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1 Introduction

Consider an economy in which there are a number of public goods (e.g., education,

transportation, police, etc.) that can be produced from a single private good (e.g.,

money). It is well known that if each individual is to decide his contribution to the

provision of public goods based only on his own preferences, then the resulting allo-

cation will typically be suboptimal. Lindahl (1964) proposed a scheme for allocating

public goods, which if implemented produces Pareto optimal outcomes. The viability

of this scheme, however, was questioned by Samuelson (1954), who pointed out that

it will generally not be compatible with individual incentives (�... it is in the sel�sh

interest of each person to give false signals, to pretend to have less interest in a given

collective consumption activity than he really has.�). Hurwicz (1977) showed that

the problem of incentive compatibility is not exclusive to public goods economies, but

is generally present, even in pure private goods economies.

As decentralized market-like institutions such as voluntary contributions are not

immune to manipulation by individuals, it seems natural to inquire into the properties

of the alternative institutions (i.e., allocation mechanisms, or simply mechanisms)

that are compatible with individual incentives. A mechanism is represented as a

mapping that associates a feasible allocation with every pro�le of preferences reported

by the individuals. Incentive compatible mechanisms are those for which an individual

is always best o¤ reporting his true preferences (i.e., for which truth-telling is a

dominant strategy in the game form de�ned by the mechanism). Mechanisms having

this property are referred to as strategy-proof.

This paper provides a characterization of the class of strategy-proof allocation

mechanisms for economies with public goods. We consider domains of admissible

preferences usually associated with economic environments, in which individuals are

known to care only about their own allocation of goods, and preferences are assumed

to have properties such as continuity, monotonicity, or convexity. We focus on di-

rect revelation mechanisms. The literature on implementation has considered more

complex mechanisms in which agents�strategy spaces may include aspects other than

their possible preferences. For the class of strategy-proof mechanisms, however, the

revelation principle has established that the restriction to direct mechanisms poses

no loss of generality.

Although the notion of incentive compatibility associated with strategy-proofness

is very strong, it is the appropriate condition if one is to consider problems in which

individuals have imperfect and asymmetric information about other individuals�pref-
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erences. Alternatively, one may introduce explicitly the information and beliefs of

each individual about the other individuals�preferences or information, and model

the situation as a game of incomplete information. In this context, incentive com-

patibility would require that truth-telling be a Bayesian-Nash equilibrium. Wilson

(1987) has suggested that assuming that individuals�beliefs are common knowledge

may be too strong. Furthermore, if truth-telling must be a Bayesian-Nash equilib-

rium for all possible pro�les of individuals�beliefs, then an individual must be almost

always best o¤ reporting his true preferences �see Ledyard (1978). More recently, the

literature has established that strategy-proofness is a necessary condition for robust

implementation �see, e.g., Theorem 2 in Bergemann and Morris (2009).

In the social choice context, Gibbard (1973) and Satterthwaite (1975) have shown

that if the domain of preferences is unrestricted, then strategy-proof decision mech-

anisms whose range contains at least three outcomes are dictatorial. (Dictatorial

mechanisms select the outcome preferred by a single individual, the dictator, from

the mechanism�s range. Hence, dictatorial mechanisms resolve any con�ict of inter-

ests that may arise in favor of the dictator.) Versions of the Gibbard-Satterthwaite

Theorem have also been established for domains of preferences that satisfy properties

commonly assumed in economic environments, such as continuity (Barberà and Pe-

leg (1990)), continuity and convexity (Zhou (1991)), or continuity and monotonicity

(Moreno (1999)). Nevertheless, the results established in these papers assume that

individuals care about every dimension of the social outcome, and therefore have

implications only for allocating pure public goods.

The present paper provides results showing that the Gibbard-Satterthwaite The-

orem holds more generally. Speci�cally, for two domains of preferences that are

standard in the economic literature, we show that strategy-proof mechanisms that

must decide the allocation of public goods and also of other goods that a¤ect the wel-

fare of some, but not all, individuals (such as private goods, or externalities that are

not fully public goods) are dictatorial. Furthermore, we show that e¢ cient strategy-

proof mechanisms are strongly dictatorial �i.e., they select the dictator�s preferred

allocation on the entire feasible set. (A mechanism is e¢ cient if for every pro�le

of preferences it selects an allocation that is Pareto optimal with respect to that

pro�le.) Consequently, our results establish a version of the Gibbard-Satterthwaite

Theorem which applies to a broad class of economies, and reveal the extent to which

the con�ict between individual incentives and other properties that may be deemed

desirable (e.g., fairness, equal treatment, distributive justice) pervades resource allo-

cation problems.
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There is a great deal of literature studying mechanisms for public goods provi-

sion. For economies including one private good (on which individuals�preferences

are assumed to be linear) and one or more public goods, Green and La¤ont (1977)

have characterized the class of strategy-proof and e¢ cient mechanisms as Groves

mechanisms; since mechanisms in this class are unbalanced, their characterization im-

plies that strategy-proofness and e¢ ciency are not compatible. For this domain of

quasi-linear preferences, Hurwicz and Walker (1990) show that strategy-proof mech-

anisms will generally produce ine¢ cient outcomes. For economies with private and

public goods where individuals�preferences are represented by continuous, monotonic

and concave utility functions, and each individual has access to a certain technology

for producing public goods using private goods as inputs, Saijo (1991) shows that

strategy-proofness and autarkic individual rationality are inconsistent.

Moreno and Walker (1991) study economies with public goods and other goods

in which individuals�preferences are represented by strictly concave and quadratic

utility functions, and show that strategy-proof mechanisms that satisfy conditional

unanimity, and whose range projected on the set of possible public good bundles has

dimension at least two, are dictatorial. In the same setting, Moreno (1994) considers

the domain of preferences that are represented by continuous utility functions and

shows that every strategy-proof and responsive mechanism whose range contains at

least three outcomes that di¤er in the bundle of public goods is dictatorial. Schummer

(1999) studies an economy with two agents who have linear preferences over one pri-

vate good, and one or more public goods which are produced with a constant-returns

to scale technology using the private good as input, and shows that strategy-proof

and e¢ cient mechanisms are dictatorial. Serizawa (1999) studies economies with one

private good and one public good, and for the domain of preferences represented by

utility functions that are continuous, strictly quasi-concave, and strictly monotonic,

shows that strategy-proof, budget-balancing and symmetric mechanisms are equal

cost sharing schemes.

In the present paper we study the strategy-proof mechanisms available for economies

with public goods and other goods (e.g., private goods and/or externalities not fully

public goods) for two alternative natural domains of preferences. We show (Theorem

1) that if preferences are represented by utility functions that are continuous, and

increasing in the non-public dimensions, then any strategy-proof mechanism whose

range contains at least three outcomes that di¤er in the bundle of public goods pro-

vided is dictatorial. Theorem 1 thus provides an extension of Barberà and Peleg�s

Theorem to economies with public goods and other goods. Note that, unlike Moreno
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(1994), we restrict the domain to contain only utility functions that are increasing in

the non-public dimensions.

