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1 INTRODUCTION 

Diagnostic methods for identifying a single outlier or influential observation in a 

linear model are well established in the statistical literature either from the Classical or 

Bayesian point of view. See Cook and \Veisberg (1982), Pettit and Smith (1985) and 

Peiia and Guttman (1993). However, the identification of multiple outliers in linear 

models is a difficult problem because the masking effect. Some recent proposals to 

solve the problem from the Classical point of view are Hadi and Simonoff (1993) and 

Pena and Yohai (1995). Rousseeuw and Zomeren (1990) and Atkinson (1994) have 

proposed the use of robust estimation to identify multiple outliers. 

This paper presents a new procedure based on the Bayesian approach to identify 

multiple outliers in linear models. The proposed method seems to work better than 

other procedures recently presented in the literature. The posterior probabilities of each 

observation being an outlier are computed by an adaptive Gibbs sampling procedure 

that overcomes problems of convergence due to the masking effect. The result is a two 

stage method which seems to work very well in problems with multiple outliers and 

strong masking. The first stage uses a few iterations of the Gibbs sampling and the 

information available when the series of outlier probabilities are stable to determinate 

the initial conditions in the second stage. 

The paper is organized as follows. In sectioll 2 the model and a brief review of 

the literature on outliers in Bayesian linear models is presented. Section 3 develops 

the llew adaptive procedure. Section 4 applies it to some examples with real and 

simulated data, showing its good performance in samples with masking and swamping 

problems. The procedure is compared to the outlier detection methods by Hadi and 

SimonofI" (1993) and Peiia and Yohai (1995) finding that it works where these other 

methods may fail. Some final comments appear in section 5. 

2 OUTLIERS IN THE BAYESIAN LINEAR MODEL 

Let us consider the Bayesian regression1l10del where the observations y = (Yl, . .. ,Yn)' 

are generated by 

i = 1, ... ,n, (2.1 ) 
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where n is the sample size, X = (Xl, ... , xn)' is a n x P matrix of non random variables, 

{3 is a P x 1 vector of unknown parameters, and u = (UI, ... , un)' is a vector of non 

observable perturbations with distribution N(O, (1"2). We assume independent and non 

informative prior distributions for the location and scale parameters, P({3, (1"2) ex (1"-2. 

Bayesian methods for outlier detection can be classified into two groups: (1) diagnostic 

methods which propose a null model for the data generation excluding that outliers 

may be generated; and (2) robust methods which propose a model for the generation 

of all the data set, including the possible outliers. 

The diagnostic methods analyze if one observation is compatible with the rest of 

the sample by studying the predictive distribution P(Yi I Y(i))' where Y(i) is the sample 

excluding the data Yi. This measure is called the conditional predictive ordinate method 

(Geisser, 1980 and Pett,it and Smith, 1985) and Pettit (1990) proves that it is related 

to the studentized residual test. In this case the predictive ordinate is given by 

(2.2) 

where ti is the studentized residual, 8{i) is the unbiased estimate of (1"2 when the data 

Yi is eliminated, and hi is the ith element in the principal diagonal of the matrix 

H = X(X' X)-I X'. Therefore, data with large studentized residual ,\Till have a small 

predictive ordinate and will be consider outliers. 

The robust methods suppose heavy tail distributions for the errors or mixtures of 

distributions (e.g. Box and Tiao, 1973 or \-Vest, 1984). The more frequently analyzed 

model is the normal scale contamination model, where the error distribution is 

i = 1, ... ,no (2.3) 

Assuming that k and 0: are known, the posterior probability that there are nr outliers 

in a set indexed by I = {i I, ... , i nr} is given by 

( a:) nr ( I X' X I ) t ( s2) T 
Pr ex 1 _ a: k-

rlI 

I X' X - <t>X~Xr I srI)' (2.4) 

where <t> = 1 - k-2, Xr is the nr x p submatrix of X with the rows indexed by I, s2 is 

the usual unbiased residual variance estimate and s~) is computed by considering the 
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nj points in I generated from the alternative distribution. The model (2.1) and (2.3), 

introduced by Tukey (1960), has been studied among others by Box and Tiao (1968), 

Freeman (1980), Pettit (1992) and Peiia and Tiao (1992). The mixture distribution 

(2.3) indicates that it exists a probability 0: of each data point being spuriously gen­

erated from an alternative distribution. Data points generated from the alternative 

distribution will be consider outliers. The advantage of this model with respect to the 

heavy tail ones is that it not only produces an efficient robust parameter estimation but 

also it can provide an outlier identification procedure. When k is large it can be shown 

(Peiia and Guttman, 1993) that the behavior of this model for outlier identification 

is similar to the mean-shift model by Guttman (1973) and to the predictive ordinate 

method (2.2). 

The formulas (2.2) and (2.4) can be easily used to check for a single outlier in the 

sample. However, when the number and the position of outliers are unknown, that 

is the usual case with real data, two detection procedures has been proposed: (1) 

using the deleting one observation procedure to detect outliers one by one; and (2) 

considering multiple detection for identifying groups of outliers. 

