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vVe present a method to estimate the latent distribution for a mixture model. Our method 
is motivated by the standard kernel density estimation but instead of using an estimate 
based on the unobserved latent variables, we take the expectation with respect to their 
distribution conditional on the data. The resulting estimator is continuous and, hence, is 
appropriate when there is a strong belief in the continuity of the mixing distribution. We 
present an asymptotic justification and we discuss the associated computational problems. 
The method is illustrated by an example of fission track analysis where we estimate the 
densi ty of the age of crystals. 
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1 Introduction 

Consider independent random variables Xi, i = 1, 2, ... , n having a distribution of the 
form of a continuous mixture, that is, assume that there exist known distributions hi ( Xi IYi) 
and an unknown continuous f(y) such that each Xi has a density 

(1.1 ) 

The unobservable latent variables Yi are independent and identically distributed with 
density f(y). The goal is to estimate the mixing density f(y) without assuming any 
particular parametric form. 

The nonparametric maximum likelihood of f(y) is discrete with at most n mass points 
(Laird 1978, Lindsay 1983) and typically the number of mass points is considerably less 
than n. This is unsatisfactory if we have reasons to believe that f(y) is indeed continuous. 
The situation is similar to the simpler case of observed Yi'S. A nonparametric maximum 
likelihood estimate of f(y) is a discrete distribution with mass points at Yi, but the vast 
literature on density estimation indicates that better solutions must be sought. 

There are various other approaches to the problem. Perhaps the most extensively 
studied one uses a deconvolution of a kernel estimator of the observed data (Carroll and 
Hall 1988, Fan 1991, Liu and Taylor 1989, Stefanski and Carroll1990, Zhang 1990 among 
others). However such methods are applicable essentially only in the errors in variables 
model, that is, when the differences Xi - Yi are independent of each other and of the 
Yi'S and have a common distribution. Other methods are motivated from computational 
considerations, such as a direct adaptation of the EM algorithm (Vardi and Lee 1993), 
stopping it before converging (Laird and Louis 1991) or smoothing each step (Eggermont 
and LaRiccia 1995, Silverman et al. 1985). 

In this paper we propose a modification of the standard kernel density estimation 
method in order to estimate the mixing f(y). The idea is simple: instead of using an 
estimate based on the unobserved Yi, take the expectation with respect to the distribution 
of Yi given the data Xi. Hence, our method is intuitive and straightforward to use, though 
it can be computer intensive. Furthermore, the existing techniques in the literature of 
kernel density estimation allow us to study the statistical properties of our method and, 
in particular, give some asymptotic justification. 

The remainder of the paper is organised as follows: Section 2 motivates and presents 
the method. In Section 3 we discuss the asymptotic justification and Section 4 examines 
the problem of choosing the bandwidth of the kernel by cross-validation. Computational 
issues are tackled in Section 5. The method is illustrated by an example in Section 6 and 
we conclude with a discussion in Section 7. 

2 The method 

Our approach borrows heavily from standard kernel density estimation. For a probability 
density function J«t), to be used as a kernel, if the variables Yi were observed, an estimate 
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of f(y) would be 
1 n 

j(y) = - L K>,(Y - Vi)' 
n i=l 

(2.1) 

where A is the bandwidth and K>,(t) = (l/A)K(t/A). Of course J(y) is not an estimator 
since it depends on unobservables, but, although the variables Yi are not known, we may 
know or at least estimate their conditional distribution given the data Xi, 

(2.2) 

In the above formula and in the remainder of the paper we omit the subscripts i from the 
densities for notational convenience. The distribution (2.2) can be used to modify (2.1) 
by taking the expectation of j(y) with respect to g(Yilxd, that is, 

(2.3) 

Again, the problem is that g(Yilxi) of (2.2) is unknown, since f(Yi) is unkown. Neverthe­
less, we can use 

(2.4) 

where 
m(Xi) = J h(xiIYi)j(Yi) dYi (2.5) 

is the estimated marginal distribution of Xi. This suggests the legitimate estimate 

(2.6) 

where g(ydXi) is given by (2.4)-(2.5). Equality (2.6) is indeed a functional equation since 
j(y) also enters in the right hand side, so the problem is to find a function that satisfies 
(2.6). Before examining computational issues, we will give some asymptotic justification 
of the estimate j(y). 

