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Abstract ______________________________________________________________ _ 

\Ve present a model for data in the form of match pairs of counts. Our work is motivated 
by a problem in fission track analysis, where the determination of a crystal age is based 
on the ratio of counts of spontaneous and induced tracks. It is often reasonable to as­
sume that the counts follow a Poisson distribution but, typically, they are overdispersed 
and there exists a positive correlation between the numbers of spontaneous and induced 
tracks at the same crystal. We propose a model that allows for both overdispersion and 
correlation by assuming that the mean densities follow a bivariate Wishart distribution. 
Our model is quite general, having the usual negative binomial or Poisson models as spe­
cial cases. \Ve propose a maximum likelihood estimation method based on a stochastic 
implementation of the EM algorithm and we derive the asymptotic standard errors of the 
parameter estimates. vVe illustrate the method by a data set of fission tracks counts in 
matched areas of zircon crystals. 
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1 Introduction 

Data in the form of matched pairs of counts arise in a variety of applications, such as 
numbers of grasshopper progeny with and without aB-chromosome (Shaw et al., 1985), 
treatment and control counts in autoradiography (Blackett and Parry, 1977), numbers of 
red and white corpuscles in blood samples, numbers of accidents experienced by individ­
uals in successive time periods, and many others. A natural model for such data is that 
the counts have Poisson distributions with means that may vary both within and between 
paIrs. 

In such applications a parameter of interest is often the ratio of the Poisson means, or 
some function of this ratio, and there is usually another incidental parameter associated 
with each pair of counts. This situation has been considered recently by Davison (1992) 
and Morton (1991) to which we refer further below. In this article we consider a parametric 
model for overdispersion in paired Poisson counts, in the context of modelling "mixed" 
ages in fission track analysis, though the model is more gererally applicable. 

The rest of the paper is organized as follows: Section 2 gives some illustrative data 
and context. Section 3 briefly discusses extra-binomial models and Section 4 presents a 
parametric extra-Poisson model. In Section 5 we consider maximum likelihood fitting of 
the parametric model and we give some concluding remarks in the last section. 

2 Data and context 

The modelling of "mixed" fission track ages can provide estimates of times and tem­
peratures that are of interest in the oil exploration industry and in various geological 
applications (see Hurford, 1991, for a recent review). 

Table 1 shows a typical set of data, which are numbers of spontaneous and induced 
fission tracks counted in matched areas of crystal and mica for 24 zircon crystals. Spon­
taneous tracks form over geological time by spontaneous fission of trace 238U. Induced 
tracks are created artificially by placing the sample in a nuclear reactor and bombarding 
it with thermal neutrons, a measured proportion of which collide witli trace 235U atoms, 
thereby causing them to fission. This indirectly measures the amount of trace uranium 
in the crystal. 

Galbraith and Laslett (1993) considered statistical models for such data. It is supposed 
that the numbers of spontaneous and induced tracks (}}, 1'2) counted over matched areas 
A for a single crystal, have conditionally independent Poisson distributions with means 
ApI and Ap2 respectively. In this context the Poisson model is particularly convincing 
(Galbraith et al., 1990). The spontaneous track density PI depends on the age of the 
crystal, the amount of trace 238U it contains, and the mean length of spontaneous tracks. 
The induced track density P2 depends on the amount of trace 235U and on the mean 
length of induced tracks; P2 also depends on the thermal neutron dose, which is measured 
independently. To a close approximation, the ratio Pt! P2 is given by 

(1) 

which depends on 
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Table 1. 
Numbers of spontaneous and induced fission tracks 

counted in matched areas for 27 zircon crystals: 
crystal Yt Y2 area crystal Yt Y2 area 

1 24 459 80 15 2 70 49 
2 8 52 30 16 3 94 28 
3 136 310 30 17 23 128 60 
4 56 257 70 18 153 264 70 
5 3 57 70 19 90 143 32 
6 6 332 80 20 31 49 16 
7 73 98 14 21 38 120 40 
8 131 226 50 22 51 46 25 
9 9 173 80 23 38 85 12 

10 6 28 12 24 127 45 20 
11 141 229 70 25 5 24 30 
12 11 74 36 26 24 56 20 
13 12 61 18 27 10 31 18 
14 10 28 40 

• the crystal's age t, which is a parameter of interest, 

• the ratio ldl2 of mean lengths of spontaneous and induced tracks, which reflects 
the amount of heat the crystal has experienced and is also of interest, 

• the 235U :238U isotopic ratio I, which is usually assumed to be fixed at 0.00725, but 
which conceivably may vary on a microscopic scale, and 

• the thermal neutron dose <I> and constants).. f and a f that are independently cali­
brated. 

