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1 Introduction 

2 

Most measurements of psychological constructs are performed using multi-item 
inventories or questionnaires in which it is assumed that the observed interdependencies 
among the item responses are accounted for by a set of unobserved variables (denoted by 
common factors or latent traits) representing the psychological constructs being measured. 
Using questionnaire scores, researchers often perform mean comparisons between different 
populations (e.g., males vs. females, Japanese vs. Americans, etc.) to draw inferences 
about actual differences in the psychological constructs measured by these questionnaires or 
inventories. However, such comparisons are not meaningful unless the assessments 
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obtained in each of the groups are commensurable or invariant across populations. Within 
the context of latent trait models, non-comparable measurement exists when the relations 
between the observed variables and the latent traits differ across populations. When non­
commensurability of measurements occurs, observed mean scale differences across 
populations are meaningless because a different construct is being measured in each of the 
populations or, in other words, the same construct is measured differently across groups. 
For example, suppose it is found in a hypothetical depression questionnaire that items 
reflecting negative cognitive appraisals are more strongly related to the depression 
construct measured by the questionnaire in women than in men, whereas items reflecting 
behavioral maladjustments show a stronger relationship with the construct for men than for 
women. Obviously, men's scores and women's scores could not be compared using this 
hypothetical questionnaire, since for each gender a different type of depression is being 
measured. 

In this paper, we will first formally define measurement invariance. Then, we will 
describe the relationship between this concept and the related concepts of test or 
questionnaire bias and relational equivalence. Next, we will discuss a procedure to assess 
measurement invariance when a psychological construct is assessed by means of a multi­
item inventory or questionnaire. Finally, we will present a practical example of how gender 
measurement invariance can be assessed using this procedure, focusing on the constructs of 
positive and negative problem orientation (D'Zurilla, Nezu & Maydeu-Olivares, 1996; 
Maydeu-Olivares & D'Zurilla, 1995). 

2 Measurement invariance and factorial invariance 

A formal definition of measurement invariance can be given as follows: Suppose a 
set of .!1 measurements y, has been obtained on a random sample of subjects. Suppose 
further that these measurements are a statistical function of another set of l! random 

variables e.. Now consider a variable indicating group (or popUlation) membership, denoted 
by K. We will say that our set of measurements y is invariant with respect to K if 

Prob (y I e = t, X = x) = Prob (y I e = t), for all values of K (1) 

that is, if the probability of observing a set of measurements y (a set of dependent 

variables) for a fixed level of the predictors e = t, is independent of group membership. In 
other words, a set of measurements y is invariant with respect to K if the relationship 
between y and e, given by Prob (y I e = t) is the same regardless of group membership. 
This is a definition of measurement invariance that has gained widespread consensus (see 
Meredith, 1993; Millsap & Everson, 1993). 

It is important to note that the definition given in Equation 1 is very general. The 

measurements (dependent variables) y and the independent variables e can be uni or 

multidimensional, continuous or categorical, and their relationship given by Prob (y I e = 

t) can be linear or nonlinear. For instance, if Y.. and e. are single observable continuous 

variables and Prob (y le = t) is a linear function, then testing the effects of population 
membership with moderator variables in regression analysis is just a special case of testing 
for measurement invariance as defined in Equation 1. 

In this paper, however, we will concern ourselves solely with the case in which the 

independent variables e are unobserved (latent) and the relationship between the dependent 
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and independent variables is a (linear or non linear) latent trait model. When the model is a 
linear trait model 0. e., the common factor model) then the term factorial invariance is 
commonly used in place of measurement invariance. 

3 Measurement invariance, test bias, item bias and relational equivalence 

When the data to be fitted are the items of a questionnaire or inventory, and it is 
postulated that a latent trait model underlies the observed responses, the terms test bias or 
measurement bias are commonly used instead of lack of measurement invariance. That is, a 
questionnaire is said to be biased when it fails to show measurement invariance across 
populations. When an instrument is shown to be biased, it may be possible to identify some 
items in that questionnaire for which measurement invariance holds and some items for 
which it does not hold. Then, a measurement invariant questionnaire can be obtained by 
simply removing the items for which measurement invariance does not hold. The items for 
which measurement invariance does not hold are said to be "biased" or to show differential 
item functioning (DIF). There is a large literature on identifying single biased items (see, 
for instance, Thissen, Steinberg & Gerrard, 1986; Thissen, Steinberg & Wainer, 1988, 
1993). 

When dealing with questionnaire data for which a latent trait model is postulated, it 
is necessary to investigate two types of measurement invariance (Drasgow, 1984, 1987). 
The first type of measurement invariance to be assessed consists in examining whether the 
relationship between the latent trait and the questionnaire items is measurement invariant. 
This type of measurement invariance is the focus of this paper. The second type of 
measurement invariance to be investigated consists of examining the relationships between 
the latent trait (usually estimated using questionnaire scores) and external variables that we 
wish to predict. To avoid terminological confusions and following the literature (e.g., 
Reise, Widaman & Pugh, 1993; Drasgow, 1987), we will reserve the term measurement 
invariance to refer to the former, while we will denote the latter by differential prediction, 
although both are special cases of measurement invariance as defined by Equation 1. 

Differential prediction is generally assessed by regression analysis with group­
membership as a moderator variable. Measurement invariance should be assessed before 
assessing the existence of differential prediction across groups (see Drasgow, 1982, 1984, 
Drasgow & Kang, 1985) because if a questionnaire is not measurement invariant, it simply 
cannot be used across populations. On the other hand, if a questionnaire is measurement 
equivalent but it yields differential predictions, decisions on the criterion variable can still 
be made provided that predicted criterion scores are used instead of direct questionnaire 
scores (Drasgow, 1984). As Drasgow (1984) has pointed out: "Regardless of whether a test 
(or questionnaire) has equivalent relations with a criterion across subpopulations, it seems 
prudent to require equivalent measurement. Equivalent relations with a criterion despite 
nonequivalent measurement of the latent trait would lead to the suspicion of nonequivalent 
measurement of the criterion across subpopulations. " (p. 134) 

4 Linear vs. non linear latent trait modeling of inventory data 

When fitting questionnaire data the most commonly used latent trait model is the 
common factor model. Assessing measurement invariance in the context of the common 
factor model (i.e. assessing factorial invariance) requires simultaneous modeling of the 
means and covariances of the observed variables using mUltiple group factor analysis. This 
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simultaneous modeling of means and covariances is necessary because for a measurement 
to be strictly or strongly factorially invariant across populations (Meredith, 1993: pp. 532-
536): a) the matrix of factor loadings must be equal across populations, and b) the mean 
differences in the observed variables must "all be conveyed through mean differences in the 
common factors between populations" (Meredith, 1993: p. 535). Descriptions of multiple 
group linear factor analysis can be found in Bollen (1989), or in Joreskog and Sorbom 
(1989). 