We also show (Theorem 2) that if preferences are represented by utility functions

that are continuous, quasi-concave, and increasing in the non-public dimensions, then

any strategy-proof mechanism whose range projected on the set of possible public

good bundles has dimension at least two is dictatorial. Theorem 2 thus provides an

extension of Zhou�s Theorem to economies with public goods and other goods that

are not public. Note that the assumption on the dimension of the mechanism�s range

in Theorem 2 requires the presence of at least two public goods, which rules out the

economies studied by Serizawa (1999). Also note that unlike in Green and La¤ont

(1977) and Hurwicz and Walker (1990) the domain considered in Theorem 2 contains

utility functions that are not quasi-linear. (Moreover, non-separable utility functions

play a key role in the proof of Theorem 2.) Furthermore, unlike these papers, and

Schummer (1999), Theorem 2 does not assume any particular structure of the feasible

set, nor it is assumed that the non-public coordinates are private goods.

Moreover, in theorems 1 and 2 we do not impose e¢ ciency as do Green and

La¤ont (1977), Hurwicz and Walker (1990) and Schummer (1999), nor do we impose

individual rationally as does Saijo (1991), or conditional unanimity as do Moreno and

Walker (1991), or responsiveness as does Moreno (1994). (Our Theorem 3, however,

establishes a result analogous to that of Schummer (1999) for our general class of

economies and the two domains of preferences we consider.)

For a general class of economies, Satterthwaite and Sonnenschein (1981) have

established that strategy-proof, nonbossy and di¤erentiable mechanisms are locally

serially dictatorial. (A mechanism is nonbossy if no individual can change some

other individual�s outcome �by changing the utility function he reports �and main-

tain his own. Serially dictatorial mechanisms determine the allocation by selecting

the preferred outcomes of a hierarchy of dictators.) The implications of the results

of Satterthwaite and Sonnenschein (1981) are unclear: the conditions implying that

a mechanism is globally dictatorial are very hard to check, and involve additional

properties of the speci�c mechanism under consideration. Furthermore, the require-

ment that mechanisms be nonbossy rules out some potentially interesting mechanisms

such as the �competitive mechanism,�and raises the question as to whether there are

bossy mechanisms that perform well. (Nonbossy mechanisms have been later studied

by, among others, Serizawa (1996), and Deb and Ohseto (2002).) By contrast, our

theorems 1 and 2 do not restrict attention to nonbossy mechanisms, and their scope

and conclusions are unambiguous.
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Our results have no implications for economies with only pure private goods.

Note, however, that strategy-proof and nondictatorial mechanisms do exist in this

case. Consider, for example, an economy in which there are two private goods, x

and y; and three individuals. The economy is endowed with three units of x and

nothing of y: There is a constant returns to scale technology which yields one unit

of y for each unit of x used as input. Let the mechanism f assign to individuals 1,

2 and 3, respectively, their most preferred consumption bundle whose cost in terms

of x does not exceed 1 +m2 �m3; 1 +m3 �m1 and 1 +m1 �m2 units of x; where

mi is either zero if individual i�s reported utility function is positive at (0; 0) ; and

it is one otherwise. This mechanism is strategy-proof (no individual can in�uence

his own outcome), and it is not dictatorial. Moreover, if individuals�preferences are

monotonic, it produces Pareto optimal outcomes. (A similar example is discussed by

Satterthwaite and Sonnenschein (1981).)

For a standard two person, two private goods pure exchange economy, Hurwicz

(1972) has established that there are no incentive compatible mechanisms that always

produce individually rational and Pareto optimal outcomes, and Zhou (1991) has

shown that e¢ cient mechanisms are dictatorial. For general pure exchange economies,

Barberà and Jackson (1995) have characterized the class of strategy-proof anonymous

and nonbossy mechanisms as those for which individuals trade according to �xed

proportions. Other domains have been studied in the literature: Schummer (1997)

investigates homothetic and strictly convex preferences; Serizawa (2002) and Serizawa

and Weymark (2003) study classical homothetic and smooth preferences; Ju (2003)

studies CES preferences; Nicoló (2004) studies Leontief preferences; and Hashimoto

(2008) studies Cobb-Douglas preferences.

The extensive literature on strategy-proofness has been recently surveyed by Bar-

berà (2010).

2 The Model

The set of individuals is N = f1; :::; ng: Individual i�s consumption set is a subset of a
�nite dimensional Euclidean space, X�Yi � Rm+ �Rli+: The set of feasible allocations
is Z � X �

Qn
i=1 Yi: Thus, the coordinate members of X are the public goods to

be provided, while the other coordinates are private goods or externalities which are

not fully public goods. This representation includes allocation problems associated to

pure public goods economies (for which the sets Yi are singletons), pure private goods

economies (for which the set X is a singleton), and mixed economies (i.e., economies
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in which there are public goods as well as private goods and/or other externalities).

The preferences of individual i 2 N are represented by utility functions, i.e.,

by real-valued functions on X � Yi. Since individuals utility functions might be

known to have certain properties (e.g., to be continuous, or to be increasing in certain

dimensions), for each i 2 N we denote by Ui the set of individual i�s a priori admissible
utility functions. The set of admissible utility pro�les is therefore U =

Qn
i=1 Ui: Utility

pro�les are denoted by u = (u1; :::; un): For u 2 U and S � N; we write u�S for the
pro�le obtained from u by deleting the utility functions of the members of S:

A mechanism is a mapping f : U ! Z: Given a mechanism f; we denote its range

by Zf ; and for u 2 U we write fx(u) 2 X the bundle of public goods provided, fi(u) 2
X�Yi for the bundle of goods received by individual i, and f�i(u) 2 X�

Q
j2Nnfig Yi

for the bundle of goods received by individuals other than i.

A mechanism f is manipulable by individual i at u 2 U if there is ~ui 2 Ui such
that ui(fi(u�i; ~ui)) > ui(fi(u)): A mechanism is strategy-proof if it is not manipulable

by any i 2 N at any u 2 U: Strategy-proof mechanisms are those for which an indi-
vidual is always best o¤ reporting a utility function representing his true preferences

(i.e., for which no individual can ever improve by reporting false preferences). Hence

strategy-proofness guarantees that truth-telling is an equilibrium whatever individu-

als�preferences are.

For every set A � X �
Qn
i=1 Yi; we write AX and AYi for the projection of A

into X and Yi; respectively. We also use the (somewhat inconsistent but compact)

notation Ai and A�i to refer to the projection of A into X � Yi and X �
Q
j2Nnfig Yj;

respectively. Also for a A � Rp we denote by A its closure, by #A its cardinality,
and by dimA its dimension. (The dimension of a set is the dimension of the smallest

a¢ ne subspace that contains the set).

A mechanism is dictatorial if there is an individual i 2 N such that for each

u 2 U; fi(u) maximizes ui on Zfi ; individual i is then referred to as a dictator for
f . An mechanism is strongly dictatorial if there is an individual i 2 N such that for

each u 2 U; fi(u) maximizes ui on Zi:
It should be noticed that the de�nition of dictatorial mechanisms given here is

weaker than the one usually encountered in the social choice framework. Here the dic-

tator preferences need only determine the dictator�s consumption bundle. Of course,

any con�ict of interests between the dictator and other individuals is always settled

in favor of the dictator. If there are public goods whose provision has to be decided,

for example, then the decision will be made aiming to maximize the dictator�s welfare.