3 Asymptotics 

We take the kernel K(t) to be a symmetric probability function with second moment 
equal to 1. Furthermore, we assume that the density f(y) to be estimated has an inte­
grable second derivative. The asymptotic results will be obtained under the convergence 
conditions 

n -+ 00, A -+ 0, nA -+ 00. (3.1) 

Standard measures of global discrepancy of a density estimate j(y) from the true f(y) 
are the integrated squared error 

ISE(j(y)) = J(}(y) - f(y))2dy (3.2) 
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or the mean integrated squared error, 

MISE(j(y)) = E J(j(y) - f(y))2dy. (3.3) 

The first theorem states a result for ](y). Its proof can be found in the Appendix. 

Theorem 3.1 The estimator j(y) is consistent for f(y). In particular, the M I S E(j(y)) 
is less than 

¥ A4 J 11 1 J 2 4 1 MISE(f(Y))=4" f (y)dy+ nA K(t) dt+O(A + nA)· (3.4) 

Of course the above theorem is of little use by itself, since i(y) depends on the unknown 
g(Yilxi). However, the next theorem says that even if we use estimates, the resulting 
estimator of f(y) will be consistent as long as the estimates of g(YdXi) are not terrible. 
The proof can be found in the Appendix. 

Theorem 3.2 Suppose that we have an estimate g(ylx) of g(ylx) so that for evel·y x 

E J [g(ylx) - g(ylx )]2 dy (3.5) 

is bounded for a sufficiently large n. Define j(y) by 

(3.6) 

Then the estimate j(y) is consistent for f(y) in the M I SE sense and the rate of conver­
gence of Al I S E(j(y)) is the same as that of ](y). 

The expectation in (3.5) is taken over both distributions of the sample and the random 
variable x. The problem with this Theorem is that typically it is difficult to examine the 
properties of (3.5) for a given g(ylx) since the latter involves the random variable x. It is 
easy to show that, under some mild conditions, any consistent (in the ISE sense) estimate 
J(y) will yield a g(Ylx) for which f[g(Ylx) - g(ylx)]2 dy will tend to zero in probability 
for any x. We suspect that, under some regularity conditions, a consistent (in the MISE 
sense) J(y) will yield a g(ylx) satisfying the assumption of Theorem 3.2. If this is true, it 
is somewhat at odds with the pessimistic results of Fan (1991) and Zhang (1990). These 
articles, in a slightly different setup, suggest that it might be too much to expect the 
same rate of convergence for a general density f(y) as if we had observed Yi. In any case 
the theorem serves as a motivation for the estimator j(y) of (2.6), where we simply take 
g(ylx) = g(Ylx). 
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4 . Cross validatory choice of A 

Of course, the above method requires a choice of the bandwidth), and the kernel f{(t). 
Conventional wisdom says that the choice of f{(t) is not that important for the statistical 
properties of a density estimator. Since the normal kernel has computational advantages 
we will use this. The results, however, depend heavily on ). and a careful choice is 
necessary. There are various methods for selecting the bandwidth in standard kernel 
density estimation, surveyed by Marron (1988) and Chiu (1996). Least squares cross­
validation (Rudemo 1982, Bowman 1984) is perhaps the most intuitive one and has a 
strong asymptotic justification (Hall 1983, Hall and Marron 1987, Stone 1984). 

The cross-validatory ). for j(y) minimises 

J
. 2 2 n 1 
f(y) (y) dy - - L - L f{>.(Yi - Yj), 

no
1
n-1 o.j.o ,= J.,...' 