Unfortunately, if the questionnaire is composed of categorical items (e.g., yes-no 
questions, Likert items, etc.), multiple group linear factor analysis should not be used in 
principle to assess measurement invariance because the relationship between a continuous 
factor and a categorical variable cannot be linear (see McDonald, 1985: pp. 198-223), and 
therefore, the common factor model is known a priori to be false. In general, if multiple 
group linear factor analysis fitted by maximum likelihood is used to assess measurement 
invariance in this common situation, the chi-square goodness-of-fit test will be distorted 
and the assessment of measurement invariance will be invalid (see Bollen, 1989, pp. 433-
439). However, as the number of categories in the items increases (thUS resembling a 
continuous variable), and as the item histograms become more similar to a normal 
distribution, the assumptions underlying the use of multiple group 1 inear factor analysis 
might be reasonably met. Conversely, as the number of categories decreases and with 
increased levels of skewness and kurtosis this method becomes grossly inappropriate 1. 

A better alternative for assessing measurement invariance with questionnaire data 
consists of fitting a nonlinear latent trait model, thus effectively treating the items as 
categorical variables instead of as approximately continuous variables. In the testing 
literature, these models are generally referred to as item response models. An item 
response model is simply a nonlinear factor model in which the relationship between the 
item and the factor is not assumed to be linear, as in common factor analysis, but follows 
instead a non-l inear shape such as a logistic or a normal ogive curve. Introductory accounts 
of these models can be found in Thissen and Steinberg (1988), or Hulin, Drasgow and 
Parsons (1983). See also Reise, Widaman, and Pugh (1993) for a comparison of the linear 
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factor analysis and the item response theory approaches to assessing measurement 
invariance. 

There are two general approaches to estimating item response models (see Mislevy, 
1986; Maydeu-Ol ivares, 1996 a) which can be shown to be equivalent (Takane & de 
Leeuw, 1987). The first one consists in estimating the nonl inear relation between the items 
and the latent trait using all the information contained in the pattern of item responses by 
maximum likelihood estimation. The program MULTILOG (Thissen, 1991) uses this 
approach to fit the multiple group item response analysis required to test measurement 
equivalence. The second approach consists in estimating the nonlinear relation between the 
items and the latent trait using weighted least squares estimation based on measures of 
pairwise association between item responses (that is, using tetrachoric or polychoric 
correlations) . The programs LISCOMP (Muthen, 1987), LISRELlPRELIS (Joreskog. & 
Sorbom, 1993 a, 1993b), and EQS (Bentler & Wu, 1993) use this approach to fit multiple 
group item response analysis. 

Serious problems arise with both approaches when trying to test measurement 
invariance because assessing the goodness of fit of item response models is considerably 
more complicated than assessing the goodness of fit of the common factor model. In this 
paper, we will discuss only the problems associated with testing measurement invariance by 
fitting item response models by maximum likel ihood. The interested reader may wish to 



consult Muthen (1993) for an excellent review of the problems associated with fitting and 
testing item response models by weighted least squares. 

5 Using item response modeling to assess measurement invariance 
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Very few applications of item response models to psychological research have been 
reported. In one of them, WaIler and Reise (1990) fitted a two-parameter logistic model to 
the Absorption Scale (Tellegen, 1982). According to the two-parameter logistic model, the 

probability that a subject with standing 1 on the latent trait fr endorses item i can be 
expressed as 

1 
Prob (u. = 11 8 = t) = ------

I l+exp[-ai (t-bJ] 
(2) 

where item i is coded Uj = 1 for endorsement and Uj = 0 for non-endorsement. The 
probability that the same subject does not endorse the item is then given by 

Prob (u i = 0 I 8 = t) = 1 - Prob (u i = 11 8 = t) (3) 

The !!i item discrimination parameter plays a role similar to that of the factor loadings in 
linear factor analysis, and hi is a threshold parameter indexing item extremity (see Hulin et 
;!l, 1983). 

The two-parameter logistic model (Birnbaum, 1968) is an appropriate model for 
inventories (like the Absorption Scale) whose items only have two options (for instance: 
yes-no, agree-disagree). When, as is common, an inventory consists of Likert-type items, a 
model such as Samejima's (1969) graded model can be used instead of the two-parameter 
logistic model. According to Samejima's graded model, the probability that a subject 1 
would endorse each of the categories of a 5-point Likert-type item i is given by 

Prob (u i = 0 18 = t) = 1 - Prob (u i ~ 11 8 = t) 
Prob (u j = 118 = t) = Prob (u j ~ 118 = t) - Prob (u j ~ 21 8 = t) 
Prob (u j = 218 = t) = Prob (u j ~ 21 8 = t) - Prob (u j ~ 31 8 = t) 

Prob (u j = 318 = t) = Prob (u j ~ 318 = t) - Prob (u j ~ 41 8 = t) 

Prob (u j = 4 18 = t) = Prob (u j ~ 41 8 = t) 

(4) 

where each of the probabilities appearing on the right hand side of Equation 4 is of the type 
given by Equation 2. Therefore, in Samejima's model each item has one !!i parameter and 
m-I threshold parameters hi, where m is the number of options. Note that if an item only 
has two categories, then Samejima's graded response model reduces to the two-parameter 
logistic model described in Equations 2 and 3. As in linear factor analysis, the two­
parameter logistic model and Samejima's graded model can be fitted by maximum 
likelihood estimation procedures assuming a normal distribution of the latent trait being 
measured. 

The functions Prob (ui = kl 8 = t) are called the option response functions (ORFs) 
of the model. Under the assumption that there is no guessing or similar psychological 



phenomenon underlying the subjects' responses that would require option response 
functions with nonzero lower asymptotes, the two-parameter logistic model and the graded 
model just described are useful models for fitting binary and Likert items, respectively. 
Note, however, but there is a vast array of other IRMs that can be used instead. Thissen 
and Steinberg (1986) provide a useful taxonomy of unidimensional IRMs, that is, IRMs 
that assume that only one latent trait underlies the observed responses. 