The deleting one observation procedures with multiple outliers can be subject to 

masking. :./Iasking occurs when one outlier observation is not detected because of the 

presence of others outliers. Also, one good point can be wrongly identified as out­

lier due to the effect of the outliers, and this is called the swamping problem. The 

multiple detection procedures using (2.4) may avoid masking, but they involve the 

extensive computations of the 2n posterior probabilities which correspond to all the 

possible configurations for the generation of the data. Peiia and Tiao (1992) propose a 

method based on stratified sampling to reduce the computations in the context of build­

ing the Bayesian robustness curves BROC and SEBROC. Verdinelli and Wasserman 

(1991) apply the Gibbs sampling algorithm (Geman and Geman, 1984 and Gelfand 

and Smith, 1990) to the detection of univariate outliers in a normal random sample 

and show that this algorithm overcomes the heavy computations needed in this type 

of problems. Justel and Peiia (1996) extend the procedure to the outlier detection in 

linear regression and show that, when the outliers are isolated, Gibbs sampling works 

well and avoids the 2n necessary computation to obtain the marginal posterior proba-
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bilities. However, in strong masking cases the algorithm fails and multiple outliers are 

not always detected when the convergence seems to be reached. The fault is attributed 

to the problems of high contamination and the presence of influence outliers in the 

sample. 

In this paper we generalize the normal scale contamination model (2.1) and (2.3) 

by assuming for the contamination parameter 0: a prior distribution Beta( 1'1,1'2) with 

expectation 0:0 = E(o:) = l'1/b1 + 1'2). The 'application of the Gibbs sampling is 

carried out by augmenting the parameter vector with a set of classification variables 

8 = (61 , ... , 6n )', that are binary variables defined as 6i = 1 if Yi is generated by 

the alternative distribution N(x~f3, k2(J2) , and 6i = 0 otherwise. The pair (Yi, xD will 

be called an outlier when the marginal posterior probability Pi that its classification 

variable is equal to one is greater than 0.5. Thus, 0: is the prior probability that any 

observation is an outlier. Then the full conditional distributions are: (1) the conditional 

distribution of f3 is Np (13, (J2 (X'V- 1 X)-l) , where 13 = (X'V- 1 X)-l X'V- 1y and 

V is a diagonal matrix with elements Vii = k2 if 6i = 1 and Vii = 1 otherwise; (2) 

the conditional distribution of (J2 is Inverted - Gamma (n/2,,£u72/2), where ui = 

(Yi - x~f3) / (1 + 6i (k -1)); (3) the conditional distribution of 6i is Bernoulli with success 

probability 

P( S:, = 1 f-l, 2, .) = exp (-UT/2k
2
(J2) 0: . 

VI 1 Y,fJ,(J,O: ')/ ? ')) ?/ 2)( )/' exp (-liT 2k-(J- (\ + exp (-'uT 2(J 1 - 0: ;: 
(2.5) 

and (4) the conditional distribution of (\ only depends on the vector 8 and is Beta (1'1 + 
n6,1'2 + n(l - J)), where J = '£ 6;1n. Note that the conditional expectation is a linear 

combination of the prior expectation and the sample mean 

E(0:18)= 11+1'2 0:0+ n 6. 
1'1 + 1'2 + n 1'1 + 1'2 + n 

\Vhen the Gibbs sampler is run R times, inference for the mean, variance or any 

other characteristic of the posterior distributions is made by using the independent and 

identically distributed samples obtained from the last iteration of each performance. 

In particular, the estimates of the marginal outlier posterior probabilities are 

P',(S) = ~ ~ 6'(S) 
IR R ~ I)", 

1'=1 

(2.6) 
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and the series of posterior probability estimates (2.6) for each data point, as a function 

of the iteration number, will be used for monitoring convergence. 

Justel and Pena (1996) showed in several examples that Gibbs sampling will fail for 

outlier detection in data sets with masking problems. A key factor to explain the lack 

of convergence in these cases seems to be the effect of the leverage in the estimation 

of linear regression models. \\Then high leverage outliers which cause masking are 

classified as good data in the initial vector 6(0), the probability that these points are 

identified as outliers depends on the residuals 'U)O) = Yi - x~/3(O) and will be low in the 

next iterations. This fact can be easily seen in the extreme case in which the sample 

includes a group indexed by I of n l identicaloutliers. Let So = (Yo,Xo) be the set 

of observations classified as good in the initial conditions and let us consider the case 

in which So includes the group of outliers. The probability defined by (2.5) can be 

expressed in the first iteration as 

-(I) 2 1 - a (1) . ( ( 
(1)) )-1 

P(Oj = 11 y,/3,(J ,a) = 1 + a(1) FlO (1) , (2.7) 

\vhere F{6) is the Bayes factor given by 

Fi6) (i) = k . exp ( 2</>-;(J2(1) u~0)2 ) 

and </> = 1 - 1\~-2. Peiia and Yohai (1995) proved that 11.;0) can be expressed as 

I (.l(0) 
(0) Yi - XifJ(l) 

1/. = ----'-..:-
I 1 + Hlh 

for i E I, (2.8) 

where h = x~(X~(l)XO(I))-lXi are the common out-of-sample leverage for i E I and, 

from now on, the subscript (1) means that the data indexed by I are deleted. For large 

k, /3ig) may be approximate by the least square estimate when the observations indexed 

by I are deleted from So, that is 130(1) ~ (X~(I)XO(l))-l X~(I)YO(I). It is immediate from 

equation (2.8) that the residual 1£;0) will be small if h is large (note that h is not 

bounded) and this effect increases \vith the number of outliers Tl I . Therefore, for high 

leverage outliers the residual 1£;0) will be close to zero and the probability (2.7) will 

also be close to zero. On the other hand, if the set So does not contain outliers, the 

out-of-sample residuals ujO) will be large for i E I and the probability (2.7) will be 
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close to one. Therefore, we conclude that the set of outliers will be detected in the 

next iteration only when all of them are classified as such in the drawing from the 

conditional distribution (2.7). 