( 4.1) 

where each term of the outer sum is the value at Yi of the estimate of f(y) derived from 
the remaining data points. The justification is that the above cross-validatory score is 
an unbiased estimate of the loss ISE(j(y)) - J P(y) dy, so choosing a value minimising 
(4.1) will yield an estimator with small ISE(j(y)). 

Clearly in order to use this criterion we must adapt it to the fact that we do not 
actually observe Yi. In a fashion similar to Section 2 we replace j(y) by its expectation 
given Xi and consider the cross-validatory score 

(4.2) 

where 

( 4.3) 

In order to examine if this is a valid cross-validatory score we must see what it is an 
unbiased estimator of. The following theorem shows that this is indeed the case. 

Theorem 4.1 If J-i(Yi) is given by (4.3) then 

E J J(y)f(y) dy = E n(n 1_ 1) ~ J-i(Yi). ( 4.4) 

Substituting j2(y) in (4.2) and replacing n(n-1) by n 2 , a standard development shows 
that the cross-validatory score that we want to minimise has the form 

where f{* ( t) = f{ * f{ (t) - 2f{ (t) and * denotes convolution. Clearly (4.5) contains the un­
known g(Yilxi) and g(Yilxj) that have to be replaced by g(yi!xi) and g(Yjlxj) respectively, 
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so we mmlmlse 

Since the conditional densities also depend on A, any minimisation of (4.6) must be done 
in some iterative way. In the next section we discuss this issue, as well as the computation 
of j(y) itself. 

5 Computational issues 

We consider first the solution of the defining equation (2.6) and then the efficient compu­
tation of the cross-validatory score (4.6). The form of (2.6) suggests an EA! type solution, 
by completing the data by Yi. For the complete data (Xi, Yi), an estimate of the density 
is J(y). This, though not a maximisation, gives us the step corresponding to the 111 step. 
The E step involves the expectation of J(y) with respect to the current density estimate. 
This suggests the iterative equation 

pt+l)(y) = ~ EJ I<:\(y - Yi) h(xdYi)!(t)(Yi) dYi, 
n i=l f h(Xi!Yi)j(t)(Yi) dYi 

(5.1 ) 

for t = 0, 1, 2, ... starting from some initial estimate PO) (y). 
Noting that the right hand side of (5.1) is a sum of expectations of I(;,,(y - yd, perhaps 

the best way is to simulate So random variables yfs) with distribution proportional to 

h(Xi!Yi)j(t)(Yi) and then take the average over the simulated values of J{>.(y - y!s)), that 
is, take 

(5.2) 

Acceptance rejection methods are preferable to numerical integration or other simuation 
methods in this case since they do not require the computation of the normalising con­
stants f h(Xi!Yi)j(t)(yd dYi. Furthermore, in many cases h(xdyd, considered as a function 
of Yi, is a density up to a constant. Then an obvious choice is to simulate Yi from the den­
sity proportional to h(Xi!yd, and the simulation algorithm will be efficient since j(t)(Yi) 
will be much more spread than h(Xi!Yd. In practice, the distribution j(t+l)(yd will have 
to be computed over a finite grid. 

The minimisation of (4.6) can follow a similar pattern. In the case of a normal kernel, 
we can use the Fourier methods described by Silverman (1982, 1986). The adaptation of 
the method for our purposes is as follows: 

(0) Choose an equally spaced finite grid to, tl , t2 , ••• ,tM over the effective support of 
f(y), for NI equal to a power of 2. Let 8 = tk+l - tk and Ut = 27rl(M8)-l for 
-(AI/2) ~ I ~ M/2. 

(1) Evaluate j(y) at the points to, tl, t2 , • •• ,tM and simulate 

(5.3) 
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If an acceptance rejection method is used, then, in practice, y}s) will be equal to one 
of the tk'S. 

(2) Take 

(3) For -(M/2) ~ I ~ M/2 compute 

1 M-I 

1I(S) = M L dS)exp(i27rkl/M), 
k=O 

where i = J=T, by fast Fourier transform and calculate 11I(S)1 2
. 