Thus, for economies with only public goods, this notion is the usual one.
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3 The results

Barberà and Peleg (1990), and Zhou (1991) have established that in pure public

good economies, strategy-proof mechanisms are dictatorial. In our framework these

theorems can be formulated as follows:

Theorem (Barberà and Peleg (1990)). Assume that Y1; :::; Yn are singletons, and
each Ui contains all the continuous functions on X � Yi. Then every strategy-proof
mechanism f : U �! Z such that #ZfX � 3 is dictatorial.

Theorem (Zhou (1991)). Assume that X is a convex set, Y1; :::; Yn are singletons,

and each Ui contains all the continuous quasi-concave functions on X � Yi. Then
every strategy-proof mechanism f : U �! Z such that dimZfX � 2 is dictatorial.

When #ZfX = 2 there are strategy-proof and nondictatorial mechanisms (e.g.,

majority voting). The condition on the dimension of ZfX in Zhou�s Theorem e¤ectively

requires that there be at least two public goods. When there is a single public good

and individuals�preferences are represented by quasi-concave utility functions, then

the class of strategy-proof mechanisms has been characterized by Moulin (1980) as

median voter type mechanisms; hence, strategy-proof and nondictatorial mechanisms

do exist in this case.

For the general class of allocation problems considered here, there may be certain

natural restrictions on individuals�admissible utility functions. For example, if the

non-public dimensions of an allocation problem are private goods that are always

desirable or freely disposable, then admissible utility functions must be increasing in

those dimensions. For each i 2 N; a utility function ui is said to be yi-increasing if
for all yi; y0i 2 Yi with yi > y0i; one has ui(x; yi) � ui(x; y

0
i). (For a; b 2 Rp; a � b i¤

ai � bi for all i = 1; :::; n, and a > b i¤ a � b and a 6= b:)
Theorems 1 and 2 below generalize the above results to all allocation problems

involving public goods; i.e., they apply to strategy-proof mechanisms for mixed

economies (i.e., for economies in which there are private goods and/or other ex-

ternalities, as well as public goods).

Theorem 1 establishes an analog to Barberà and Peleg�s Theorem. Note that the

sets of admissible utility functions are required to contain only utility functions that

are increasing in the non-public dimensions.

Theorem 1. Assume that each Ui contains all the continuous yi-increasing functions
on X � Yi. Then every strategy-proof mechanism f : U �! Z such that #ZfX � 3 is
dictatorial.
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Theorem 1 contains Barberà and Peleg�s Theorem as a particular case. (However,

Barberà and Peleg�s Theorem plays a fundamental role in its proof.) It should be

noticed that Theorem 1 does not require that the non-public dimensions be private

goods; i.e., it allows the possibility for these dimensions to be goods of any nature:

private goods, public goods or other externalities. Theorem 1 also contains Theorem

2 in Moreno (1994).

Theorem 2 below establishes an analog to Zhou�s Theorem. Note that, as in

Theorem 1, the set of admissible utility functions is required to contain only utility

functions that are increasing in the non-public dimensions.

Theorem 2.Assume that X;Y1; :::; Yn are convex sets, and each Ui contains all the
continuous, quasi-concave and yi-increasing functions on X�Yi. Then every strategy-
proof mechanism f : U �! Z such that dimZfX � 2 is dictatorial.

Theorem 2 contains Zhou�s Theorem as a particular case. (However, Zhou�s The-

orem plays a key role in its proof.) Theorem 2 also contains Moreno and Walker�s

(1991) Theorem. Note that economies with one public good and one private good

are outside the scope of Theorem 2 as well, but strategy-proof and nondictatorial

mechanisms do exist in this case �see Serizawa (1999).

The following remarks are helpful to make the scope of theorems 1 and 2 precise.

Remark 1.The condition on ZfX in Theorem 1 (Theorem 2) e¤ectively requires that

at least one (two) public good(s) be provided.

Thus, theorems 1 and 2 have no implications for economies where there are no

public goods. In particular, they have no implications for pure private good economies

(i.e., for economies whereX is a singleton). As the example in the introduction shows,

however, strategy-proof and nondictatorial mechanisms do exist for pure private good

economies � see Barberà and Jackson (1995) for a characterization of the class of

strategy-proof anonymous and nonbossy mechanisms.

Remark 2.The admissibility of utility functions that are non-separable (i.e., that are
not of the form ui(x; yi) = v(x)+w(yi)), and non-increasing in the public dimensions

is essential in theorems 1 and 2.

Non-separable utility functions play a key role in the proof of theorems 1 and 2 �

see the proof on Lemma 3.2 in Section 4, and appendices A, B and C. Indeed, when

only separable utility functions are admissible, there are strategy-proof and nondic-

tatorial mechanisms �e.g., Groves type mechanisms; see Green and La¤ont (1977).
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The admissibility of utility functions that are non-increasing in the public dimensions

(i.e., admitting that individuals desire for public goods may be satiated) allows us to

appeal to Barberà and Peleg�s and Zhou�s theorems in the proofs of Theorem 1 and

Theorem 2, respectively. (It seems possible to obtain a result analogous to Theorem

1 when utility functions are increasing in all dimensions appealing to Moreno�s (1999)

Theorem 1, although there are a number of di¢ culties to overcome.)

As noted earlier, the de�nition of dictatorial mechanisms in our framework is

weaker than the one usually encountered in the social choice framework. Here the

dictator preferences need only determine the dictator�s consumption bundle, perhaps

leaving some room to determine the other coordinates of the allocation on the basis of

reasonable criteria. Also, the mechanism�s range may restrict the extent to which the

dictator�s interests prevail. If we ask a strategy-proof mechanism to produce Pareto

optimal outcomes, however, then the allocation must be selected so as to maximize

the dictator�s welfare on the entire feasible set �i.e., the dictator becomes a strong

dictator. This result is established in Theorem 3 below.

A mechanism f is said to be e¢ cient if for each u 2 U; f(u) is Pareto optimal
with respect to u; i.e., there is no (x; y) 2 Z such that ui (x; yi) � ui(fi(u)) for all

i 2 N and uj (x; yj) > uj(fj(u)) for some j 2 N:

Theorem 3. Assume that U and Z satisfy either (3.1) or (3.2):
(3.1) Each Ui contains all the continuous yi-increasing functions on X � Yi and

#ZX � 3:
(3.2) The sets X; Y1; :::; Yn are convex, each Ui contains all the continuous, quasi-

concave and yi-increasing functions on X � Yi; and dimZX � 2:
Then every strategy-proof and e¢ cient mechanism f : U �! Z is strongly dictatorial.

Note that the cardinality and dimensionality conditions on Theorem 3 are imposed

on the feasible set rather than on the range of the mechanism. Thus, Theorem 3

applies to a broad class of economies. Moreover, the strength of the conclusion of

Theorem 3 makes it clear that imposing e¢ ciency, in addition to strategy-proofness,

leaves no room for any other desirable property such as fairness, equal treatment,

distributive justice and the like.

