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1 Introduction 

Let (YI, Xl)' ... , (Yn, X n), Xi E IRP, Yi E IR be independent observations from the linear 

model 

(1) 

and define the residuals corresponding to () as ri = ri(()) = Yi - ()'Xi. 

In model (1), we denote by Fo the (nominal) distribution of the errors Ui which are 

assumed to be independent of the carriers Xi. Let Go be the (nominal) distribution of these 

carriers and suppose that there exists Ecoxx' = A. From Fo, Go and the independence 

assumption, it is possible to compute the (nominal) joint distribution of (Yi,Xi), denoted 

by Ho. To allow for the presence of a proportion t of outliers in the sample, \Ye ,vill assume 

that the true joint distribution of the data lies in the contamination neighborhood 

1~ = {H: H = (1 - t)Ho + til, if arbitrary distribution}. 

The least squares method is the classical procedure to estimate the ,-ector of param­

eters ()o. Ho\Yever, as it is \Yell-kno\Yn, least squares estimators does not behave \Yell 

,,-hen there are outliers in the sample. In fact, only one outlier may cause inferences to 

be highly unreliable. l\lore stable methods consist in choosing the vector of parameters 

that minimizes a robust estimator of the scale of the residuals. For instance, regression 

S-estimators (see Rousseeu\Y and Yohai, 198-1) are defined as 

(2) 

,,-here Sn( ()) is a scale ;"I-estimator computed from the residuals ri( ()), that is, 

n 

Sn(()) = inf{s > a : n-1 L x(rds ) < a}, 
i=l 

for an appropriate score function x. Another possibility is to define 

[n(l-al] 

(} n = ar g mi n L r ( () ) (p l' 
() p=l 

(3 ) 

where the subscript (p) stands for the p-th order statistic. This is the least trimmed 

squares (LTS) estimator proposed by Rousseeuw (1984). Other regression estimators in­

cluded in this setup are T-estimators (Yohai and Zamar, 1988) or R-estimators (Hossjer, 

1994). 
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110re recently, Croux, Rousseeuw and Hossjer (1994) have introduced the class of GS­

estimators which is defined as in equation (2) but taking Sn(O) to be a scale M-estimator 

of the pairwise differences {h(O) Tj(O)I: i < j} instead of a scale M-estimator of 

the residuals {T;(O)}. This approach has several advantages: (1) efficiency is higher 

than in the case of simple S-estimators, (2) robustness properties are greatly preserved, 

(3) computation is not very expensive for some important particular cases, and (4) the 

objective function of GS-estimators does not depend on the intercept term of the model, 

which can be estimated as a second stage. (See Croux, et al. (1994) for a detailed 

discussi on.) 

The basic idea of using {1r;(0) - Tj(O)I: i < j} rather than the residuals to compute 

the scale is also promising when applied to regression methods other than S-estimators. 

For example, if hn = n(n - 1)/2, a reasonable regression procedure could be 

On = ar rr min 
o 0 

[h n (1-o)] 

L: {(Ti 
p=l 

( 4) 

which is a generalized version of Rousseeuw's LTS-estimator. It is also possible to define 

generalized \"ersions of T- and R-estimators Section 4). 

In this paper we provide a general method to study the robustness, under contami­

nation of the sample, of regression estimators based on differences of residuals, such as 

the examples abo\"e. To measure the asymptotic stability, we consider the ma:rbias C11rL'e. 

This curve contains most of the asymptotic robustness properties of an estimator. It was 

initially defined by Huber (1964) and extensh"ely exploited as a gauge of robustness by 

).Iartin and Zamar (1989) for scale ?\f-estimators, and Martin, Yohai and Zamar (1989) 

for regression M-estimators with general scale. 

Let T be a functional taking ,"alues on IRP+1 and defined on a set of distributions 

on lRP+l that is large enough to contain both the empirical distribution functions and 

the neighborhood \!~. The asymptotic bias of T at H, bA(T, H), is defined so that it is 

invariant under regression equivariant transformations, 

bAT, H) = {[T(H) - Ool'A[T(H) 00lP/2. 

As ,,-e will only consider regression and affine equivariant estimators, we can assume 

without loss of generality that A is the identity matrix I and 00 = O. Therefore, 

bA(T, H) = b(T, H) IIT(H) 11. The maxbias curve of T is defined as 

(5) 
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that is, the maximum conceivable discrepancy between the value of the functional T at the 

nominal central distribution of the data and T(H), when H ranges over the neighborhood 

l~ of all the possible true distributions of the data. 