Typically the amounts of trace uranium and areas vary substantially between crystals (as 
they do in Table 1) and hence Yt and Y2 will be highly correlated when considering their 
variation between crystals. 

In a sample of crystals the ratios pd P2 will vary if the crystals have different ages. 
They may also vary due to the effect of heat (particularly for the mineral apatite), even 
if all crystals have the same age, because the spontaneous tracks will shorten, possibly 
by different amounts for different crystals, so that ld12 varies. Thus it is of interest to 
develop models that allow for variation between crystals of PI, P2 and of PI / P2· 

3 Extra-binomial models 

A standard way to model such data is to use the binomial distribution, considering the 
total Yt + Y2 as the "number of trials" and Yt as the "number of successes"; that is, to 
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condition on the sum of two Poisson random variables. If 0 is the probability of success, 
then 

_0_ = PI 
1 - 0 P2 

Then, to model variation between crystals, one can assume a distribution for o. This 
approach was taken by Galbraith and Laslett (1993) where 0 was assumed to have a 
logistic normal distribution, a model discussed by Williams (1982), Anderson (1988) and 
Goutis (1993) among others. 

Although this approach simplifies the computations, particularly by avoiding reference 
to the many nuisance parameters, it is not clear that such a model faithfully represents 
the reali ty. \Vi th respect to this point, Morton (1991) considered "extra-binomial" models 
derived from "extra-Poisson" variables conditional on their total. That is, he allowed the 
Poisson means to vary randomly between pairs, but then he analysed Yi conditional on 

Yi + 12· 
In the absence of extra-binomial variation (i.e. when PI! P2 is constant), likelihood 

based inferences are identical whether one considers Poisson data or binomial data, as 
Yi + }'2 is in some sense ancillary. This situation is analogous to that for contingency 
tables, where there has been a long-standing discussion on whether or not one should 
condition~ on marginal totals, with good arguments on both sides. But if the random 
variation in PI and P2 induces variation in the ratio PI! P2, then the statistic Yi + 12 is no 
longer ancillary. Both the conditional distribution of Yi given Yi + 12 and the marginal 
distribution of }1 + 12 depend on all parameters, so that conditioning on Yi + 12 leads to 
a loss of information. This argues against the approach of Morton (1991). 

Davison (1992) developed a test for treatment effect heterogeneity (i.e. variation of 
PI! P2) for paired Poisson counts, and briefly discussed a mixture model for inference 
in the presence of overdispersion. In §4 we propose a different model that seems more 
straightfonvard for assessing dispersion. 

4 A parametric model 

\Ve model the data directly as overdispersed Poisson counts, by assuming a joint distri­
bution for (PI, P2) that allows for the correlation between them, due to their being from 
the same crystal. 

Traditional univariate models for extra-Poisson variation assume that the Poisson 
mean comes from some distribution, common choices being the gamma and the log­
normal. From an empirical point of view both these distributions often yield similar 
results. For a lognormal mixing distribution, the resulting distribution of the count does 
not have a tractable form; however this mixing distribution is a natural generalisation 
of log-linear models, where fixed and random effects are added on the same scale. For a 
gamma mixing distribution, the count is negative binomial. This choice is also satisfying 
in that the parameters (PI, P2) are mixed on their natural scale of mean density per unit 
area. 

