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Linear Combination of Information in 
Time Series Analysis 

An important tool in time series analysis is that of combining information in an optimal 
manner. Here we establish a basic combining rule of linear estimators and exemplify its use 
with several different problems faced by a time series analyst. A compatibility test statistic is 
also provided as a companion of the combining rule. This statistic plays a fundamental role 
for obtaining sensible results from the combination and for pointing out sorne possibly new 
directions of analysis. 

KEY WORDS: Compatibility testing; Disaggregation; Intervention analysis; Missing data; 
Outliers; Restricted forecasts. 

1. INTRODUCTION 

Combining information has such a common place in the practice of statistics that the 
practicing statistician many times overlooks it. Hedges & Olkin (1985) presented many 
statistical problems that can be analyzed from this point of view. Draper et al. (1992) 
provided a thorough review of this field with many examples and ideas for future research. 
Similarly, Peña (1994) considered combining information with emphasis on understanding 
the structure and properties of the estimators involved in the combination. 

This paper presents a basic (Ieast squares) rule that has been frequently used by time 
series analysts for combining information. We consider here that sorne information, 
additional to that employed by a time series model, is available in the form of linear 
restrictions that have to be fulfilled exactly by an optimal estimator. Our basic concern is to 
obtain (conditionally) unbiased Minimum Mean Square Error Linear Estimators (MMSELE) 
of random vectors. Hence no distributional assumption will be required for obtaining the 
optimal estimators, although when normality is a reasonable assumption, the linear 
qualification can be dropped from MMSELE. 

Each of the two sources of information is assumed to provide a linear and 
(conditionally) unbiased predictor. The unbiasedness assumption may be considered in sorne 
instances as unduly restrictive (see Palm & Zellner, 1992 or Min & Zellner, 1993). For our 
purposes and in the problems here considered, we deem such and assumption general 
enough and unrestrictive since'debiasing can be carried out before combining. With respect 
to the use of only two sources of information, we remark that this is only to ease the 
exposition, but the ideas can be extended straightforwardly to several sources. 

We assume that the models involved as well as their corresponding parameters are 
known, so that model building and parameter estimation are of no concern to uso On the 
other hand, an issue that do es concern us is the practical implementation of the results 
provided by the combining rule. So we shall address that issue in due time. Furthermore, it 
should be said that throughout this paper we assume that the family of autoregressive 
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integrated moving average (ARIMA) models is rich enough to represent the behavior of a 
univariate time series. Nevertheless, the results hold true for any linear time series model. 

In Section 2 we establish a basic combining rule which will be used extensively in 
subsequent sections. A test statistic for validating the compatibility assumption between 
sources of information is also provided there. Section 3 applies and interprets the Basic Rule 
within the context of forecast updating and missing data estimation. Then, Section 4 
concentrates on the problem of restricted forecasting, with several variants that respond to 
different states of knowledge about the future. Section 5 addresses the temporal 
disaggregation problem with and without preliminary series. In Section 6 we touch upon the 
problems of outliers and structural changes in time series. Section 7 is dedicated to the 
contemporaneous disaggregation of multiple time series. The final seetion concludes with 
sorne remarks and points out to the need of sorne other combining rules. 

2. BASIC COMBINING RULE 

In this section we present an optimal combining rule that can be employed when two 
basic sources of information are available. (1) A statistical model that produces the 
MMSELE, W, of the random vector Z, based on an observed set of explanatory variables X, 
and (2) sorne extra-model information Y given in the form of linear restrictions imposed on 
Z. The model implied by (1) may be written as Z = Xfl + u, with fl a fixed parameter vector 
and ti a random vector, but this model form will not be used explicity in what follows. In 
fact, as indicated in the introduction we shall assume that the model is known, as well as its 
parameters. We now establish the rule and illustrate its use in different situations afterwards. 

BASIC COMBINING RULE: Let us suppose that Z, W and Y are related by 
W = Z + e (2.1) 

and 
y = CZ, (2.2) 

where e is a random vector such that E( elX) = O, E(Ze'IX) = 0, COy (el X) = Le and W = 

E(ZIX) is the MMSELE of Z. If C is a known full-ran~ matrix and W, y and Le are also 
known, with Le nonsingular, then the MMSELE of Z based on W and Y is given by 

Z = W + LcC'(CLcC'rl(y -CW), (2.3) 
with MSE matrix 

(2.4) 

Proof Any linear estimator of Z based on Y and W must be of the form 
Z = AIY +A2W = (AIC+Az)W -AlCe, (2.5) 

with Al and A 2 sorne constant matrices. Then, to ensure (conditional) unbiasedness we 
reqUlre 

E(Z - zlx) = (AIC + A 2 - I)W = O, 

so that Z - Z = (1- AJ - C)e and 

COy (Z - Z) = (1 - AJC)Lc (1 - AJC)'. 

(2.6) 

(2.7) 
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Now, let us consider Al = A + ~ with A = LeC'( CLeC') -1 and ~ an arbitrary constant 

matrix, then it follows that 

Cov(Z - Z) = (1 - AC)L e (1 - AC)'-(I - AC)LeC' ~'-~CLe (1 - AC)'+~CLeC'~' 

= Le - LeC'( CLeC't CLe + ~CLeC' ~'. (2.8) 

Hence, the MSE matrix COy (Z - Z) of any linear and (conditionally) unbiased estimator Z 

exceeds COy (Z - Z) by a positive semidefinite matrix. 