Se\'eral widely known one-figure summaries of the robustness of T can be computed 

from BT(t). For instance, the gross-error-sensitivity introduced by Hampe1 (1974) equals, 

under regularity conditions, the derivative of the maxbias curve at zero, which was called 

the contamination sensitivity by He and Simpson (1993). On the other hand, the break­

down point of T, also introduced by Hampe1 (1974), can be defined as 

Therefore, the maxbias curve helps us to understand the robustness properties of an esti­

mator both for small and large fractions of contamination. Unfortunately, it is sometimes 

a function difficult to deri\'e and often each estimator requires a somewhat specialized 

method to compute it. So, it is useful to have general principles to perform the maxbias 

curve analysis. Section 3 points out one of these general principles. 

The broad set of estimators our method deals with arises as a modification of the class 

of residual admissible regression estimators defined by Yohai and Zamar (1993). Roughly 

speaking, this class consists of estimators for \yhich the empirical distribution of the 

absolute residuals cannot be uniformly improved -in the sense of stochastic dominance­

hy using any other set of regression coefficients. It can be shown that S-, R- and T­

estimators ha\'e this property. \Vhen \Ye compute a residual admissible estimator from the 

pair\\'ise differences of residuals, we obtain what we call a generalized residual admissible 

estimator. These are the estimators our method accounts for. Once we have computed 

the maxbias curves of the estimators in the general class, \Ye will soke the problem of 

finding the most stable one. 

The rest of the paper is organized as follows. Section 2 is devoted to introduce the 

required background on residual admissible estimators. Also, a formal definition is given 

for the class of generalized residual admissible estimators. Section 3 contains the main 

result of the paper. Some numerical examples show the applicability of this result in 

Section 4. In Section 5, we find the minimax bias estimator within the general class. The 

proofs of all the results aTe relegated to a final appendix. 
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2 Generalized residual admissible estimators 

Let F H,e denote the distribution function of the residuals ri( e) corresponding to e \vhen 

H is the distribution of (Yi,Xi). If X and Y are independent random variables distributed 

.as F, let F''' denote the distribution of the random variable IX YI. So, F* e is the 
H, 

distribution of !ri(e) riCe) I when i =f j. Finally, let FH1XH2,e denote the distribution of 

lrI(e) - r2(e)1 when (YI,xd is distributed as HI and (Y2,X2) is distributed as H2. 
\Ve start from estimators whose functional form is defined as 

T(H) arg min J(FH e), e ' (6) 

"There J(F) is a functional that measures the scale of F. Both the estimators defined in 

(2) and (3) are instances of these functionals when applied to the empirical distribution 

function of the data. 

\\'e will suppose that J satisfies 

Assumption 1 (a) If F and G are two distribution functions on [0, x) such that 

F(u) < G(u) for every H E !Ri then J(F) ~ J(G). 

(b) (ry-monotonicity). Given ttcO sequences of distribution functions on [0, (0), Fn and 

Gn , u'hich arc continuous on (0, (0) and such that Fn(u) --+ F(H) and Gn(u) --+ 

G( u), ~L'here F and G are possibly sllbstochastic and continuous on (0, x), with 

G(oo) ~ 1 71 and 

G(u) ~ F(H), for every u > 0, (7) 

then 

(8) 

Jlorcover, if (7) holds strictly, then (8) also holds strictly. 

Assumption 1( a) is a monotonicity condition which implies that if the absolute residu­

als corresponding to el are stochastically smaller than the absolute residuals correspond­

ing to ( 2) then 8 2 will never be the only solution of (6). Assumption l(b) of 1]-monotonicity 

w.as introduced by Yohai and Zamar (1993). Notice that if we take Fn = F and Gn = G for 

each n, then 1J-monotonicity implies that if F and G are distribution functions on [0, x), 

continuous on (O,X) and such that G(u) > F(u) for u > 0, then J(F) > J(G). There­

fore, we can view 1J-monotonicity as a strict monotonicity condition for certain especial 

distributions. 

5 



An estimator defined as in (6), where J satisfies Assumption 1, is called a residual 

admissible estimator. This definition is slightly more restrictive than that of Yohai and 

Zamar (1993) but it is suitable to cover all the relevant examples. 

Following the ideas sketched in the introduction, we define the generalized residual 

admissible estimators as those that come up from functionals defined as 

T(H) = arg min J(F~ 8)' 
8 ' 

(9) 

'where J satisfies Assumption 1. The only difference with respect to equation (6) is 

that now we apply the scale functional J to the distribution of the absolute pairwise 

differences. In the following section we find out the maxbias curve of any generalized 

residual admissible estimator. Sometimes it will be convenient to use the notation J*(F) = 

J(F-). 

