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The robustness properties of a regression estimate are throughly described by its 
maxbias curve. However, this function is difficult to compute, especially when the 
regressors are not elliptically distributed. In this paper, we propose a general method 
for computing maxbias curves, valid for a large number of robust regression estimates, 
namely, those estimates defined by residual admissible functionals. Our results are also 
useful to compute maxbias curves when the regressors are not elliptically distributed. 
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signed R-estimates. MM-estimates are also studied under a related, although slightly 
different, approach. 
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1 Introduction 

Let (Xl, vd, ... , (xn' Yn), Xi E IRP, Yi E IR be independent observations satisfying the 

following linear model: 

Yi = 8~Xi + Ui, 1 ~ i ~ n, (1) 

where the errors Ui have a common distribution, Fa, and are independent of the variables 

Xi. Assume that the regressors Xi are independent random vectors with common distri­

bution Go such that there exists Ecoxx' = A-I. From Fa, Go, and the independence 

between them we can obtain the distribution of (Xi, Vi) under the model (1), which we 

denote by Ho. To allow for the existence of a fraction E of outliers, we will suppose that 

the distribution of the data lies in the contamination neighborhood 

~ = {H: H = (1 - E)Ho + Elf, if arbitrary distribution}. 

As it is well known, outliers may alter drastically the conclusions of a regression analysis 

performed with the usual minimum least squares estimate. In fact, just one outlier, 

strategicapy placed, may lead the estimates to take an arbitrary value. For this reason, 

se\·eral alternative robust regression estimates have been developed. First attempts in 

dealing with this problem can be found in Huber (1981) and Hampel et al. (1986). Other 

important references are Rousseeuw (1984), Rousseeuw and Yohai (1984), Yohai (1987), 

Yohai and Zamar (1988), Simpson, Rupert and Carroll (1992), l'vfaronna and Yohai (1993), 

Coakley and Hettmansperger (1993), and Croux, Rousseeuw, and Hossjer (1994). 

Most of robust regression estimates can be viewed as a functional, T, with values 

in IRP defined on a large set of distribution functions H on IRP+I, which includes the 

neighborhood ~. "Ve will suppose that T is regression and affine equivariant, that is, if 

y* = Y + x'b , x* = C'x for some full rank p x p matrix C, and H* is the distribution of 

(x'", y*), then T(H*) = C- I [T(H) + b l. 
It is important to measure quantitatively the degree of robustness of these functionals 

in order to compare them. One possible measure is the gross error sensitivity (,T) which 

assesses the maximum relative influence of adding individual observations to the sample 

(see Hampel, 1974). It is convenient to obtain bounded influence estimates, that is, 

estimates T such that IT < 00. 

Another way of looking at the robustness properties of the estimate is the breakdown 

point (E*) or limiting fraction of bad outliers that the estimate can tolerate (see also 
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Hampel, 1974). A fraction of outliers greater than E* may lead the estimate to a value 

totally determined by the outliers and therefore a goal in robust estimation must be to 

devise methods with high breakdown point. 

The gross error sensitivity and the breakdown point can be viewed as part of a global 

measure of robustness: the maximum asymptotic bias curve (or maxbias curve), BT(E), 
caused by a fraction E of outliers. This function was introduced by Huber (1964) in the 

location model. Martin and Zamar (1989) and Martin, Yohai and Zamar (1989) computed 

BT(E) for scale M-estimates and regression S-estimates respectively. The asymptotic 

bias of T at H, bA(T, H), is defined so that it is invariant under regression equivariant 

transformations, 

As we will only consider regression and affine equivariant estimates, we can assume 

without loss of generality that A is the identity matrix I and 00 = O. Therefore, 

bA(T, H) = b(T, H) = IIT(H)II. The maxbias curve of T is defined as 

BT(E) = sup b(T, H) = sup IIT(H)II. 
HEV. HEV. 

(2) 

Under regularity conditions, IT = BT(O). It follows that ITE is a linear approximation 

of BT(E) for small values of E. On the other hand, the breakdown point can be defined 

as E* = inf{E: BT(E) = oo}. Therefore, E* contains another relevant feature of BT(E), 

namely, the location of the point at which BT(E) explodes. 

As we have seen, BT (E) sums up different approaches to quantitative robustness. 

From the knowledge of BT(E) we can compute both the gross error sensitivity and the 

breakdown point of T, and we possess a comprehensive description of the robustness 

properties of the estimate. Unfortunately, the function BT(E) is sometimes difficult to 

compute. Maxbias curves are known for few robust regression estimates and only when 

the regressors are elliptically distributed. Moreover, procedures to obtain them are rather 

specialized. 

This paper aims at proposing a general method for computing maxbias curves, valid 

for a broad class of robust regression estimates. We will consider the class of residual 

admissible regression estimates ( for a precise definition, see Yohai and Zamar, 1993). 