Let us notice that Cov( Z - Z) is always singular because the estimator (2.3) satisfies 

the linear restriction (2.2). Thus it will have p null eingenvectors, where p is the number of 
columns in C', as can be seen by postmultiplying (2.4) by C'. Also notice that (2.2) leads to 

the estimator ZI = PC'( CPC'fl y in which P is a nonsingular matrix satisfying the 

(conditional) unbiasedness condition [PC'( Cpc't C - I]W = O. Another "linear and 

(conditional) unbiased estimator of Z is provided by Z 2 = W from (2.1). Then, given W 

and Y we should combine linearIy Z 1 and Z 2 in such an optimal manner that the MSE 
matrix of the resulting estimator is minimized. In so doing we go back to (2.3), so that 
P = Le' Therefore we conc1ude that the MMSELE ofZ given W and Y, can be interpreted 
as a linear combination of the two linear and (conditional) unbiased estimators provided by 
the different sources of information. 

This Basic Rule allows us to combine W and Y in an optimal manner. However, it 
does not necessarily follow that W and Y should always be combined. In particular, it will 
not be sensible to combine them when they contradict each other. Then, it makes sense to 
test for compatibility between W and Y to see whether or not the combined predictor is 
reasonable. To that end, a compatibility test derived on the assumption of normality for e 
was proposed by Guerrero (1989). That is, let us consider as null hypothesis 
H,,: Y = CE(ZI X). On this hypothesis Y - CW is normally distributed with mean vector 

zero and covariance matrix CLeC', therefore a statistic for testing compatibility between Y 

and W is given by 

K = (y - CW)'( CLeC't(Y - CW) - X~ (2.9) 

where m is the dimension of Y. 

It is important to realize that the Basic Rule as well as its companion compatibility 
test, can be obtained within a more general setting in which (2.2) is replaced by Y = CZ + u 
with u a random vector such that E(u)=O and COy (u)=U. However, in all cases considered 
here U = O, so there is no need of considering u explicity. In another work we shall consider 
situations in which U ~ 0, so that a more general combining rule will be established together 
with its associated relevant analysis. 
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Now, when talking about modelling a univariate time series {ZJ, we shall assume 

that it admits an ARIMA representation. We also let X = (ZI "",ZN)' be the observed data 

and Z = (ZN41'""ZNIIJ' be the H>1 future values to be forecasted with origin at time N. 

Then we know that 
h-I 

ZN>h - E(ZN>h Ix) = j~O \fja N+h_j , for h = 1, ... ,H (2.10) 

where the \fj 's are the pure moving average (MA) weights ofthe model and {aJ is a zero

mean white noise process with variance cr 1
. Expression (2.10) can be rewritten in matrix 

notation as 
Z - E(ZIX) = \fa, (2.11 ) 

with a'= (aN_I' ... ,aNdl )' and \fa lower triangular matrix with \fn = 1 in the main diagonal, 

~ in the second diagonal, and so on. 

Notice in particular that (2.11) holds true both for stationary and nonstationary time 
series. For a stationary series with E(zlx) = O we have e = \fa and Lz = cr 2 \f\f'. AIso 

nz = a, where TI = \f -1 is a lower triangular matrix with ones in the main diagonal, -7t 1 in 
the second diagonal and so on. The 7t¡' S are the pure autoregressive (AR) coefficients ofthe 

ARMA process. Then L~I = cr-2n'n is the inverse autocorrelation function ofthe process. 

In general we shall call W = E( Z Ix), e = \fa and Le = cr 2 \f\f', and for a stationary 

process Lz = Le' It should also be stressed that even though most of the problems 
considered in this paper make explicit reference to univariate time series, the same ideas can 
be employed with multiple time series. The basic change required in that situation, from a 
theoretical viewpoint, will be notational. 

3. MAKING EFFICIENT USE OF ALL AVAILABLE DATA 

This section presents two applications of the Basic Rule. Firstly in the well known 
case of forecast updating and secondly in a rather simple formulation of missing data 
estimation. 

3.1 Forecast Updating 

Here we consider the problem of updating a vector of ARIMA forecasts, initially 
obtained for lead times h=l, ... , H, with origin at time N. In this case, as soon as we have 
access to a new observation ZN + l' its forecast Z N ( 1), becomes useless and 

ZN(2),,,,,ZN(H) are suboptimal by not taking ¡nto account all the available information. 

To recover the optimality ofthe ARIMA forecasts, given ZN+I' we start with (2.11) 

which leads us to (2.1) with W = E(Zlx), e = \fa and Le = cr~\f\f', Now let C=(I, O') 

with O a column vector of size H-l and Y = ZN+I' so that (2.3) and (2.4) yield 

5 



z = (ZN (1) + [ZN.J - ZN( 1) J,ZN(2) + \}JI [ZN~J - ZN( 1) J, ... , ZN(H) + \}JII_I [ZN~ I - ZN( 1)])' 

= (ZN+I ,ZN+I (1), ... ,ZN+J (H - 1))' (3.1) 

and 

o O' 

COY (Z -Z) = cr~ -\}JI I (3.2) 

I 
- \}JII_J I 

where v Ji = Vil = O and v ij = COV(ZN (i -1) - ZN~i-J ,ZN (j -1) - ZN+i-J for i, j = 2, ... , H. 

These formulas are the usual ones when updating forecasts (cf Box & Jenkins, 1976, Ch. 5). 
Of course, in general we could use m (1 $ m < H) additional observations at once if they 
arrive in a batch or e\se we could update the forecasts recursively, the answer will be the 
same. 

Next, the compatibility statistic in the situation Y = ZN>I with {aJ Gaussian, lead us 
to declare the new observation compatible with the historical record of the series, at the 100 

a% significance level, when 

K=[ZN+I- ZN(I)r /cr~<x~(a). (3.3) 

When the new data arrive in batches, the K statistic provides a Cumulative Sum (CUSUM) 
test. 