6 Assessing measurement invariance in item response models 

Within the context of IRMs, the assessment of measurement invariance across 
populations (for example, across gender) proceeds as follows: 
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(1) Select an IRM that may be appropriate to the data and fit it separately to each of 
the populations. If we find that no model fits all the populations closely enough, but 
instead, we need to use different models to fit different populations, then we have a case of 
gross measurement invariance. 

(2) If we find a model that fits the data in all populations, we shall assess whether 
the model is measurement invariant across populations. Loosely speaking, this amounts to 
determining whether the model fits the data if (a) we force the parameters of the model to 
be equal across populations so that the relationship between each of the items and the latent 
trait is the same for all populations, and (b) all latent traits have the same variance although 
they are aHowed to have different means, thus capturing all the differences between the 
observed variables by the difference in latent trait means. 

If this model fits satisfactorily the data then we say that the latent trait measured by 
this inventory is measurement invariant across gender. As mentioned before, the computer 
program MULTILOG (Thissen, 1991) can be used to assess measurement invariance for 
unidimensional item response models 2. This program will fit both the two-parameter 
logistic and Samejima's graded model to multiple groups. 

(3) If the above model does not fit satisfactorily, then we should identify which 
items are causing the misfit of the measurement invariant model. In other words we should 
identify which items are biased (or show DIF). This can be done as follows: We fit a 
measurement invariant model in which the parameters of an item are not constrained to be 
equal across populations. The difference between the fit of the measurement invariant 
model and the fit of this model (in which all items are measurement invariant, but the 
tested item) will give us an indication of the contribution of a single item to the misfit of 
the measurement invariant model. Hence, for a n item inventory, Step 3 requires 
performing n separate analyses. 

Once the DIF items have been located, they should be removed from the inventory. 
We then should test whether the inventory formed by the remaining items is measurement 
invariant repeating Step 2 (and Step 3 if necessary), 

7 Assessing the goodness-of-fit in item response models 

The major problem faced when assessing measurement invariance of a 
psychological construct by fitting an item response model is determining the goodness-of-fit 
of the model to the data. This is important, because results based on poorly fitting models 
are uninterpretable. Indeed, assessing the goodness-of-fit of IRMs is considerably more 
difficult than in linear factor models. Since IRMs are models for categorical data, the G2 



and X2 statistics (see Agresti, 1990) can be used to assess their goodness-of-fit. The 
MUL TILOG program, for instance, provides estimates of the G2 statistic. 
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The G2 statistic compares two nested models (say model A nested in Model B) by 
taking the ratio of the likelihood of the data under each model. Its general form is given by 

~ 

G2 = 2 LeA log : A 
all cells CB 

(5) 

where CA is the expected cell frequency in the contingency table under Model A, CB is the 
expected cell frequency in the contingency table under Model B, and we sum over all cells 
of the contingency table. In large samples, and if the larger model (in this case model B) is 
correct, this likelihood ratio statistic is distributed as a chi-square distribution with degrees 
of freedom equal to the difference of degrees of freedom between the two models. 

The G2 statistic can be used to assess the goodness of fit of an item response model 
to the data at hand by comparing the fit of the item response model against a more general 
model, such as a general multinomial model, provided that the contingency table has few 
empty cells 3. Item response models are fitted to a contingency table of size mn, where m 
= number of options per item, and n = number of items. Thus, a lO-item scale consisting 
of 5-point Likert-type items contains 510 = 9,765,625 cells. Clearly, these statistics are 
useless in most psychological applications because we can not collect enough data to fill 
most cells in such contingency tables 4. 

The X2 statistic present similar problems in these situations. The general form of 
this statistic is 

2 ,,(c - C)2 
X = L.J A 

nil cells C 
(6) 

where c is the expected cell frequency in the contingency table under the model, .c is the 
observed cell frequency in the mll contingency table and we sum over all cells of the 
contingency table. Like the G2 statistic, the X2 statistic follows in large samples a chi­
square distribution provided that the contingency table has few empty cells. This is because 
when mll is large relative to the sample size, the observed cell frequencies will be very 
poorly estimated (most of them will be empty), and therefore the chi-square approximation 
to the distribution of the X2 or G2 statistics will not be accurate. 

Interestingly, work by Haberman (1977) suggests that the G2 statistic could be used 
to assess the fit of the measurement invariant model relative to a non-measurement 
invariant model (in Step 2). A non measurement invariant model would be fitted as the 
measurement invariant model except that the gj and hi parameters would not be constrained 
across groups. Clearly, the measurement invariant model is a special case of (it is nested 
within) the non measurement invariant model. Reise, Widaman and Pugh (1993: p. 559) 
have suggested using a nested G2 statistic to assess the relative merits of both models. This 
nested G2 statistic is obtained by subtracting the G2 statistic of the measurement invariant 
model from the G2 statistic of the non-measurement invariant model. The resulting statistic 
is asymptotically distributed as a chi-square with degrees of freedom equal to the difference 
of degrees of freedom between the two models 5, but only if the non-measurement 
invariant model fits the data. In other words, the results of this nested G2 statistic will be 
correct only if the chosen IRM (for instance Samejima's graded model) without equality 



constraints across groups fits the data. Since we have seen that the Q2 statistic can not be 
used in most instances to check a model against the data, reliance on this nested test as the 
sole method to determine measurement invariance appears risky. 
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In Step 3 of the procedure described above we can also use nested G2 statistics to 
assess on a one item at a time basis whether the items in the questionnaire or inventory 
show DIF. In this case, the corresponding nested G2 statistic is obtained by subtracting the 
G2 statistic of the measurement invariant model from the G2 statistic of a model in which 
the parameters of all items are constrained to be equal across populations, except the 
parameters of the item being tested for DIF. The resulting statistic is also distributed in 
large samples as a chi-square with degrees of freedom equal to the difference of degrees of 
freedom between the two models, that is, the number of parameters in that item. Again, 
this test will be correct only if the larger model is an appropriate model for the data. 

In summary, nested G2 statistics can be used in Steps 2 and 3 of the procedure 
presented above to assess measurement invariance. Since the G2 statistic is provided in the 
output of standard software programs such as MULTILOG (Thissen, 1991), Steps 2 and 3 
can be performed readily. However, Steps 2 and 3 are meaningless unless we have a way 
to determine whether the chosen item response model fits the data. In other words, we 
must seek some procedure to be used in Step 1. 

