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Abstract. In the present study Supersonic similitude has been used to obtein |
stability derivatives in pitch and voll of a delta wing for the attached shock
case. A strip theory is used in which strips at different span-wise locations are
independent. ‘This combines with the similitude to give a piston theory, The
present theory is valid only for attached shock case. Bffects of wave refiection
and viscosity have nol been taken into account. Some of the resuits have heen
compared with those of Hui et al (1982), Ghosh (1984}, and Liu and Bui (1977).
{ Results have been oblained for supersonic flow of porfect gas over a wide range

X s of Mach numbers, incidences and sweep angles, A good agreement is obtained

with Hud et al in some special cages, '
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NOMENCLATURE
A : S ()
Ap, Ay amplitude of full & half sine wave
AR aspech ratio
B [4/r+1)] 2
C chord length
Crmar Crg " stiffness &damping dexivative in pitch
Cip rolling moment derivative due to rate of roll
: Che Stiffness derivative in pitch
‘ Cm& Damping derivative in pitch
L rolling moment :
Moo, Ueo Free stream Mach number and velocity
i . My Mach number behind the shock
Mp Piston Mach number
M, : Shock Mach number

! . o Similarily parameters in supersonic flow
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Ba " free stream sound velocity

b Semi gpan

h ' Non dimensional pivot position, xg/c

k /¢

Im Pitching momentum a
i Pressure on the wing surface

Poo Free stream pressure

q Rate of pitch

t ) Lime in second '
U,V velocity components in X, Y direction

X, ¥, % body fixed reference system

Xo pivot position for pitching oscillation

(a4 Incidence angle

5] Shock wave angle

e Mean incident for an oscillating wing

v Specific heat ratio

~ Inclination of characteristic lines
I Sweep angle. . ..
Half wedge angle
free stream densily

1 Introductory Remarks

Ghosh (1981) has given a unified supersonic similitude for a wedge which es-
tablishes that the similitudinal surface, in which the motion is independent of
other such surfaces, is normal to the bow shock, rather than to the wedge sur-
face as in Ghosh (1971). For a quasi-wedge or an oscillating wedge, the bow

shock makes a small departure from a cerbain pre-determined wedge shape; the

similitudinal surface is shown to be orthogonal to the latter. Ghosh’s (1981)
analysis is reproduced here.

2 Analysis

Tig. 1 shows that upper half of a steady wedge with attached bow shock in
rectilinear flight from right to left in stationary air, at time f. Dimensjional
analysis indicates that the flow is conical in nature, ie., at a given instani
aa—r = 0 where » is the distance along a ray from the apex. Hence the bow
shock must coincide with array. The space-fixed co-ordinate system (x, ¥) is so
chosen that the x-axis coincides with the bow shock at time t=0. Conicality of

the flow implies that the instantaneous streamlines have the same slope where
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Tig. L. shows the wedge at time §

they intersect a ray from the apex. Since the shock sets the fluid particles
in motion normal to itself, the instantancous streamlines intersect the shock
at right angles. The dashed lines in fig. 1 are probable streamling shapes, We
tentatively asswime that the streamlines are straight shown by firm lines in I'ig.1,
if this leads to % = {) then it is a solution. Congider the plane flow on stream
surface x=0. At time t the shock location on x=0 is

1y = Upotsin o - (1}

And the body location can be shown to be
Yy, = OB = Ut sin 0,/ cos by, (2}

Since the flow in plane x=0 is independent of the flow in a neighboring par-
allel plane, it can be taken as a.piston driven fluid motion where the jpiston
Mach numberM, = M, sin 0,/ cos{f — 8,) and the shock Mach nunberM, =
M, sin 8. Since Mpis independent of t, pressure remains constant in this 1D
space. :

- Therefore, Op/8y = 0. Since the streamlines are straight there is no centrifu-
gal force; thusdp/dz = 0. Hence, Op/dr = 0. Thus the wedge flow is exactly

equivalent to 11D piston motion normal to the shock. It can be shown that the

relation between MgdcMpyields the well known oblique shock relation giving
the shock relation giving the shock angle in terms offly,.
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3 Quasi-wedge or Oscillating wedge:

Fig.1 shows the probable shape of the bow shock in dotted-when- the-wedge-is
either oscillating or replaced by a quasi-wedge. The slope of the curved shock
with x-axis remains small, say of orderg. Let the Mach number behind the

shock, in body-fixed coordinate, beMy. The characteristics make an angle & = -

(sin™? 1 /My~ ¢y} with the x-axis. It can be shown that this angle remains small
Tor fairly large values of Oy even for moderate Mach numbeis For example for
Mo, = 2, 0w = 15°, we have § = 13°,