3 A general method to compute maxbias curves 

First, ,ye list the assumptions required to prO\'e our results, The nominal distributions Fo 

and Go must verify the following hypothesis: 

Assumption 2 The distribution Fo of the e,.rors has a symmetric and strictly unimodal 

dcnsity fo. The distribution Go of the carriers is such that 8'x has a symmetric and 

.strictly unimodal density for each 8 i- 0, 

This hypothesis is fulfilled, for instance, \yhen Fo is the standard normal distribution 

and Go is the spherical multi\"ariate normal distribution. As we will see, the applications 

of Theorem 1 become simpler when the regressors are spherical. Howe\"er, this condition 

is not strictly necessary. 

The following assumption is a regularity condi tion to be imposed on the scale func­

tional J. It can be easily checked for the most important examples. 

Assumption 3 Let Vn be the uniform distribution on the interval rn, 2nJ. Then 

for Each d istribviion H E Ve' 
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This assumption implies that, if the scale is measured using pairwise differences of 

obsen'ations, the most harmful contamination occurs \vhen both the location and the 

dispersion move away to infinity. 

Kext, \Ye state the main result of the paper: 

Theorem 1 Let T be a regression functional defined as in equation (9). Then, under 

Assumption I, for TJ = e(2 - e), and Assumptions 2 and 3, BT(e) = t*, where t* E IR is 

such that 

l'n is the umJorm distribution on [n,2nJ, and 00 is the degenerated distribution giving 

probability one to zero. 

\Vhen Go is spherical, it is to prove that F~o,() only depends on () through the 

yalue of 1l()11. Therefore, the infimum in equation (10) is no longer needed as each direction 

of () gives the same value of 1"'[(1- e)FHo .() + e80 ]. We obtain the following result: 

Corollary 1 Under the notation and assllmptions of Theorem 1 and assuming further 

that Go is spherical! BT(e) II()-II, u'here ()- E IRP satisfies 

]*[(1 e)F}I ()- + eoo] - lim ]*[(1 - e)FHoo + el/n ]. 
0, n-oo ' 

(11) 

It is possible to an intuitive interpretation of Corollary 1. Suppose there is a 

proportion e of outliers placed at (()-'Xn , x n ), where Xn is uniformly distributed on the 

interval (n()-,2n()*). Then J*[(l - e)FHo ,()- + e80l is the scale of the absolute residuals 

obtained when outliers are perfectly fitted. On the other hand, 1imn~oo J* [(1 

£)FHo,o+ eVnl is the obtained when the outliers are completely ignored and n -+ 00. 

Corollary 1 says that the maxbias cun'e is the value of II()*II such that both coincide. 

4 Examples and numerical computations 

For the sake of simplicity, we assume in this section that Fo is the standard normal distri­

bution, hereafter denoted by <P, and Go is the spherical multivariate normal distribution. 

\Ve will apply Corollary 1 to generalized versions of S-, R- and T regression estimators. As­

sumptions of Corollary 1 can be checked under mild conditions in each case (see Lemmas 

4 and 5 in the Appendix). \Ve highlight here the wide applicability of the method. 
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4.1 G5-estimators 

Consider the functional Ts(H) = argmine 5(F~,e), where 5(F) is defined as 

5(F) inf{ s : EFX(Y/ s) < b}, (12) 

and X is a score function satisfying the assumptions of Lemma 4 in the appendix. 

To illustrate the application of Corollary 1, define the following functions 

g(s) E~X(Y/s), 

and 

h(S,E) = (1 E)2g(2-1/2S) + 2E(1- E)g(S). 

5*[(1 - E)Fll {1* + EOoJ. We ha\Oe that 
0, 

that is~ 51 (1 + Ile*11 2)1/2h-1 (b, E). 

On the other hand, let 52 limn_ oo 5*[(1 - E)FHo,O + cVnJ. Then, it is easy to show 

that 
_ .)1/2 -1 (b - 2E + (2) 
- ~ 9 ( )2 . 1 - E 

Imposing the condition 51 52 and sohoing for Ilexll, we get 

]

1/2 

1 , (13) 

which amounts to the expression for the maxbias CUlTe found by Croux et al. (1994). 

Obsen-e that B s( E) goes to infinity when the numerator of the fraction in the formula 

aboye goes to infinity or when the denominator goes to zeroo Therefore, the asymptotic 

breakdown point of a GS-estimator is E* = min{l (1 - b)1/2, (1 b)1/2} which equals 1/2 

\\"hen b 0.75. If we want the corresponding scale estimator to be consistent we must 

impose the Fisher-consistency condition b = EFoXFoX(Yl Y2)' This condition determines, 

through the value of b, the breakdown point of the regression estimator. 