To model paired data we use a multivariate generalisation of the gamma distribu­
tion, namely the vVishart. We introduce an auxiliary random variable Pc, to model the 
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covariance, and let the 2 x 2 matrix random variable 

R = (PI Pc) 
Pc P2 

have a \Vishart distribution W 2 (v, M/v) with degrees of freedom v and mean matrix M. 
This has probability density function 

(2) 

defined for R positive definite. In (2), M is a positive definite matrix defined as 

M = (/11 /1e ) 
/1e /12 

(3) 

where E(pt} = It!, E(P2) = /12 and E(Pe) = /1e. The parameter /1e determines the 
correlation between PI and P2 as 

/1~ corr (PI, P2) = --
/11/12 

(4) 

which is necessarily positive. The fourth parameter v (the degrees of freedom) is also 
positive and describes the variation of PI, P2 and pc about their means; in particular each 
of them has coefficient of variation equal to )2/ v. 

Note that the main parameter of interest is /1t! /12 since we are interested in the fission 
track age, while /11 + P2 is of no direct interest. The squared coefficient of variation of the 
ratio Pt! P2 is approximately 

(5) 

The square root of (5) is also of interest because it quantifies the relative variation of Pt! P2 
between crystals, and hence it quantifies the variation of fission track ages t, assuming 
the other factors in (1) are constant. 

In this model, the marginal distributions of Yi and Y2 are negative binomial with the 
same index v. Their bivariate distribution has mean (Ap!, A/12) and covariance matrix 
given by 

This is a more general bivariate negative binomial distribution than that defined in John­
son and Kotz (1969, page 292). The latter has just three parameters and corresponds to 
the special case P~ = P1P2 discussed below. In our context, the fourth parameter (es­
sentially Pc) allows for the important possibility that the ratio Pt! P2 might vary between 
pall'S. 
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Summarising, for data Yii, Y2i, i = 1,2, ... , n we have 

independently given Ri, and 

Ri = (Pl~ PCi.),...., W 2 (v, M) 
pc, P2, V 

where M is given by (3). 

4.1 Submodels 

It is interesting to see how the model degenerates as the parameters take values on the 
boundary of the parameter space. 

When /1~ = /11/12 the matrix M is singular and corr(pl' P2) = 1. This implies that 
the ratio A = pd PI is the same for all crystals, corresponding to the absence of extra­
binomial variation, though not of extra-Poisson variation. Marginally, PI and P2 have 
gamma distributions with the same index v /2 amd means /11 and A/11 respectively (indeed 
P2 = APl where A is fixed). Johnson and Kotz (1969, page 292) defined a negative 
multinomial distribution as a k-variate version of this case. 

When /1c = 0 then PI and P2 have independent gamma distributions with the same index 
v /2 amd means /11 and /12. Hence the counts for the same pair (Yi, 1'2) have independent 
negative binomial distributions with the same index v /2. This model was discussed, 
though not in the context of paired data, by Bliss and Owen (1958). It is equivalent to 
the model considered by Morton (1991, §2) who then went on to condition on Yi + 1'2. 

When v - 00 the variances of PI, P2 and pc are zero, corresponding to the absence of 
extra-Poisson variation. In this case Yi and 1'2 have independent Poisson distributions 
with means Alll and Ap2. 

When v - 0 the variances of PI and P2 become infinite. Then estimation of PI / P2 is 
impossible as there is too much noise in the data. There is also a technical problem with 
the \Vishart distribution because the density (2) does not exist for v :s; 1. Hence small 
estimates of v should be a warning that the data are uninformative. 

5 Estimation of parameters 

\Ve develop a computational procedure to compute maximum likelihood estimates and 
their asymptotic precisions for the full model and for the various sub-models, using a 
stochastic implementation of the EM algorithm (Dempster, Laird and Rubin, 1977). 