In summary, we provide versions of the Gibbard-Satterthwaite Theorem that ap-

ply to a large class of economies and to domains of preferences with the properties

commonly assumed in the literature. The persistence of the conclusion that mecha-

nisms must either be manipulable or dictatorial reveals the impossibility of reconciling

individuals�interests while maintaining other desirable properties.
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4 The Proofs

Given a set of admissible utility pro�les U; denote by Ux :=
Qn
1 U

x
i the set of pro�les

whose coordinate utility functions are constant on the non-public goods; i.e., for each

i 2 N the set Uxi contains the utility functions ui 2 Ui of the form ui(x; yi) = v(x),

where v is a real-valued function on X.

The starting point in the proofs of theorems 1 and 2 is to show that the restriction

to Ux of a strategy-proof mechanism f satisfying the assumptions of these theorems

is dictatorial (Lemma 1). With this result in hand we establish some properties of

the mechanisms obtained by �xing the utility function of a single individual other

than the restricted dictator (i.e., the dictator of f on Ux); speci�cally, we show

that such mechanisms are strategy-proof, and that the projection of their range on

the consumption set of the restricted dictator is virtually the same as that of the

projection of the range of f (lemmas 2 and 3). Then we prove by induction on the

number of individuals that the dictator of f on Ux is in fact a dictator on the entire

domain U . It turns out to be convenient to begin the induction argument with the

case n = 2: (Note, however, that for n = 1 dictatorship and strategy-proofness are

equivalent properties.)

Lemma 1. Let f be a strategy-proof mechanism. Then fx(Ux) = Z
f
X : Moreover, if

f satis�es the assumptions of either Theorem 1 or Theorem 2, then the restriction of

f to Ux is dictatorial, and ZfX is a closed set.

Proof. Let f be a strategy-proof mechanism. We show that fx(Ux) = Z
f
X : Obviously

fx(U
x) � ZfX . We show that Z

f
X � fx(Ux). Let �x 2 Z

f
X , and let �u 2 U be such that

fx(�u) = �x. For each i 2 N , let ui 2 Uxi be given by ui(x; yi) = �kx� �xk. Since f is
strategy-proof, one has fx(u1; �u�1) = �x (otherwise f is manipulable by individual 1

at �u). Similarly,

fx(u1; �u�1) = fx(u1; u2; �u�f1;2g) = ::: = fx(u1; :::; un) = �x:

Hence �x 2 fx(Ux):
Assume now that f satis�es the assumptions of either Theorem 1 or Theorem 2.

Let�y 2
Qn
1 Yi be arbitrary, and for each i 2 N; let �Ui denote the set of utility functions

on X�f�yig that are restrictions of functions in Uxi . Note that for each�ui 2 �Ui; there
is a unique ui 2 Uxi such that �ui(x;�yi) = ui(x; yi) for each (x; yi) 2 X � Yi. Write
�ui � ui when the functions �ui and ui are related in this way.

Write �U =
Qn
i=1
�Ui, and �Z = X � f�yg; and de�ne the mechanism g : �U �! �Z

by g(�u) = (fx(u);�y), where u 2 Ux is such that for each i 2 N , �ui � ui. Clearly,
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g is strategy-proof. Suppose not; let j 2 N , �u 2 �U and �u0j 2 �Uj be such that

�uj(gj(�u
0
j;�u�j)) > �uj(gj(�u)): Also let u = (u1; :::; un) 2 Ux and u0j 2 Uxj be such that

�ui � ui for each i 2 N , and �u0j � u0j. Then one has

uj(fj(u
0
j; u�j)) = uj(gj(�u

0
j;�u�j)) > uj(gj(�u)) = uj(fj(u));

and therefore f is manipulable by individual j at u 2 Ux, which contradicts that f
is strategy-proof. Hence g is strategy-proof, and therefore, as shown above, �Zg =

ZfX � f�yg.
If the assumptions of Theorem 1 hold, then Barberà and Peleg�s Theorem implies

that g is dictatorial. And if the assumptions of Theorem 2 hold, then Zhou�s Theorem

implies that g is dictatorial. Therefore, in either case g is dictatorial.

Without loss of generality assume that individual 1 is the dictator of g: We show

that individual 1 is a dictator for f on Ux. Let u 2 Ux; and let �u 2 �U be such that
�ui � ui for each i 2 N: Since g1(�u) maximizes �u1 on �Zg1 we have �u1(g1(�u)) ��u1(x;�y1)
for all (x;�y1) 2 �Zg1 : And since �u1(g1(�u)) = �u1(fx(u);�y1) = u1(f1(ux)); then

u1(f1(u
x)) � u1(x;�y1) = u1(x; y1)

for all (x; y1) 2 Zf1 : Hence f is dictatorial on Ux.
Finally, we show that ZfX is closed. Let �x be a member of the closure of Z

f
X ; and

let (u1; :::; un) 2 Ux be such that for (x; y1) 2 X � Y1, we have u1(x; y1) = �kx� �xk:
Suppose that fx(u1; :::; un) = x̂ 6= �x: Since �x is in the closure of ZfX there is �x0 2 Z

f
X

su¢ ciently close to �x that �k�x0 � �xk > �kx̂ � �xk: Since ZfX = fx(U
x), there is

(�x0; y1) 2 f1(Ux) such that

u1(�x
0; y1) = �k�x0 � �xk > �kx̂� �xk = u1(f1(u1; :::; un));

which contradicts that individual 1 is a dictator for f on Ux: �

For our next lemma we need to introduce some additional notation. Let f be a

mechanism, and let i 2 N: For each ui 2 Ui let the mapping fui :
Q
j2Nnfig Uj �! Z�i

be given for each u�i 2
Q
j2Nnfig Uj by f

ui(u�i) = f�i(ui; u�i). Note that each fui is

a mechanism.

Lemma 2. Let f be a strategy-proof mechanism satisfying the assumptions of either

Theorem 1 or Theorem 2, and assume, w.l.o.g., that individual 1 is the dictator of f

on Ux (Lemma 1). Then for all i 2 Nnf1g and ui 2 Ui:
(2.1) fui is strategy-proof and Zf

ui

X = ZfX .

(2.2) If fui is dictatorial, then individual 1 is the dictator.
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Proof. Let i 2 Nnf1g and ui 2 Ui: We prove Lemma 2.1. We �rst show that
fui is strategy-proof. Suppose by way of contradiction that fui is manipulable by

k 2 Nnfig at u�i 2
Q
j2Nnfig Ui via ~uk 2 Uk; then

uk(fk(ui; ~uk; u�fi;kg)) = uk(f
ui
k (~uk; u�fi;kg)) > uk(f

ui
k (u�i)) = uk(fk(ui; u�i);

and therefore f is manipulable by individual k at (ui; u�i) 2 U; contradicting that f
is strategy-proof.

