terms are important 
words (seldom they are rare terms) and the automatic method does not reject them. Of 
course, some of the compound key words are not detected due to the lack of any of the 
single terms that form them in the automatic term set. 

There are no fixed rules for assigning key words to documents in general; different 
authors may ascribe different descriptors for the same document. This fact implies that 
not all descriptors must be considered to have the same relevance. Thus, we will only 
consider descriptors used by several authors. The minimum threshold is set here to 
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three, since we have excluded from the database vocabulary words occurring in only one 
or two documents. Coincidence of experts in the use of the same descriptor guarantees 
its validity and generality of use. 

Within ERIC descriptor set three subgroups will be considered: high frequency terms, 
used by at least ten authors; medium frequency terms, used by at least five authors and 
by no more than nine; and at last low frequency terms, used by three or four authors. 
The most relevant set is the high frequency term set, but it is interesting to see what 
happens to the two other categories. The results for DER descriptors are in table 4 and 
for DEM descriptors in table 5. One thing that can happen is that in a three-word term 
only two associations (of three) are detected. For instance, for the term 'junior-high­
schools' our system detected the associations 'junior-high' and 'high-school'. We label 
this situation as 'relaxed detection' in the tables. 'Strict detection' happens when every 
possible pair of associations is detected, and this is the rule followed here to produce 
three and four word relations. 

Match High frequency terms % Moderate frequency % Low frequency terms 
terms 

Strict 86 60% 48 48% 35 
Relaxed 97 68% 57 57% 44 

Total 140 100% 100 100% 133 

Table 4. Detected very frecuent compounds key words (DER de scrip tors) 

Match High frequency terms % Moderate frequency % Low frequency terms 
terms 

Strict 128 62% 57 33% 29 
Relaxed 138 67% 69 40% 46 
Total 205 100% 172 100% 188 

Table 5. Detected very frecuent compounds key words (DEM descriptors) 

We see that for both DER and DEM descriptors, the proportion of manual assigned 
descriptors recovered is never below 60%. This is a remarkably satisfactory rate in any 
case, and it is worth noting that the proposed method uses only document coocurrence 
information (not contiguity information in sentences, for example). The drop in the hit 
rate for low frequency terms is not surprising, since the automatic method is based on 
frequency statistics and looks only for the strongest (more frequent) associations 
words occurring only in three documents cannot have strong associations. 

There are some other considerations that add value to the proposed key word generation 
system: 

(a) The method is able to detect many relations between non adjacent words. That is the 
case of descriptor 'recall-precision' (not present in the manual thesaurus). 
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(b) For terms which manually-assigned relations are not detected, other similar ones are. 
A few examples: 'elementary education', 'decision making' or 'state agencies' are not 
detected, but 'elementary school', 'decision theory' and 'government agencies' are given 
instead. 

(c) The method detects significant relations for relevant terms that the manual thesaurus 
fails to include. A few examples are: OPAC (,OPAC guide', 'OPAC access'), keyword 
('keyword searching', 'keyword efficiency'), MARC (,MARC records', 'MARC 
format'), query ('query relevance', 'automatic query'), term ('term index', 'term 
descriptor'), fuzzy (,fuzzy sets', 'fuzzy logic'), boolean ('boolean logic', 'boolean 
search'), probabilistic ('probabilistic ranking', 'probabilistic estimation'). 

(d) For some terms, the manual thesaurus offers only non-specific relations: 'logic 
philosophy', 'logic thinking'. The automatic method detects context-dependent 
relationships: 'boolean logic', 'logic skills'. 

(e) We have a numerical measure for the strength of each association, Sij. This 
membership degree of topic represented by term ti to topic represented by term tj has a 
nice property: Often, descriptors offered by the manual thesaurus have the highest 
association degree. One example: (cable ~ satellite, 0.28), (satellite ~cable, 0.31), 
(cable ~ television, 0.76). The last one, 'cable television' is the only present in manual 
thesaurus. A low membership degree does not always mean that a relation must be 
rejected, though. For example, 'administrative-policy', a rare manual descriptor in this 
database, is present in the automatic database with degree 0.09. Thus, in this paper we 
do not remove relations under a preespecified membership threshold value. 

To conclude this section some particular cases of associations are shown, so that the 
reader can complete his perception ofthe way the method works. 