5.1 Log likelihood 

For the four parameter model the log-likelihood, apart from an additive constant, is 

L(v, M) = t log {J pni e-AiPli prt i 
e-AiP2i f(Ri) dRi} (6) 

,=1 
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where f(R) is given by (2) and the integral dRi is taken over the domain PIi ~ 0, P2i ~ 0, 

P~i ::::; PIiP2i· 
Direct maximisation of L is daunting, so we turn to other computational techniques, 

in particular to the EM algorithm, which is often suitable for mixture models. For the 
M-step we suppose that we have observed Ri, i = 1,2, ... , n, so we find M and v to 
maXImIse 

i=1 

thereby avoiding the integrals in (6). For the E-step we "estimate" Ri from the data 
and current parameter values, using appropriate conditional expectations. Starting with 
trial values of M and v and iterating between the E-step and M-step eventually gives 
convergence to the maximum likelihood estimates of M and v. One can also derive 
the information matrix from the EM algorithm using the method of Louis (1982) or its 
stochastic implementation (Wei and Tanner, 1990), for which only the gradient and second 
derivatives of the complete likelihood are needed. Computational details are given in §5.3. 

For the special case /-l~ = IlI/-l2 there are just three parameters >., /-l1 and v, where 
>. = /-ld /-l2 = P2d PIi· The model simplifies considerably, though the log-likelihood does 
not have the form (6) because M-I does not exist. The log-likelihood now equals 

where 

The EM algorithm described in §5.3 can easily be modified to maximise (7) by considering 
PIi as the missing data. Alternatively the integral in (7) can be expressed is a multiple of 
a Gamma function: 

laOO 

hi(PIi) dPli = (XAi + Ai + 2:J -(Y+i+t) f (Y+i + i) 
so that (7) becomes a familiar negative binomial log likelihood: 

L(V,/-lb)..) = Y2+ log).. - ni 109/-l1 + ni log i -nlogf (i) 
- ~ [(Y+i + i) log ()"Ai + Ai + 2:J -logf (Y+i + i)] , (8) 

which can be maximised numerically by standard methods. 
\Vhen /-le = 0 the log-likelihood is again a standard negative binomial form: 

(9) 
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Finally for the case 1/ ---+ 00, where lli' Y2i have independent Poisson distributions there 
are just two parameters Ih and Jl2 and the corresponding log-likelihood is: 

(10) 

5.2 Example 

We now present the results for the data in Table 1. Before looking at the numerical 
answers, we examine a graphical display of the data in Figure 1. The figure shows a radial 
plot (see Galbraith 1990 for the general principles of radial plots and various applications). 
We show a scatterplot of the standardised estimates of age, using crude estimates of the 
ratios PIi/ P2i, against a measure of their precision. In this plot we have used the Anscombe 
(1948) modified angular transformation 

Zi = arctan YIi + ~ 
"\/ 3 , 
.I2i + 8 

(11) 

in order to produce a precision nearly independent of the value of the ratio PIi/ P2i (and 
hence of age). The y-axis represents values of the centered (Zi - ZO)/(ji where Zo is a 
pooled estimate of the ratio. The x-axis indicates both the precision 1/ (j and the total 
number of tracks }'i + Y2 • The values of age are represented by slopes of lines from (0, 0) 
through the points and can be read off the circular axis. The age scale is graduated in 

equal divisions of arctan J PI! P2 rather than PI! P2· 
The plot indicates a clear overdispersion. Most points have a y coordinate outside 

the "two-sigma" band and the age estimates using raw z/s vary from about 1 to about 
100 l\Ia. They vary continuously, over this range, suggesting that a continuous mixing 
density for PI and P2 is indeed appropriate. It should be noted that even data points with 
high precisions yield varying estimates of age. Most of the high precision pairs, however 
seem to correspond to small values of PI! P2, with the exception of one outlier. We are 
not aware of any specific information regarding the latter point, which yields an estimate 
of age of about 100 Ma. 

The numerical results for these data are presented in Table 2. We fitted the general 
four parameter model as well as the special cases corr(pl' P2) = 1, corr(Ph P2) = 0 and 
1/ = +00. Table 2 gives the maximum likelihood estimates of various parameters, including 
pI! Jl2 and the age which are of particular interest. We have also derived the asymptotic 
standard errors, either directly (see §5.3) or by the delta method, and they are also given 
in Table 2. 