In Table 1 ,ye present some numerical results. First, we have considered a jump score 

function Xa(Y) = I {IYI > a} where a > 0 is chosen so that b = 0.75. The corresponding 

estimator e s is the least quartile of differences (LQD) estimator. Another widely used 
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option is provided by the bi\veight Tukey score function X(y) min {3y2 / c2 - 3y4 / c4 + 
y6/C6,1}. \Vhen the tuning constant is c = 0.9958 \Ve have (* = 1/2. Call this estimator 

TUKEYGS. 'Ve have applied (13) to obtain the maxbias curves of both estimates for 

several values of the proportion of contamination. The obtained values are similar; so 

the corresponding robustness properties are not very different. Also, it can be proved 

that the efficiencies are alike; hence, what makes LQD preferable to TUKEYGS is its easier 

compu tability. 

TABLE 1 ABOUT HERE 

4.2 GR-estimator's 

Generalized estimators based on signed ranks (GR-estimators) originate from the func­

tional TR(H) = arg mina R(F~ a), where , 

R(F) = 100 a[F(u)]ukdF(u), o(u) ~ 0, (14) 

for some positi\'e integer k. 

These estimators select the \'ectol' of parameters that minimizes a weighted average 

of powers of the absolute pairwise differences of the residuals. The weights are given by 

a function a( 11) applied to the signed ranks of these absolute differences. 

An interesting part icular case is the generalized o-least trimmed absolute \'alue (0-
GLTAY) estimator which is defined by taking k = 1 and 

a(u) { 
1, 

0, 

The corresponding estimator is 

Illl ::; 1 - 0: 
1111>1-0: 

( 15) 

( 16) 

where hn n(n - 1)/2. The o-GLTS-estimator defined in equation (4) is obtained when 

k = 2 and a( u) is as defined in (15). 

To apply Corollary 1 we have to solve for Ila*1I the equation 
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Denote h(c) = J~ u\~(u)du, where 'P is the standard normal density function. Let 

a > 1/2. If E < (1 - a)1/2 < 1 - (1 - a)1/2, there exist Cl > 0 and C2 > 0 such that 

F8*hc1) = 1 - a, and (1- E)2FHo ,o(21/2C2) = 1 - a, where I = (1 + 118*112)1/2. 
'Ve have that 

( 17) 

On the other hand, it can be shown applying Lemma 1 that 

(18) 

From (17) and (18) we obtain, for E < (1 - a)1/2, 

(19 ) 

Since BR(E) goes to infinity as Cl --+ 0, what in turn occurs whene\'er E --+ (1 - 0')1/2, 

it follows that the breakclO\nl point of TR is E* = (1 - 0')1/2. 

?\umerical results for both the 0.7.5-GLTAV and the 0.75-GLTS estimators can also 

be found in Table 1. These estimators are less robust than the GS-estimators studied 

above. The difference seems to be greater when the proportion of contamination is larger. 

Notice also that the 0.7.5-GLTS estimator is more robust than the 0.75-GLTAV estimator. 

In general, as the value of le increases, the robustness properties of the corresponding 

estimator are better. This is not surprising since, as le --+ 00, the sequence approaches 

the LQ D estimator, which is fairly robust. 

Plots of the maxbias cun'es of the four estimators we ha\'e studied can be found in 

Figure 1. 

FIGURE 1 ABOUT HERE 

,,:.3 CT-estimators 

Let S(F) be a functional based on a score function Xl that defines an S-estimator. Let 

X2 be another score function and suppose that both Xl and X2 satisfy the assumptions in 
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Lemma 4. Define 

7(F) = S(F) [EFXFX2 (Y~·(;n r 
Then TT (H) = arg minO r( F;,O) is called a generalized r-estimator. For finite samples, 
,ye have 

where Sn = Sn(O) is the scale :r-.1-estimator based on Xl of the pairwise differences {17'i-7'jl : 
i < j}. 

Yohai and Zamar (1993) proved that r(F) is 17-monotone for each TJ > O. Furthermore, 

if it is assumed that :\'2 is such that f(s) s2EFxFX2[(YI - Y2)/S] is not decreasing for 

each distribution F, then both Assumptions l(a) and 3 are fulfilled. 