Next, we prove that Zf
ui

X = ZfX . Since Z
fui
X � ZfX ; we show that Z

f
X � Z

fui
X . Let

�x 2 ZfX , and suppose that �x =2 Z
fui
X . Let �u1 2 Ux1 be given by �u1(x; y1) = �kx� �xk.

Since �x =2 Zf
ui

X , then

fuix (�u1; u�f1;ig) = ~x;

where ~x 6= �x. For j 2 Nnf1g, let ~uj 2 Uxj be given by ~uj(x; yj) = �kx� ~xk. Since f
is strategy-proof one has

fx(�u1; ~ui; u�f1;ig) = fx(�u1; ~u2; ~ui; u�f1;2;ig; ) = ::: = fx(�u1; ~u2; :::; ~un) = ~x 6= �x:

But note that (�u1; ~u2; :::; ~un) 2 Ux; and therefore this contradicts that individual 1 is
the dictator for the restriction of f to Ux. Hence ZfX � Z

fui
X .

We prove Lemma 2.2. Suppose by way of contradiction that some individual

k 2 Nnf1; ig is the dictator of fui : Let �x; ~x 2 Zf
ui

X = ZfX ; with �x 6= ~x; and let �u1
and ~uj for j 2 N as de�ned in the proof of Lemma 2.1 above. Write ~u = (~u1; :::; ~un):

Since individual k 2 Nnf1; ig is the dictator of fui ; then we have

fuix (�u1; ~u�f1;ig)) = fx(�u1; ui; ~u�f1;ig) = ~x:

And since f is strategy-proof, then

fx(�u1; ~ui; ~u�f1;ig) = ~x 6= �x:

However, (�u1; ~ui; ~u�f1;ig) 2 Ux; which contradicts that individual 1 is the dictator for
the restriction of f to Ux. �

We de�ne a family of Leontief-type functions, fwŷ1gŷ12Y1nf0g; that will be useful
in the rest of the proof. Let ŷ1 2 Y1nf0g; if ŷk1 > 0 for all k; then the function

wŷ1 : Y1 ! [0; 1] is given for y1 2 Y1 by

wŷ1(y1) =
1

�1ŷ11
minf�1y11; :::; �l1y

l1
1 ;�1ŷ

1
1g;

where � = (�1; :::; �l1) 2 Rl1+ satis�es �1ŷ11 = �2ŷ
2
1 = ::: = �l1 ŷ

l1
1 . If ŷ

k
1 = 0 for

some k; then the term �kŷ
k
1 is suppressed from the formula above and from the set

13



equations that the vector � must satisfy, and if ŷ11 = 0; then the term �1ŷ
1
1 in the

formula is replaced by the term �kŷ
k
1 corresponding to the �rst positive coordinate

of ŷ1. Note that each wŷ1 is an increasing, continuous, and concave function, and

satis�es wŷ1(y1) = 1 for y1 � ŷ1:
For x̂ 2 X and A � X; denote by d(x̂; A) = infx2A kx̂� xk the distance from x̂

to A: Also, given a mechanism f and a point �x 2 ZfX ; write

ZfY1(�x) :=
n
y1 2 Y1 j (�x; y1) 2 Zf1

o
:

Lemma 3. Let f be a strategy-proof mechanism satisfying the assumptions of either

Theorem 1 or Theorem 2. Assume, w.l.o.g., that individual 1 is the dictator of f on

Ux (Lemma 1), and suppose that n = 2. Then, for all u2 2 U2 and all �x 2 ZfX :
(3.1) Zf

u2

Y1
(�x) is non-empty and bounded, and contains every �y1 2 Zf

u2

Y1
(�x) such

that no y1 2 Zf
u2

Y1
(�x) satis�es y1 > �y1: Moreover, for all ŷ1 2 Y1nf0g, wŷ1 has a

maximum on Zf
u2

Y1
(�x):

(3.2) For each y1 2 ZfY1(�x) there is y
0
1 2 Z

fu2
Y1
(�x) such that y01 � y1:

Proof. Let u2 2 U2 and �x 2 ZfX :
We establish (3.1). Since Zf

u2

X = ZfX by Lemma 2.1, then Z
fu2
Y1
(�x) is non-empty.

We show that Zf
u2

Y1
(�x) is bounded. Let u1 2 U1 be given for all (x; y1) 2 X � Y1 by

u1(x; y1) = �kx� �xk+
l1X
j=1

yj1:

If Zf
u2

Y1
(�x) is unbounded, then u1 does not have a maximizer on Z

fu2
1 ; which contra-

dicts that fu2 is strategy-proof (Lemma 2.1), i.e., that fu21 (u1) maximizes u1 on Z
fu2
1 :

Hence Zf
u2

Y1
(�x) is bounded.

Let �y1 2 Zf
u2

Y1
(�x) be such that there is no y01 2 Z

fu2
Y1
(�x) with y01 > �y1:We show that

�y1 2 Zf
u2

Y1
(�x): Let �u1 be given for all (x; y1) 2 X�Y1 by �u1(x; y1) = �kx��xk+w�y1(y1).

We have

�u1(�x; �y1)� �u1(x; y1) = 1� w�y1(y1) + kx� �xk:

If x 6= �x; then
�u1(�x; �y1)� �u1(x; y1) � kx� �xk > 0:

If y1 6= �y1 and (x; y1) 2 Zf
u2

1 ; since no y01 2 Z
fu2
Y1
(�x) satis�es y01 > �y1; then we have

�u1(�x; �y1)� �u1(x; y1) � 1� w�y1(y1) > 0:

14



Assume that fu21 (�u1) 6= (�x; �y1); then �u1(�x; �y1) � �u1(fu21 (�u1)) > 0: Since �y1 is in the

closure of Zf
u2

Y1
(�x); then we can �nd ~y1 2 Zf

u2

Y1
(�x) su¢ ciently close to �y1 that

�u1(�x; �y1)� �u1(�x; ~y1) = 1� w�y1(~y1) < �u1(�x; �y1)� �u1(fu21 (�u1));

i.e.,

�u1(�x; ~y1) > �u1 (f
u2
1 (�u1)) ;

which contradicts that fu2 is strategy-proof (Lemma 2.1). Hence fu21 (�u1) = (�x; �y1),

and therefore �y1 2 Zf
u2

Y1
(�x).

Finally, let ŷ1 2 Y1nf0g. Since wŷ1 is increasing, it has a maximizer y1 on Z
fu2
Y1
(�x)

such that there is no y01 2 Z
fu2
Y1
(�x) with y01 > y1: Then y1 2 Z

fu2
Y1
(�x) as shown above,

and therefore wŷ1(y1) is the maximum value of wŷ1 on Z
fu2
Y1
(�x):

We prove (3.2). Suppose by way of contradiction that there is �y1 2 ZfY1(�x) such
that no y1 2 Zf

u2

Y1
(�x) satis�es y1 � �y1: Let û1 2 U1 be a continuous, concave and

y1-increasing utility function satisfying

(a) û1(�x; �y1) > û1(x; y1) for all (x; y1) 2 Zf1 nf(�x; y01) 2 Z1 j y01 � �y1g,
and such that

(b) every maximizer (x; y1) of û1 on Z
fu2
1 satis�es x 6= �x:

(A utility function with these properties is constructed in Appendix A.) Since fu2

is strategy-proof (Lemma 2.1), then fu2(û1) maximizes û1 on Z
fu2
1 ; and therefore

fu2x (û1) 6= �x. Write fu2x (û1) = fx(û1; u2) = ��x:
For each û2 2 U2 such that û2 (x; y2) = v̂(x); where v̂ is an arbitrary continuous

function uniquely maximized on ZfX at ��x, we have fx(û1; û2) = ��x; for otherwise f is

manipulable at (û1; û2): Further, there is no (�x; y1) 2 Zf
û2

1 with y1 � �y1; for otherwise
f û2(û1) does not maximize û1 on Z

f û2
1 ; which contradicts that f û2 is strategy-proof.