3.2 Estimation of Missing Data 

We now consider the problem of completing a univariate time series which has sorne 
missing values. The basic need for doing that is that most time series analysis require a data 
set without gaps. Of course, a highly experienced analyst may get around of those gaps 
without the need of filling them with estimated values, but that is the exception, not the rule. 
Besides, in sorne cases the estimation of missing observations is the main objective of the 
analysis. 

To pose the problem in the context of Section 2, let us suppose the series has k~ 1 
missing values (without any specific pattern). These form the vector Z~[ = (ZTI ,ZT

2 
, ••• ,ZTk)' 

in wich TI < TJ ir i < j. Let also X = (ZJ , ... ,ZT,_I)' be the historical data before the first 

missing value, Z* = (Zli , ... ,ZN)e be the observations from TI onwards and 

Zo = (ZT,>I , ... ,ZT
2

-1 ,ZT
2

+1 , ... ,ZTk-1 ,ZTk+J , ... ,ZN)' the given values observed after X. Then 

6 



we can write Z = (Z'M ,Z'G )'= fJ.Z * with fJ. a permutation matrix that merely changes the 

chronological ordering of Z*. That is, fJ. is an N - T¡ + 1 square matrix obtained from the 
identity matrix, in which the rows Ti' i = 1, ... , k, of the identity are placed as the first k 

rows of fJ.. Thus we have W = E(ZIX) = fJ.E(Z *Ix) the ARIMA forecasts of 

ZlI.l and ZG' e = fJ.'f'a and 

(3.4) 

with a2LM =COV[ZM -E(ZMlx)], a2LG =Cov[ZG -E(zGlx)] and 

a
2

Lt-,IG = E{[ ZM - E(Zt-,1 IX)][ ZG - E(ZG Ix)]} Then, by choosing C = (O, IN-1¡-k+l) with 

O an (N - TI - k + 1) x k matrix, we obtain Y = Z G and the weighting matrix 

(3.5) 

By the Basic Rule, the MMSELE ofZ based on E(Zlx) and ZG is given by 

Z = ({ E(ZM IX) + Lt-,IO L;,l [ZG - E(ZG IX)]}' ,Z'J', (3.6) 

with MSE matrix 

(3.7) 

Hence, it immediately follows that 

(3.8) 

with 

(3.9) 

1t is interesting to show that these expressions are equivalent to the ones obtained by 
Peña & Maravall (1991) using the inverse autocorrelation function. The relationship 
between additive outliers and missing observations first indicated by Peña (1987) leads to 
estimating the missing values by inserting zeros at the missing points and adding to the 
model dummy variables for each ofthese zero values to represent an additive outlier. Calling 
O the matrix of dummy variables, it can be shown (see Peña & Maravall, 1991) that the 
MMSELE of Z t-,I is given by 

Z =-(O'L-1n)-l o 'L-1Z (3.10) 
M e e e 

where Z e denotes the completed series with zeros at the missing points. The MSE matrix of 
this estimator is then given by 

COV(ZM-ZM)=a20'L~ln. (3.11) 
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To show that (3.10) and (3.8) are equivalent, let us first recall that ¿~I = cr-2TI'TI, 
so that (3.10) becomes 

(3.12) 

Now, for simplicity let us suppose that the k missing values are located at T,T+l, ... ,T+k-l, 
so that D = ( 0,1 k ,O) where I k is the identity matrix and let us partition TI as follows 

[

TII O O ) 
TI = TI 2 TI 4 O 

TI3 TIs TI6 

(3.13) 

with TI I ,TI 4 and TI 6 square matrices ofdimensions T-l, k and N-T-k+l respectively. While 
TI z ' TI.~ and TI 5 are rectangular arrays of appropriate dimensions. Similarly, let 
Z'6 = (Z '1 ' O' ,Z'a)' so that (3.12) can be rewritten as 

Zl\\ = -(TI'4 TI4 + TI'5 ns)·1 [(n'4 TI 2 + n's TI 3 )ZI + TI's TI 6 Z a ]' (3.14) 

Then, inverting (3.4) by blocks, taking into account that ¿: I = cr Z TI' TI, and using (3.13) we 

obtain ¿Ma¿~I=-(TI'4TI4+TI'sTI5tTI'5TI6' On the other hand, calling 

Z'. = (E(ZM Ix)' ,E(Za Ix)') and Z'H = (Z'¡ ,O' ,0') we have 

(3.15) 

where 

DH = (
O Ik O J 
O O IN-T-k+1 . 

(3.16) 

After sorne algebraic manipulations and inserting expressions (3.15) and (3.16) into (3.8), 
we obtain (3.14). 

The derivation of expressions (3.4) to (3.9) is due to Guerrero (1993), although 
Alvarez, Delrieu & Jareño (1993) also indicated the possibility of using restricted estimation 
to estimate missing values. From a practical standpoint, it is important to realize that the 
matrices involved in (3.8) - (3.9) may be relatively large, thus a recursive solution such as 
the one indicated by Guerrero (1993) becomes more efficient. In that respect, Gómez, 
Maravall & Peña (1993) have compared several algorithms for estimation of missing values 
in time series. Finally, the statistic to test for compatibility between ZG and E(Zl\\lx) 
beco mes 

(3.17) 

We should notice in particular that rejection of the compatibility assumption may be 
expected when the missing values occurred not just by chance, but are due to sorne 
exogenous intervention or structural changes in the time series. In those cases we might 
consider the possibilities described in Section 4. 
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4. RESTRICTED FORECASTING WITH BINDING CONSTRAINTS 

The problem considered now has several variants which may be deemed as relevant 
possibilities derived from compatibility testing. These are: compatible sources (Section 4.1) 
and incompatible sources (Sections 4.2 - 4.4). 