Next we show some strong relationships for the term 'retrieval': 

(information ~ retrieval, 0.57), (retrieval ~ information, 0.69), (text ~ retrieval, 0.62), 
(document ~ retrieval, 0.67), (indexing ~ retrieval, 0.50), (evaluation ~ retrieval, 
0.57), (language ~ retrieval, 0.55), (query ~ retrieval, 0.68), (system ~ retrieval, 
0.37), (storage ~ retrieval, 0.76), (probabilistic ~ retrieval, 0.79). 

The symbol ~ indicates that the first term is a subset, or narrower term, of the second. 
It is worth noting that 'retrieval' corresponds to a very general topic: its only broader 
term is 'information'. We can see that 'information' is a subset of 'retrieval' too, but to a 
lower degree. In this way, an implicit hierarchy is defined between descriptors. 

Next we show some associations for term 'indexing', a more specific term than 
'retrieval' in this database: 

(automatic ~ indexing, 0.36), (documents ~ indexing, 0.12), (indexing ~ documents, 
0.13), (problems ~ indexing, 0.10), (process ~ indexing, 0.11), (project ~ indexing, 
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0.12), (indexing ~ retrieval, 0.50), (controlled ~ indexing, 0.39), (record ~ indexing, 
0.17), (selective ~ indexing, 0.18), (coordinate ~ indexing, 0.80), (dictionary ~ 
indexing, 0.25), (abstracting ~ indexing, 0.60), (consistency ~ indexing, 0.43), 
(indexers ~ indexing, 0.57), (indexer ~ indexing, 0.50). 

Next we show associations for term 'MARC', a very specific term: 

(MARC ~ congress, 0.31), (MARC ~ records, 0.56), (MARC ~ cataloging, 0.22), 
(MARC ~ library, 0.62), (Dewey ~ MARC, 0.31), (union ~ MARC, 0.20), (council 
~ MARC, 0.20). 

The fact that associations where 'MARC' occurs on the right side (i.e., MARC is the 
main term) have a low degree (0.20), indicates that 'MARC' is a very specific term. 

Next, an example of the system ability for detecting relations with syntactic variants: 

(search ~ online, 0.35), (online ~ search, 0.41), (online ~ searching, 0.38), (searchers 
~ online, 0.66), (presearch ~ online, 0.01). 

Just another example: for the manual thesaurus key word 'library catalog', the automatic 
system associates library to the following variants: catalog, cataloging, catalogs, 
catalogue, catalogues, cataloguing (with slightly varying degrees). 

The manual thesaurus also admits some syntactic variants, as 'library schools' and 
'schools libraries', but there are only a few key words in this situation. 

Many of the associations are reproduced in various ART modules. For instance, 
'information retrieval' is detected in every ART module where 'information' and 
'retrieval' are considered'(A], A 12, Al23 and AT). But some of the word associations are 
detected only in one of the ART modules of the system. This fact indicates that all the 
modules are useful such as they are used. 

In general, a single word has a maximum possible number of relations, depending on the 
number of ART modules used. But this fact does not mean that every word will attain 
this maximum number of relations, due to the repeated associations. In this way, the 
system automatically regulates the number of associations, and this number does not 
need to be imposed by hand. On the other hand, it would not be fair to allow every word 
in the database to have the same number of relations. In this way, words describing 
major topics, such as 'information', have a higher number of associations, and tend to 
occur at the right place of the associations. 

To summarize this example, the proposed automatic system is capable of detecting a 
high percentage of the manual thesaurus key words (elaborated from a huger corpus), 
and detects many other significant relations between single terms. Besides this, syntactic 
variants of the same key word are automatically detected. In addition, a numerical 
degree of the strength of the association between single term in compound key words is 
given. This degree could help users to move through document database in networked 
information environments. 
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4.2 Another muititopic database from ERIC 

In this experiment we are going to use a database extracted from ERIC system. The 
ERIC database is an information system sponsored by the U.S. Department of 
Education, formed by two main sources: the "Resources in Education" (RIB) file of 
document citations and the "Current Index to Journals in Education" (CUE) file of 
journal article citations from over 750 professional journals. Our database is formed 
from ERIC database using the query: 

(acoustics in DE) OR (alcoholism in DE) OR (astronomy in DE) OR (bayesian in DE) 
OR (cognitive-psychology in DE) OR (computer-games in DE) OR (genetics in DE) OR 
(military-service in DE) OR (neurolinguistics in DE) OR (water-pollution in DE) 

where a document will be retrieved if any of the preceding key words are present in its 
DER or DEM descriptors. The number of retrieved records is 1054. There are 8820 
different words, and after using an empty word list (the same that in the preceding 
database) and removing words occurring only once or twice, as in the preceding 
database, there are left 4501 single terms. 