We complete the proof of Lemma 3.2 under the assumptions of Theorem 1. By

assumption, there is ���x 2 ZfXnf�x; ��xg: Let û2 2 U2 be such that û2 (x; y2) = v̂(x); where
v̂ is a continuous function uniquely maximized on ZfX at ��x; and satisfying v̂(�x) > v̂(���x)

�see the proof of Barberà and Peleg (1990)�s Lemma 5.6 for an example of a utility

function with these properties. Then fx(û1; û2) = ��x: Let ~u1 2 U1 be a continuous
utility function satisfying (a) above, and such that

(c.1) every maximizer (x; y1) of ~u1 on Z
f û2
1 satis�es x = ���x :

(A utility function with these properties is constructed in Appendix B.) Since f û2

is strategy-proof, then f û2x (~u1) = ���x: Since (�x; �y1) 2 Zf1 ; then there is �u2 2 U2 such
that (�x; �y1) 2 Zf

�u2

1 : And since ~u1 satis�es (a) above, strategy-proofness of f �u2 implies

f �u21 (~u1) = f1(~u1; �u2) = (�x; y1) for some y1 � �y1: Hence

û2(f2(~u1; û2)) = v̂(���x) < v̂(�x) = û2 (f2(~u1; �u2)) ;
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and therefore f is manipulable at (~u1; û2); which contradicts that f is strategy-proof.

(The functions ~u1 and/or û2 used in this argument may not be concave. Note, how-

ever, that under the assumptions of Theorem 1 the sets U1 and U2 contain all the

continuous utility functions, concave or not concave.)

Finally, we complete the proof of Lemma 3.2 under the assumptions of Theorem

2. Let fû(k)2 g be a sequence of utility functions given for each integer k by

û
(k)
2 (x; y2) = v̂

(k)(x) = �(x� ��x)>H(k)(x� ��x);

where H(k) a positive de�nite matrix chosen so that the level curves of v̂(k) are ellip-

tical balls obtained by shrinking a standard ball by a factor of 1=k in all directions

orthogonal to the line segment [�x; ��x]: (Zhou (1990) uses this construction in the proof

of his Theorem 2, Step 3.) Since each v̂(k) is uniquely maximized at ��x; we have

fx(û1; û
(k)
2 ) = f

û
(k)
2

x (û1) = ��x for all k: For each k write

!(k) = max

y12Zf
û
(k)
2

Y1
(�x)

w�y1(y1):

Note !(k) is well de�ned by Lemma 3.1, and f!(k)g � [0; 1] by the de�nition of the
function w�y1 : Let �! be the limit of a subsequence of f!(k)g: Henceforth we restrict
attention to this subsequence, and to reduce notation we denote it also by f!(k)g:
We show that �! < 1: Assume that �! = 1; then for su¢ ciently large k the set

Zf
û
(k)
2

Y1
(�x) must contain points y1 arbitrarily closed to the set fy1 2 Y1 j y1 � �y1g:

Since û1 satis�es (a) above, this in turn implies that for k su¢ ciently large there is

(�x; y
(k)
1 ) 2 Z

f û
(k)
2

1 such that û1(�x; y
(k)
1 ) > û1(��x; y1) for all (��x; y1) 2 Z

f
1 ; and therefore

f
û
(k)
2

x (û1) = ��x contradicts that f û
(k)
2 maximizes û1 (i.e., f û

(k)
2 is not strategy-proof).

Since �! < 1; then for � 2 (0; 1� �!) su¢ ciently small, there is no k and (x; y1) 2 Zf
û
(k)
2

1

such that kx� �xk < � and w�y1(y1) > 1� �.
Let (���x; ���y1) 2 Zf1 be such that �x; ��x and ���x are in general position. Choose � <���x� �x ; and let " > 0 be su¢ ciently small that if x 2 X satis�es kx� �xk > � and

d(x; [�x; ���x]) < "; then d(x; [�x; ��x]) > ": Also let �k be su¢ ciently large that v̂(�k)(�x) >

v̂(
�k)(x) for all x 2 X such that d(x; [�x; ��x]) > ": Finally, let ~u1 2 U1 be a concave

utility function satisfying (a) and such that

(c.2) ~u1(���x; ���y1) > ~u1(x; y1) for all (x; y1) 2 Zf
û
(�k)
2

1 such that d(x; [�x; ��x]) < ".

See Figure 1; in this �gure the ellipse around the line segment [�x; ���x] is the projec-

tion on X of the indi¤erence curve ~u1(x; y1) = ~u1(���x; 0): (A utility function with

these properties is constructed in Appendix C.) Since f û
(�k)
2 is strategy-proof, then

16



f
û
(�k)
2

x (~u1) = x̂
(�k) satis�es d(x̂(�k); [�x; ��x]) > ": Hence

û
(�k)
2 (f2(~u1; û2)) = v̂

(�k)
�
f û

(�k)
2

x (~u1)
�
= v̂(

�k)
�
x̂(k)
�
< v̂(

�k)(�x):

Now, since (�x; �y1) 2 Zf1 ; then there is �u2 2 U2 such that (�x; �y1) 2 Z
f �u2
1 : And since

~u1 satis�es (a) above, then strategy-proofness of f �u2 implies f
�u2
1 (~u1) = f1(~u1; �u2) =

(�x; y1) with y1 � �y1: Therefore

û
(�k)
2 (f2(~u1; û

(�k)
2 )) = v̂

(�k)
�
x̂(k)
�
< v̂(

�k)(�x) = û2(f2(~u1; �u2)):

Hence f is manipulable at (~u1; û
(�k)
2 ); which contradicts that f is strategy-proof. �

We now establish theorems 1 and 2. The proof of both theorems is identical, and

therefore in the proof we refer to them as �the theorem.�

Proof of theorems 1 and 2. Let f be a strategy-proof mechanism satisfying

the assumptions of the theorem. We show by induction on the number of individuals

that f is dictatorial for n � 2. (For n = 1 strategy-proofness and dictatorship are

equivalent properties.)