4.1 Restricted Forecasting without U ncertainty in the Restrictions 

This case occurs when sorne restrictions to be imposed on the time series forecast are 
known to be true in advance. F or instance we may consider imposing budget constraints, or 
else we may view this kind of application as a scenario (or what if) analysis. For instance, 
Guerrero (1989) mentions the problem of forecasting the monthly Financing Granted by the 
Mexican Bank System when Y, the total annual financing, was known in advance. 

To apply the Basic Rule to this problem we use (2.11) again so that W = E(ZIX), 

e = \}'a and Le = cr~\}'\}". Furthermore, the m ~ 1 restrictions in Y = CZ are assumed to be 
linearIy independent and coming from outside information (external to the model). On these 
conditions we readily obtain. 

Z = E(zlx) + \}'\}"C'{ C\}'\}"C,)-I [y - CE(zlx)] (4.1) 

with 

Cov( Z - Z) = cr~ [ 1 - \},'I" C,{ C '1''1' , c't C ]'I'\},' . (4.2) 

The corresponding test statistic becomes 

K = [y - CE(ZIX)]'( C'I'\}"c't [y - CE(zIX)] / cr! - X~. (4.3) 

We emphasize here the importance of compatibility testing, since rejecting this 
hypothesis may lead to different relevant formulations, for instance to assume that Y is true 
and that E(ZIX) is not a valid forecast, because a structural change is foreseen during the 

forecast horizon (see Sections 4.2,4.3 and 4.4). 

4.2 Change Foreseen in the Deterministic Structure of the Model 

Let us now suppose that a structural change in the deterministic structure of the time 
series model is foreseen to occur during the forecast horizon of interest. This idea may come 
from subject matter considerations, for example when an intervention is anticipated_ This 
case may be considered as an ex-ante intervention analysis, in which the whole effect of the 
intervention is presumably accounted for by way of sorne linear restrictions on the future 
values of the series. Guerrero (1991) considered this situation and provided the solution and 
an example drawn from the Mexican Economy ofthe past decade. 

We start first with a formulation that allows us to take into account the intervention 
effects, that is 
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Z~D)=Zt+Ot.T' (4.4) 

where 8(B)Dt.T = co (B)St.T is a dynamic function of the intervention effects, with 

8(B) = 1-8IB-... -8.B' and co(B) = COo +coIB+ ... +co.B' polynomials in the backshift 

operator B, St.T is a step function that takes on the value 1 when t ~ T and O otherwise, 

with T the time point at which the intervention effects start, so that N < T ::; H. Without 
loss of generality we assume T=N+I (see Guerrero, 1991). Now let us notice that in order 
to determine the r+s+ 1 parameters involved in specifying O t.T we would require at least as 

many linear independent restrictions to be provided by Y. So, since in practice we usually 
have access only to one or two such restrictions, we are forced to postulate at most a first 
order linear dynamic model 

(I - 8B)Ot.N;1 = coS t 'N.I 

which is still a very flexible model. 

(4.5) 

To employ the Basic Rule let Z*= (ZN+I ,,,,,ZN>H)' be the vector of future values 

without intervention effects, D = (ON+l.N+I, ... ,ON+H.N+I)' the deterministic effects and 

Z(D) = (Z~.\ ,,,,,Z~;H )'= Z * +D. (2.11) is again assumed to hold with Z(D) in place ofZ, in 

such a way that W = E( Z * Ix) + D, e = 'I'a and Le = cr 2'I''I'' in (2.1). Then, when 

y = CZ(D) imposes m linear independent restrictions, it follows that 

Z(D) = E(Z * IX) + D + 'I''P'C'( C'I''I''c't[ y - CE(Z * IX) - CD] (4.6) 

with MSE matrix given by (4.2). 

A difficulty with (4.6) is that W, and hence D, is assumed known, but in practice it 
has to be determined from the available data. Moreover, all the information about D is that 
corresponding to the forecast horizon, that is, Y and E( Z * IX). Therefore D can be 

specified by solving 

CI> = y - CE(Z *IX), (4.7) 

which is assumed to be a system of consistent equations (i.e. any linear relationship existing 
among the rows ofC also exists among the rows of Y - CE(Z "'Ix). The solution to (4.7) 

IS 

ñ = C-[ y - CE(Z *IX)] +(1 - C-C)v (4.8) 

with C - a generalized inverse of C and v an arbitrary H-dimensional constant vector. Hence 
(4.6) takes the form 

(4.9) 

On the other hand, the compatibility statistic (2.9) is always cero in this case because of 

(4.7), so that \V and Y are necessarily compatible by construction of ñ. 
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4.3 Change Foreseen in the Stochastic Structure of the Model 

The structural change that we now consider is again due to an intervention, whose 
effects are of a stochastic nature and occur during the forecast horizon of the series. This 
case was also considered and exemplified by Guerrero (1991). A formulation that takes into 
account the intervention effects is 

Z~S) = Zt + VtSt.T, (4.10) 

where {vt} follows a stationary autoregressive moving average (ARMA) process 

<I>(B)vt = 8(B)e l with AR and MA polynomials <I>(B) and 8(B) respectively and {eJ a 

zero-mean white noise process uncorrelated with {Zt}. St.T is the step function defined in 

the previous case and T=N+ I is also assumed without loss of generality. 

In order for (4.10) to be applicable in practice, we should realize that the (stochastic) 
intervention effects have to be as ses sed from the information on the future values of the 

series Z(S) = (Z~!\ , ... ,Z~!H )', which is contained in the ARIMA forecasts and in sorne (one 

or two) linear restrictions. Thus we should restrict the ARMA model for {vt} to have a very 

simple structure. In what follows we as sume that it is a zero-mean white noise process with 
variance cr~. Now let Z.,. = (ZN+\, ... ,ZN~II)' be the vector of future values without 

intervention effects and v = ( V N+\' ... ' V N+H)' the stochastic effects, so that Z(S) = Z * +v. 