The first five rows of Table 2 give the maximum likelihood estimates of the main 
parameters and their asymptotic standard errors for each model, along with the maximised 
value of the log likelihood. The full model is clearly superior to the submodel with 
Jlc = 0; the asymptotic likelihood ratio test statistic is 2 x (742.933 - 738.724) = 8.42 
to be compared with x2(1). The submodel with Jl~ = JlIJl2 is much worse-fitting by this 
criterion, and the Poisson model (1/ ---+ (0) has an appalling fit. This implies that, for 
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150 age 

Figure 1: Radial plot of the fission track data in Table 1. 
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Table 2. Maximum likelihood estimates. 
Full model Sub-models 

jic = 0 ji~ = jilji2 V -+ 00 

parameter est. s.e. est. s.e. est. s.e. est. s.e. 

jil 1.46 0.27 1.46 0.26 1.23 0.16 1.11 0.03 
ji2 3.32 0.59 3.31 0.58 3.56 0.46 3.22 0.05 
jic 1.58 0.39 0 2.09 0.27 
v 2.35 0.42 2.42 0.41 4.45 1.15 00 

Lmax 742.933 738.724 395.219 -497.135 

)2/v 0.92 0.08 0.91 0.07 0.67 0.03 0 

corr(pl' P2) 0.51 0.15 0 1 

cv(PI/ P2) 0.91 0.93 1.29 0.48 0 0 

pI/ji2 0.440 0.079 0.439 0.110 0.345 0.011 0.345 0.011 
age (M'a) 13.25 2.38 13.22 3.31 10.39 0.34 10.39 0.34 

these data, a model should account for extra-Poisson variation, correlation, as well as 
variation of the ratio of the track densities between crystals. 

The next three rows of Table 2 give the values of various functions of the parameters 
to aid interpretation. The value of the coefficient of variation )2/ v = 0.92 for the full 
model represents a very substantial variability of the true track densities between crystals. 
For the submodel with jic = 0 this quantity is similar, but for ji~ = jil1l2 it is reduced 
somewhat to 0.67. For the Poisson model this variation is forced to be zero, which accounts 
for the very poor fit of this model. 

The value of corr(PI,P2) = 0.51 for the full model, calculated using equation (4), is 
distinctly bet,veen 0 and 1, the values for the first two submodels. Also the coefficient of 
variation of pI/ P2, calculated from (5) is substantial for the first two models (91% and 
129%), indicating that the ratio of densities varies between crystals, whereas for the last 
two models this quantity is zero by assumption. 

The last two rows of Table 2 give the estimate of Ild 112 and the corresponding age 
estimate for each model. The estimates are the same for the last two models (independent 
Poisson and a single negative binomial) although their estimates of III and 112 differ. In 
both cases, though, the standard errors are grossly under-estimated. This is typical in the 
cases where overdispersion is erroneously omitted. The full model gives a more sensible 
estimate and standard error. 
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5.3 Computational details 

The "missing data" for our implementation of the EM algorithm will be the matrices 
Ri, i = 1,2, ... , n. Note that given Ri, the data 11i, Y2i are independent of the parameters 
M, v so the M-step involves only these matrices. The E-step is not straightforward, so we 
use the stochastic implementation of Wei and Tanner (1989). More specifically: 

M-step. \Ve maximise 

v"" v ( 1"") V nv (V) (v-I) 2"ilogIRd-ztr M- 7 R +nvlog"2-T logIM I-nlogf "2 -nlogf -2-

with respect to M and v. Maximising first with respect to M gives 

Hence the profile log likelihood of v, apart from multiplication by n, is 

~ (~ ~ log 111; I - log 1 ~ ~ R; I) + v log ~ - v - log r m -log r (V ~ 1 ) . 

This has a unique maximum and indeed is sharply peaked. It is an easy computational 
problem to find v by direct numerical maximisation of this. 

E-step. The method needs E[Li log IRil] and E[tr(M-l Li Ri)] where the expectation 
is taken over the distribution of Ri given the current parameter estimates (v, M) and all 
the data. The Ri'S are conditionally independent and the conditional distribution of each 
Ri depends only on Yi i, }'2i and the parameters A1 and v. It is hard to compute these 
expectations because the conditional density function has the form 

where we omit the subscript i. Nevertheless, it is easy to simulate from this distribution 
using the acceptance-rejection method. 