3 PROCEDURE TO AVOID MASKING 

\Ve have seen in section 2 that when the sample contains a set of masked outliers 

and the initial set So includes some of these points, the Gibbs sampler is expected to 

fail. As a result of this analysis it is reasonable to assume the following initial condition 

dependence property: 

i) if So includes no outliers, the existing outliers are always identified, and the good 

data are not misspecified; 

ii) if So includes several influential outliers, the probability of identifying all the 

outliers in the sample is small and will be very close to zero if the number of 

misspecified outliers is large. 

Therefore a clear objective is to start the procedure with a set So that is outlier free. 

This idea is similar to the one used in robust estimation procedures based on resampling 

(Rousseeuw, 1984, and Hawkins, I3radu and Kass, 1984). I3efore starting the algorithm 

the only information that can be used to build So is that, by definition, outliers will 

be some small fraction of the data. However, when the Gibbs sampler is run and the 

outlier probability series stabilize we have information about the dependency among 

the classification variables. Based on this idea vve propose an adaptive-learning method 

in which the initial conditions of the Gibbs sampler are changed according to a two­

stage procedure. In the first stage, the Gibbs sampling is initialized by (i) using a 

small set of initial values as good observations and (ii) applying diagnostic test to 

these initial values to eliminate single outliers. Then the algorithm is run for a few 

iterations until the outlier probability series are stable. The dependency among the 

classification variables computed from the run is taken into account in order to divide 

the sample into two groups, as described below. Then these two groups are used to 

reset the algorithm in the second stage. The resulting adaptive procedure seems to 

converge with a few iterations to the true parameter distributions. 
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Figure 1: r.Iatrix plot of the Hawkins, Bradu and Kass data. 

3.1 First selection of the initial values 

The procedure is first initialized by given value zero to the classification variables of data 

in a set So = (Yo' Xo) and value one otherwise. The set So is chosen as a subsample 

of size no such that the probability of containing more than one outlier is very low. 

Then ,ve guarantee that: (1) if So has no outliers \ve will obtain unbiased parameter 

estimates that will lead to the identification of the outliers in the next Gibbs sampler 

iteration; (2) if So has just one outlier, although it can produce biased estimation, 

obviously, it can not produce masking. In such case, this isolated outlier can be easily 

detected and then rejected by individual standard diagnostic procedures, as the Bayes 

factor that a particular observation comes from the alternative distribution against 

all the data come from the central distribution. The weight of evidence can be done 

by using Jeffreys (1961, Appen. B) scale of evidence. The Bayes factor is inversely 

proportional to the conditional predictive ordinate p(Yj I YO(j)) given by (2.2) and it is 

a monotonic function of the studentized residuals given by 

j E So, (3.1 ) 



no 2 3 4 5 6 7 

P no 0.990 0.971 0.946 0.915 0.879 0.840 

Table 1: Probability of at most onc outlier in any set of size 110 ill the Hawkins, Bradu and Kass 

data with ao = 0.1. 

where f30 = (X~X 0)-1 X~yo is the least square estimate for the subsample So, 

hOj = xj(X~XO)-IXj is the leverage and sO(j) is the sample standard deviation when 

the jth case is excluded and the sample is So. \Ve can also test the single outlier by 

the studentized residuals which have a t distribution with no - p - 1 degrees of freedom 

under the null hypothesis. The global significant level test can be chosen by Bonferroni 

inequality, that is O:T = o:r/no. 
Let Pno be the probability that the set So contains at most one outlier. As 0: is 

the prior probability of each observation being an outlier, then n(l - 0:) observations 

in the sample are expected to be good and no: to be outliers. The probability Pno is 

computed by the follmving expression 

(nn) (,n)-I+ ( na )(nn)(n)-I, 
170 170 no - lIno (3.2) 

,vhere Ha is the nearest integer to two (in case of tie, it is the higher one) and na = 
n - na. ::Jote that 0:0 is the expectation of the prior distribution for the parameter 0:. 

For instance, Table 1 presents the probabilities Pno for the artificial data proposed by 

Hawkins, Bradu and Kass (1984) with 0:0 = 0.1. Out of the 75 observations in four 

dimensions data from 1 to 10 are high leverage outliers (see Figure 1). From this table 

we obtain that if we consider as initial conditions that only three observations come 

from the central distribution ---and we select them randomly-, we expect that this set 

of size 3 is outlier free in 971 cases out of 1,000 sequences used for the final estimation. 

The decision about the size of So will be a trade off between sensitivity, that 

requires the selection of few data points as good data, and power, that depends on 

having enough data points to estimate the parameters. In any case, we need to take 
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at least an elemental set (Hawkins et al., 1984), that is any set of size p. 

3.2 Second selection of the initial values: the Covariance Matrix 

The procedure to select the initial conditions in the first stage cannot guarantee that 

So is outlier free. If the initial set So contains high leverage outliers, the probability 

of being outlier will be low for masked outliers and high for swamped good data. The 

probability of identifying all the outliers will be equal to the probability of non outliers 

in So, that is unknown. However, we have seen that the classification variables for 

groups of masked outliers or swamped good data will have similar behaviour when the 

series stabilize. Therefore, the covariance matrix of the vector 6(S) includes information 

about the dependency among the classification variables that can be useful to identify 

groups of similar effects. \Ve expect that observations which mask or swamp each other 

have a large covariance in absolute value, whereas the covariance between outliers 

and good data points and among good data points will be small. This suggests to 

estimate the posterior covariance matrix of 6(S) and to search for sets of points with 

large covariances in absolute value. These sets are expected to correspond to either 

masked outliers or swamped good data. 