Again for Mo,=3, &y = 20° we getd = 12.5% we stlpulate (zee Fig. l) that
§-< 0.8, and then ¢&d are of sume ovder, since the gradient is normal to the
characteristics we have,

8 d
= 0(91’-@) 3)

TTAlse the niét pertnrbatibn introduced by the shock and Mach waves will
- chiefly be in the y-direction. Thus

1= 0{¢.v) | {(4)

Where u, v are velocxty components in x, y divections. Bys. (3) & (4) suggest
transformations :

? :-gb‘_l.u&f = . (5)

we apply these transformations to the equation of continuity to get

& lpw) _. 08t
TR

Similarly, applying these transformations to the rest of the equations of
motion and boundary conditions and neglectitg terms of 0(?), we get equiva-
lence with a 1D piston motion in y-direction and unified supelsomc/hypersomc
similitude, :

Singh (1982) has utilized Ghosh’s (1981) uniﬁed supersonic/hypersonic simil-
itude for the calculation of unsteady moment derivatives in pitch for biconvex
airfoils. Ghosh (1983) has extended the unified similitude to the case of a cone
in supersonic flow.
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4 Piston theory

In the present analysis Ghosh’s (1981) unified supersonic/hypersonic similitude
has been used in combination with a strip theory for a supersonie delta wing
whose leading edge is curved. A thin strip of the wing, parallel to the centerline,
can be considered independent of the Z dimension when the velocity component
along the 7 direction is small. This has been discussed by Ghosh’s(1984). The
strip theory combined with Ghosh’s large incidence similitude leads to the pis-
ton anslogy and pressure P on the surface can be divectly related to equivalent
piston mach no, Mp, In this case both Mp and flow deflections are permitted
to be large. Hence hght hill piston theory cannot be used but Ghosh’s piston
theory will be apphcable. .

o0

Since strips at different span wise location are assumed independent of each
other, the strip can be considered as a flat plate at an angle of attack, The
angle of incidence is same as that of Lhe wing. Angleg is the angle between the
shock and the strip. A piston theory which has been used in eqn.(6) has been
extended to supersonic flow. The Bxpression is given below

M'p
cos ¢

P A M)zM( P2y (7

oo cos ¢

(B +(

Wherepeois free stream pressure,A = ;Y:bil , B3 == (4 (y+1)%), v is the specific
heat ratio and M, =the local piston Mach numbel normal to the wing surface.

5 Pitching moment derivatives

Let the mean incidence be agfor the wing oscillating in pitch with small fre-
quency and amplitude sbout an axiszg. The piston velocity and hence pressure
on the windward surface remains constant on a span wise strip of length 22
at x. The pressure on the lee surface is assumed Zero. Therefore the nose up
moment i3

™ == —pr.z(a; —wp)dw : - (8)
0

"The stiffness derivative is non-dimensionalized by dividing with the product
of dynamic pressure, wing area and chord length,
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: 2 —dm
- = ) a=ag, 5= 9y -
e poallooC3{cote Any ( Dex Jeman=0 ©)

"+ From Bg. 8 and 9

o
-+ 4 ApealMeo cos o (S]) )
~Cma = weote — ap sin 2ky — ey sinka){e — wp)de
ma = ¢pwU§3c3{CDt€ _ i%u} / (T 0 iF H )( ‘8) :
. (10)
Solving the above equation we geb
sin ko 08 o (1), 2 - ~ h)eote+ H{—- +AgEh-1Y (1)

w0 TR0
e st ¢{eote — 441}

Whete,

2
where Mo s
: sin o,
gl = i 70 13
1 08 ¢ { )

6 Damp'mﬁ derivative

The damping derivative is non-dimensionalised by dividing with the pmduct of

dynamic pressure, wing area, chord Jength and characteristic time factor

(14) -

2 (- am

14
Pooleoct {cote — 22}
(%'?") differentiation within the inte-

Lo}
— Mg = )&ﬁﬂnq——a

Since m is given by integration to find
gration is necessary.

dp _ Apos(z — )
P e ea = 22 SLR(SY) (15)

Solving we get

sin o (5)) [(h h + %) cobe— é{(zh —1)Ap -+ 24y (2h? — 2h — wi? + 1"}]

“'Crn —_—
T cos? ¢ cote — é—-‘i” 3
(16)
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7 Rolling Moment derivative due to-rate of roll

Let the rate of roll be pandrolling moment be L, dgﬁned uceording to the

right hand system of referance. C ¥
¢ Z=fl=)
L= 2]( f poadz)da - (17)
] B o
The piston Mach number is given by
. . 2 : '
> My = My sing — —p ' (18)
Goa :