As in the examples above, we can apply Corollary 1 to compute the maxbias curve of 

the Gr-estimator based on Xl and X2, that will be denoted by BT(C). Let Bs(c) be the 

maxbias cun'e of the GS-estimate defined by Xl. Some manipulations analogous to those 

corresponding to GS-estimators allO\\' us to show that B T ( c) satisfies 

(20) 

where 

H(c) 
(1 C)2g2 [g~l (b0~~;2)] + 2c _ c2 

h2 [h~l(b, C), c] 
with gi(5) = E<1!';(i(Y/s) and 

Since 0 < H(c) < 00, for c < min{(1- b)1/2, 1 - (1 - b)I/2}, where b E<1!X<1!Xl(Yl-

Y2), it follows that the breakdown point of a GT-estimator is solely characterized by Xl 

irrespecti\'e of:\> This second score function may be chosen in order to reach higher 

efficiency. 

5 IVIinimax bias theory 

Classical robnstness theory deals with minimax problems. In his pioneering paper, Huber 

(1964) proved that the median is minimax bias (it has the minimum maxbias curve) within 

the set of all the affine equivariant location estimators, for any fraction of contamination. 
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In this section we obtain a similar result for the class of generalized residual admissible 

regression estimators, although in this case the minimax solution will be slightly different 

depending on the proportion of contamination. 

Assume in this section that Go is a spherical distribution. It will be shown that, for 

each 0 < C < 1/2, there exists 0 < 0:* < 1 such that the maxbias curve at (. of the 

functional 

(21) 

is less than the maxbias curve at (. of any other generalized residual admissible regression 

estimator. Notice that T cx' (If) is the set of regression coefficients that minimizes the 

0* -quantile of the distribution of the absolute pairwise differences of residuals. The value 

of the optimal quantile to be minimized for each proportion of contamination (. is a by­

product of the proof of Theorem 2 and will be computed later on. proofs in this 

section follow closely those by Yohai and Zamar (1993); so, the reader may want to go 

through that paper for some of the details. The announced result, prmoeel after some 

lemmas in the appendix, is the following: 

Theorem 2 Let T be a generalized resid1.lal admissible regression estimator based on a 

scale fuctional J satisfying Assumption 1 with TJ «(2 - () and Ass1.lmpiion 8. Suppose 

that Go is spherical and that Assumption 52 holds. For each 0 < ( < 1/2, there e.Tists 

0< 0* < 1 such tha! ET .() :::; BT(), where Tcx' was defined in equation {21}. 
Q 

Table 2 gives the values of the optimal quantiles to be minimized for the gaussian 

centralmoeleL Also, the maxbias of the minimax estimator (the minimax bias) been 

computed and compared with the minimax bias for the class of the (non-generalized) 

residual admissible estimators, as reported by Yohai and Zamar (1993). Generalized 

optimal estimates are less robust, the difference being larger as ( increases. 

TABLE 2 ABOUT HERE 

On the other hand, notice that the optimal quantile does not change much with the 

value of Co In Figure 2, both the minimax bias and the maxbias curve of the LQD have been 

plotted. Note that the robustness properties of the LQD are quite close to the optimum for 

the whole class for any fraction of contamination. The existence of such a quasi-optimal 

estimator for any amount of outliers is not surprising as both the LMs-estimator, for 

(non-generalized) admissible residual estimators, and an appropriatedly scaled median, 
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for scale :M-estimators, play a similar role (see Yohai and Zamar, 1993, and Martin and 

Zamar, 1989). 

FIGURE 2 ABOUT HERE 

Appendix. Proofs 

'Ye need three auxiliary lemmas before proving Theorem 1. 

Lemma 1 Let {cn} be a sequence of real numbers such that limn-+ co Cn = 00. Let {8 n} 

be a convergent sequence in IRP. Finally, let Vn be a distribution of (Yn, xn) such that the 

residuals r(8 n), under Vn, are uniformly distributed on the interval (cn, 2cn). If Assump­

tion 2 holds, then 
(a) limn _ co FFn XFn,8 n (u) = 0, for each u > o. 
(b) limn - co FHoxvn,8Ju) = 0, for each u > O. 

Proof: 

For proving part (a), notice that 

If 71 is large enough, 

that converges to zero as n ---+ 00, for each 11 > O. 

To show part (b), we write 

,vhere ~n E (cn, 2cn) (by the mean value theorem for integrals of positive continuous 

functions). Since {8 n} converges, 

for each u > O. 
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Lemma 2 Let ~o be the degenerated distT'ibution giving probability one to the vectoT' 

o E lRP+1
• If Assumption 2 holds) 

Jar each u > 0) e E IRP and for each distT'ibution if. 

Proof: 

By Assumption 2, the distribution of the residuals T'i( e) is symmetric and strictly 

unimodaL From this fact and given that r1 and T'2 are independent, 

FHOX!f,e(u) J PHo {T'2 u::; T'1 ::; 1'2 + u}dFjj ,e(r2) 

< J Pl:fo{-u::; T'1 ::; u}dFii,e(l'2) = FHo,e(u). 