Let C be the Covariance \latrix of the 6(S) binary variables. Its (i, j) element is 

and Cij can be estimated by computing the probabilities after S iterations of R parallel 

replications of the Gibbs sampler. The estimate will be 

where p;~, estimate of P(fJjS) = 11 y), is given by (2.6) and p;j~, estimate of P(fJ;S) = 
1, fJ?) = 1 1 y), is given by 

This Covariance Matrix is related to the one used by Pena and Tiao (1992) who 

proposed a probabilistic interaction matrix for computing the curves BROC and SE­

BROC. They did not use marginal probabilities, as we do here, but joint probabilities 
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that: (1) one observation is an outlier and all the others come from the central distri­

bution and (2) two observations are outliers and all the others come from the central 

distribution. 

As we are searching for sets of observations with similar dependency structure it is 
. . 

natural to try to identify these sets by studying the eigenstructure of the matrix C. 

Also Pena and Yohai (1995) have shown, in a different context, that outliers can be 

identified by looking at the eigenstructure of their Influence Matrix. In order to study 

the eigenvalues of the matrix C, let us call D to the data matrix for the classification 

variables after 5 iterations. This matrix is 

D - (~(S) ~(S»)' 
- U1 ""'U rr , (3.3) 

where the columns in (3.3) are random samples of each classification variable 6i at 

iteration S. Then the matrix C may be written as 

. 1, 1" 
C = RD D - R2D lrrlrrD, 

and the eigenvectors associated to the non null eigenvalues of C will be the coefficients 

of the principal components of D. 

Let us consider the limit case in which there is only one group of outliers. Then we 

can obtain the expected behaviour of the eigenvalues and eigenvectors of the matrix 

C. Let us call d i to the ith column vector of D and, without loss of generality, let us 

assume that the set of outliers corresponds to the last columns of the matrix D. In 

addition, let us call H to the set of swamped data (that may be void) and G to the set 

of not swamped good data. Let us assume that the sizes of these sets are nI, nH and 

no, respectively (n = no + nIl + nI)' and that the swamped data correspond with the 

columns before the nI outliers. 

Suppose that the series of outlier probabilities are stable at iteration 5 and let us 

call JiS) , ... ,J~S) to the sets that the Gibbs sampler identifies as outliers in each run. 

By the initial condition dependence property, J;S) is equal to I when the initial set So 

is outlier free. Let us call q to this probability. Then So will be outlier free in Q = qR 

of these sets. Let Q = R - Q. In order to analyze the expected behaviour of the 

elements of the vectors di, let us assume, without loss of generality, that the first Q 
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runs correspond to the Q outlier-free initial conditions. We distinguish the following 

types of column vectors in D: 

(a) Columns which correspond to the not swamped good data are of the form 

j = 1, ... , ne, 

where OQ is a Q x 1 null vector by the initial condition dependence property, and 

the vector 9 j = (glj, ... , gQj)' may contains a few non null elements because the 

outlier probability for good data is small, but not zero. "Ve may suppose there 

are not important differences between these columns in the proportion of ones 

(misspecifications), that is bounded by some small value 7r, such that 

1 Q - L gij ~ 7r for all j = 1, ... , ne· 
R i=l 

(3.4) 

(b) Columns \vhich correspond with swamped good data, due to some not identified 

outliers are of the form 

where lQ is a (2 x 1 unit vector. 

(c) Columns which correspond with data in the group of outliers are of the form 

j = n -nI, ... ,n, (3.5) 

where 
n 

o ~ L gij < n I i = 1, ... ,Q. 
j=n-HI 

The number of unity elements in 9j depends on the degree of masking. The two 

extreme cases are: (1) the outliers in I are isolated outliers, that implies 9j = lQ; 

and (2) the data in I are identical high leverage outliers, that implies 9j = OQ. 

Let us consider this last case in which Gibbs sampling has failed completely. 

Then the column vectors (3.5) are 

J = n - nI,· .. , n. 
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By (a)-(c) the matrix D may be expressed as a block matrix 

where G = (g l' ... , 9 11CJ is a matrix (j X ne. The Covariance Matrix 6 can be written 

as 
-RI G'G - RIo_ G'IQ-l'Q-G :. .Q. G'I I' .Q. G'I I' , R2 Q nH - R2 Q nl .................................................... 

6 = * InlIl~G ~ InHl~lH -~ InlIl~1 
-~lnll~G -9ilnll~H ~lnll~1 

Assuming that 'iT' is small, this matrix can be approximated by 

i.vhere 6 22 is the (nIl + nl ) x (nIl + nl ) matrix 

The eigenvalues of 6 are the eigenvalues of the matrices G'G/ Rand 6 22 . By 

equation (3.4) the eigenvalues of G'G/ R verify 

The matrix 6 22 has only one non null eigenvalue, given by 

(3.6) 

Then the matrix 6 has an eigenvalue AI and ne additional eigenvalues such that their 

sum is less or equal than 'iT'ne , where 'iT' is very close to zero. In addition, Va = 

(O:le' al~H' -al~l)' is an eigenvector of the matrix 6 associated with AI, for all non 

null values of a. 