Assume that n = 2: By Lemma 1 the restriction of f to Ux is dictatorial. Assume,

w.l.o.g., that individual 1 is the dictator for f on Ux. We show that individual 1 is a

dictator for f . Let (u1; u2) 2 U and let (�x; �y1) 2 Zf1 arbitrary. By Lemma 3.2 there
is y01 2 Z

fu2
Y1
(�x) such that y01 � �y1: Hence there is u01 2 U1 such that fu21 (u01) = (�x; y01):

Thus, we have

u1(f1(u1; u2)) = u1(f
u2
1 (u1))

(since fu2 is strategy-proof by Lemma 2.1) � u1(f
u2
1 (u

0
1))

= u1(�x; y
0
1)

(since u1 is y1-increasing) � u1(�x; �y1):

Hence individual 1 is a dictator for f .

Assume that f is dictatorial whenever n < k for some k � 2, and suppose that

n = k: Again by Lemma 1 the restriction of f to Ux is dictatorial. Assume, w.l.o.g.,

that individual 1 is the dictator for f on Ux. We show that individual 1 is a dictator

for f . Note that for all i 2 f2; :::; ng and ui 2 Ui the mechanism fui is strategy-

proof and satis�es Zf
ui

X = ZfX by Lemma 2.1. Hence fui satis�es the assumptions

of the theorem and involves k � 1 individuals, and therefore is dictatorial by the
induction hypothesis. Moreover, the dictator of fui is individual 1 by Lemma 2.2. Let
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u = (u1; :::; un) 2 U and let (�x; �y1) 2 Zf1 arbitrary. Then there is u0 = (u01; :::; u0n) 2 U
such that f1(u0) = (�x; �y1): Thus, we have

u1(f1(u1; :::; un)) = u1(f
u2
1 (u1; u�f1;2g))

(since individual 1 is a dictator for fu2) � u1(f
u2
1 (u

0
1; u

0
�f1;2g))

= u1(f
u03
1 (u

0
1; u2; u

0
�f1;2;3g))

(since individual 1 is a dictator for fu
0
3) = u1(f

u03
1 (u

0
1; u

0
2; u

0
�f1;2;3g))

= u1(f1(u
0))

= u1(�x; �y1):

Therefore individual 1 is a dictator for f; thereby establishing the theorem. �

Proof of Theorem 3. Let f be a strategy-proof and e¢ cient mechanism. We

show ZX � ZfX , and therefore that Z
f
X = ZX : Let (�x; �y) 2 Z arbitrary, and for

i 2 N let �ui(x; yi) = �kx� �xk : If fx(�u1; :::; �un) 6= �x; then (�x; �y) is Pareto superior

to f(�u1; :::; �un) contradicting that f is e¢ cient. Hence fx(�u1; :::; �un) = �x and �x 2 ZfX :
Thus, under (3.1) f satis�es the assumptions of Theorem 1, and under (3.2) f satis�es

the assumptions of Theorem 2, and therefore f is dictatorial. Assume w.l.o.g. that

individual 1 is the dictator. We show that he is a strong dictator.

Assume by way of contradiction that there are u 2 U and (�x; �y) 2 Z such that
u1(�x; �y1) > u1(f1(u)): Since f1(u) maximizes u1 on Z

f
1 ; we have u1(�x; �y1) > u1(x; y1)

for all (x; y1) 2 Zf1 : For i 2 N; let �ui(x; yi) = �kx� �xk : Then

�ui(�x; �yi) � �ui(fi(u1; �u2; :::; �un))

for all i 2 Nnf1g; and

u1(�x; �y1) > u1(f1(u1; �u2; :::; �un));

i.e., (�x; �y) is Pareto superior to f(u1; �u2; :::; �un) at (u1; �u2; :::; �un); which contradicts

that f is an e¢ cient mechanism. �

5 Appendix A

We construct a utility function satisfying the properties (a) and (b) speci�ed in the

proof of Lemma 3.2. Figures 2a and 2b illustrate this construction for the cases

X = R+ and X = R2+; respectively.
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We �rst construct a real-valued function g on X � R+: Let ��x 2 ZfXnf�xg: Denote
by R0 the vertical line in X�R+ passing (��x; 0) ; i.e., the line containing all the points
(��x; !) for ! 2 R+; and denote by R1 the line passing (��x; 0) and (�x; !̂); where

!̂ =
1

2

 
1 + max

y12Zf
u2

Y1
(�x)

w�y1(y1)

!
:

Note that !̂ is well de�ned by Lemma 3.1. Moreover, �y1 =2 Zf
u2

Y1
(�x) implies

0 � max
y12Zf

u2
Y1

(�x)

w�y1(y1) < !̂ < 1:

Denote by � 2 (0; �=2) the angle formed by R0 and R1; i.e., � is de�ned by the

equation

tan� = (1=!̂)

q
(�x� ��x)> (�x� ��x):

Also, let R2 be the half line passing (��x; 0) and (�x;w�y1(�y1)) = (�x; 1) containing the

points (x; !) 2 X � R+ given by (t��x + (1 � t)�x; (1� t)) for t � 0: For t � 0 denote
by K(t) the cone with angle � and vertex in the point on R2 de�ned by t; i.e., K(t)

contains the points (x; !) such that

! � (1� t) = (1= tan�)
q
(x� (t��x+ (1� t)�x))> (x� (t��x+ (1� t)�x)):

Also denote by C(t) the cylinder containing the of points (x; !) such that

t = (1= tan�)

q
(x� (t��x+ (1� t)�x))> (x� (t��x+ (1� t)�x)):

Note that for each (x; !) 2 X � R+ there is a unique line R passing (x; !) and

forming an angle � 2 (0; �=2) with a vertical line R0; the intersection of R with

the half line R2 identi�es the unique cone that contains (x; !); which is identi�ed by

the unique solution t � 0 to the equation de�ning K(t) above. Likewise each point
(x; !) 2 X � R+ is contained in a unique cylinder, which is identi�ed by the unique
solution t � 0 to the equation de�ning C(t) above.
Let the function g : X � R+! R be given for (x; !) 2 X � R+ by g(x; !) = �t;

where t � 0 identi�es the cone K(t) that contains (x; !) if ! < 1; and t identi�es

the cylinder C(t) that contains (x; !) if ! � 1. It is easy to see that g is continuous:
for (x; !) 2 X � R+ such that ! < 1 (respectively, ! > 1) the equation identifying
K(t) (respectively, the equation identifying C(t)) that de�nes implicitly the value of

g (t in these equations) involves continuous functions; further, as ! approaches 1 the

equation de�ning K(t) becomes that de�ning C(t). Moreover, g is concave as each
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of its level curves g(x; !) = �t is formed by the union of the cone K(t) truncated
horizontally above ! = 1 and the cylinder C(t) truncated horizontally below ! = 1.

(See �gures 2a and 2b.)