Roughly speaking, this class consists of estimates for which the empirical distribution of 

the absolute value of the residuals cannot be uniformly improved by using any other set 
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of regression coefficients. Yohai and Zamar (1993) show that many regression estimates 

defined as a function of the regression residuals belong to this class. In particular, we 

apply our results to S-, T-, MM-, and signed R-estimates. Our results are also valid when 

the carriers are not elliptically distributed, so we also extend the existing results in this 

direction. Therefore, we provide a unified bias robustness theory for regression estimates 

based on residuals. 

In Section 2, we give the basic result. Section 3 contains some applications of this result 

and gives the maxbias curves of several important regression estimates. In Section 4 we 

deal with the class of M-estimates with general scale which requires a slightly different 

approach. Proofs and technical details can be found in a final appendix. 

2 Main result 

Many interesting equivariant regression estimates are defined as the value of B that min­

imizes a functional at the empirical distribution of the absolute value of the residuals, 

IYi - B'xJ If F H,B is the distribution function of these absolute values when the dis­

tribution of the data (Xi, yd is H, the corresponding functional form of these estimates 

IS 

T(H) = arg min J(FH B), 
B ' 

(3) 

where J(F) is defined on a set of distribution functions containing the empirical distribu­

tion functions and the neighborhood V::. 
'Ve will suppose that J satisfies the following assumption: 

Assumption 1 (a) If F and G are two distribution functions on [0,(0) such that 

F(u) ::; G(u) for every u E IR} then J(F) ~ J(G). 

(b) (E-monotonicity). Given two sequences of distribution functions on [O,oo)} Fn and 

Gn} which are continuous on (0,00) and such that Fn(u) -+ F(u) and Gn(u) -+ 

G(u)} where F and G are possibly substochastic and continuous on (O,oo)} with 

G( (0) ~ 1 - E and 

G(u) ~ F(u), for every u > 0, (4) 

then 

(5) 
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A1oreover, if (4) holds strictly, then (5) also holds strictly. 

(c) If F and G are two distribution functions on [0,00), with F continuous, then 

lim J[(1 - e)F + eUn] 2: J[(1 - e)F + eG], 
n-+oo 

where Un stands for the uniform distribution function on [n - (1/n), n + (1/n)]. 

REl\IARK 1. Assumption -1(a) is a monotonicity condition which can be easily checked in 

the important examples that we present in Section 3. Assumption 1(b) of e-monotonicity 

was introduced by Yohai and Zamar (1993). They show that the e-monotonicity condition 

implies the residual admissibility of the corresponding estimate and hence it is a slightly 

stronger assumption. However, all interesting residual admissible estimates can be shown 

to be also e-monotone and therefore there is not a relevant difference between assuming 

e-monotonicity or residual admissibility in the applications of our result. Notice that if 

,ye take Fn = F and Gn = G for each n, then e-monotonicity implies that if F and G 

are distribution functions on [0,00), continuous on (0,00) and such that G(u) > F(u) 
for u > 0: then J(F) > J(G). Therefore, we can also view e-monotonicity as a strict 

monotonici ty condition for certain especial distributions. Finally, Assumption 1 (c) is a 

mild technical condition which can be easily verified in most of important examples. 

\Ve will also need the following assumption on the distributions Fo and Go. 

Assumption 2 Fo has an even and strictly unimodal density fo, and PGo(O'x = 0) = 0, 

for each 0 i- O. 

Next, \ve give a general result useful to compute the maxbias curve (see equation (2)) 

of any class of robust regression estimates based on residuals. 

Theorem 1 Let T be a regression estimate defined as in equation (3), let t* E IR be such 

that 

m(t*) - inf J[(1 - e)FH 0 + e80 ] = lim J[(1 - e)FHo,o + eUn]' (6) 
IIOIl=t* 0, n-+oo 

lchere Un is the uniform distribution function on [n - (1/n), n + (l/n )]. Then, under 

Assumptions 1 and 2, BT ( e) = t*. 
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When Go is spherical, it is easy to prove that F Ho.f) only depends on f) through the 

value of 1If)1I. vVe can drop the infimum in equation (6) as each direction gives the same 

value of J[(1- E)FH f) + E80l· vVe obtain the following result. o. 

Corollary 1 Suppose that Go is spherical and that there exists f)* E IRP such that 

(7) 

where Un is the uniform .distribution function on [n - (1/n), n + (l/n )l. Then, under 

Assumptions 1 and 2, BT ( E) = 11f)*II. 

REMARK 2. Let 8n be the distribution that assigns probability one to the point n. In 

most of examples, the following equation holds: 

Therefore, equality (7) turns out to be 

\Ve can use this expression to give an intuitive interpretation of Corollary 1. Suppose 

that there is a proportion E of outliers at the point (f)*'x,x). Then, (1 - E)FHo.f)* + E80 

is the distribution of the residuals when these outliers are perfectly fitted and hence 

J[(l - E)F Ho.f)" + E80l is the value of the target functional in this case. On the other hand, 

J[(l- E)FHo .O + E800l is the value of the target functional when the outliers are completely 

ignored and If)*'xl -+ 00. In Corollary 1 we show that the maximum bias is the value of 

1If)*1I such that the value of the target functional that we obtain by fitting the outliers 

perfectly is the same as the value of the target functional that we obtain by ignoring them 

completely. 