Given the serious difficulties associated with using G2 or X2 statistics to assess the 
goodness-of-fit of item response models when mll is large relative to the sample size, 
Drasgow, Levine, Williams, Tsien and Mead (1995) have proposed checking whether the 
model fits the lower order marginals of the contingency table. At the bare minimum, we 
should check whether the option response functions match the observed data, that is, 
whether the model fits the first order marginals of the data. This can be performed, for 
instance, by graphical methods. The graphical method proposed by Drasgow et al. (1995) 
to assess the match of the predicted ORFs to the observed data consists in plotting each of 
the option response functions (ORFs) with 95 % confidence intervals around 25 equally 
spaced points in the latent trait continuum for each of the ORFs. If all ORFs fall within the 
estimated confidence intervals, that would suggest that the model fits the data. Otherwise, 
if we observe that in one or more items, the ORFs fall outside the confidence intervals, that 
indicates that these particular items are not well fitted by the model. The procedure used to 
draw the fitplots is presented in Appendix A. 

The fitplots provide us with a pointwise assessment of the fit of the model. For 
every option of every item of the questionnaire or inventory model fit is assessed at a set of 
points in the latent trait continuum, providing us with information about at what levels of 
the latent trait continuum the misfit is taken place. It is important to realize, however, that 
the fitplots are more useful in assessing the misfit rather than the fit of the model. This is 
because if the fitplots show no misfit, this is an indication of the model fitting appropriately 
the first order marginals of the overall contingency table. However, it may very well be 
that a model fits satisfactorily the first order marginals and yet does not fit satisfactorily the 
overall contingency table. In other words, at best, a good fit of the model as assessed by 
fitplots may be interpreted as an indication of an approximate fit of the model to the data. 
In this sense, we may refer to the fitplots as being a practical goodness of fit index. 

The usefulness and limitations of using a graphical method in helping us to assess 
measurement invariance in inventory data will be illustrated now by an example. 



8 An Application to Gender Studies: Assessing Gender Measurement Invariance in 
Problem Orientation 
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The term Problem orientation (O'Zurilla & Nezu, 1982, 1990) is a set of 
metacognitive processes that reflect a person's general awareness and appraisals of 
everyday problems, as well as his or her own problem-solving ability (for example, 
generalized cognitive appraisals, causal attributions, self-efficacy expectancies, outcome 
expectancies). These generalized beliefs and expectancies are assumed to influence the 
specific perceptions and appraisals of new problematic situations, as well as the likelihood 
and efficiency of problem-solving performance in these situations. Recently, Maydeu­
Olivares & O'Zurilla (1995, 1996) showed that problem orientation is not a unidimensional 
construct, but instead, represents two different, albeit related constructs, i.e., positive 
problem orientation and negative problem orientation. Consequently, we will assess 
measurement invariance using the procedures described above on separate measures of 
these two constructs. Positive problem orientation may be described as an adaptive, 
facilitative, problem-solving cognitive "set," which includes positive problem appraisal 
(i.e., viewing a problem as a challenge), commitment to a problem-solving coping 
strategy, problem-solving self-efficacy expectancies, and positive outcome expectancies. In 
contrast, negative problem orientation consists of maladaptive or disruptive cognitive 
processes and emotional states, such as negative problem appraisal (i.e., viewing a problem 
as a threat), self-inefficacy expectancies, negative outcome expectancies, and negative 
affect (e.g., anxiety, anger, depression), Negative problem orientation is related to 
psychological distress, such as depression and anxiety, whereas positive problem 
orientation is related to measures of positive psychological resources or 'well ness , such as 
optimism, self-esteem, and satisfaction with life (O'Zurilla, Nezu & Maydeu-Olivares, 
1996). 

In this study we will use item responses from 1043 college students. Of these, 492 
were males and 551 females. Two 5-point Likert-type scales were checked for 
measurement invariance. These scales are the Positive Problem Orientation (PPO: 5 items) 
and Negative Problem Orientation (NPO: 10 items) scales of the Social Problem Solving 
Inventory-Revised (SPSI-R: O'Zurilla, Nezu & Maydeu-Olivares, 1996). In this inventory, 
subjects are asked how they typically think, feel, and behave when faced with problems in 
everyday living using the following scale {O = Not at all true of me, 1 = Slightly true of 
me, 2 = Moderately true of me, 3 = Very true of me, 4 = Extremely true of me}. 

We chose the PPO and NPO scales of the SPSI-R to illustrate the assessment of 
gender measurement invariance because 1) each scale was carefully constructed to be 
unidimensional and therefore unidimensional item response models are readily applicable to 
its scales, and 2) we have found gender mean differences in problem orientation on both 
scales across different samples and age groups (Maydeu-Olivares, O'Zurilla & Kant, 
1994). The items composing each of these two scales are provided in Appendix B. 

The means and standard deviation on the PPO scale were x = 12.42, std = 3.80 
for men, and x = 11. 38, std = 3.95 for women. The means and standard deviation on the 
NPO scale were x = 14.60, std = 8.85 for men, and x = 16.14, std = 9.24 for women. 
ANOVA analyses revealed significant gender mean differences in both positive and 
negative problem orientation: E(1, 1041) = 29.582, p < .001 for PPO, and E(l, 1041) = 

18.323, P < .001 for NPO. However, do these observed differences in problem 
orientation reflect real differences between genders or are they merely measurement 
artifacts caused by differential item functioning across genders? 
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To answer this question, the parameters of the PPO and NPO items were estimated 
by maximum likelihood by the MULTILOG (Thissen, 1991) computer program using 
Samejima's graded model with and without equality constraints across genders. The 
estimated item parameters are presented in Table 1. In the measurement invariant model, 

• 

Insert Table 1 about here 

the item parameters were forced to be equal across gender, the latent traits' variances of 
both genders were fixed at one, the latent trait means for women were fixed at zero and 
the latent trait means for men were estimated as -.39 in NPO and .31 in PPO. In the non­
measurement invariant model, no constraints on the item parameters were imposed, but the 
same constraints as above were applied to the latent trait variances and latent trait means. 
In this case, the latent trait means for men were estimated as -.83 in NPO and .33 in PPO. 
The standard error of the estimated latent trait means was in all cases .06. Since the latent 
trait distributions are not equal, the item parameters reported in Table 1 are not directly 
comparable. We can obtain comparable parameters by performing a suitable transformation 
on the model parameters and latent trait distribution of one of the populations (see Hulin, 
Drasgow & Parsons, 1983: p. 26). In our setup, if we apply the following transformation 

e*= e - ~le 

b* = b - ~e 
(7) 

to the sample whose distribution is not standard normal (in this case, the male sample), the 
distribution of the transformed latent trait, e·, will be standard normal, and the transformed 
thresholds, 12'", will be comparable to those of the reference distribution. The slope 
parameters, i!, are directly comparable and need not be transformed. To see that this 
transformation does not change the model, note that the ORFs for the models considered 
here depend on the term i! et -12) in Equation 2. If we apply the transformation given in 
Equation 7 to this term, we obtain 

(8) 

and hence the ORFs expressed as functions of the original parameters and the ORFs 
expressed as functions of the transformed parameters are equivalent. 

