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Abstract ____________________________________________________________ _ 

\Ve give a computationally fast method for the orthogonal loadings partial least squares. 
Our algorithm avoids the multiple regression computations at each step and yields iden­
tical scores and loadings to the usual method. We give a proof of the equivalence to the 
standard algorithm. "Ve discuss briefiy the computational advantages over both orthogonal 
scores and orthogonal loadings partial least squares. 
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1 Introduction 

There are two commonly used partial least squares regression algorithmsI ,2,3. The 
first one, the orthogonal scores algorithm, is the oldest one4

, whereas the second one, the 
orthogonal loadings algorithm, is more recentS

• Their difference lies in the decomposition 
of the data matrix X = Lr=I t¡pT. The first one requires orthogonality of the vectors ti 
whereas the second one of the vectors Pi. As it turns out the two methods are equivalent for 
prediction purposesI . In the usual formulation, the first algorithm is easier computationally, 
though not always faster6 and is typically used in computer packages7,8. This is because it 
do es not require any multiple regression. The second one is easier to interpret and study 
theoreticallys. 

The purpose of this note is to give a fast method to compute the scores and the loadings 
of the second algorithm. Our method avoids the multiple regression step and, as we will 
see, it requires significantly fewer computations than both the orthogonal scores and the 
orthogonal loadings algorithms. Furthermore, it is trivial to programo For simplicity we 
will consider only the univariate case though extensions to multivariate PLS seem possible. 

2 Orthogonal Loadings PLS methods 

Consider data in the form of a columnwise centered n x k matrix X and a centered 
n x 1 vector y. In the usual formulation2 the PLS steps are as follows: 

Set Eo = X and fo = y. 
For i = 1,2, ... ,r: 

Pi 
Jfl'-l E¡-IELl fi- 1 
E¡-lP¡ 

E¡-I - tiPT 

y - Ti(T/T¡fIT/ y, 

where T¡ = (tI t 2 ••• ti). 'vVe propose to replace the aboye algorithm by: 

Set Eo = X and go = y. 
For i = 1,2, ... , r: 

Pi 
VgT-IE¡-IELIg¡-l 

Ei-1Pi 
E¡-I - tiPT 
ti. 
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(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
(7) 
(8) 



Clearly this can be written in a more concise way, by merging for example (6) and 
(8). However, we prefer the aboye form since it facilitates the comparison to (1)-(4). The 
two algorithms are equivalent in the sense that they decompose X into identical bilinear 
forms. Before proving this, we define sorne notation and state a few lemmas that will be 
needed in the proof. vVe will denote the range and the null space of a matrix E by R(E) 
and N(E) respectively and its Moore-Penrose inverse by E+. Por i = 1,2, ... , r and ti, Ei 
and f i given by (2)-(4), we define Ki, Li, Mi and Ni to be the projection matrices onto 
JV(Ti), R(Ei), N(Ti) n R(Ei-d and R(Ti) n R(Ei-d respectively. As a convention, we 
take Mo to be the identity matrix. With this notation we have the following two general 
lemmas. Their proofs are straightforward applications of matrix algebra. 

Lernrna 2.1 Suppose that f and g are vectors and f and g are the corresponding projec­
tions onto R(E) for some matrix E. Then 
(a) ETf = ETf and 
(b) if ETf = ETg then f = g. 

Lernrna 2.2 Por any matrix E 

The next two Lemmas refer to the orthogonal loadings steps. 

(9) 

(10) 

Lernrna 2.3 Jf Ei and Ei+l are given by consecutive steps of the method (1)-(4) then 

(11) 

and, hence, R(Ei+d is a subspace of R(Ei ). 

Proof. Since Pi+l E R(Ef) and EtE i is the projection matrix onto R(Ef), it follows 
that Pi+l = Etti+l. Step (3) becomes 

(12) 

(13) 

where equality (13) follows from (9). Now from (10) and the normalisation pr+lPi+l = 1, 
we can see that the matrix ti+ltT+l(EiEf)+ is idempotent and, hence, a (non-orthogonal) 
projection matrix onto its range which is R(ti+d. This and the last step (13) show that 
the columns of Ei+l are the residuals from projections of the columns of Ei onto ti+l. The 
result follows immediately. O 

Lernrna 2.4 Jf E i, Ei+l and fi are given as in (1)-(4) then Ei+lLJi = o. 
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Proof. After expressing E¡+l and L¡ in terms of E¡ and f¡ and substituting, we obtain 

(14) 

(15) 

(16) 

where Lemma (2.1a) was used to simplify (15). o 

N ow our main Theorem can be stated as follows: 

Theorem 2.1 The vectors p¡ and ti, i = 1,2, ... , rJ given by the algorithm (1)-(4) are 
identical to the ones given by the algorithm (5)-(8). 

Proof. It suffices to show that for the method (1)-(4) the vector ETf¡ is a multiple of the 
vector ET t¡ for all i. 

"Ve have 

ETf¡ E;K¡y by (4) (17) 

E;L¡K¡y using Lemma (2.1a) (18) 

E;L¡L¡_IK¡y since, by Lemma (2.3), L¡ projects (19) 

onto a subspace of R(L¡-d 

ETL¡(M¡ + N¡)K¡y (20) 

E;L¡M¡K¡y since JV(T¡) n R(T¡) = O (21) 

E;L¡M¡y since M¡ projects onto a subspace of N(T¡) (22) 

ETM¡y using Lemma (2.1a). (23) 

From Lemma (2.1b), it follows that L¡Í¡ = L¡M¡y and since this vector belongs to R(E¡), 
it can be written as the sum of its projections onto R(Mi+d and R(Ni+d. Therefore 

L¡f¡ = M¡+lL¡M¡y + Ni+IL¡M¡y. (24) 

The first term of the above sum can be written as 

Mi+!L¡M¡y - Mi+IMiy 

M¡+IY 

since M¡+! projects onto a subspace of R(E¡) (25) 

since R(Mi+d is a subspace of R(M¡). (26) 

On the other hand. by applying Lemma (2.3) recursively, we see that non e of tI, t 2 , ••• , t¡ 
belong to R(E¡) whereas ti+! does, so 

(27) 
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and the second term of the sum in (24) has the form o: ti+! for sorne a. Premultiplying 
(24) by ET+l and applying Lemma (2.4) we obtain 

o Ef+l Mi+! Y + o: Ef+! ti+! 

ETM¡y + o: ET ti 

ETf¡ + o: ETti, 

(28) 

(29) 

(30) 

where (29) is a simple change of label and (30) follows from (17)-(23). Hence we obtain 
ETf¡ = -o: ETt¡ and the theorem is proved. O 

3 Discussion 

It is clear that the method presented here has advantages in terms of speed of compu­
tation. Indeed, the number of numerical operations that it performs is even smaller than 
that of the orthogonal scores algorithm since the latter needs an extra step to compute 
Pi. The computational advantages over the classical orthogonalloading method are more 
substantial for large n and for a large number of factors. Compared to the orthogonal 
scores method, it is significantly faster for large k. The speeding of computation would 
help most when applying computer intensive methods such as cross-validation. 

However, the mathematical equivalence of the two orthogonalloadings algorithms does 
not necessarily imply that the answers will be the same. There is always numerical error 
which can rapidly accumulate. Hence one must also examine the numerical stability. To 
do so, we implemented the method with sorne simulated data using a GAUSS program on 
a PC. Although we do not cIaim to be concIusive, it seemed to perform satisfactorily and 
\Ve would feel fairly confident to use it. 
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