3 Maxbias curves of several residual admissible regression estimates 

In this section, we give some examples to illustrate the wide applicability of Theorem 

1 and Corollary 1. First, we consider the well-known Rousseeuw's (1984) LMS-estimate 

and derive the maxbias curves for several distributions of the regressors. The purpose 

of this study is to find out which is the effect in the maxbias curve of deviations from 
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ellipticity in the distribution of the regressors. In the rest of the section we assume that 

the regressors are spherical and compute the maxbias curves of S-estimates, T-estimates, 

and some signed R-estimates including Rousseeuw's LTS- and LTAV-estimates. So far, 

only the maxbias curves for S-estimates were known. 

3.1 LMS-ESTIMATE MAXBIAS CURVE WITH NON-ELLIPTICAL REGRESSORS 

Assume that the distribut.ion of the errors, Fa, is standard normal. We consider the linear 

model (1) with two regressors Xl and X2 and the LMS-estimate, that is, the functional 

defined as 

T(H) = arg min F- 1(J(1/2). (J H, 

In Table 1 we report the maxbias curves of this estimate when the distributions of the 

regressors are: 

(a) The vector (X1 ,X2 ) is distributed as a bivariate normal with mean vector 0 and 

covariance matrix I. This situation may be considered as a benchmark to interpret 

the other results. 

(b) For i = 1,2, Xi follows a standardized t-distribution with 3 degrees of freedom and 

both regressors are independent. This case points at the effect of regressors whose 

distributions have heavy tails. 

(c) For i = 1,2, Xi is distributed as a standardized chi-square with 4 degrees offreedom. 

Assymetric regressors are considered in this case. 

In Table 1 we observe that regressors (b) and (c) give a larger maxbias curve than the 

elliptical case. Moreover, asymmetric regressors of item (c) yield a better behavior of the 

maxbias curve than heavy tailed regressors of case (b). 

3.2 S-ESTIMATES 

For the sake of simplicity we suppose in the rest of this section that Fa is the standard 

normal distribution and Ga is the multivariate normal distribution with mean vector 0 

and co\"ariance matrix the identity I. We will apply Corollary 1 to different sorts of robust 

regression estimates. 
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First, consider an S-estimate, T, based on a function X. Then, 

T(H) = argminS(FHO)' o ' 
where S(FHO) is a scale M-estimate of the absolute value of the residuals, that is, the , 
functional S(F) is defined as the solution of the equation 

(8) 

Suppose that the function X satisfies the following Assumption: 

Assumption 3 X is even, monotone on [0,(0), bounded, continuous at 0 with 0 = X(O) < 
X( (0) = 1 and with at most a finite number of discontinuities. 

It is not difficult to check Assumptions l(a) and l(c). Yohai and Zamar (1993), Lemma 

.5.1, show that S-estimates with X functions satisfying Assumption 3 are E-monotone. 

Therefore we can obtain the maxbias curve applying Corollary l. 

It is easy to show that, for S-estimates, (see Remark 2) 

To illustrate the use of Corollary 1, define g(s) = Eq,X(Y/s), where cl> denotes the 

standard normal distribution. Let SI = S[(l - E)FHo,O* + Eb'O]' Since the distribution of 

y - O""x is normal with mean 0 and variance 1 + 110*112, 

(
y - O*'x) (SI) 

(1 - E)EHoX SI = (1 - E)g (1 + 11 0*11 2)1/2 = b. 

Therefore 

SI = (1 + 110*1I2)1/2g-1 (_b_) . 
1- E 

Let S2 = limn_ oo S[(l - E)FHo,o + Eb'n]. Therefore, S2 must satisfy 

and it follows that 

S2 =g-1 -- . (
b- E) 
1- E 
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To apply Corollary 1, we compute the value of 118*11 resulting from the equation SI = S2 

(see equation (7)). Using expressions (9) and (10), we have 

B~( c) = 118*112 = [9-1 

(8)]2 _ 1. 
9-1 (_b) 

1-f 

Notice that this expression coincides with formula (3.18) in Martin et al. (1989). 

3.3 T-ESTIMATES 

(11) 

Let S(F) be an S-estimate based on a function Xl as defined in equation (8). Yohai and 

Zamar (1988) defined the class of regression T -estimates as T (H) = arg min8 T (F H,8 ), 
where 

2 2 ( U ) T (F) = S (F)EFX2 S(F) . 

The idea is to minimize an efficient and robust scale estimate, which is an M-estimate 

modified by the factor EF X2[Uj S(F)], to reach simultaneously high efficiency and high 

breakdown. point. 