Then let us replace Z by Z * in (2.11), and let W = E(z(S)lx) = E(Z * Ix), e = 'l'a + v and 

L. = cr~'I''I'' +cr~I in (2.1). Hence, if W, Le and Y = CZ(S) are known, the MMSELE of 
Z(S) is given by 

Z(SI = E(Z *Ix) +(cr;'I''I''+cr~.I)C'(cr;C'I''I''C'+cr~CC')[ Y - CE(Z *Ix)], (4.11) 

with MSE matrix 

Cov( Z (sI - Z (s) ) = [1 - (cr~ '1''1'' +cr~.I)C' (cr~C'f''f'' C' +cr~CC' t C ]( cr = 'I''f'' +cr~ 1).(4.12) 

The problem now is that cr~ is unknown and we must be able to determine its value 
from the known quantities W, Le and Y. To that end, I~t us notice that those values as well 

as cr~, are involved in the coresponding compatibility statistic 

K = [y - CE(Z *lx)]'(cr~C'I''f''C'+cr~CC't[ y - CE(Z *Ix)] (4.13) 

which, on the assumption of Gaussianity for both {Z t } and { v t }, has a X ~ distribution with 

m the number of (Iinearly independent) restrictions imposed by Y. Next, since a reasonable 
selection of cr~ is one that makes Y and E(Z *IX) compatible with each other, we should 

select cr~ in such a way that K < X~ (0.) at a prespecified significance level 0.. Such a value, 

say cr~, is then replaced in (4.11) and (4.12) to obtain a working solution. 
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4.4 Change in Parameter Values due to an Intervention in the Forecast Horizon 

Here we address the problem of combining ARIMA forecasts with sorne linear 
restrictions, when an intervention is anticipated and we fear its effects will change the 
original values ofthe AR and MA parameters. We start again with expression (2.11), which 
is assumed to hold for the future values without intervention effects Z * = (ZN+I , ... , Z N+ H )', 

and will be written as 
Z*-Eo(z*lx) = 'Pila (4.14) 

to stress the fact that the original parameters, say bO = (b~ , ... ,bn' with k ~ m, are being 

used (let us recall that 'Po is derived from b o ). 

A formulation that takes into account possible changes in the parameter values is 

Z~P) = Zt + ~(~j - 'P?)at_jSt.T , (4.15) 
j=1 

where the ~;s are the new pure MA weights ofthe ARIMA model, which must be obtained 

from a set of estimated parameter values b that takes into account the future values of the 

series Z{P) = (z~ll"'" z~lJ'. Again let St.T be the step function defined in Section 4.2 and 

let us assume, without loss of generality, that T=N + l. Then let us notice that (4.15) leads 

us to Z (p) = Z * +( ~ - 'P () ) a, with ~ defined in similar fashion as 'Po, so that (4.14) implies 

Z(P) - En (Z * IX) = ~a. (4.16) 

Then the Basic Rule can be applied with W = EO(Z *IX); Le = crz~~, and 

y = CZ(PJ, to obtain 

Z(P) = EO(Z *IX) + ~~'C'( C~'C'r[ y - CEo(Z *Ix)]. (4.17) 

The practical problem now is to get ~. A solution to this problem was given by Guerrero 
(1990a) who derived a formula for the new parameter estimators involving the information 
provided by way of the restrictions. He also showed that a test statistic for the hypothesis 
Ho:b - b(O) = O (i.e. null overall change 10 parameter values), when 
EO(Z *Ix), crZ'P()'P(), and Y are known, is given by 

K =[Y-CEn(Z*lx)]'(C'P°'P(¡'C'r[Y-CEo(z*lx)]/cr~ - X~. (4.18) 

This test statistic has exactIy the same form as that in (4.3). However, when k<m (4.18) will 
be more sensitive than (4.3), because we are being now more explicit about the reason why 
y may not be compatible with En(Z *Ix). Moreover, Guerrero (1990a) provided sorne 

examples in which the parameter changes are interpreted as changes in the unobserved 
structural components ofthe time series (trend and/or seasonality). 
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5. TEMPORAL DISAGGREGATION OF UNIVARIATE TIME SERIES 

The problem of temporal disaggregating a time series is that of estimating an 
unobserved random vector Z = (ZI "",Znm)' on the basis of knowing sorne linear 

n 

aggregates Y¡ = j~1 c¡Zn(¡_I)+j' with i=I, ... ,m. Here n denotes the intraperiod frecuency of 

observation (i.e. if {Y¡} is observed annualy and {Zt} is a monthly series, n=12) m is the 

number ofwhole-period observations and e=(cp ... ,cJ':;t:O. Sorne usual forms ofe are: 
e = ( O, O, ... , O, 1)' for interpolating a stock series, e = ( 1, 1, ... , 1)' for distributing a flow series 

and e = (1/ n, 1/ n, ... , 1/ n)' for distributing an index series. 

5.1 Temporal Disaggregation Without Auxiliary Data 

Let us assume that {Zt } admits an ARIMA representation, so that (2.11) holds true, 

with a = a z = (az.1 , ... ,a z.mn )' such that E(a z Ix) = O and E(aza'z IX) = cril, where 

X = (""Z_I ,Zo)' denotes the infinite past ofthe series. In fact, for an ARIMA model to be 

reasonable in this situation we as sume that the process started at a finite time point with 
fixed initial values. The vector Y = (YI , ... , y m)' can be written in the form Y = CZ by 

defining C = I @ e', where @ denotes Kronecker product. Then the problem is posed as in 
the Basic Rule, so that the MMSELE of Z, when E(ZIX), y and cri \!1\!1' are known, is of 
the form (4.1). However, in practice such a formula is useless because X is unknown, as well 
as E(ZIX) and cr ~ \!1\!1' . Sorne approaches that have been followed to overcome these 
difficuIties are the following. 