The AI eigenvalue, given by (3.6) in the case of only one group of outliers, may be 

close to zero (the group is unidentified) ,vhen the probability q of outlier-free initial 
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conditions is close to zero or one. A value of q close to zero corresponds to the strong 

contamination case and a large size of So. vVe avoid this problem with the proposed 

procedure by selecting a small initial set So as it was described before. On the other 

hand, a value of q close to one corresponds to the case in which there is not outliers 

in the sample, or only very few and small size of So. In this case, t.he outliers will not 

be masked and they can be directly detected by the Gibbs sampling algorithm. The 

interesting case is when 0 < q < 1 and nr (and may be nIl) is large, that corresponds 

to the most difficult case in which outliers not only are not identified in most run, but 

also they are producing swamping. Then Ar will be relatively large and the eigenvector 

linked to t.his eigenvalue will indicate correctly the masked and swamped data. The 

observations having relatively large coefficient (in absolute value) on the eigenvector 

Va are potentially outlier candidates, and we may split the data into two subsets: (1) 

the set that contains the observations with non null coefficients on the eigenvector Va 

or with high individual probability p~s); and (2) the set of the remainder observations. 

\Ve call to the first set the potential O1.ttlier set (PO). 

For instance, Table 2 shows the Covariance p,/Iatrix for the data provided by Hawkins, 

Bradu and Kass (1984) and showed in Figure 1. It is a well-known example of data 

with high leverage outliers where t.he traditional out.lier identification procedures are 

not able to ident.ify the outliers and, even worse, observations 11 to 14 are good data 

identified wrongly as outliers. Just.el and Peiia (1996) show that Gibbs sampling fail 

with this data set. The ten outliers are not identified and the Gibbs sampling suffers 

the same problems as traditional methods for outlier detection. The Gibbs sampling 

is started with a set So of four observations considered as good data point, therefore 

the probability of non outliers in So is 

The largest eigenvalues are shown in Table 3, and the components of the eigenvector 

associated with the highest eigenvalue are shown in Figure 2. \Ve shall include in PO 

the observations 1 to 14. For this data, the matrix C was built with the estimated 

probabilities after 500 iterations. Note that here q = 0.557, nr = 10, nH = 4, and 

therefore the expected value of the largest eigenvalue is, according to (3.6) equal to 

3.45 that is very similar to the real observed value. 
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2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

.22 

.23 .22 

.22 2') .22 

.22 .22 .23 .22 

.23 .22 .23 .22 

.22 .22 .22 .21 

.22 .22 .22 .22 

.22 .22 .22 .22 

.23 .22 .23 .22 

-.22 -.22 -.22 -.22 

-.22 -.22 -.22 -.22 

-.22 -.22 -.22 -.22 

-.22 -.22 -.22 -.22 

.23 

.22 .22 

.22 .22 .21 

.22 .22 .22 .22 

.23 .23 .22 .22 .22 

-.22 -.22 -.22 -.22 -.22 -.22 

-.22 -.22 -.22 -.22 -.22 -.22 .22 

-.22 -.22 -.21 -.22 -.22 -.22 .22 .22 

-.22 -.22 -.22 -.22 -.22 -.22 .22 .22 .22 

Table 2: Covariancc ~datl'ix with Hawkins, Uradu and Kass data. Only values greater than .01 and 

less than -.01 are printed. 

Component Eigenvalue Variance Cum. percentage 

number of variance 

1 3.429i 0.i849 i8.49 

2 0.0391 0.0089 i9.38 

3 0.0338 o.oon 80.15 

Table 3: Covariance lVlatrix eigcnvalues for the Hawkins, Bradu and Kass data. 
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Figure 2: Coefficients of the eigenvector associated with the eigenvalue Al of the Covariance Matrix 

with Hawkins, Bradu and Kass data. 

vVhen the sample data contains several sets of outliers they can produce p different 

independent effects in RP. Therefore, the maximum number of eigenvalues to scruti­

nized is p. A straightforward generalization of the previous analysis shows that this 

independent effects will appear in p eigenvectors of the estimated Covariance Matrix 

C. This result is the basis of the procedure presented in the next section. 

3.3 Algorithm for sampling posterior probabilities 

The method for the first selection of the initial values, together with the information 

provided by the Covariance Matrix, allmvs to split the data into two sets PO and PO. 

If the Gibbs sampler is initialized giving value 1 to the classification variables in PO for 

each sequence, after a few iterations the classification variables obtained are a sample 

from the posterior distribution. Inference from this sample allows us to identify the 

outliers. Accordingly, we suggest an Adaptive Gibbs Sampling Algorithm following 

two stages: 

Stage 1: Run the Gibbs sampling until the series of posterior outlier probabilities 

become stable. The initial conditions for each sequence are selected as follows: 

z. Let no be the maximum integer such that the probability (3.2) of finding at 

most one outlier in any data subset of size no is greater than Cl. Then select 

rH = max{no,p} random numbers i l , ... ,im among 1, ... ,no 
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ii. Build the initial set 8 o, = {(Yil' XiI)' ... , (Yi m , Xi m )}. If m > p, compute the 

studentized residuals til , ... , tim given by the expression (3.1). 

n'/,. When m = p, the initial classification variables are: 

6(0) = { 0 
} 1 

if) = il .... ',i m 

otherwise. 

\\Then m > p, the initial classification variables are: 

6(0) = { 0 
J 1 

if tj < tm-p-I,Clj/no (Student t) 

otherwise 
forj=il, ... ,im · 

'tV. If n - L: 6j < p or the resulting matrix with the rows which correspond to 

6JO) = 0 is not positive define, execute again steps i-iii. Otherwise, (3(0) 

(X'V(O)-I X)-l XV(O)-l y, where V(O) is a diagonal matrix with vJ~) = 1 + 
6;0)(k-1). 

\:Vith the values obtained in the last iteration compute the Covariance Matrix C and 

the largest C2 eigenvalues and associated eigenvectors (VI, v2, .. . ). Split the sample into 

two sets PO and PO as follows: 

a. If piS) > 0.5, then (Yj, xj) E PO. 

b. For i = 1"",c2 and ,j = 1, ... ,n, compute mi 

If I Vij I > C3 mi, then (Yj, xj) E PO. 

c. If (Yj, xj) t/. PO, then it is in PO. 

median I Vij I /0.6475. 