Suppose that both Xl and X2 satisfy Assumption 3 and that X2 satisfies 

Assumption 4 X2 is differentiable and 2X2( u) - X~( u)u ~ 0, for every u. 

Under this hypothesis, it can be shown that the functional T(F) satisfies Assumption 

1 and therefore Corollary 1 can be applied (see Yohai and Zamar, 1993). As in the case 

of S-estimates we also have 

Define T1 = T2[(1 - c)FHo,8* + cDo], T2 = limn-+oo T2[(1- c)FHo,o + cDn], and 9i(S) = 
EcpxAYjs), for i = 1,2. Some tedious manipulations, similar to those for S-estimates, 

gIve 

and 

T1 = (1 + 110'11') [9,1 C ~ ,) r (1 - ')9' [9,1 C ~ J 1 ' 

T2 = [9,1 (~ = :) r [(1 - ')9, [9,1 C ~ ,) 1 + ,1· 
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vVe impose Tl = T2 to obtain 

-1. (12) 

RE~IARK 3. Define 

From (11) and (12), 

(13) 

This is the relationship between the bias of the S-estimate based on Xl and the bias of 

the T-estimate based on Xl and X2. Since H(E) is bounded for E < min{b,1 - b}, the 

breakdown point of the T-estimate is E* = min {b, 1 - b}, equal to that of the S-estimate 

corresponding to Xl. Therefore, to determine the breakdown point of the regression T­

estimates, the function X2 is irrelevant and we can choose it appropriately to attain a high 

efficiency (see details in Yohai and Zamar, 1988). 

In Table 2 some selected values for the maxbias curves of several S- and T-estimates 

are displayed. First, "ye have considered an S-estimate based on a bisquare Tukey func­

tion. The tuning constant has been fitted to attain a breakdown point of 0.5. \Ve have 

combined this S-estimate with another bisquare Tukey function to obtain aT-estimate 

with breakdown point of 0.5 and efficiency of 95%. The maximum bias of the S-estimate 

is considerably better although its efficiency is very low (we recall that Hossjer (1992) has 

shown that the efficiency of an S-estimate with breakdown point 0.5 is at most 35%). 

(Table 2 about here) 

(Figure 1 about here) 

It is more interesting to compare the bias performance of the Tukey T-estimate with 

another T-estimate. vVith this purpose we have considered the T-estimate built by taking 

Rousseeuw's L~IS-estimate as robust S-estimate and a bisquare function as X2. (LMS 

T -estimate). Since the bias of the LMS-estimate is better than that of Tukey S-estimate, 

we obtain a lower bias for the second T-estimate. Both bias curves have been plotted in 

Figure 1. 
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3.4 R-ESTIMATES 

Hossjer (1994) defined the signed R-estimates which are based on the following estimating 

functional T(H) = arg mine J(F H e), where , 

J(F) = 1000 

a[F(u)]udF(u), a(u) ~ o. (14) 

These estimates consist in choosing the vector of parameters that minimizes a weighted 

average of the absolute values of the residuals. The weights are given by a function a( u) of 

the signed ranks of these residuals. Hossjer (1994) observed that if a(u) vanishes outside 

the interval [0, 1 - a], these estimates have breakdown point €* = min {a, 1 - a}. 
An interesting particular case is the a-least trimmed absolute value (a-LTAV) estimate 

which is defined by taking 

a(u)={ 1, lu l :::;l-a. 
0, lul > 1 - a 

(15) 

Observe tl).at Rousseeuw's least trimmed squares estimate is also defined with the function 

a(u) given in (15) but replacing the functional (14) with 

Yohai and Zamar (199:3) defined the general class of functionals 

J(F) = 1000 

a[F(u)]ukdF(u), 

which includes all the estimates defined in this subsection. 

Suppose that a( u) satisfies the following assumption, 

Assumption 5 (a) a(u) is continuous on [0,1 - a]. (b) a(u) = 0 if 1 - a < u :::; l. 
(c) a ( u) > 0 if 0 < u < 1 - a. 

(16) 

Yohai and Zamar (1993), Theorem 5.2, proved that under Assumption 5 the function­

als defined in equation (16) are €-monotone. Assumptions l(a) and l(c) are a consequence 

of Lemma A.4. in the same work. Therefore we can apply Corollary 1 to obtain the 

maxbias curve of these estimates. 
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Let us introduce the following notation: 

Ll, = <1>-1 [1 - 2~ ~ :)] , Ll, = <1>-1 [1- 2(1~ J and 

l(u) = (1- E)FHo,a(u) = (1 - E)[2<I>(u) - 1]. 

Next, we apply Corollary 1 and use Lemmas 2 and 3 in the appendix to obtain the 

max bias curves of the estimates defined in (16) for E < min { a, 1 - a}: 

B~(E) = [ !a{j.! a[l(u)]u\?(u)du ]2Ik_1. 
fa 2 a[l(u) + E]Uk<p(u)du 

It is interesting to particularize this formula to the following two especial cases: 

(17) 

1. a-LTAV ESTIMATES. In this case k = 1 and a(u) is defined as in the equation (15). 