Uniformly lower thresholds imply higher probability of higher item scores, and thus a 
higher average scale score. This can be seen in Table 1. For instance, after we transform 
men's NPO thresholds to make them comparable to women's using Equation 7, that is using 
12" = 12 + (.83) in the non-measurement invariant model, the women's NPO thresholds are 
uniformly lower and thus their average scale score will be higher than men's 6. 

8.1 Assessment of measurement invariance 

The procedure described above was used to assess measurement invariance. 
In Step I, we inspected the fit plots for all PPO and NPO items to assess the 

practical goodness-of-fit of the non-measurement invariant model 7. In other words, we 
assessed whether Samejima's graded model fitted appropriately the men and women's 
samples separately. The inspection of the fit plots revealed that all the ORFs corresponding 
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to the PPO were within their estimated 95 % confidence intervals. Furthermore, the fitplots 
indicated that the model fitted somewhat better the male than the female sample. This was 
also true in the NPO items. However, in this case, the fitplots showed some degree of 
significant misfit in items 3 and 10 in the female sample. To illustrate the use of fitplots in 
assessing model fit, we show in Figures 1 and 2 the fitplots corresponding to NPO's item 
3. This is the worst fitting item as assessed by the fitplots. The fitplots for men are 
presented in Figure 1, and the fitplots for women are presented in Figure 2. In both 
figures, there are five plots for each item, corresponding to each of the five categories of 

Insert Figures 1 and 2 about here 

the item. In each of the plots, the horizontal axis is the Negative Problem Orientation latent 
trait and the vertical axis is the probability of endorsing that particular option given the 
subject's level on NPO. 

As it can be observed in these plots, the probability of endorsing Option 1 decreases 
as the NPO level increases, whereas the probability of endorsing Option 5 increases at 
higher levels of NPO. Finally, for Options 2, 3, and 4, the probability of endorsing these 
options increases up to a point on the NPO scale and then decreases. In these figures, 25 
equally spaced 95 % confidence intervals have been estimated for each of the options. Note 
that not all 25 confidence intervals have been drawn for each of the options. In certain 
instances only the midpoints of the confidence interval (represented by *) have been drawn. 
This is because less than five subjects on that NPO interval chose that particular option. 
Hence, the confidence intervals would be very poorly estimated and therefore it is safer not 
to estimate them. Whether the confidence intervals have or have not been drawn help us in 
interpreting the fitplots. For example, as can be seen in Figure 1, very few confidence 
intervals have been drawn for options 4 and 5. This indicates that very few men chose 
these options in NPO's item 3. Furthermore, note that option 4 has been chosen mostly by 
men with a level on NPO's latent trait between + 1 and +2. 

That Samejima's graded model yields a better fit to men's data than to women's 
data as assessed by the fitplots can be readily seen comparing Figures 1 and 2. In men 
(Figure 1), the model slightly overpredicts the probability of endorsing option 1 at 
medium-high levels of NPO and slightly overpredicts the probability of endorsing option 2 
at medium levels of NPO. Since in both cases the predicted ORFs are within the estimated 
confidence intervals, these misfits could be considered of minor importance. In women 
(Figure 2), the model underpredicts the probability of endorsing option 1 up to a level of 
about -1 in the NPO latent trait and then it overpredicts it. At very low levels of NPO 
(below -2) this overprediction lies outside the confidence intervals and therefore it may be 
considered significant. The model also underpredicts significantly the probability of 
endorsing option 2 at these low levels of NPO. Finally, the model overpredicts the 
probability of endorsing option 4 at high levels of NPO, although in this case the misfit is 
not too gross (it lies within the confidence intervals). 

From our inspection of the fitplots corresponding to PPO and NPO we would 
conclude that Samejima's graded model fits reasonably well PPO's data in both genders (at 
least its first order marginals), and NPO's data for men, but not for women. In this latter 
sample, Samejima's graded model may be an appropriate model for all NPO items but 
items 3 and 10. Hence, some remedial measure should be adopted. For instance, we may 
(a) remove these items from the inventory, or (b) seek an alternative IRM. Here, for 
illustrative purposes we shall keep these two items and proceed with Steps 2 and 3. 
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In Step 2, we computed a nested.o2 statistic to determine whether the measurement 
invariant model fits significantly worse than the non-measurement invariant model. The 
values of the G2 statistic for PPO and NPO under the non-measurement invariant model are 
12350.7 and 2275.3, respectively, and under the non-measurement invariant model are 

12443.6 and 2306.1, respectively. Therefore G:Uj = 30.8 on 25 d.f., 11 = .196, for PPO, 

and G:UJ = 92.9 on 50 d.f., 11 < .001, for NPO. Given these results, we conclude that 

measurement invariance holds for PPO but not for NPO. The analysis of PPO is finished, 
since using the fitplots we have determined that the model fits approximately the data, and 
using a nested G2 statistic that measurement invariance holds. For NPO, we should 
perform Step 3 and try to determine which items show differential item functioning, that is, 
which items are most responsible for the lack of measurement invariance in NPO. For 
completeness, we shall also perform Step 3 for the PPO items. 

In Step 3, in order to determine whether a particular item showed DIF we fitted n 
models in which the item parameters were constrained to be equal for all items, except for 
the parameters of the item being tested for DIF, which were allowed to be different across 
gender. For instance, we fitted Samejima's graded model to the NPO items, forcing the 
parameters of all items to be equal across gender, except for the parameters of item 1. This 
model yielded a.o2 of 12440.1. Subtracting this from the value of the G2 statistic for the 

measurement invariant model we can test whether item 1 shows DIF, G~J = 12443.6-

12440.1 = 3.5 on 5 d. f., 11 = .623. Since allowing the parameters of item 1 to be different 
across gender does not significantly improve the fit of the measurement invariant model, 

we conclude that this item does not show DIF. In Table 2 we present the G~J statistics of 

all NPO and PPO items. In order to obtain an overall Type I error of a. = .05 in assessing 

Insert Table 2 about here 

whether the items of an inventory show DIF, we may use the Bonferroni inequality and 

divide the overall a. by the number of items in the inventory. We shall therefore use a. 