To simulate from f(RI11,Y2,v,M) we reparameterise (P!'P2,pc) to (P!'P2,7,jPIP2)' 
Then the density is proportional to 

p~l+~-l p;2+~-l (1 _ 7 2 ) ";-3 exp {_~ (II:nPl + 1I:22P2 + 211: 127,jPIP2)} 

where 11:11,11:12,11:22 are the entries of the symmetric matrix J( = vM-1 + 2AI. Then we 
simulate: 

(
V V(/12 - 8)) 

Gamma 11 +"2' A + 2lMI 

P2 '" Gamma (Y2 + ~, A + V(~1~18)) 
,,-3 

f(7) (X (1- 7
2)-2 
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independently, and accept the simulated values of PI, P2, r (and hence the simulated R) 
with probability 

(12) 

The constant h is chosen so that (12) is always less than 1; note that it equals 1 when 
PI = P2 = O. It turns out that (12) is a decreasing function of h, and that (12) will be less 
than 1 if h > Illel. In our experience the acceptance probability (12) can become small, 
particularly if the marginal distribution of r is concentrated near 1 or -1. 

The observed information matrix can be derived using the method of Louis (1982) or 
Wei and Tanner (1990). Denote by Li the contribution to the complete data log likelihood 
from pair i, i.e. let 

and ",Tite 

Then straightforward algebra yields: 

OLi 
ov 
OLi 

Olll 
OLi 
0112 
OLi 
Olle 

1 {IRil v (I) (V) (V - 1)} - log - + 2log - + 2 - tr 1\1- R· - 'ljJ - - 'ljJ --
2 11\1/1 2 I 2 2 

wherel,6(a;) is the derivative of log f(x). The second derivatives of Li are: 

02 Li 
Ov2 

02L i 

OVOIlI 
02L i 

OVOll2 
02L i 

OVOlle 
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82 Li 
8p~ 

82Li 

8p~ 
82Li 

8pl8p2 
82Li 

8pl8pe 

82L i 

8p28pe 
82Li 

8p~ 

1I(P2 Hei + PeHli) lIP2Pe ---
21lkfl Ilkfl2 

The Hessian of the log likelihood can be found by applying Wei and Tanner (1989, formulal 

3.3) of using the simulation method described above. 

6 Discussion 

The model that we have put forward here is appropriate for paired Poisson data where 
overdispersion is present and it allows for correlation of the Poisson counts in the same 
pair. The main interest in the motivating example lies on the estimation of the ratio of 
the means of the counts but our model is more generally applicable. Various special cases 
are of interest. In particular, we can model pure overdispersion or pure correlation of the 
data in a straightforward manner. This immediately leads to an easy computation of the 
corresponding likelihood ratio statistics which allow for testing for positive correlation or 
overdispersion or both. Score tests seem more difficult to costruct. 

Parameter estimation in this model is feasible, though not straightforward. The EM 
algorithm is a natural candidate method for maximum likelihood estimation, since we can 
view our model as a mixture of distributions. The stochastic version of EM algorithm 
allows the computation of intractable expectations. Other numerical maximisation meth­
ods such as Newton-Raphson that have been proposed for negative binomiallikelihoods 
might also be used but we suspect that their implementation will be problematic since 
the likelihood does not have a closed form. It may be worthwhile developing approximate 
methods for computing maximum likelihood estimates. 

The \iVishart distribution that we used as a mixing distribution is simply one of the 
various existing choices. The bivariate lognormal could also have been used. In our con­
text, it is rather inappropriate, since we would like the means of the Poisson counts to 
be additive in the crystal area. A bivariate lognormal distribution on the track densi­
ties would not yield expected counts proportional to the area. Other candidate mixing 
distributions include the various generalisations of the gamma in higher dimensions. \Ve 
suspect that there is not much to differentiate between them, except that they are lesser 
known and analytically less tractable than the Wishart distribution. 

IThis formula should have + instead of x in the second line. 
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