I t follows from (17) that 

B2(E) = [fa:! U<P(U)dU]
2 

-1 = 
Q f~2wp(u)du 

2. n-L1'S ESTIMATES. In this case k = 2 and a(u) is defined as in the equation (15). 

It follows from (17) that 

B
2( ) _ fa{j.j u\?(U)dll _ 1 _ <I>(~1) - 0.5 - ~l<p(~d _ 

E - il - 1 
Q fa 2 u2<p(u)du <I>(~2) - 0.5 - ~2<P(~2) . 

In Table 2, several values are displayed of the maxbias curves of these two particular 

cases when a = 0.5. Observe that 0.5-LTS performs better than 0.5-LTAV, especially 

for large amounts of contamination. In general, if we consider the sequence of estimates 

defined by a(u) as in the equation (15) and a = 0.5 when k ranges over the positive 

integers, it is possible to check numerically that as k increases the bias performance is 

better uniformly in Eo This is not surprising since as k -t 00, these estimates approach the 

Ll\IS-estimate. Also notice that for small values of E, the bias curves of LTS and LTAV 

are better than those for T-estimates. However, we recall that, in general, R-estimates 

with high breakdown point are not efficient (see Hossjer, 1994). In Figure 2, we plot the 

maxbias curves of 0.5-LTS and 0.5-LTAV estimates. 

(Figure 2 about here) 
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4 Maxbias curve for M-estimates with general scale 

M-estimates of regression with general scale are an important example of regression ad­

missible estimates. Martin et al. (1989) defined them as 

. (y - 8
f x) 

T(H) = argmonEHP S(H) , (18) 

where S(H) is a bias robu.st estimate of the scale of the residuals and P satisfies Assump­

tion 3. Yohai's (1987) MM-estimates are within this class. 

Unfortunately, we cannot apply Theorem 1 to compute the maximum bias of M­

estimates with general scale because it depends on the bias properties of the scale func­

tional, S(H), which we did not consider in the result of Section 2. Despite of this fact, 

we obtain in this section an upper bound and a lower one for the maximum bias of M­

estimates with general scale. vVe also show that in some important cases and small values 

of E, both bounds are identical so that we can give the exact value of the maxbias curve 

in those particular cases. 

Introduce some notation: SI = infHEv• S(H), S2 = sUPHEV. S(H), and 

. (y - 8
fx) (y) h(t, s) = lilf EHoP - EHoP - . 

11811=t s s 

The following two functions play an important role in our bounds: 

vVe will consider as scale estimate, the scale of the residuals obtained from a bias 

robust S-estimate of regression. That is, we will assume 

Assumption 6 X is a function satisfying Assumption 3 and S(H) = min8 S(FH8 ), , 
where S(FH 8) is defined as in equation (8) with b = bx' The maxbias curve of the , 
corresponding regression S-estimate, Bx( E), is such that BA E) < 1211 [E/(l - E)]. 

Since it is important for S(H) to be bias robust, it is convenient to use jump X 

functions due to their minimax-bias properties (see Martin et al., 1989). 
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Theorem 2 Let T be an NI-estimate of regression with general scale as defined in (18)) 

where p satisfies Assumption 3 and S(H) satisfies Assumption 6. Then) under Assump-

tion 2) 

(19) 

The exact value of the maxbias curve can be found by proving that, for some values of E, 

the bounds given in Theorem 2 coincide. We will give a sufficient analytical condition for 

this fact when the regressors are spherically distributed and will check it numerically for 

some important examples. This fact will prove that our bounds are sharp. Also notice 

that S2 is easy to compute and hence we can easily obtain the function hI. However, 

computing the function h2 involves an optimization problem that may be very difficult 

to solve in general. If both bounds are identical, we will only have to handle the simpler 

function hI. 
When the regressors are spherically distributed, we can drop the infimum in the defi­

nition of h(t,s) and hence we can write h(8,s), hl(8) and h2(8). Let 8* = h11 [E/(1-E)]. 
If the function h(8*,s) is decreasing for SI < s < S2, then hl(8*) = h2(8*). In this 

case both\ the lower bound and the upper one, would take the same value. Therefore, a 

sufficient condition for this to happen is 

oh(8*,s) 0 
::l <, 
uS 

for each S E (SI, S2). (20) 

From now on, suppose normality and sphericity as in Section 3. Let 'ljJ = p' and 

~/ = (1 + 118*11 2)1/2. Assuming that we can derive under the integral sign, the condition 

(20) is equivalent to 

Gb,s) = E~[bZ/s)'ljJbZ/s)] - E~[(Z/s)'ljJ(Z/s)] > 0 for each sE (SllS2) (21) 

Since ~(2: 1 and G(1,s) = 0, a sufficient condition for (21) is that G(r,s) is increasing 

in r for s E (SI, S2) and 1 ~ r ~ ,. Therefore, a new sufficient condition is 

H(r/s) 
oG(r,s) 

r--:--
or 

E~ [(r / s ) Z'ljJ (r Z / s)] + E~[(r2 Z2 / s2)'ljJ'(r Z / s)] 

> 0, for each sE (S1,S2), 1 ~ r ~ ,. (22) 

In Figure 3, \ve have plotted the function H(r / s) corresponding to the case when p is 

the Tukey bisquare function. vVe can see that there is a range of values for r / s such that 
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the function is positive. For r/s = 2.45, we have H(r/s) = 0, therefore H(r/s) > 0 for 

each r / s < 2.45. 