Lemma 3 Let J be a functional satisfying Assumption 1 (b) for some 17 > 0. Define for 

each t > 0, 

m(t) inf .1*[(1 - E)Fl:f e + coo]. 
!!e!!=t 0, 

If Assumption:': holds, 

(a) There exists et E lRP sllch that Iletll = t, and m(t) = J-[(1- c)FH. e + cOoJ. 
0, t 

(b) m(t) is strictly increasing. 

Proof: 

Since {e: lIell t} is a compact set, to prove part (a) it is enough to show that the 

function J(e) J-[(1 c)FHo,e + cooJ is continuous. Let {en} be a sequence in IRP such 

that limn _ oo en e. \Ve have that 

1*[(1 - c)FHo ,()" + cFllo,e] 

J[(l - cY P;lo,()n + 2c(1 c)F HoXllo,()n + c2 F~O!eJ, 
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-

where .6.0 stands for the distribution that gives probability one to the vector O. By 

Assumption 1(b), 

To proye part (b), consider t1 > t2 > O. By part (a), there exists e1 E IRF such that 

m(td = J*[(1 - t)FH e + c:ool· Under Assumption 2, Lemma A.3 of Yohai and Zamar 
0, 1 

(1993) holds. Therefore, both FHQ,;..e(u) and F~o,,\e(u) are strictly increasing as functions 

of A. Then, for each u > 0, 

(1- c:? F~O,el (u) + 2c:(1- c:)FHoX6.0,el (u) + c:
2 F~O,el (u) 

< (1 - c:)2 F~O,(t2/tl)el (u) + 2c:(1 - c:)FHoX6.o,(tl/tdel (u) + c:
2 F~o,(tl/tJ)el (u). 

Applying this inequality and Assumption l(b), 

but J*[(1 - c:)FHQ ,(t2/tJ)e
1 
+ c:ool ~ m(t2) by definition of m(t). It follows that m(t) is 

strictly increasing. 

Proof of Theorem 1 

First, we prove that BT(C:) :s 1*. Let 0 E IRP be such that 11011 = t > r. It is enough 

to show that there is no H E V( such that 0 = argmine 1*(FH ,e)' \\'e will actually show 

that for every H E ,~, J-(FH,O) > J-(FH,o). 

Applying Lemma 2, "'e have that for each H E ,~, and u > 0, 

F*e-(u):S(1-c:?F e-(u)+2c:(1-c:)F e-+c:2oo(u). (22) H, HoxHo, Hox6.o, 

Therefore, by inequality (22) and Assumption l(a), 

J*(F e-) ~ J*[(l - c:)F e- + c:oo]. H, Ho, (23) 

By the definition of the function m(t), Lemma 3(b), and condition (10), given that t > t*, 

J*[(1 - c:)FHo ,{) + c:oo] ~ m(t) > m(t*) = J~~ 1*[(1 - c:)FHo,o + c:Vn ]. (24) 
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Finally, by Assumption 3, 

(25) 

Putting together the inequalities (23), (24), and (25) it follows that 

Now, we establish the converse inequality, BT(f) ~ t*. Given ° < t < t*, by Lemma 

3 there exists 8t E IRP such that 118 t 11 t and 

Define the following sequence of contaminating distributions: fIn = D(Yn,Xn)1 where Yn 

8;xn and Xn is uniformly distributed on the interval (n8t:2n8d. Gi\'en {3 E IRP, the 

following distributional equality, 

(26) 

holds under H. Set Hn = (1 - f)Ho + ffIn. Suppose that supn IIT(Hn)11 < t in order 

to find a contradiction. {j nder this assumption, there exists a convergent subsequence, 

denoted by {T(Hn)}, such that 

lifll l < t. 

C sing Lemma I, it is not difficult to show the follO\\'ing two facts: 

Em F . T (u) 0, n-cv HoxH. n 
(27) 

and 

lim FH- H- T (u) = 0, 
n-::)O X 1 n 

(28) 

for each u ~ 0. For instance, to show (27), \Ye apply (26) to deduce that 1'2(Tn ) = 

(8 t - TnYxn is uniformly distributed on the interval (en, 2cn), where Cn = 71(t2 T~8t) 

goes to infinity since limn_ oo Tn 0 and O'8 t ~ it < t 2• vVe can apply Lemma l(b) with 

l'n = fIn Y 8 n Tn to obtain (27). The equality (28) is proved similarly. 

By (27) and (28), 

lim F T (u) = (1 - f)2F 8- (u) for each u ~ 0, 
n-oo HnxHn. n HoxHo.' 