The roll damping derivative is non-dimensionalzed by dividing with the
product of dynamic pressure, wing area, aud span and characteristic time factor
C'l

Uee

e e e . ) : 19
e T T T R e mewcsb{cef_e_ i%ﬂ.} ( ap )?’=Q{) ( )
P=0

Where span =2h
Solving the above equation wa get

_ sinagf(S))
—C!P = (cos? \fa){col‘?c'—é"d [utcozs)
cotd e 2 JAr  An 1 ’ 16ApAy  16A%ZAy
E D) -+ cot’e (27 7{3 )(l '—4)'}'4601‘6(44 +1‘1 )_'""AH" - 97].2 (20) 15 j

where

(5}) = Mngpen

8 RESULTS AND DISCUSSIONS

. Figore 2 below shows the xegmn of validity for the present theory in Supersonic
}] flow regimes.
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Fig. 2. Boundary of Validity

for the Unified Supersonic Similitude
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Fig. 8. Variation of Damping Derivative of a Wiug with Pivet position
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Constant values: Macl ne, M=2.47,ug=6°31", Speciflc vatid, y=1.4
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Fig. 4. Variation of Stiffuess Devivative of a Wing with Pivot position

‘The stiffness derivative shows good agreement,

Figure 5 and 6 shows the variation of stiffness and damping derivatives with
pivet position in supersonic flows. Stifiness and damping derivatives in piteh
caleulated by the present theory have been compared with Liu and Hai (1066},
The stiffness derivative shows good agreement. The difference in the damping
derivative is attributed to the present theory being a guasi-steady one whereas

Liu and Hui (1969) give an unsteady theory which prediets G

Figure 3 and 4 shows the variation of stiffness and damping derivatives with
pivol paosition in supersonic flows. Stiffness and damping derivatives in piich
caleulated by the present theory have been compared with Liv and Hui (1964).
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Fig. b, Comparison of domping Devivative of & Wing
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Fig, 6. Comparison of Stahility Derivative of a wing in supersonic How
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Fig. 7. Comparison of Stiffness Derivative with Theory
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of Liu and Hui for Triangular Wing
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Fig. 8 Compariéon of Damping Derivative of Triangular Wing

Figure 7 and 8 shows the variation of stiffness and damping derivatives with
pivol position in supersonic flows. Stilfness and damping derivatives in pitch
calenlated by the present theory have been compared with Liu and Hu (19773.
Tha stiffness derivative shows good agreement. The present work invokes sbrip
theory arguments. Hui et al (1982) also use stip theory arguments whereby the
flow at any span wise station is considered equivalent to an oscillating flst plate
flow; this is caleulated by perturbing the known steady flat plate flow (obligue
shock solution) which serves as the "basic flow’ for the theory. For s pitching
wing the mean incidence is the same for all *strips’ (irxrespective of span wise
location) and hence there is a single "basic flow’ which Hui et al have utilized to

. obtain closed form expregsion for stiffness and damping derivatives. They have

not calenlated the roll damping derivative. For a rolling wing the 'strips’ are
at different incidences and theve is no single *bhasic fiow’; hence it is doubtful
whether approach can be extended to yield a closed form expression for roll
damping derivative. Their theory is valid for supersonic as well as hypersonic
flows; whereas the present theory also gives closed form expressions for Stiffness
and damping derivatives in pitch as well as roll damping dérivative.
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Fig. 6. Comparison of Damping i Piteh Derbvative of Delta Wing with Angle Of Attack

Figure 9 represents damping derivative in piteh with angle of incidence, This

present theory is ih good agreement with Hui et al (1982) for angle of incidence
up ta thirty degrees and then there is no matching with the results of Hui et al

(1982). This may be due to the detachment of the shock wave and stalling of
the flow
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Iig. 10, Rolling Moment Derivative Vs Mach No.
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Tig. 11, Roll Pamping Derivative Vs Aspact Ratio of Delta Wings

Figure 10 and 11 show the dependence of Roll damping derivative with Mach

- number and with the aspect ratio. The voll damping derivative decreases with

hMach mnuber initially then confirms the Mach number independence principle
for large Mach numbers. Further, the roll damping derivativa increases with
aspect yatio of the wing. There was an ervor in the formulation in Ghosh (1084)
for roll damnping derivatives and hence in the present work the same has been
corrected and implemented. '

9 CONCLUSIONS

Present theory demonstrates its wide application range, in incidence, aspect
ratio and the Mach number. The theory is valid only when the shock wave is
attached with $he wing. The effect of Lee surface hus been neglected. The effects
of viscosity and wave reflection are neglected. The present theory is simple and
vet gives good results with remarkable computational case.
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