(Figure 3 about here) 

To verify (22), we can compute 8* and S1 for each fixed amount of contamination Eo 

Since for each s E (S1,S2), we have ,/S1 > r/s, then Hb/st) > 0 implies H(r/s) > 0 for 

each s E (S1' S2) and 1 :::; r :::; " and the sufficient condition (22) is satisfied. 

In the example of the Tukey bisquare function (where the tuning constant c has been 

fitted to attain an efficiency of 95%), we report the results in Table 3. We have consid­

ered two robust scale S-estimates: the S-estimate based on a jump function and the one 

based on a Tukey bisquare function where the tuning constant has been fitted to attain 

breakdown point 0.5. \Ve call these estimates T 1 and T 2 respectively. For c < .15, it 

can be numerically checked that the condition (22) is satisfied and hence the lower bound 

and the upper one are identical both for T1 and T 2 • The plot of the maxbias curves is 

displayed in Figure 4. 

(Table 3 about here) 

(Figure 4 about here) 

5 Further remarks 

\Ve finish our work by pointing out some related open problems and further applications 

of the ideas we have introduced. Croux et al. (1994) have proposed to minimize a scale 

1I-estimate of the residual differences {1(Yi - 8'Xi) - (Yj - 8'xj)l: i < j} instead of a 

scale M-estimate of the absolute value of the residuals, defining in this way a GS-estimate. 

Although Assumption 1 does not hold for GS-estimates and we cannot apply Theorem 

1, it is possible to use some of the ideas introduced in this paper to avoid the sphericity 

assumption in the maxbias curve computations. If we redefine k(c,s, 11,811), see equation 

(14) in the quoted work, to be 

k(c, s, t) = inf [(1 - c?g(s, 11,811) + 2c(1 - c)g(s, 11,811)], 
11,8li=t 
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it is possible to show that Theorem 4 in Croux et al. (1994) is valid even for nonspherical 

distributions. However, we must still assume that the distribution of 8'x is symmetric 

and unimodal for each 8 =I- O. The key point is that in the proof of Theorem 4 we must 

appropriately choose the direction of the contaminations which is no longer indifferent. 

Our method to compute maxbias curves cannot be applied when the residuals are 

weighted to penalize high leverage observations. Such is the case of, for example, GM­

estimates. Only Martin et al. (1989) have found out an expression for the maxbias 

curve of these estimates but assuming sphericity and known regressors covariance matrix. 

Therefore, the general problem of computing the maxbias curves of the estimates in this 

class still remains open. 

Appendix. Proofs 

The following lemma is needed to prove Theorem 1. 

Lemma 1 Define 

m(t) = inf J[(1 - e)FH 8 + eb'ol· 
11 811=t 0, 

Then, under Assumptions 1 (b) and 2, 

(a) There e.rists 8 t E !RP such that 118 t ll = t, and m(t) = J[(1 - e)Frr II + eb'ol. 
no,Ut 

(b) m(t) is strictly increasing. 

Proof: 

From Assumption 1 (b), it is obvious that if Fn and Fare distribution functions on 

[O:oc), continuous on (0,00), such that Fn(u) ---+ F(u) for each u > 0, then 

lim J(Fn) = J(F). 
n-oo 

Suppose that {8 n} is a sequence such that 8n ---+ 8. Define Fn = (1 - e)F Ho,8
n 
+ eb'o. 

It follows that liffin_oo J(Fn) = J[(1 - e)FHo ,8 + eb'ol. That is, the function f(8) = 

J[(1 - e)FHo ,8 + eb'ol is continuous. Since {8: 11811 = t} is a compact set for each t, the 

infimum in the definition of m(t) is actually a minimum. This proves part (a). 

Lemma A.l in Yohai and Zamar (1993) shows that, under Assumption 2, FHo ,>..8(u) is 

strictly decreasing as a function of A. Let t1 and t2 be such that t1 > t 2. Applying part (a), 
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there exists 01 such that m(t1 ) =J[(l-E)FH 0 +E80]. SinceFH 0 (u)<FH (/)0 (u), 
0, 1 0, 1 0, t2 tl 1 

it follows from Assumption l(b) that 

m(t1 ) = J[(1- E) FHo,Ol + E80] > J[(l - E)FHo ,(t2/tl)01 + E80]. 