Stage 2. Reset the algorithm and run the Gibbs sampling until the series of posterior 

outlier probabilities become stable. The initial conditions for each sequence are: 

1. 6)°) = 1 if (Yj,xj) E PO, and 6)°) = 0 otherwise. 

2. (3(0) = (X'V(O)-I X)-I X'V(O)-I y, where V(O) is a diagonal matrix with V)~) 

1 + 6)°) (k - 1). 

The interpretation of Stage 1 is clear: to obtain a set 80 with a small probability of 

containing outliers, then we split the sample using the information from the Covariance 

1G 



Matrix. The points with large coordinates on the eigenvectors are obtained by using 

a robust measure to deviations from zero. Finally, in Stage 2 the algorithm is reset 

and the procedure is run again. The procedure ends when the final series of outlier 

probabilities become stable. 

The bounds Cl and C2 and the constant C3 must be chosen. The criterion for Cl was 

discussed in section 3.1 and we suggest values around 0.9 in order to consider both 

sensitivity and power. \Ve suggest to choose the minimum value of (p, c2), where c2 
is the number of eigenvalues greater than five times a robust dispersion measure of 

the eigenvalues Ai of C, that can be median(Ai)/0.6475. The constant C3 is used to 

determine the significative non null coordinates in the eigenvectors and, therefore, the 

outlier candidates. 'Ye use again a robust measure of the dispersion around zero, that 

is the expected value for the good data. The number of parallel sequences depends on 

the asymptotic properties of the estimates. Finally, the number of iterations needed to 

achieve the series stabilization in both stages may be decided by the methods for mon­

itoring convergence proposed by Gelman and Rubin (1992) or Robert (1994), among 

others. 'Ye suggest an easier procedure that in this particular application of the Gibbs 

sampling seems to work well. The Gibbs sampler is run until the iteration S, such 

that, given f > 0, I p~~+l) - i);~) 1< f for all i = 1, ... , n. Finally, in the Stage 2 the 

initial conditions are always the same and it is possible to run only one sequence to 

reduce the computational effort. 

4 PROCEDURE PERFORMANCE 

'Ye compare the performance of the new method with the two verSIOns of the 

procedure to identify multiple outliers by Hadi and Simonoff (1993) and with the one 

by Peiia and Yohai (1995). In both procedures the outliers are the observations with 

large studentized residuals in a regression computed from a subsample that is supposed 

to be outlier free. Therefore, some of the residuals we will display in the tables are the 

out-of-sample residuals (note that we will not differentiate these points). 'Ye present 

the resul ts of the first method suggested by Hadi and Simonoff (1993). The performance 

of the second one is similar to the first in all the three examples analyzed. 
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In our application we choose Cl = 0.95, C3 = 5 and the individual significance level 

a1 = 0.05. The number C2 of eigenvectors to be examined is decided by the method 

explained before. The Gibbs sampler is always run 300 sequences and the number 

of iteration is decided with E = 0.002. In all the examples k = 10, ao = 0.2 and 

/1 + /2 =n, that imply E(a I 0) = 1/2E(a) + 1/26, Then {3(0) is the generalized least 

square estimate, {3(0) = (X'V(O)-l X)-l X'V(O)-l y, where V(O) is a diagonal matrix 

with elements k 2(J2 if 8~0) = 1 and (J2 otherwise. It is not necessary to specify the initial 

value for the variance because it is the first parameter computed in the iterations and 

for a because only depends on o. The last iteration of each performance is used to 

estimate the posterior outlier probabilities. 

4.1 Stars data 

The scatter plot displayed in Figure 3 represents the Hertzsprung-Russell diagram of 

the star cluster CYG OB1 hom Rousseeuw and Leroy (1987). The data correspond to 

47 stars in the direction of Cygnus and the variables are the logarithm of the effective 

temperature at the surface of the star (:r) and the logarithm of the light intensity (y). 

There are four outliers which correspond to giant stars in the data points 11, 20, 30 and 

34. The other observations more distant to the cluster are the data points 7, 9 and 18. 

The studentized residuals obtained with the procedures by Hacli and Simonoff (1993), 

as well as the procedure by Peiia and Yohai (1995), are shown in Table 4, columns 1-3. 

The three methods are successful in identifying the outliers. 

The posterior outlier probabilities after the first run of the Gibbs sampling are 

represented by a bar in Figure 5(a). These probabilities identify the group of outliers 

since their outlier probabilities are greater than 0.5. The Gibbs sampling starts in this 

Stage 1 with an initial set So of size three, and the eigenvalues of the Covariance Matrix 

that must be examined are p = 2 (AI = 0.97 and A2 = 0.21). The two eigenvectors 

associated with the largest eigenvalues are showed in Figure 4. The points are the 

coordinates of each data in the eigenvector and the dotted lines are the zero confidence 

bands. In both eigenvalues the outliers are outside the confidence bands and in the 

second eigenvalue the coordinates corresponding to the data 7, 9 and 18 are also non 

null and with opposite signs to the outliers. The coordinates of the good data points 
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Figure 3: Hertzsprung-Russell diagram of the star cluster CYG OBl. 

5, 14 and 40 are in the limit of the bands and these are also considered as potential 

outliers. Therefore the PO set includes the outliers and this information is used to 

select the initial conditions for the Gibbs sampling in the Stage 2. It can be seen in 

Figure 5(b) that the four giant stars are clearly confirmed as outliers with probabilities 

greater than 0.5. 

