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Abstract: 
A Supersonic similitude has been used to obtain stability derivatives in pitch and roll of a delta wing with straight leading edge 

for the attached shock case. Ghosh’s strip theory is been used in which strips at different span wise locations are independent 

of each other. This combines with the similitude to give a piston theory which gives the closed form of solution to stability 

derivatives in pitch and roll. Some of the results obtained have been compared with those of Hui et al ,Ghosh and Lui &Hui. 

Results have been obtained for supersonic flow of perfect gas over a wide range of Mach numbers, incidences and sweep 

angles. 
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1. Introduction 
Sychev’s [1] large incidence hypersonic similitude is applicable to a wing provided it has an extremely small span in addition 

to small thickness. Cole and Brainered [2] have given a solution for a delta wing of very small span at large incidence. 

Messiter [3] has found a solution, in the realm of thin shock layer theory, for a steady delta wing with a detached shock; the 

attached shock case has been studied by Squire. Malmuth [5] obtained an analytical solution for the attached shock case at 

small incidence based on hypersonic small disturbance theory. Pike [4] and Hui [6]have analytically treated the steady delta 

wing in supersonic/hypersonic flow with an attached shock. 

 

The role of dynamic stability at high incidence during re-entry or maneuver has been pointed out by Orlik-Ruckemann [7]. 

The shock-attached relatively high aspect ratio delta is often preferred (Townend) [8] for its high lift and drag ratio. Hui and 

Hemdan [9] have studied the unsteady shock detached case in the context of thin shock layer theory. Lui and Hui [10] have 

extended Hui’s theory to an oscillating delta. Hui et. al. [11] has treated flat wings of arbitrary plan forms oscillating in pitch 

in supersonic/hypersonic flow. Ericsson [12] has used embedded Newtonian concept for unsteady flows. Ghosh [14] has 

developed a large incidence 2-D hypersonic similitude and piston theory; it includes lighthill’s and Miles piston theories. This 

theory has been applied for oscillating plane ogives. Ghosh [15] has extended the large deflection similitude to non-slender 

cones, quasi cones and shock attached delta wings. This similitude in this paper has been extended to oscillating delta wings 

with straight leading edges past a supersonic flow.  

 

2. Analysis: 
A thin strip of the wing, parallel to the centerline, can be considered independent of the z dimension when the velocity 

component along the z direction is small. This has been discussed by Ghosh’s [16]. The strip theory combined with Ghosh’s 

large incidence similitude leads to the “piston analogy” and pressure P on the surface can be directly related to equivalent 

piston Mach number Mp. In this case both Mp and flow deflections are permitted to be large. Hence light hill piston theory 

[17] or miles strong shock piston theory cannot be used but Ghosh’s piston theory will be applicable. 
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                , Where P is free stream pressure                                                        (1) 

Since strips at different span wise location are assumed independent of each other, the strip can be considered as a flat plate at 

an angle   of attack.  The angle of incidence is same as that of wing.  Angle   is the angle between the shock and the strip.  A 

piston theory which has been used in equation (1) has been extended to supersonic flow.  The expression is given below. 
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Where p is free stream pressure,  
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 BA  is the specific heat ratio and pM the local piston 

Mach number normal to the wedge surface.   
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2.1 Pitching moment derivatives 

 Let the mean incidence be 0 for the wing oscillating in pitch with small frequency and amplitude about an axis 0x .  The 

piston velocity and hence pressure on the windward surface remains constant on a span wise strip of length 2z at x.  The 

pressure on the lee surface is assumed Zero. Therefore the nose up moment is  
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The stiffness derivative is non-dimensionalized by dividing with the product of dynamic pressure, wing area and chord length. 
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The damping derivative is non-dimensionalised by dividing with the product of dynamic pressure, wing area, chord length and 

characteristic time factor 
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The local piston Mach number normal to the wing surface is given by  
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Where  ,  are density and velocity of sound in the free stream? Combining (2) through (6), differentiation under the 

integral sign is performed. 
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2.2Rolling Damping Derivative:  

Let the rate of roll be p  and rolling moment be L, defined according to the right hand system of reference.   
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The piston Mach number is given by 

p
a

z
MM p



  sin                                                                                                                                            (11)                                                                                        

The roll damping derivative is non-dimensionalized by dividing with the product of dynamic pressure, wing area, and span 

and characteristic time factor 
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Combining through (10) to (12) 
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3. Results and discussions: 
The variation of the stability derivatives with pivot position for various Mach numbers and angle of incidence is shown in     