But, by definition of m(t), 

J[(1 - E)F HO,(t2/ tI)01 + E80] 2: m(t2)' 

The last two inequalities prove part (b). 0 

Proof of Theorem 1: 

First, we prove that BT(E) ::; i*. Let 8 E IRP be such that 11811 = t > t*. It is enough 

to show that there is not any H E V~ such that 8 = arg minO J (F H,O)' "Ve will actually 

show that for every H E 1~, J(FH,j}) > J(FH,O)' 
It is clear that for each H E 1~, and u > 0, 

F 0- (u) ::; (1 - E)F 0- (u) + E80 (u). H, Ho, (23) 

Inequality (23), Assumption l(a), the definition of the function m(t), and Lemma l(b) 

imply that, for each H E ~, 

J(F 0-) ~ J[(l - E)F 0- + E80] ~ m(t) > m(t*). H, Ho, (24) 

Equation (6) and Assumption 1 (c) imply 

(25) 

Finally, inequalities (24) and (25) yield the first part of the result. 

~ow, \ve show the inequality BT(E) ~ i*. Let t E IR be such that t < t*. The idea of 

the proof is to find a distribution H E 1~ such that IIT(H)II > t. If we can find such a 

distribution for every t < t*, we will have shown the inequality. 

By Lemma l(a), there exists Ot such that m(i) = J[(l - E)FH 0 + E80]. Define the 
0, t 

following sequence of contaminated distributions: fIn = 8(Yn,Xn) where Xn = nOt and Yn 
is uniformly distributed on the interval [nt2 - (l/n), nt2 + (l/n)]. If Fn is the uniform 

distribution function on [-l/n, l/n]' then for each {3 E IRP and u > 0, 

(26) 
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Let Hn = (l-t)Ho+tHn. Suppose that supn IIT(Hn)11 < t in order to find a contradiction. 

Under this assumption, there exists a convergent subsequence, denoted by {T(Hn)}, such 

that 

lim Tn = lim T(Hn) = 0, where 11011 = t < t. 
n--+oo n~oo 

Notice that 0 ~ 10~01 ~ II0tllll01l = tt < t2
• Hence, le -10'011> o. It follows from (26) 

that 

J~~ FHn,TJu) = 0, for u > o. (27) 

On the other hand, t 2 
- O~Ot = O. From (26), 

limFH- O(u)=I, foru>O. 
n--+oo n, t 

(28) 

From (27) and Lemma A.l in Yohai and Zamar (1993), we have that for each u > 0, 

(l-t)F O-(u) Ho, 
< (1 - t)FHo,o(u) 

J~~[(1 - t)FHo,o(u) + tUn(u)]. (29) 

Applying 'Assumption l(b) and inequality (29), 

lim J(F HT) ~ lim J[(1 - t)FHo,o + tUn] = m(t*). 
n-oo n, n n--+oo 

(30) 

From (28), we have that for each u > 0, 

E.~ FHn,Ot(u) = (1 - t)FHO,Ot(u) + t80 (u), for u > O. (31) 

From Assumption l(b), equation (31), and Lemma l(b), 

J~~ J(FHn,Ot] = J((1 - t)FHO,Ot + t80] = m(t) < m(t*). (32) 

Applying (30) and (32), we have that for n large enough, 

This last inequality is a contradiction since T n = arg minO J (F Hn,O). 
For every t < t* we have found a sequence of distributions {Hn} in the neighborhood 

l~ such that supn IIT(Hn)1I ~ t. The second part of the result follows immediately from 

this fact. 0 

The following two lemmas are needed to get the expression (17). 
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Lemma 2 Let Fn = (1 - E)FHQ,o + EUn. Under Assumption 4 and for E < 0::, 

(33) 

where J is the functional defined in (16). 

Proof of Lemma 2: 

Observe that Fn(u) ~ l(u) for each u > O. We just have to apply Lemma A.4(b) in 

Yohai and Zamar (1993) to the sequence {Fn }. 0 

The proof of the following lemma is a simple calculation and it will be omitted. 

Lemma 3 Let F ()* = (1- E)F HQ,8* + E80 • Under Assumption 4 and for E < min {O::, 1- o::}, 

(34) 

lchere J i'8 the functional defined in (16). 

REMARK 4 To obtain the expression (17) we just have to solve for 118*11 the equation (see 

the notation of Lemmas 2 and 3) 

Proof of Theorem 2: 

Since for every s > 0 the functional J(F) = EFP(Y/s) satisfies Assumption l(b), we 

can proye, following the lines of the proof of Lemma 1, that for every s > 0, h( t, s) is a 

strictly increasing function of t. Moreover, for each t > 0, there exists (}t E IIF such that 

It follows that hI (t) is also strictly increasing. 
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vVe show first that BT( E) ~ t2 where t2 is such that h2(t2) = E/(1 - E). Let iJ E IRP 

be such that t = IliJll > t 2 • We shall prove that 

y-()x Y ( -') EHP S(H) > EHP (S(H)) , for each H E ~. (35) 

Let H = (1 - E)Ho + EH, the following inequalities hold: 

Therefore, for each H E ~, 

( 
y - iJ' x) ( Y) E 

EHop S(H) - EHop S(H) > 1 _ E' that is, 

(1 - ,)EHop (y S(;')x) > (1 - ,)EHop (S(~)) +, 

It follows 'that, for every H E ~~, 

y-()x ( -') 
EHP S(H) > (1- ,)EHop (Y S(;')x) 

> (1 - E)EHop (S(~)) + E 2: EHP (S(~)) , 
that is, inequality (35) holds. 