.05 / 10 = .005 and a. = .05 /5 = .01 for NPO and PPO, respectively, to assess the 

significance of the G~if statistics presented in Table 2. As expected, none of the PPO items 

show evidence of DIF. As for NPO, the three items that show largest evidence of DIF are 

items 6, 10, and 3. Of these, only the G~J statistic of item 6 is significant at its 

corresponding alpha level and therefore we conclude that measurement invariance does not 
hold in this item or in other words, that NPO's item 6 shows DIF. It would have been 
surprising not to find some degree of DIF in NPO items 3 and 6 since we have seen in Step 
1 that these items behave differently in men and women. 

We shall now inspect the fitplots of some NPO items to help us understand the 
strengths and limitations of fitplots in assessing model fit in the context of multiple group 
item response modeIing. These plots will also provide us with a graphical illustration of 
what is meant by measurement invariance. In Figures 3 and 4 we present the fitplots 
corresponding to NPO's item 3 under the measurement invariant model. 

Insert Figures 3 and 4 about here 

These figures illustrate perfectly was is meant by differential item functioning or lack of 
measurement invariance. The measurement invariant model predicts that both genders will 



respond similarly to this item (the ORFs in both figures are identical). However, the 
empirical proportions with their estimated confidence intervals clearly show that men and 
women respond very differently to this item, and hence that this item shows DIF. 
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Since we have obtained fitplots for this item under the non-measurement invariant model 

we know that the DIF revealed by the nested G;/ statistic for this item is due to the lack of 
fit of Samejima's graded model to the female sample rather than to imposing constraints 
across populations. In fact, comparing Figure 3 with Figure 1, and Figure 4 with Figure 2 
we see that the measurement invariant model does not fit this item substantially worse than 
the non-measurement invariant model. 

We can use the fitplots corresponding to an NPO item with a high p-value on the 

G;i/ statistic, for example item 2, as a graphical illustration of measurement invariance. 
The fitplots corresponding to this item under the measurement invariant model are 
presented in Figures 5 and 6. These figures clearly show how the measurement invariant 
model fits very well the empirical proportions in both genders. Furthermore, we can see 
that the empirical proportions are very similar in both men and women. 

Insert Figures 5 and 6 about here 

Finally, in Figures 7 and 8 we present the fitplots corresponding to the NPO item 
with highest DIF, item 6. In these Figures, the ORFs are all within the estimated 

Insert Figures 7 and 8 about here 

confidence intervals for the empirical proportions. This could be interpreted as implying 
that the misfit of the measurement invariant model is not too large. However, notice that 
although the ORFs do not depart significantly from the empirical proportions, they reveal a 
type of misfit different from that appearing in Figures 3 and 4. Here there is clearly a 
consistent bias throughout the latent continuum. For instance, the model overestimates the 
probability of endorsing option 2 in the male sample up to a level of about -.75 in the NPO 
latent trait and then underestimates it, or underestimates the probability of endorsing option 
3 in the female sample up to a level of -.5 of NPO's latent trait and then underestimates it. 
Furthermore, the empirical proportions are very different at low levels of NPO, thus 
suggesting that men and women respond very differently to this item. This is the kind of 
bias that the G;i/ statistic is set to detect, and the fitplots help us understand the source of 
differential functioning of this item across gender. 

In summary, we have found that Samejima's graded model fits satisfactorily the 
PPO data (at least its first order marginals) and that measurement invariance across gender 
holds in this scale. In NPO, two of the items (items 3 and 10) are not well fitted by 
Samejima's graded model in the female sample, although the misfit is not too large as 
assessed by the fitplots. Furthermore, NPO is not measurement invariant under this model 
because men and women respond differently to item 6. When this item is removed from the 
inventory, NPO is measurement invariant under this model at an alpha level of 1 %, since 

G;i/ = 65.1 on 45 d.f., 12 = .027. If we were to remove from the inventory not only item 

6 but also items 3 and 10 the resulting scale would be measurement invariant at an alpha 

level of 5 % since in that case we obtain G;i/ = 49.0 on 35 d.f., 12 = .058. 
According to the measurement invariant model, the mean of men's PPO latent trait 

is .31 standard deviations higher than women's, whereas the mean of men's NPO latent 
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trait is .39 standard deviations lower than women's (with a standard error of .06 in both 
cases). Clearly, these mean differences are significant. Since PPO but not NPO can be 
shown to be measurement invariant, this difference corresponds to actual differences in 
level of PPO but not in NPO. However, we have seen that by removing items 3,6 and 10 
we can construct a shortened NPO scale that can be shown to be measurement invariant 
under Samejima's graded model. The mean of men's NPO latent trait in this shortened 
scale is .26 standard deviations lower than women's (with a standard error of .06). This 
mean difference is substantially lower than the one estimated using the full NPO scale, but 
it is still significant and hence we conclude that there are also actual differences in NPO 
across gender. 

8.2 Discussion 

We have been able to show that the mean differences found in positive and negative 
problem orientation are "real" in the sense that we have ascertained that exactly the same 
construct is being measured across gender. The finding that women present a more 
negative orientation than men towards solving their everyday problems deserves very close 
attention. No gender differences have been found in abstract problem solving (Maccoby & 
Jacklin, 1974; Kesler, Denney & Whitely, 1976), creativity (Alpaugh & Birren, 1975; 
Kogan, 1974; Maccoby & Jacklin, 1974), nor in real-life problem-solving skills (Maydeu­
Olivares, D'Zurilla & Kant, 1994). Yet, we have seen in this paper that women are more 
likely than men to: a) view a problem as a threat rather than as a challenge, b) show less 
positive outcome expectancies and more negative outcome expectancies, c) show less 
problem-solving self-efficacy, and d) present maladaptive or disruptive cognitive processes 
and emotional states, such as negative causal attributions (e.g., blaming oneself for 
problems), and negative affect (e.g., anxiety, anger, depression). We believe that finding 
an appropriate explanation for this phenomenon will help us understand the cognitive and 
emotional processes that might be partially responsible for the higher incidence of 
depression and other forms of psychological distress in women. 