Term sets TI T2 T3 T4 
% 5% 10% 31% 54% 
Total 224 441 1400 2436 
Frequency of term ~ 36 [14,36) [4, 14) [2,4) 

Table 6. Frequency partition for ERIC database 

Term set Number of terms ART module Number of nodes 

TI 224 AI 21 
T2 441 A2 68 

T\2=TI UT2 665 A\2 61 

T3 1400 A3 211 

T123 =TI uT2 UT3 2065 A 123 214 

T 1234 = T I U T 2 U T 3 U T 4 4501 A 1234 515 

Table 7. Tenn subsets by frequency and the corresponding ART modules. ERIC database. 

Our aim here is to simulate the situation in which information is received from many 
different sources in small amounts, and the task is again to study the proportion of 
manual descriptors retrieved.Unlike the preceding database, this small collection 
contains few documents on each topic, so that it will be harder to detect significant word 
associations by only using frequency information. Besides this, manual key words are 
produced using a far larger amount of information than it is available in this toy 
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database. Despite these objections, we think this is an interesting experiment to carry 
out. 

Terms are joined into frequency groups as in the preceding ISA database. Term 
frequency groups are shown in table 6. Statistics for the ART system are shown in table 
7. Similar remarks than for ISA database apply for this database. 

Manual descriptors for this database are joined in three frequency classes as in the 
preceding example. Detection statistics for DER and DEM descriptors are shown in 
tables 8 and 9. 

Match High frequency terms % Moderate frequency % Low frequency terms 
terms 

Strict 37 51.4% 38 36.2% 37 
Relaxed 42 58.3% 46 43.8% 51 
Total 72 100% 100 100% 140 

Table 8. Detected compound very frecuent compounds key words for ten-topic database (DEM 
descriptors) 

Match High frequency terms % Moderate frequency % Low frequency terms 
terms 

Strict 44 44% 53 35.1% 42 
Relaxed 53 53% 59 39% 52 
Total 100 100% 151 100% 196 

Table 9. Detected compound very frecuent key words for ten-topic database (DER descriptors) 

Detection rates for this 1000 document database are worse than those for the ISA 
database, as expected. In any case, for the most important descriptor set, detection rates 
are over 50%, and this is a good result, given the minimum information used to obtain 
it. 

To end this example, a singular long key word automatically detected: 'acquired­
immune- deficiency- syndrome'. This key word is also present in ERIC thesaurus. 

5 Conclusions 

In this paper the task of compound key word generation from a document collection has 
been addressed. For each document, only title and abstract are taken into account. This 
information is available for documents in most commercial information systems, and for 
documents in Internet as well. Basic inputs are the occurrence of words in documents. 

The work is carried out in two steps: first, a hierarchy of ART networks is used to 
automatically generate key word lists (called semantic classes here) from the document 
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database. Second, important relations between words in the same semantic class are 
detected, using fuzzy subsethood measures. In this way, the risk of considering 
meaningless associations is highly reduced. The search space for relations is strongly 
reduced too. Frequent words achieve more semantic relations than rare words. 

Relations obtained are asymmetric, as in natural language happens. Every relation has 
associated a numerical measure of its strength, that can be very useful for users to move 
through the vocabulary of the database. Given a word, its strongest associations are that 
with highest association measures. But the measure is not valid to compare significance 
of key words without common words: rare words have always low measures. 

About the way of obtaining semantic classes, the experiments carried out seem to show 
the lack of structure in document space. This fact advise us against the use of more 
established clustering algorithms, that presuppose this structure to exist. 

To evaluate the automatic key word set, document collections for which a manual 
thesaurus exists are used. Results are better for large document collections than for 
small ones. This result is foreseeable, since only frequency of words in documents is 
used. The recall rate for the important manual descriptors never goes under 50%, even 
in small databases. It is worth noting that, unlike the manual thesaurus, the automatic 
system has only available the information of a few thousand documents to generate the 
key words. 

A last remark is in order: the techniques presented here should not be straightforwardly 
extended to process full text databases. If it was done so, some noise would be 
introduced in the system: not all words in a long document have to be related with each 
other. A possible solution could be to partition the text of the document in smaller 
sections. 
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