(29) 
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and 

Ji..~ FHnXHn'O(U) = (1 - f? FHoXHo,O(U), for each U 2:: O. (30) 

By (29), (30) and given that J is 7]-monotone for 7] = fU - f), 

(31 ) 

Since t < t*, and using condition (10), 

Ji..~ J*(FHn,O) E-~ 1*[(1 - f)FHo,o + din] = m(t*) 

> m(t) = 1*[(1 - f)FHo,Ot + fooL (32) 

as "we chose Ot in the required direction to get the last equality. 

Obsen-e that, under fIn' we ha\-e that r(Od = O~xn - O~Xn = 0 and therefore 

Again, as J is 7]-monotone for 77 = f(l - f), 

.Joining (31), (32) and (33), it follows that 

Therefore, if 11 is large enough, 1*(FIIn ,TJ > J*(FIIn,O')' This last inequality is a con­

tradiction since Tn = argmino J*(FHn,O)' 
For eyery t < t* we ha\-e found a sequence of distributions {Hn} in the neighborhood 

1~ such that supn IIT(Hn)11 2:: t. The second part of the result follows immediately from 

this fact. 

Both Lemma 4 and Lemma 5 are deyoted to check that GS- and GR-estimators satisfy 

the assumptions of Theorem 1. 

Lemma 4 If the score function X is even, monotone on [0, (Xl), bounded, continuous at 

o 'U'ith 0 = X(O) < x( (Xl) = 1 and with at most a finite number of discontinuities, then 

S(F) satisfies Assumption 1, for each 7] > 0, and Assumption 3_ 
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Proof: 

Let F and G be a pair of distribution functions on [0,(0) such that F( u) :S G( u) 
for each u ~ o. There exist two random variables X and Y distributed as F and G 

respectively such that X ~ Y and, hence, X(X/s) ~ X(Y/s) for each s > o. It follows 

that 

5(F) = inf{s > 0: EX(X/s) :S b} ~ inf{s > 0: EX(Y/s) :S b} = 5(G). 

Assumption 1 ( a) holds. 

Yohai and Zamar (1993), Lemma 5.1, proved that 5(H) is 1]-monotone for each 1] > o. 
Therefore Assumption 1 (b) also holds. 

Finally, to check Assumption 3, notice that 5 00 = limn->oo 5*[(1 - E)F + EFnl satisfies 

(34) 

On the other hand, if 50 = 5~[(1 - E)F + EGl was such that 

then there would exist 5 < 50 such that 

(1_E)2jOO \(7l)dF(y)+2E(1-E)jOO \(~)dFl!oxG,o(u) 
-00 s -00 Sn 

Joo ( 11 ) +E2 _o::X 5
n 

dFGXG,o(u)<b, 

\\·hich contradicts the definition of So. It follo\\'s that 

(1-E)2 X - dF(y)+2E(1-E)+E2~b. j oo (Y) 
-00 So 

By inequality (34), we must have Soo ~ So and therefore Assumption 3 also holds. 

Lemma 5 Let a ~ 1/2. Suppose that a(u) is continuous on [0,1 - a], a(u) = 0 zj 

1-0: < u:S 1, and a(u) > 0 if 0 < u < I-a. Then R(F) satisfies Assumption 1, for 

T] < Q, and Assumption 3. 3 

Proof: 
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Assumption l(a) holds since it amounts to the conclusion of Lemma A.4 of Yohai and 

Zamar (1993). 

Yohai and Zamar (1993), Theorem 5.2, proved that R(F) is 1]-monotone for 1] < 0:'. 

As it is required that 1] = t(1 - t), we will be able to compute the maxbias curve for 

£: < 1- (1- 0:' )1/2. This is not a real restriction as the breakdown point of these estimators 

is always less than or equal to 1 - (1 0:')1/2. 

Finally, Assumption 3 follows straightforwardly from the fact that Assumption 1(a) 

holds even for substochastic distributions and applying 1]-monotonicity. 

The following two lemmas are needed to prove the minimax result of Section 5. 

Lemma 6 Let iJ = (1 - t)Ho + e~o. Define 

I:B*II = sup{IIBII: F'R,B(u) 2: (1 e)2 FHo ,o(ll), for each u 2: O}. (3S) 

Then, under Assumption 2, 

(a) 0 < IIB*II < 00, for wch 0 < e < 1/2. 

(b) There exists 'It'" > 0 such that, 

Proof: 

(36) 

It can be obtained by fo11owin the proofs of Lemmas A.2 and A.3 of Yohai and Zamar 

(1993), rewritting the details when necessary. 

following lemma is perhaps interest ing by itself. It \'es a general lower bound 

for the maxbias cune of any generalized residual admissible estimator. 