(1) Assume a priori that E(ZIX) and \!1\!1' have sorne simple structures, say E(ZIX)=O and \!1 
is derived as if an integrated process of order one or two were an adequate representation 
for {Zt }, then calculate 

(5.1) 

Such a solution was essentially proposed by Lisman & Sandee (I964) and by Boot, Feibes & 
Lisman (1967) when n=4, and by Cohen, Müller & Padberg (1971) for arbitrary n. 

(2) Assume that the model for {Zt} can be somehow known to the analyst, perhaps by 

assuming that sorne disaggregated observations exist. This allows the specification of the 

matrix \!1, so that we can calculate Z if E(ZIX) is also assumed to be known. That was the 
approach ofHarvey & Pierse (1984). 

(3) Derive the disaggregate ARMA model of the stationary series {( 1 - B) d Zt} from that of 

{ ( 1 - B) d Y¡ } using the theoretical relationship that links those two series. Thus, obtain the 

autocovariance matrix of {(J - B)d Zt} and use it in an expresion similar to (5.1). Then 
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obtain the estimator of Z from the previous one, by applying a linear operator that 

essentialy serves to transform (( 1 - B)d Zd+I"'" (1 - B)d Zmn)' into Z = (z 1"'" Z mn }. This 

solution was developed by Wei & Stram (1990); see also Stram & Wei (1986). 

5.2 Temporal Disaggregation on the Basis of a Prelimnary Series 

The problem to be considered now is the same as in Section 5.1, except that X will 
no longer be considered as the infinite past of the series. Rather W = E(ZIX) will be 

considered a preliminary series, derived perhaps from a set of information on auxiliary 
variables X which help to explain the behavior of {Zt} or else {W1 } is observed directly as a 

preliminary series. In both cases, a preliminary vector W = E( Zl W) is known and it will be 

assumed to be the MMSELE of Z. Now let us also assume that (2.11) holds true with W in 
place ofX and a = (al, ... ,amn )' such that E(aIW) = O and E(aa'IW) = a 2p, where Pis a 

positive definite matrix. This assumption may be justified by assuming that {ZI} and {W1 } 

follow the same ARIMA model, with the same AR and MA parameters, but different 
generating white noise processes. Such an assumption makes sen se when W is indeed a 
preliminary estimate of Z and it allows to derive the matrix '1' from observed data. 

Thus, ifW, Le = a~'I'P'I" and Vare known, we obtain 

Z = W + 'l'P'I"C'( C'I'P'I"C't (V - CW) (5.2) 

and 

Cov(Z - z) = a 2 [1 - 'l'P'I"C'( C'I'P'I"c't C ]'I'P'I". (5.3) 

These formulas were obtained by Guerrero (1990b) who showed that the corrresponding 
expressions proposed by Denton (1971) are particular cases of (5.2) - (5.3) when W is 
directly observed. Similarly, when eomparing Chow and Lin's (1971) solution with (5.2) -
(5.3) it is c1ear that they did not eondition on W given and foeused their attention on 
simultaneously estimating Z and the regression parameters linking the auxiliary information 
X with Z. By doing that, they did not pay mueh attention to the potential autoeorrelation 

strueture in the regression errors. In addition, the eovarianee matrix of their solution Z, is 
(5.3) plus another term that can be related to the faet that only X (not W) was assumed to 
be given. 

To apply (5.2) - (5.3) in practice, we require knowing notjust '1' (which is obtainable 
from the ARIMA model for {W1 }), but P as well. Guerrero (1990b) suggested to use a 

two-step proeedure whieh is akin to using estimated generalized least squares. Then a 
eompatibility test between Y and W is given by 

K = (V - CW)'( C'I'P'I"c't(y - CW) / a 1 
- X~. (5.4) 

We notice however, that Guerrero (1990b) suggested a statistie different from this one, 



which does not involve P. Such a statistic can be applied even before the temporal 
disaggregation procedure has been carried out, to see if W can indeed be considered a 
preliminary estimate of Z. On the other hand, a recursive procedure that avoids 
manipulation of ~P~', which in practice may be a very large matrix, was proposed by 
Guerrero & Martínez (1993). 

6. OUTLIERS AND STRUCTURAL CHANGES IN TIME SERIES 

6.1 Detecting and Measuring the Effect oflnfluential Outliers 

We consider here the single outlier case with known time of occurrence T. So, we 
start with the two basic mechanisms that may generate an Additive Outlier (AO) or an 
Innovational Outlier (10). These were considered for instance, by Tsay (1986) and Peña 
(1990). That is, let 

Z(Aol Z P 
I = I +co A l." (6.1) 

or 
(lO) 1-T 

ZI = ZI +¿ ~jCO IPI j." (6.2) 
rO 

where PI." denotes the pulse function that takes on the value when t=T and it is zero 

otherwise. 