9 Concluding remarks 

Measurement invariance should be investigated whenever differential item 
functioning across populations is suspected, and not only in those instances where mean 
differences across populations are found. In this respect, Thissen, Steinberg and Gerrard 
(1986) provide a hypothetical example where measurement invariance does not hold despite 
the absence of mean group differences. Since most psychological constructs are measured 
by questionnaires composed of categorical items, the assessment of measurement invariance 
is likely to require the fit of multiple group item response models. This can be 
accomplished by the use of commercially available software. Measurement invariance can 
then be assessed by performing nested tests comparing the fit of measurement invariant vs. 
non-measurement invariant items. Before performing nested tests it is necessary to test 
whether the selected model fits the data. However, existing statistics to assess the 
goodness-of-fit of item response models models require samples much larger than those 
found in most psychological research. Here we have proposed using a practical goodness­
of-fit index, namely, the inspection of confidence intervals constructed for each of the 
option response functions under consideration, in helping us assessing measurement 
invariance. It is crucial to use some measure of model fit to the data because a nested test 



may fail to indicate lack of measurement invariance if most of the differences between 
option response functions across populations are omitted from the nested test because the 
option response functions do not capture the data in one of the populations in the first 
place! . 
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It is important to note that measurement invariance is model dependent. For 
instance, in this paper we have shown how one scale (PPO) is measurement invariant under 
Samejima's graded model, and how some items need to be removed from another scale 
(NPO) for this to be measurement invariant under the same model. However, it is possible 
that none of these scales is measurement invariant under an alternative item response model 
for Likert-type data, say Masters' (1982) partial credit model. Conversely, it is possible 
that under another item response model, say Bock's (1972) nominal model, both scales are 
measurement invariant (meaning that no items need to be removed from NPO). 
Furthermore, we could also use a mixed model in which some items are fitted using one 
IRM and other items using an alternative IRM. For instance, we could fit all items of NPO 
but items 3,6 and 10 using Samejima's graded model and these three items using Bock's 
nominal model, and check whether NPO is measurement invariant under this combined 
model using the procedures described in this paper. Here we use Samejima's model to fit 
these data because elsewhere we have shown (Maydeu-Olivares, 1996 a) that these data sets 
are better fitted by Samejima's graded model than by any other unidimensional parametric 
IRM including Bock's and Masters', and that only non-parametric IRMs outperform 
Samejima's model (for a discussion of parametric vs. non-parametric item response models 
see Maydeu-Olivares, 1994). 
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Footnotes 

1 For example, the dichotomous items of the Hopelessness Scale (Beck, Weissman, Lester, 
& Trexler, 1974) generally show a very skewed distribution in non-clinical populations 
since very few subjects in these populations present the hopelessnesss symptoms measured 
by this inventory. Chang, D'Zurilla and Maydeu-Olivares (1994), analyzed the responses 
of a sample of college students to the items of this inventory using linear factor analysis 
and an item response model and showed that the conclusions may be radically different 
depending on the method being used. 
2 For detailed instructions, see Example 17 in Thissen (1991), and Thissen, Steinberg and 
Wainer (1993). 
3 The number of degrees of freedom in a multiple group item response model is 

d.f. = C# groups * # response patterns) - (# groups) - C# parameters estimated) = 
= [# groups * (# categories per item)# items] - C# groups) - (sum of distinct a and h 

parameters) - (# of estimated group means) 
4 There are rare instances where these statistics can indeed be used for assessing the fit of 
the model to the data. For example, if a test consists of 5 items consisting each of two 
categories (e.g.: yes-no, agree-disagree), then the size of the contingency table is 25 = 32 
cells, and the G2 statistic could be used with moderately large sample sizes. 
5 The number of degrees of freedom will be equal to the number of items times the number 
of parameters per item. For instance, if we are fitting the two parameter logistic model to a 
ten item test, the number of degrees of freedom of this nested test will be twenty. 
6 The transformed parameters will be equal to those obtained if each of the samples had 
been estimated separately since in single group analyses MUL TILOG fixes the latent trait 
mean to zero and the latent trait variance to unity. 
7 The fitplots were drawn using IOCCDRAW (Williams, 1992). All fitplots are drawn in 
reference to a standard normal distribution, that is, after transforming the item parameters 
using Equation 7. 
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Table 1 
Item parameters estimated by maximum likelihood using Samejima's graded model 

Negative Problem Oriention 

non-measurement invariant model measurement invariant model 

men women men and women 

item a hI !h h3 14 a hI h2 h3 14 a hi h2 Q3 14 
1.43 -2.03 -0.76 0.44 1.44 1.43 -1. 59 -0.29 0.84 2.11 1.39 -1.63 -0.31 0.88 2.06 

2 1.55 -1.20 -0.05 0.93 1.89 1.55 -0.81 0.34 1.34 2.56 1.52 -0.80 0.37 1.38 2.51 

3 1.92 -1.61 -0.56 0.41 1.52 1.80 -1.47 -0.26 0.79 1.92 1.86 -1.32 -0.19 0.83 1.95 

4 1.69 -1.89 -0.70 0.23 1.33 1.51 -1.86 -0.39 0.62 1.88 1.58 -1.66 -0.32 0.66 1.85 

5 1.55 -2.20 -0.73 0.37 1.51 1.54 -1.47 -0.12 0.86 2.13 1.51 -1.64 -0.20 0.85 2.09 

6 1.82 -2.11 -0.93 -0.05 1.11 1.84 -1.99 -0.76 0.16 1.37 1.77 -1.85 -0.64 0.28 1.48 

7 2.29 -1.43 -0.46 0.35 1.19 2.11 -0.96 0.18 1.02 1.98 2.08 -0.99 0.10 0.95 1.88 

8 1.38 -1.84 -0.63 0.18 1.18 1.42 -1.39 -0.01 0.86 1.92 1.34 -1.43 -0.09 0.78 1.85 

9 2.24 -1.20 -0.33 0.41 1.34 2.13 -0.69 0.21 0.97 1.95 2.15 -0.73 0.17 0.93 1.91 

10 2.15 -1.68 -0.62 0.31 1.37 2.39 -1.21 0.06 0.79 1.79 2.28 -1.24 -0.06 0.78 1.81 