Next, we show that BT( E) 2: t l , where tl is such that hI (tl) = E/(l - E). Let t > 0 be 

such that BxJ E) < t < t l , where Bx( E) < tl by Assumption 6. It is enough to show that 

BT(E)2: t . 

There exists ()t E IRP such that 

Observe that, as hI is strictly increasing, hl(t) < hl(tt). It follows that 

( y-()~x) (Y) (1 - E)EHop 82 < (1 - E)EHop 82 + E. (36) 
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Define the following sequence of contamination distributions: Hn = b(Yn,Xn ) where 

Xn = nOt and Yn = X~Ot = nt2
• Let Hn = (1- c)Ho + cHn. Suppose that supn IIT(Hn)l1 < 

t in order to find a contradiction. Under this assumption, a convergent subsequence, 

denoted by {T(Hn)}, exists such that 

1im T(Hn) = 1im Tn = 8, where 11811 = i < t. 
n-+oo n-+oo 

vVe have that 

1· I Yn - 'T~xn I d I Yn - O~xn I .r h n~~ S(Hn) = 00, an S(Hn) = 0, lor eac n. (37) 

Next, we prove that limn->oo S(Hn) = S2. From equation (10), 

Therefore, if the S-estimate of regression, Tx(H), satisfies (3 = 1iffin->oo Tx(Hn) = 0, 

then limn->oo S(Hn) = S2' Since 11(311 ~ Bx( c) < b, then limn->oo IYn - (3'xnl = 00. If 
1 = limn->oo S(Hn), then we obtain that 

(
y - (3'X) (1 - c)EHoX 1 + c = bx' (38) 

Suppose that 11(311 > O. Then, 

(39) 

By (38) and (39), 1 > S2. This is a contradiction since S2 = sUPHEVe S(H). Therefore 

11(311 = 0 and liffin->oo S(Hn) = S2' We use this fact to obtain equations (40) and (41). 
Equations (36) and (37) imply, 

(l-')EH'P(Y~:'X) +, ( 40) 

> (1 - C)EHop (:J + c > (1 - C)EHoP (Y ~:~x) 
On the other hand, applying (37), 

(41) 
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Therefore, for n large enough, 

This last inequality is a contradiction since 

Tn = argmjnEHnP (YS(:~~). 
For every t > 0 such that Bx(E) < t < tl we have found a sequence of distributions {Hn} 

in the neighborhood v: such that SUPn IIT(Hn)11 ~ t. Therefore BT(E) ~ t1 • 0 
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c 0.05 0.1 0.15 0.2 0.25 0.3 

Case(l) 0.52 0.82 1.13 1.51 2.01 2.73 

Case(2) 0.62 1.12 1.63 2.21 3.00 4.33 

Case(3) 0.52 0.92 1.23 1.71 2.31 3.23 

Table 1: LMS-estimate maxbias curve for non-elliptical distributions of the regressors. 



E 0.05 0.1 0.15 0.2 0.25 0.3 

Tukey S-estimate 0.55 0.87 1.23 1.65 2.17 3.02 

Tukey T-estimate 0.92 1.45 2.00 2.65 3.39 4.49 

LMS-estimate 0.52 0.82 1.13 1.51 2.01 2.73 

LMS T-estimate 0.90 1.41 1.92 2.51 3.23 4.18 

0.5-LTAV-estimate 0.74 1.34 1.84 2.61 3.98 6.62 

0.5-LTS~estimate 0.63 1.02 1.45 2.02 2.85 4.19 

Table 2: Maxbias curves for several important robust regression estimates. 



E .01 .03 .05 .07 .09 0.11 0.13 0.15 

BT! (E) 0.31 0.57 0.77 0.96 1.15 1.34 1.55 1.77 

BT
2

(E) 0.31 0.57 0.77 0.95 1.14 1.32 1.52 1.73 

Table 3: Maxbias curve computations for the MM-estimates Tl and T 2 • 
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Figure 1: 1Iaxbias curves of Tukey (solid line) and LMS (dashed line) T-estimates. 
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Figure 2: Maxbias curves of O.5-LTS (solid line) and O.5-LTAV (dashed line) estimates. 
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Figure 3: Plot of the function H(r) when p is the Tukey bisquare function. 
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Figure 4: lVlaxbias curves for the MM-estimates Tl (dashed line) and T2 (solid line). 