The AO situation follows from the results of Section 3.2 by letting 
ZM=ZT' X=(ZI,···,Z,._l)' and Zo=(Z">P ... ,ZN)'. Therefore, if we let 

X* = (X',Z'o )', ¿TO = (~I , ... , ~N-") and ¿o = C~~'C', with e = (O,IN_T), we have 

ZT =E(z,.IX*)=E(Z,.IX)+¿TG(C~~'C')[Zo -E(zGlx)] (6.3) 

and 

Var (Z,. - Z,.) = cr~ [1- ¿TG (cr~'C'f' ¿~G] (6.4) 

This estimator can also be written using equation (3.10) as 

Z,. = 1~ TI' DZe (6.5) 
where 1 T is a vector with one at po sitio n T and zero elsewhere, and Z e has a zero at 

position T and the observed values otherwise. Now, calling P: to the inverse autocorrelation 
coeficients, (6.5) can be rewritten as 

ZT = -¿P,
I (Z"_i +ZT+J (6.6) 

which is the well-known equation obtained by Brubacher & Wilson (1976) for the optimal 
interpolator of a time series. 

Ifwe now consider Y = Z~AO) known, the Basic Rule leads to the obvious result 

ZT = Z~AO) (6.7) 

with var( Z,. - Z,.) = O. Expression (6.7), as related to (6.1), implies that 
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ro A = Z~AO) - E(ZTlx *) (6.8) 

with Var(ro A) given by (6.4). Moreover, on the Gaussianity assumption for {aJ we obtain 

the following statistic for testing compatibility between Z~A() and E( ZTI X *) 

K = [Z~AO) - E(ZTIX*) r / Var(ro A) 

=ro~ /[cr:!(I-LTGL~IL\G)] - X~. (6.9) 

Noting that (1- LTGL~IL\G r is the (1,1) element of the matrix L~I of (3.4) and since 

L~1 = cr-:!n'n, it is clear that 
N-T 

1- LTGL~IL\G = L 1t~. (6.10) 
i=O 

Therefore the compatibility statistic (6.9) can be written as ro ~ / (cr 2 L1t¡) which is the 

likelihood ratio test proposed by Chang, Tiao & Chen (1988) for testing for additive 
outliers. This statistic is also related to the influence measures derived by Peña (1990, 1991). 

In the 10 situation we realize that (6.2) induces a deterministic change in the 
structure of the time series. So, we follow the ideas proposed in Section 4.2. Thus, let 
(2.11) hold true with X=(ZI"",ZT_I)',Z=(ZT, ... ,ZJ' and Z(IO)=Z+\fro, 

ro = (ro pO')'. Then ifwe write W = E(ZIX) + \fro, e = \fa, Le = cr 2 \f\f' and Y = Z(IO), 

the Basic Rule leads us to Z(IO) = y and Cov(Z(IOI - Z(I())) = O, when ro is known. In the 

present case it is unknown, but can be estimated from the available data as 
\fro = y - E(ZIX), (6.11) 

from which it follows that 
(6.12) 

The statistic for testing compatibility between Y and E(zlx), when {a.} IS 

Gaussian, becomes 

K = [y - E(zlx)]'(\f\f't[ y - E(zlx)] / cr2 

= ro '\f'(\f\f't \fro / cr:! 

= ro: / cr
2 

- X~. (6.13) 

This is equivalent to the likelihood ratio test statistic proposed by Chang, Tiao & Chen 
(1988), and also employed by Peña (1990,1991) to express a measure of outlier influence. 

6.2 Reallocation Outliers 

A situation considered and illustrated by Wu, Hosking & Ravishanker (1993), 
basically consists in restricting a block of consecutive observations atTected by outliers to 
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produce the same sum as if no outliers were present. So, let us consider the multiple 
additive outlier formulation 

(RO) *" Zt = Zt + i~ ",¡pt •c+¡ (6.14) 

where {Z~RO)} is the series with Reallocation Outliers (RO), pt •T is the pulse function 

defined as in Section 6.1 and A¡ is the effect associated with the outlier occurring at time 
c+i. The values of c and m (timing and duration of reallocation) are assumed known, 
although Wu, Hosking & Ravishanker (1993) also addressed the case in which c and/or m 
are unknown. 

I d ti (RO) - (Z(RO) Z(RO) Z(RO)), d Z - (Z Z)' Now et us e me Z - c 'c+1 , ... , c+m an 1\1 - c ,Zc+1 , ... , c+m 

the vectors of observations with and without outlier effects. Similarly let X = (Zp ... , ZC_I)' 

and Za = (Zc+m+I"",ZN)' be the vectors of past and future observations with respect to 

Z(RO), and X* = (X' ,Z'G)'. Thus, from (3.8) and (3.9) we know that ZM can be expressed 

as ZM = W~I +e, with 

WM = E(ZMlx *) = E(ZMIX) + LMGL~' [ZG - E(ZG Ix)] (6.15) 

and e a random vector such that E( elX *) = O and 

Le = 02( LM - L~KiL~IL~IJ. (6.16) 

Then, ifwe consider Y = l'Z(RO) given, with 1 an m-vector ofones, the Basic Rule yields 
Z = W + L 1 (1' L 1) -1 l' (Z (RO) - W ) (6 1 7) 

M M e e M' . 

with 

COV(Z~I - Ztl.I) = Le - Le l(l'Le lrll' Le' 

Next, from (6.14) we have Z(RO) = Z + A with 1..= (1.. 0 ' A" ... , Am)', so that 

~ = Z(RO) - Z~I = (Z(RO) - \V
M

) - Le 1(1' Le lrll'(Z(RO) - W~J 

(6.18) 

(6.19) 

and Cov( ~) = Cov( Z M - Z ~I ). Furthermore, a statistic for testing compatibility between 

y = l'Z(RO) and W~" on the normality assumption for e, is given by (2.9) as 

K = (l'Z(RO) -l'WMhl'L
c 

lr'(l:Z(RO) -l'W~J 

= [l'(Z(RO) - w~Jr /(l'Le 1) ,... X~. (6.20) 

Expressions (6.18), (6.19) and (6.20) are easily seen to be the same as those deduced 
by Wu, Hosking & Ravishanker (1993), by recognizing that in their notation 0