Figs. 1 to 4. The stiffness and damping derivative have been compared with Hui et al. (Fig 5. to Fig. 8).The Stiffness 

derivative shows good agreement. The difference in the damping derivative is attributed to the present theory being a quasi-

steady one whereas Liu and Hui [13] give an unsteady theory which predicts . The present work invokes strip theory 

arguments. Hui et al [11] also use strip theory arguments whereby the flow at any span wise station is considered equivalent to 

an oscillating flat plate flow; this is calculated by perturbing the known steady flat plate flow (oblique shock solution) which 

serves as the ‘basic flow’ for the theory. For a pitching wing the mean incidence is the same for all ‘strips’ (irrespective of 

span wise location) and hence there is a single ‘basic flow’ which Hui et al have utilized to obtain closed form expression for 

stiffness and damping derivatives. They have not calculated the roll damping derivative. For a rolling wing the ‘strips’ are at 

different incidences and there is no single ‘basic flow’; hence it is doubtful whether approach can be extended to yield a closed 

form expression for roll damping derivative. Their theory is valid for supersonic as well as hypersonic flows; whereas the 

present theory also gives closed form expressions for Stiffness & damping derivatives in pitch as well as roll damping 

derivative. Liu and Hui’s [10] theory is more accurate than of Hui et al [11] as far hypersonic flow is concerned. 

 

The present theory is in good agreement with Hui et al [11] for angle of incidence up to thirty degrees and then there is no 

matching with the results of Hui et al [11]. This may be due to the detachment of the shock wave and stalling of the flow (Fig. 

8). The present theory is simpler than both Liu and Hui [9] and Hui et al [13] and brings out the explicit dependence of the 

derivatives on the similarity parameters S1. (Fig. 9). Fig.10 presents the variation of damping derivatives with pivot position. 

There is a disagreement with Liu & Hui [9] as well as Hui [13] and the reasons for the disagreement are the same as discussed 

earlier. Fig. 11, Fig.12, and Fig.13 present the variation of damping derivatives with mean flow incidence for h = 0, h= 1.0 and 

h = 0.6. They are in disagreement with Liu & Hui [9] as well as Hui [13] for the angle of incidence more than thirty degrees. 

This may be due to the detachment of the shock wave and stalling of the flow. Fig.14 and Fig. 15 show the dependence of Roll 

damping derivative with Mach number and with the aspect ratio. The roll damping derivative decreases with Mach number 

initially then confirms the Mach number independence principle for large Mach numbers. Further, the roll damping derivative 

increases with aspect ratio of the wing. 

There was an error in the formulation in Ghosh [16] for roll damping derivatives and hence in the present work the same has 

been corrected and implemented 
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Fig.1: Variation of Stiffness derivative with pivot position α0 =25 
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Fig. 2: Variation of stiffness derivative with the pivot position 
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Fig. 3: Variation of Damping derivative with pivot position α0=25 
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Fig. 4: Variation of damping derivative with pivot position 

 

 
Fig. 5: Variation of Damping Derivative of a Wing with Pivot position with M=3, α0 =10 ,=1.4 

 

 
 

Fig. 6: Variation of Stiffness Derivative of a Wing with Pivot position with M=2.47, α0 =6°51',  =1.4 
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Fig. 7: Comparison of Stiffness Derivative with Theory of Liu and Hui for Triangular Wing with M=4, α0 = 15
0
,   =1.4 

 

 
 

            Fig. 8: Comparison of Damping Derivative of Triangular Wing with M=4, α0=15
0
, =1.4 

 

 
                Fig.9: Stiffness Derivative Vs Pivot Position for M= 4, α0 = 15

0
,  = 1.4 
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             Fig. 10: Damping Derivative Vs Pivot Position for M=4, α0 = 15

0
, =1.4 

 

         
        Fig. 11: Variation of Stability Derivatives with Mean Flow Incidence with M=4, α0=15

0
,Pivot position, h=0 

 

 

        
Fig. 12: Variation of Stability Derivative with Mean Flow Incidence with M=4, α0 = 15

0
 Pivot position, h = 1 
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Fig.13: Variation of Stability Derivative Vs Mean Flow Incidence with M=4, α0 = 15

0
, Pivot position, h = 0.6 

 

 

             Fig.14: Rolling Moment Derivative Vs Mach number with Aspect Ratio, AR= 4.764, α0 = 25
0
 , =1.4 

 

 
    Fig.15: Roll Damping Derivative Vs Aspect Ratio of Delta Wings with M = 10 
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