4.2 Hawkins, Bradu and Kass data 

In the second example, the procedure is applied to the Rawkins, Bradu and Kass data 

discussed in sections 2 and 3. The observations 1 to 10 are outliers which swamp the 

good data 11 to 14. In this data set the procedures by Racli and Simonoff (1993) 

fail due to the high leverage of the outliers, whereas the one by Peiia Yohai (1995) is 

successful in identifying the outliers. It can be seen in Table 5 that the largest residuals 

provided by the Racli and Simonoff (1993) procedures correspond to the good data and 

that the outliers are masked. 

The initial conditions in the Stage 1 include a set of four observations considered as 

good, that is the size of the elemental set. The number of eigenvalues of the Covariance 

\htrix to be examined by the algorithm is one, and the associated eigenvector is 

showed in Figure 2. In this example the estimates of the individual probabilities, 

showed in Figure 6 (a), and the eigenstructure of the Covariance Matrix, discussed in 
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Figure 4: Coefficients of the eigcnvectors associated with the eigenvalues Al (in (a)) and A2 (in (b)) 

of the Covariance ;'Iatrix with the Stars data. 
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Figure 5: Results of the Gibbs sampler with the Stars data: (a) probabilities of each data point to 

be outlier in the Stage 1; (b) posterior outlier probabilities in the Stage 2. 
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Student. res. Prob. Student. res. Prob. 
Data HS PY AGSA Data HS PY AGSA 

1 0.264 0.861 0.028 26 -2.686 -0.829 0.025 
2 1.670 1.195 0.042 27 -1.930 -0.159 0.019 
3 -0.578 0.677 0.027 28 -1.403 -0.019 0.017 
4 1.670 1.195 0.042 29 -2.730 -0.483 0.024 
5 0.480 1.133 0.045 30 5.607 5.328 0.627 
6 0.862 0.982 0.030 31 -3.576 -1.238 0.039 
7 0.868 2.726 0.337 32 -1.485 -0.447 0.021 
8 -0.707 -0.067 0.019 33 -0.246 0.429 0.019 
9 2.386 2.437 0.296 34 6.310 5.750 0.643 
10 -0.272 0.582 0.022 35 -3.018 -0.662 0.026 
11 4.673 4.745 0.620 36 0.740 0.570 0.026 
12 0.986 1.113 0.036 37 -1.302 -0.289 0.019 
13 0.553 0.775 0.025 38 -0.246 0.422 0.019 
14 -2.845 -0.273 0.051 39 -0.910 -0.087 0.018 
15 -3.765 -1.180 0.039 40 1.570 1.430 0.056 
16 -3.059 -1.035 0.031 41 -2.644 -0.722 0.023 
17 -4.821 -1.727 0.092 42 -1.024 0.022 0.017 
18 -4.927 -2.126 0.162 43 0.048 0.469 0.020 
19 -3.739 -1.077 0.039 44 0.336 0.726 0.024 
20 5.141 5.032 0.623 45 0.741 0.723 0.025 
21 -3.214 -0.868 0.028 46 -1.414 -0.177 0.018 
22 -3.948 -1.286 0.044 47 -3.433 -1.244 0.040 
23 -3.807 -1.456 0.055 
24 -2.182 -0.713 0.023 
25 -0.818 0.279 0.018 

Table 4: Results with the procedures by Hadi and Simonoff (HS), Pen a and Yohai (PY) and the 

Adaptive Gibbs Sampling Algorithm (AGSA) with the Stars data. 
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Figure 6: Results of the Gibbs sampler with Hawkins, Bradu and Kass data: (a) probabilities of 

each data point to be outlier in the Stage 1; (b) posterior outlier probabilities in the Stage 2. 

section 3, lead to the same conclusion: the group of potential outliers PO includes the 

observations 1 to 14, that are the masked outliers and the swamped good data. In 

the Stage 2 these data points are considered outliers in the initial conditions and the 

outliers are correctly identified with probability equal to one (see Figure 6(b) for the 

posterior outlier probabilities). Note that the probabilities showed in the last column 

of the Table 5 are very low for the four previously swamped data. 

4.3 Rousseeuw data 

This set of simulated data from Rousseeuw (1984) is the most interesting because it 

shows the high breakdown point of the procedure based on the Gibbs sampler. The 

contamination is 40 per cent and the procedures by Hadi and Simonoff (1993) and 

Peiia and Yohai (1995), are not able to unmask the outliers (see Table 7). The data 

are generated in two groups that can be seen in the scatter plot of Figure 7. The first 

group, that is on the right of the plot, follows an spherical distribution, whereas the 

second group follows the linear model Yi = 2 + :ri + llj with error standard deviation 

0.2. Out of the 50 data points, 20 are high leverage outliers and 30 good observations 

(see Table 6 for the numerical values). 