(4) Repeat steps (1)-(3) So times and compute the average 

- 1 ~ 1 (S)1
2 

Ai = - L.J 11 . 
So s=1 

Then find the A that minimises 

(5) Update j(y) and repeat steps (1)-(4) till convergence. 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

In practice, we can fold the two updating schemes in a single one and avoid extra 
simulations. In other words, the simulated values in step (1) above can be used also to 
update j(t)(y) to j(t+l)(y) as descibed by (5.2). If we do so, we always simulate from the 
first step of (5.2) this will not matter if the values of A do not change anymore. For values 
of A far from the minimising one, we may want to run the updating (5.2) a few times 
before updating the A but it is not crucial that we have actually found the fixed point. 

6 Example 

We now illustrate our method by an example of fission track analysis. The modelling of 
"mixed" fission track ages can provide estimates of times and temperatures that are of 
interest in the oil exploration industry and in various geological applications (see Hurford, 
1991, for a review). Table 1 (reproduced from Goutis and Galbraith 1995) shows a set of 
data, which are numbers of spontaneous and induced fission tracks counted in matched 
areas of crystal and mica for 27 zircon crystals. Spontaneous tracks form over geological 
time by spontaneous fission of trace 238U. Induced tracks are created artificially by placing 
the sample in a nuclear reactor and bombarding it with thermal neutrons, a measured 
proportion of which collide with trace 235U atoms, thereby causing them to fission. This 
indirectly measures the amount of trace uranium in the crystal. 

Galbraith and Laslett (1993) considered statistical models for such data and give more 
details on the background. It is supposed that the numbers of spontaneous and induced 
tracks, Rand S, counted over matched areas A for a single crystal, have conditionally 
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Table 1. 
Numbers of spontaneous and induced fission tracks 

counted in matched areas for 27 zircon crystals: 
crystal R S area crystal R S area 

1 24 459 80 15 2 70 49 
2 8 52 30 16 3 94 28 
3 136 310 30 17 23 128 60 
4 56 257 70 18 153 264 70 
5 3 57 70 19 90 143 32 
6 6 332 80 20 31 49 16 
7 73 98 14 21 38 120 40 
8 131 226 50 22 51 46 25 
9 9 173 80 23 38 85 12 

10 6 28 12 24 127 45 20 
11 141 229 70 25 5 24 30 
12 11 74 36 26 24 56 20 
13 12 61 18 27 10 31 18 
14 10 28 40 

independent Poisson distributions with means Apl and Ap2 respectively. In this context 
the Poisson model is particularly convincing (Galbraith et al. 1990). The spontaneous 
track mean density PI depends on the age of the crystal, the amount of trace 238U it 
contains, and the mean length of spontaneous tracks. The induced track density P2 
depends on the amount of trace 235U and on the mean length of induced tracks; P2 
also depends on the thermal neutron dose, which is measured independently. To a close 
approximation, the ratio pd P2 is given by 

PI _ 2)..J T 11 
P2 - <Po,! I 12 

(6.1 ) 

which depends on the crystal's age T, which is of interest in this context, the ratio Id 12 
of mean lengths of spontaneous and induced tracks, which reflects the amount of heat 
the crystal has experienced, the 235U:238U isotopic ratio I, which is usually assumed to 
be fixed, the thermal neutron dose <P and constants ).. J and 0 J that are independently 
calibrated. 

Typically the amounts of trace uranium and areas vary substantially between crystals 
(as they do in Table 1). In a sample of crystals the ratios pd P2 will vary if the crystals 
have different ages. They may also vary due to the effect of heat (particularly for the 
mineral apatite), even if all crystals have the same age, because the spontaneous tracks 
will shorten, possibly by different amounts for different crystals, so that ldl2 varies. 