Let the function û1 : X � Y1! R be given for (x; y1) 2 X � Y1 by û1(x; y1) =
g(x;w�y1(y1)): The function û1 is continuous as it is the composition of continuous

functions. We show that û1 is y1-increasing. Let (x; y1) ; (x; y01) 2 X�Y1 with y1 > y01;
then w�y1(y1) � w�y1(y01): Write û1(x; y1) = �t; û1(x; y01) = �t0: If w�y1(y1) = w�y1(y01) =
1; then (x;w�y1(y1)) = (x;w�y1(y

0
1)); and therefore t = t

0: If w�y1(y1) = 1 > w�y1(y
0
1); then

t = w�y1(y
0
1)� (1� t0) = t0 � (1� w�y1(y01)) < t0:

If w�y1(y1) < 1; then

w�y1(y1)� (1� t) = w�y1(y01)� (1� t0);

i.e.,

0 � w�y1(y1)� w�y1(y01) = t0 � t:

We show that û1 is concave: For (x; y1) ; (x0; y01) 2 X � Y1 and � 2 [0; 1] we have

û1(�x+ (1� �)x0; �y1 + (1� �) y01) = g(�x+ (1� �)x0; w�y1(�y1 + (1� �) y01))
(since w�y1 is concave, g is y1-increasing) � g(�x+ (1� �)x0; �w�y1(y1) + (1� �)w�y1(y01))

(since g is concave) � �g(x;w�y1(y1)) + (1� �) g(x0; w�y1(y01))
= �û1(x; y1) + (1� �) û1(x0; y01):

Now, since (�x;w�y1(�y1)) = (�x; 1) 2 C(0); we have û1(�x; �y1) = 0 � û1(x; y1) for all
(x; y1) 2 X � Y1 � Zf1 nf(�x; y01) 2 Z1 j y01 � �y1g: Hence û1 satis�es condition (a) of
Lemma 3.2. Since (��x; 0); (�x; !̂) 2 K(1); and w�y1(y1) < !̂ for all y1 2 Z

fu2
Y1
(�x); then

each y1 2 Zf
u2

Y1
(�x) satis�es (�x;w�y1(y1)) 2 K(t) with t > 1: Therefore for arbitrary

y1 2 Zf
u2

Y1
(��x) and y01 2 Z

fu2
Y1
(�x) we have

û1(��x; y1) � û1(��x; 0) = �1 > û1(�x; y01):

Hence if (x; y) maximizes û1 on Z
fu2
Y1
(�x); we have x 6= �x; i.e., û1 satis�es condition

(b) if Lemma 3.2.

6 Appendix B

We construct a utility function ~u1 2 U1 with properties (a) and (c.1) speci�ed in the
proof of Lemma 3.2 under the assumptions of Theorem 1. This construction builds

on a function used by Barberà and Peleg (1990) in the proof of their Lemma 5.6.
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Note that since there is no y1 2 Zf
û2

1 (�x) with y1 � �y1; then

û1(f1(û1; û2)) = max
Zf

û2
1

û1(x; y1) < û1(�x; �y1):

Let � > 0 su¢ ciently small that

B := fx 2 X j kx� �xk < �g � fy1 2 Y1 j w�y1(y1) > 1� �g

is contained in
�
Zf

û2

1

�C
; and

B�(���x) := fx 2 X j
x� ���x < �g

satis�es B�(���x) \BX = ?: De�ne �u1 : X � Y1! R for (x; y1) 2 X � Y1 by

�u1(x; y1) =
d(x;XnBX)

kx� �xk+ d(x;XnBX)
�w(y1)

if (x; y1) 2 B; and by �u1(x; y1) = 0 if (x; y1) =2 B; where

�w(y1) = maxf0; (w�y1(y1)� (1� �)) =�g:

Note that �u1 is is continuous on X � Y1 since it is zero on the boundary of B: Also
de�ne

�v(x) =
d(x;XnB�(���x))

2
�x� ���x+ d(x;XnB�(���x))�

We check that the utility function ~u1(x; y1) = �u1(x; y1) + �v(x) has the desired

properties. Since B�(���x)\BX = ?; we have ~u1(x; y1) � 1 on X�Y1: Also ~u1(x; y1) < 1
if either x 6= �x or y1 � �y1 (i.e., w�y1(y1) < 1). Moreover ~u1(�x; y1) = 1 for y1 � �y1. Hence
~u1 satis�es condition (a) of Lemma 3.2. Also since B �

�
Zf

û2

1

�C
; then ~u1(x; y1) =

�v(x) on Zf
û2

1 ; and �v(x) < �v(���x) = 1=2 for all x 2 Zf
û2

X nf���xg: Thus, if (x; y1) maximizes
~u1 on Z

f û2
1 ; then x = ���x; i.e., ~u1 satis�es (c.1) of Lemma 3.2.

7 Appendix C

We construct a utility function ~u1 2 U1 with properties (a) and (c.2) speci�ed in the
proof of Lemma 3.2 under the assumptions of Theorem 2. This construction builds

on the proof of Zhou (1990)�s Theorem 2, Step 3. The construction of ~u1 is analogous

to that the function û1 in Appendix A, except that ���x plays the role of ��x; and we

modify the construction of the function g so that its indi¤erence curves are elliptical

cones rather than spherical cones.
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Denote by ~R0 the vertical line on X � R+ passing (���x; 0); and let ~R1 the line
passing (���x; 0) and (�x; ~!); where ~! = 1

2
(1+ �!): (Here �! is the subsequential limit used

in the argument of Lemma 3.2.) Also, let ~R2 be the half line passing (���x; 0) and (�x; 1)

containing the points (t���x + (1 � t)�x; (1� t)) for t � 0: For t � 0 denote by ~K(t)

the elliptical cone with vertex in the point on ~R2 de�ned by t; containing the points

(x; !) such that

! � (1� t) = D
q�
x�

�
t���x+ (1� t)�x

��>
H
�
x�

�
t���x+ (1� t)�x

��
;

where D is a constant satisfying 0 < D < ~!=
�x� ���x ; and H is a positive de�nite

matrix, which are chosen in such a way that for �xed ! the points (x; !) 2 ~K(1) form

an elliptical ball obtained by shrinking a spherical ball in all directions orthogonal

to the line ~R1; so that for kx� �xk > � we have d(x; [�x; ��x]) > " �see Figure 1. Also
denote by ~C(t) the elliptical cylinder containing the points (x; !) such that

t = D

q�
x�

�
t���x+ (1� t)�x

��>
H
�
x�

�
t���x+ (1� t)�x

��
:

Let ~g : X � R+! R be given for (x; !) 2 X � R+ by ~g(x; !) = �t; where t � 0
identi�es the cone ~K(t) that contains (x; !) if ! < 1; and t identi�es the cylinder ~C(t)

that contains (x; !) if ! � 1. Finally, let ~u1 : X�Y1! R be given for (x; y1) 2 X�Y1
by ~u1(x; y1) = ~g(x;w�y1(y1)):

Since (�x;w�y1(�y1)) = (�x; 1) 2 ~C(0); then as shown in Appendix A the function ~u1
satis�es condition (a). And since (���x;w�y1(0)) = (���x; 0) 2 ~K(1); and by construction

every point (x; !) inside the elliptical cone ~K(1) satis�es d(x; [�x; ��x]) > ", then for

(x; y1) 2 X � Y1 such that

~u1(x; y1) = ~g(x;w�y1(y1)) > ~g(
���x; 0) = ~u1(���x; 0) � ~u1(���x; ���y1);

we have d(x; [�x; ��x]) > ". Therefore ~u1 satis�es (c.2) of Lemma 3.2.
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