2 A -1 and 
A -lb, are Le and Z(RO) - W M in ours. In particular (6.20) is useful for testing whether the 
additive outliers are reallocation or not. Moreover, they also proposed a statistic for testing 
the null hypothesis of no outliers versus a reallocation, which in our context becomes a test 
for compatibility between Z(RO) and Z~" that is 

K*=(Z(RO)-ZM)'L~I(Z(RO)-ZM) ,... X~. (6.21) 
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-------~-----

6.3 Detecting and Modelling Structural Changes in Time Series 

The underlying ideas employed in Section 4 can also be exploited in the case in 
which a structural change is feared or known ex-post, to have occurred at time T, during the 
observation period of a time series. To be able to appreciate this, let us assume now that 
(2.11) holds true with historical data X = (ZI' ... ,ZT_J' and future values without 

intervention effects Z* = (ZT,ZT+I' ... ,ZN)'. Let also Y = Z(I) be the future values 

contaminated by intervention effects (actually observed), then (4.1) and (4.2) yield the 

obvious results 'lO) = Yand Cov( 'l (1) - Z (I) ) = O. Nevertheless, in this case 

K = [y - E(Z * IX) ]'('I''I''t [y - E(Z * IX)] / a 2 
- X~-T~I (6.22) 

is still useful for validating empirically the inclusion of intervention effects into the model. 
In fact, Box & Tiao (1976) suggested using this statistic as an overall check and provided a 
guide about its use to decompose it "into components associated with various relevant 
alternatives" . 

When (6.22) indicates incompatibility between Y and E(Z * IX), sorne alternatives 

are the following. 

(1) Perform a Box-Tiao intervention analysis on the assumption that the structural 
change in the model is of a deterministic nature. Thus, in accordance with Section 4.2, the 
intervention effects must be represented by a dynamic function capable of reproducing the 
forecast errors Y - E( Z * Ix), as indicated in expression (4.7). The practical problem is that 

the dynamic function intervention parameters should be simultaneously estimated with all the 
other parameters in the model (see Box & Tiao, 1975). 

(2) Approach the intervention analysis as in Section 4.3, in such a way that the 
stochastic structure is assumed to be affected. Notice that in this case, even if the series of 
stochastic effects follows an ARMA, not just a white noise process, (4.11) produces 
'l(I) = y and (4.12) is the zero matrix. Hence the contaminating model has to be deduced 
from (4. 13), perhaps on the basis of subject matter considerations about its ARMA structure 
(e.g. white noise). Then a procedure like the one described in Section 4.3 may be employed. 

(3) Consider the possibility that the parameters have changed their values, by 
comparing (6.22) not with a X~-T+I but with a X~ distribution, where k is the number of 
parameters ofthe ARIMA model (cf. Box & Tiao, 1976). 

7. CONTEMPORANEOUS DISAGGREGATION OF MULTIPLE TIME SERIES 

The contemporaneous disaggregation problem arises naturally when balancing 
national accounts. Solomon & Weale (1993) considered this problem and emphasized "the 
idea that discrepancies in the national accounts should be removed by least squares 
adjustment". So, they po sed the problem as that of estimating a true vector of observations 
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Z = (Z'. , .... 'Z'N)' where ZI = (ZII "",Zkl)' is an observation on k variables at time t. 
There exist preliminary vectors of data W1 for each t, corresponding to ZI' so that 

W = (W'. , ... , W'N)' is available. The discrepancy between Z and W is assigned to an 

additive error e such that E(e) = O and Cov(e) = Lc' The true values satisfy a linear 

accounting constraint CZ = O, which the estimate Z should also satisfy. 

To aply the Basic Rule in this situation, let W = E(Z¡W) and Le be known, so that 

Z=W-LeC'(CLeC'tcw (7.1) 

and 

Cov(Z -z) = Le - LcC'(CLeC't CLe' (7.2) 

Furthermore, a statistic for testing compatibility between W and the accounting constraint, is 
given by 

K = W'C,( CLeC')· CW - X~N" (7.3) 

Thus, the theoretical problem, as noticed by Solomon & Weale (1993), is sol ved when Le is 
known, which in practice is not. So, they proposed a specific form of Le' by taking into 
account an assumed autocorrelation structure derived from the way in which the data were 
constructed. A second difficulty is the practical problem associated with the size of the 
matrix Lc' which is typically very large. 

Guerrero and Nieto (1994) proposed a different solution to these problems. Firstly, 
Le is derived from the observed preliminary data by assuming that {WJ and {ZJ share the 
same autocorrelation structure, but have different generating white nOlse processes. 
Secondly, the manipulation of Le is solved through a recursive approach. 

8. CONCLUSIONS 

We have shown that a Basic Rule for combining information from two different 
sources is a very useful tool for solving time series problems. Such a rule produces in fact a 
weighted average of the two different predictors coming from each source of information. 
Its optimality is easily revelead by the corresponding MSE matrix which is not only 
minimum for the c1ass of linear and unbiased estimators considered, but because it shows 
that using the extra-model information reduces the original variability in the model estimator. 

Realizing that many statistical procedures are derived by combining information is 
important from a unifying point of view. Besides we advocate the use of compatibility tests 
in order to appreciate whether the combination makes sen se or not. Sorne of these tests 
have already appeared in the time series literature, associated mainly with likelihood-based 
inferences. 

Many other problems faced by a time series analyst can also be po sed in the context 
of combining information. For instance when combining forecasts from different models or 
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when benchmarking time series. In those cases, another more general combining rule may be 
employed, in which the linear restrictions to be incorporated into the combination impose 
unbinding constraints on the estimators. We shall consider those topics in another paper. 
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