Goutis and Galbraith (1995) developed a parametric model that allows for variation 
between crystals of PI, P2 and of pd P2. Their model was based on a Wishart mixing of 
the Poisson counts. In this paper, we take a different approach. First we condition on 
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the total number of counts in each crystal. Conditionally, the number of spontaneous 
tracks has a binomial distribution with parameters PI/(P2 + P2) and R + S. Although in 
the parametric case, in the presense of extra-Poisson variation the statistic R + S is not 
ancillary and conditioning is not justified, in a nonparametric context concepts such as 
sufficiency or ancillarity are not defined. Hence it is legitimate to simplify the problem 
by conditioning and considering a mixing distribution on the log-odds of the binomial 
distribution. Translating to the notation of (1.1), for the ith crystal, Xi is the number 
of spontaneous tracks, Yi is log(pli/ P2d and hi(XiIYi) is B(ni, [1 + exp( -Yi)r1

), where ni 
is the total number of tracks. The distribution of the ages of the crystals can be readily 
deduced from the distribution of Yi. 

Figure 1 shows the density estimate of the logarithm of the age of the crystals based 
on the data of Table 1. The ticks on the x-axis indicate the location of the crude age 
estimates based on the empiricallogits log [(Xi + 0.5)/(ni - Xi + 0.5)]. The size of the 
ticks is proportional to foi. This indicates the precision of the observation and gives 
a measure of the weight that we would like this observation to have. "Ve computed the 
density for two values of the smoothing parameter A. One estimate is for A ~ 0.5, the 
cross-validatory choice, and the other was for A = 0.3. For comparative purposes, we 
include on the figure a crude density estimate, derived by considering the empiricallogits 
as "data" and applying the standard kernel method. The maximum likelihood estimate 
is also drawn as spikes. 

"Ve were somewhat unsatisfied with cross-validation since it seems to oversmooth the 
data. Experience with simulated data (not shown here) indicated that this happens 
often. "Ve tried a few values smaller than the cross validatory choice and chose, somewhat 
arbirtrarily, A = 0.3. This gives an aesthetically pleasing picture for the density estimate. 
The crude estimate based on the empiricallogits does not take into account the differences 
in the distributions hi(xIY) and misses the differences in precisions. The j(y) for A = 0.3 
shows that there are many high precision observations between 10 Ma and 20 Ma and 
does not smooth out the high observation. This is ignored by the crude estimate, and 
as expected, the effect of the high observation is diminished by taking a larger A. The 
maximum likelihood estimate suggests a large, somewhat unpalatable, gap in ages between 
about 1.8 Ma and 6 Ma. 

7 Discussion 

The method that we propose is an all purpose method for computing an estimate of the 
mixing density. It is worthwhile noting that it is equally applicable for discrete and for 
continuous data and does not require exchangeability of the observable random variables. 
As long as the latent variables have a common distribution, the conditional distributions 
of the data can have any form. Clearly, it should be used if we believe that the mixing 
density is continuous, in which case a nonparametric maximum likelihood estimate is not 
satisfactory. It is often argued (Lindsay 1995) that there is too little information about 
the mixing distribution to make sensible inferences about its shape. However, any kind 
of nonparametric estimation makes inferences on the shape, and maximum likelihood 
infers that the cumulative distribution is a step function. Obviously, if we believe that 
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a parametric model gives a reasonable approximation, on parsimony grounds one should 
abandon the nonparametric approach altogether. 

Our starting point is the kernel density estimate using the unobserved data. An alter­
native approach would be to use some kind of penalised likelihood, where one maximises 
the log-likelihood minus a roughness penalty. This would automatically rule out discontin­
uous estimates and, by a suitable choice of the weight of the two quantities, loglikelihood 
and roughness penalty, could give sensible results. We have not pursued this approach, 
but it would be interesting to do so and compare the two methods. . 

A more complete asymptotic analysis would also be of interest. Of course, the problem 
of estimating a density if we observe data contaminated with noise is more difficult than 
without noise. We suspect that this will reflect on the constants rather than the rate of 
convergence, which might be the typical o(n-4

/
5

), at least in some cases. However, the 
asymptotic properties of our method seem technically difficult to establish and beyond 
the scope of this article. 