Lemma 7 Let IIB*II be as defined in equation (35). Let T be a regression estimator 

defined as in (9). Under Assumption 1 (b), for 1] = e(1 - e), and Assumptions 2 and 3, 

<J.nd assuming further that Go is spherical, BT(e) 2: IIB*II· 

Proof: 

By Corollary 1, BT(e) IIBII, where B is such that 

J[F'R,B] J*[(1 e)FHo ,8* + eoo] = Ji.~ J"'[(1- e)FHo,o + eVn ] 

Ji.~ J[(1- e)2 FHo,o + 2e(1 - e)FHoxvn'O + (2 FvnxVn,O]' 
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This fact implies that there exists U > 0 such that 

(37) 

since if F'k,B(u) = (1 - C) 2FHo,o(u) for each u > 0, then J"[F'k,B] < limn _ oo J*[(l -
c)FHo,o + cVn ] by Assumption 1(b). Notice that by Lemma l(a) and (b), 

J2..r~,(l - c)2 FHo,o( u) + 2c(1 c)FHoxvn,o( u) + c2 FVnX\"n,O( u) = (1 c)2 FHo,o( u). 

Lets assume that IIBII < IIB"II. By the definition of B*, equation (35), 

F;,B(u) > F;,B"(u) ~ (1 c)2FHo ,o(u), 

which is a contradiction with equation (37). As IIBII < IIB~II leads to a contradiction, 

!JBII > IjB"11 holds. 

Proof of Theorem 2: 

Let Q" = (1 - c)2 FHoxHo,O(ll*), where ll'" > 0 was defined in Lemma 6(b). By Lemma 

i, it is enough to show that IIT0.(H)11 ::; IIB"II for each If E V~. On the contrary, suppose 

that there exists H = (1 - c)Ho + cH'" such that B T0·(H) and IIBII > IIB"II. Let 

). JlBII/IIB*JI > 1 and define iJ = AB". Since IliJll IIBII, applying Lemmas 2 and 6(b) 
wc haye that, 

Therefore, 

(1- c?F~o,B(u") + 2c(1 

< (1 - c)2 F~o,B(ll*) + 2(1 

(1- c)2F~D,8(1l*) +2c(1 

< (1 - c)2 F;{o,B'" (u*) + 2c(1 

(1- c)2FHoXHo,O(11") ex". 

C)FHoXH.,B(u") + c2FI~'XH.,B(1l*) 
c)FIfoX:J.o.o(l1*) + c2 

c)F B- (u") + c2 

Hox:J.o, 

c)FIfoX:J.o,B*( u") + c2 

F~~H,B( ex") > ll". 

On the other hand, FjlxH,O(ll"') ~ (1- c)2FHo xHo,O(u") 0:'" and, hence, 

FH~H,O(O:") ::; u ... 

From (38) and (39), 

F~~H,B(O:") > FH~H,O(Q"), 

'which is a contradiction with B = TQ.(H). Therefore IITQ.(H)II ::; IIB"'II. 

20 
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epsilon 0.05 0.10 0.15 0.20 0.25 0.30 

LQD 0.59 0.95 1.34 1.83 2.51 3.56 

TUKEYGS 0.60 0.96 1.36 1.88 2.60 3.73 

a-GLTS 0.60 0.98 1.42 2.02 2.90 4.37 

a-GLTAV 0.61 1.02 1.52 2.24 3.38 5.49 

Table 1: .Maxbias curves of several robust regression estimates based on pairwise differ­

ences of residuals. 
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epsilon 0.05 0.10 0.15 0.20 

Quantile 0.27 0.32 0.33 0.34 

B"'(c) 0.59 0.94 1.32 1.78 

B(c) 0.49 0.77 1.05 1.37 

Table 2: Optimal quantiles and minimax bias values in the class of generalized residual 

admissible estimators, B·(c). For comparison purposes, the minimax bias values for the 

class of (non-generalized) residual admissible estimator, B( c), are also included. 
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Figure 1: I\Iaxbias curyes of (a) LQD-estimator (solid line), (b) TUKEYGS-estimator (dot­

ted line)~ (c) O.75-GLTS-estimator (dashed line) and (d) O.75-GLTAV-estimator (dotted­

dashed line). 



4,--------,---------,--------,---------,---------,--------. 

3.5 

3 

2.5 , 
, 

2 

1.5 

, 

, 
, 

, 

" 

, , 

OL-------~--------~--------~--------~--------~------~ 
o 0.05 0.1 0.15 0.2 0.25 0.3 

contamination 
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