Positive Problem Oriention 

non-measurement invariant model measurement invariant model 

men women men and women 

item a hi h2 h3 14 a QI h2 Q3 14 a QI h2 Q3 14 
1.62 -2.40 -1.25 -0.13 1.44 1. 76 -2.47 -1.28 -0.07 1.56 1.67 -2.42 -1.24 -0.04 1.57 

2 1.62 -2.66 -1.84 -0.75 0.84 1.70 -2.78 -1.45 -0.51 0.93 1.68 -2.68 -1.55 -0.56 0.94 

3 1.39 -1.95 -0.53 0.71 2.11 1.50 -1.81 -0.54 0.57 2.04 1.40 -1.86 -0.49 0.70 2.18 

4 1.90 -2.45 -1.35 -0.29 1.19 1.77 -2.60 -1.17 -0.04 1.42 1.87 -2.47 -1.19 -0.10 1.35 

5 1.21 -1.97 -0.59 0.72 2.11 1.65 -1.49 -0.26 0.73 1.86 1.43 -1.62 -0.33 0.79 2.03 

Notes: The a's are slope parameters, the h's are threshold parameters. Every item has one a 
parameter and m-1 h parameters (m = # options per item). The probability of endorsing each 
option given the model is obtained by substituting these item parameters into Equation 3. 
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Table 2 

Differential item functioning (DIF) assessed by G;ij statistics 

Negative Problem Orient ion Positive Problem Oriention 

item G;ij p-value item G;ij p-value 

1 3.5 .623 1 6.3 .278 

2 2.3 .806 2 7.3 .199 

3 9.9 .078 3 6.3 .278 

4 8.2 .146 4 5.4 .369 

5 9.4 .094 5 7.0 .221 

6 21.5 .001 

7 7.6 .180 

8 6.9 .228 

9 1.7 .889 

10 12.5 .029 
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Appendix A 
A description of the procedure used to draw fitplots (Drasgow et al.. 1995) 

Assume N observations have been collected on .n polychotomous items each with m 
categories. Fitplots are constructed in reference to a standard normal distribution. In 
models in which the latent trait does not follow a standard normal distribution, the model 
parameters are suitably transformed so that the distribution of the transformed model is 
standard normal. 

Then, the fitplots are obtained as follows: 
(1) Divide the latent trait continuum in 12 intervals SI of equal width with midpoints 

11> 1 = 1, ... , 12. Here we have used 25 intervals with midpoints given by the 2nd, 6th, ... , 
98th percentile points of the standard normal distribution. 

(2) Prior to collecting the data, the models we have considered here assume that the 

latent trait a is distributed in the population as a standard normal density. After the data is 
observed, the probability that a randomly drawn subject from this population with response 
pattern !!* has standing 11 in the latent trait is 

Prob (u = u"1 a = t/) Prob (a E sJ 
p 

L Prob (u = u"1 a = t/ ) Prob (a E sJ 
(9) 

/=1 

where Prob (a E s/) is the area corresponding to s., under a standard normal distribution, 

n 

Prob (u = u "la = t/) = IT Prob (U i = k la = t/) (10) 
i=1 

and Prob (ui = kla = t/) is the ORF evaluated at a = 1,. 
(3) Using the posterior distribution of each respondent evaluated at 12 intervals, 

given by Equation 9, compute the proportion of respondents allocated to each interval (the 

empirical proportions) in item i and option k, P;I; (t/), by 

L Prob (a= t/I u = u~) / Nil; 

A () NI; J"u-I; P t = I' .:.... . ....:,.'-.,.----------

Ik / N N " 

L Prob (a = t/I u = u) / N 

(11) 

j=1 

where Nik is the number of respondents who chose option k in item i. The summation in 
the numerator is over the respondents who chose option k in item 1, whereas the summation 
in the denominator is over all subjects in the sample. 

(4) Estimate approximate 95 % confidence intervals for each of the empirical 
proportions using 

(12) 



Whenever the sum of the posterior densities in item i and option k is less than five, the 

confidence interval for pu;(t,) is not drawn. 

(5) Draw ORFs along with empirical proportions and confidence intervals for the 
empirical proportions. 

Appendix B 
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Item content of the Positive and Negative Problem Orientation Scales of the Social Problem 
Solving Inventory-Revised (D'Zurilla. Nezu & Maydeu-Olivares. 1996) 

Positive Problem Orientation 

1. When my first efforts to solve a problem fail, I usually think that if I persist and do not 
give up too easily, I will be able to find a good solution eventually. 

2. When I have a problem, I usually believe that there is a solution for it. 
3. I usually confront my problems "head on," instead of trying to avoid them. 
4. When I am faced with a difficult problem, I usually believe that I will be able to solve 

the problem on my own if I try hard enough. 
5. When I have a problem, I usually try to see it as a challenge, or opportunity to benefit 

in some positive way from having the problem. 

Negative Problem Orientation 

1. I spend too much time worrying about my problems instead of trying to solve them. 
2. I usually feel threatened and afraid when I have an important problem to solve. 
3. I usually feel nervous and unsure of myself when I have an important decision to make. 
4. When my first efforts to solve a problem fail, I get very angry and frustrated. 
5. When I am faced with a difficult problem, I often doubt that I will be able to solve it 

on my own no matter how hard I try. 
6. Difficult problems make me very upset. 
7. When I am attempting to solve a problem, I often get so upset that I cannot think 

clearly. 
8. I hate having to solve the problems that occur in my life. 
9. I often become depressed and immobilized when I have an important problem to solve. 
10. When my first efforts to solve a problem fail, I tend to get discouraged and depressed. 
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Figure 1. Fitplots of item 3 of the Negative Problem Orientation scale in the male 

sample according to the non-measurement invariant model. 
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Figure 2. Fitplots of item 3 of the Negative Problem Orientation scale in the female 

sample according to the non-measurement invariant model. 
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Figure 3. Fitplots of item 3 of the Negative Problem Orientation scale in the male 

sample according to the measurement invariant model. 
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Figure 5. Fitplots of item 2 of the Negative Problem Orientation scale in the male 

sample according to the measurement invariant model. 
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Figure 6. Fitplots of item 2 of the Negative Problem Orientation scale in the female 

sample according to the measurement invariant model. 
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Figure 7. Fitplots of item 6 of the Negative Problem Orientation scale in the male 

sample according to the measurf>ment invariant model. 
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Figure 8. Fitplots of item 6 of the Negative Problem Orientation scale in the female 

sample according to the measurement invariant model. 