Clearly asymptotics are one aspect of the problem. A more important one is the 
performance for data sets, which are always finite. Based on our experience on the example 
of Section 6 and on some limited simulation results, we are optimist. The method gave a 
believable answer. Some care needs to be taken with the choice of the bandwidth, since 
we suspect that an automatic least squares cross-validatiotory choice will oversmooth the 
data and the estimated density will be more spread than it should. Though our results 
are not conclusive, they suggest that it is worthwhile trying the method to other data 
sets. 
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Appendix 

Proof of Theorem 3.1. Consider the expectation and the variance of J(y). We have 

E(J(y) ) 

Similarly 

1 n - ;;: t; J J J(>.(y - yi)g(Yilxd dYi m(xi) dXi 

1 n 

= -; t; J J J(>.(y - Yi)h(XiIYd dXi J(Yd dYi 

1 n - ;;: t; J J(>.(y - Yi)J(yd dYi 

- J J(>.(y - z)J(z) dz. 

(A. 1) 

(A.2) 

(A.3) 

(A.4) 

n var(J(y)) = ~ ~ {J [J J(>.(y - Yi)g(Yilxd dYir m(xi) dXi 

- [J J J(>.(y - Yi)g(Yilxi) dYi m(xi) dXi] 2 } (A.5) 

< ~ ~ {J J [J(>.(y - yd]2 g(ydxd dYi m(Xi) dXi 

- [J J J(>.(y - Yi)g(ydxi) dYi m(Xi) dXi] 2 } (A.6) 

= ~ ~ {J [K>.(Y - Yi)]2 J(Yd dYi - [J J(>.(y - Yi)J(Yi) dYi] 2} (A.7) 

- J [K>.(Y - Z)]2 J(z) dz - [J J(>.(y - z)J(z) dzf (A.8) 

The rest is standard development (see e.g. Silverman 1986). 

Proof of Theorem 3.2. We have 

[
1 n ]2 

(J(y) - J(y))2 - ;;: ~ J J(>.(y - yd (g(Yilxd - g(Yilxd) dYi 

< :2 ~ [J K>.(Y - yd (g(Yilxi) - g(YiIXi)) dYif 

< :2 ~ J J(>.(y - Yi) [g(Yilxi) - g(Yil xd]2 dYi 

o 

(A.9) 

(A. ID) 

(A.1l) 

where the last step follows by noting that, considered as a function of Yi, J(,\(Y - Yi) is a 
density. Integrating over y, and using the fact that J(>.(y - Yi) is also a density in y, we 
obtain 

(A.12) 
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Now we take expectations over both sides of (A.12). The asymptotic properties of g(Yi!Xi) 
are the same as the ones of g(Yi!Xi) fora given Xi, so we may as well consider Xi to be a 
random variable independent of the sample. If the expectation of each term of the sum is 
bounded, the Cesaro averages will also be bounded and the expectation of the left hand 
side (A.12) will be O(n-1

). Noting that 

(A.13) 

establishes the result. o 

Proof of Theorem 4.1. Consider the expectation of l-i(yJ This is a function of the 
random variables Yi and Xj, j #- i. Conditioning first on all Xl, X2, ... ,Xn , we have 

(A.14) 

To find the expectation of the above we consider each term of the sum separately. Since 
the jth term is a function of Xi and Xj we multiply by m(xi)m(Xj) and integrate with 
respect to Xi and Xj. Following the proof of Theorem 3.1, we interchange the order and 
integrate dXi dXj. After summing over j #- i we obtain the expectation of (A.14) and after 
summing over i we have 

On the other hand, from (AA) we obtain 

E J ](y)J(y)dy = J J f{>.(y - z)J(y)J(z)dydz (A.17) 

which completes the proof. o 
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Figure 1: Density estimate of the age of the crystals data. The solid line is based on a 
bandwidth), = 0.3, and the long-dashed line on ). ~ 0.5. The short-dashed line is the 
kernel density estimate based on the empiricallogits and the vertical spikes indicate the 
maximum likelihood estimate. 
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