The usual diagnostic procedures identify as outliers the observations 32 and 33 that 
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Student. res. Prob. 
Data HS PY AGSA 

1 1.0762 5.3525 1.0000 
2 2.2188 5.4420 1.0000 
3 0.1100 5.3188 1.0000 
4 -1.5237 4.8893 1.0000 
5 -0.1409 5.1448 1.0000 
6 0.7106 5.3135 1.0000 
7 2.9565 5.6465 1.0000 
8 2.2196 5.5893 1.0000 
9 -0.6850 5.0402 1.0000 

10 0.8538 5.3079 1.0000 
11 -26.6269 0.9464 0.0117 
12 -28.7513 0.9020 0.0117 
13 -25.1989 0.6873 0.0185 
14 -11.8374 0.8719 0.0194 

Table 5: Results with the procedures by Hadi and Simonoff (HS), Pen a and Yohai (PY) and the 

Adaptive Gibbs Sampling Algorithm (AGSA) with the Hawkins, Bradu and Kass data. 

are good data with large least square residuals. The solid line in the Figure 7 is the 

least square estimate of the regression line. Also the standard Gibbs sampler does not 

identify the outliers as Justel and Peria (1996) showed. However, the Adaptive Gibbs 

Sampling Algorithm proposed in this paper works very \vell. Starting with a set of four 

good observations, the outlier probabilities in the Stage 1 for the 20 outliers are low 

(see Figure 9(a)), but the Covariance :vIatrix has t\VO non null eigenvalues Al = 0.53 

and A2 = 0.31. The coordinates of the associated eigenvectors are shovved in Figure 8. 

In the first eigenvector the results are as expect: (1) the coordinates are non null for the 

20 outliers and the swamped good data; and (2) the signs are opposite for the group 

of outHers and for the swamped data. Then the PO group includes the 20 outliers 

and the observations 32 and 33. The posterior outlier probabilities estimated in the 

second stage (see Figure 9(b)) are such that the outliers are correctly identify in a few 

iterations and also the swamping effect disappears. 
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x 7.46 6.90 6.99 6.79 7.01 7.03 7.10 6.97 - ?-I._I 6.83 

Y 1.68 1.90 2.27 2.97 1.89 1.53 2.01 1.51 1.32 1.56 

x 6.56 7.22 6.70 7.68 6.80 6.30 6.43 6.69 7.66 7.20 

Y 2.24 1.05 1.43 2.60 1.61 3.41 2.01 1.77 1.06 2.41 

x 2.74 2.24 2.61 1.72 1.23 2.25 1.46 1.88 2.74 2.28 

Y 5.05 3.84 4.73 4.04 2.89 4.09 3.61 3.94 4.68 3.75 

x 2.58 3.71 3.89 1.96 1.01 2.76 2.10 1.59 3.23 1.39 

Y 4.32 5.88 6.10 3.89 3.04 4.58 4.27 3.66 5.33 3.61 

x 1.24 1.71 2.94 1.09 3.29 2.21 2.32 1.27 1.87 2.28 

Y 3.31 3.38 5.02 2.87 5.14 4.22 4.39 3.03 4.15 4.22 

Table 6: Rousseeuw data. 
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Figure 7: Least square estimate with the Rousseeuw data. 
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Figure 9: Results of the Gibbs sampler with Rousseeuw data: (a) probabilities of each data point to 

be outlier in the Stage 1; (b) posterior outlier probabilities in the Stage 2. 
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Student. res. Prob. Student. res. Prob. 
Data HS PY AGSA Data HS PY AGSA 

1 0.963 -0.124 1.000 26 0.233 -0.653 0.025 
2 0.714 -0.232 1.000 27 -2.916 -1.825 0.025 
3 2.211 0.311 1.000 28 -1.092 -1.118 0.024 
4 4.407 1.074 1.000 29 3.275 0.440 0.024 
5 0.895 -0.168 1.000 30 -1.049 -1.077 0.066 
6 -0.478 -0.614 1.000 31 1.778 -0.127 0.027 
7 1.576 0.056 1.000 32 9.540 2.868 0.059 
8 -0.648 -0.673 1.000 33 10.934 3.420 0.081 
9 -0.845 -0.723 1.000 34 -1.131 -1.126 0.024 

10 -0.742 -0.712 1.000 35 -5.750 -2.911 0.026 
11 1.384 -0.031 1.000 36 2.952 0.329 0.024 
12 -1.843 -1.110 1.000 37 0.656 -0.523 0.028 
13 -1.499 -0.971 1.000 38 -2.536 -1.675 0.024 
14 4.602 1.233 1.000 39 6.590 1.648 0.035 
15 -0.614 -0.672 1.000 40 -3.067 -1.888 0.027 
16 5.165 1.305 1.000 41 -4.400 -2.386 0.024 
17 0.259 -0.403 1.000 42 -3.314 -1.941 0.041 
18 -0.190 -0.538 1.000 43 4.924 1.028 0.030 
19 -1.105 -0.788 1.000 44 -6.201 -3.064 0.039 
20 3.099 0.640 1.000 45 5.993 1.426 0.025 
21 4.616 0.912 0.052 46 0.645 -0.520 0.024 
22 -0.788 -0.992 0.041 47 1.532 -0.224 0.025 
23 3.208 0.412 0.029 48 -5.357 -2.729 0.039 
24 -1.023 -1.106 0.035 49 -0.283 -0.848 0.033 
25 -5.911 -2.937 0.054 50 0.811 -0.461 0.024 

Table 7: Results with the procedures by Hadi and Simonoff (HS), Peiia and Yohai (PY) and the 

Adaptive Gibbs Sampling Algorithm (AGSA) with the Rousseeuw data. 
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5 CONCLUDING REMARKS 

The Bayesian procedure proposed in this paper for outlier detection in linear models 

combines in a sequential learning procedure the Gibbs sampling with the information 

from an estimate of the Covariance ~'latrix of the classification variables. The eigen­

vectors associated to the non zero eigenvalues of this matrix provide information about 

which data are outlier candidates. The procedure can be used automatically and in­

cludes: (1) a criterion for initial conditions selection without any prior information; 

and (2) a method to be used for grouping data based on the Covariance Matrix. Its 

application to some of the most frequently used examples in multiple outlier detection 

shows that it is able to unmask outliers in samples where other methods fail. 
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