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Abstract--In this paper, linear and non-linear stiff systems of 
ordinary differential equations are solved by the classical 
Adomian decomposition method (ADM) and the multistage 
Adomian decomposition method (MADM). The MADM is a 
technique adapted from the standard Adomian decomposition 
method (ADM) where standard ADM is converted into a hybrid 
numeric-analytic method called the multistage ADM (MADM). 
The MADM is tested for several examples. Comparisons with an 
explicit Runge-Kutta-type method (RK) and the classical ADM 
demonstrate the limitations of ADM and promising capability of 
the MADM for solving stiff initial value problems (IVPs).  

Keywords-- Stiff system of ODEs, Runge-Kutta-type method, 

Adomian decomposition method, Multistage ADM.  

I. Introduction 
The mathematical equations modelling many real-world 

physical phenomena are often stiff equations, i.e. equations 
with a wide range of temporal scales. The numerical methods 
for solving stiff equations must have good accuracy and wide 
region of stability. Hojjati et al. [1] developed a multistep 
method for solving stiff systems of initial value problems 
(IVPs). Knowing that the classical explicit fourth-order 
Runge-Kutta method is insufficient for the solution of stiff 
IVPs, Ahmad et al. [2] presented an explicit Taylor-like 
method for solving stiff IVPs. In Ahmad and Yaacob [3], an 
explicit Runge-Kutta-like method is developed and shown to 
be efficient for the solution of stiff ODEs. Very recently, Nie 
et al. [4] presented a class of efficient semi-implicit schemes 
for stiff reaction-diffusion equations.  
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A variable-step size algorithm for stiff systems has been 
proposed recently by Jannelli and Fazio [5]. In [6], classes of 

methods having properties very close to those of traditional 
Runge-Kutta methods were developed. Butcher and Hojjati [7] 
devised a class of second derivative methods possessing 
Runge-Kutta stability property. Hojjati et al. [8] presented a 
new class of second derivative multistep methods with 
improved stability region. 

All of the methods mentioned above need some sort of 
discretizations. One of the papers proposing an approximate 
analytic method is due to Guzel and Bayram [9] who 
presented a power series method for stiff systems. Adomian et 
al. [10] first demonstrated how a power series method, called 
the Adomian decomposition method (ADM) [11], can be used 
to derive an exact solution to a specific linear stiff system of 
IVPs. The ADM yields, without linearization, perturbation, 
transformation or discretization, an analytical solution in terms 
of a rapidly convergent infinite power series with easily 
computable terms, see for example, [11]. Recently, Mahmood 
et al. [12] solved both linear and non-linear stiff systems of 
IVPs using the ADM. The ADM has been applied to a wide 
range of problems, [13, 14, 15, 16, 17, 18]. In [19, 20, 21, 22, 
23, 24], the ADM was treated as an algorithm for 
approximating the solutions in a sequence of time intervals 
(i.e. time step). We call this approach as multi-stage ADM 
(MADM). In this work, we shall apply the MADM to the 
solutions of stiff IVPs. Comparisons will be made against the 
classical ADM, an explicit Runge-Kutta method and available 
exact solutions. 

II. Solution Methods 
In this section we describe the ADM and give the 

algorithm of the Runge-Kutta-like method of Ahmad and 
Yaacob [3] for solving the following initial value problem: 

),( ytfy   with 
0

)0( yy  ,            (1) 

where ),( ytf  may be a linear or non-linear function. 

A. Decomposition method 
Consider Eq. (1) written in the form 

)(tgNRL
yyy
 ,            (2) 

where dtdL / , R  is the remainder of the linear operator 

and 
y

N  represents the non-linear term. Hence, we obtain 

)()())(()0( 111

yy
NLRLtgLyy   ,          (3) 

where  

t

dsL

0

1 )()( . The ADM, [13], takes the solution y  

and the non-linear function 
y

N  as infinite series, respectively, 
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where the so-called Adomian polynomials 
k

A  are given by, 

[13],  
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Convergence aspects of the ADM have been investigated 
in [25]. For later numerical computation, let the expression 







1

0

)(
n

k

kn
yt ,             (8) 

denote the termn approximation to )(ty . 

As first hinted in [26] and applied in [19, 20, 21, 22, 23], 
we treat the ADM as an algo-rithm for approximating the 
dynamical response in a sequence of time intervals (i.e. time 

step) ),[,,),[,),0[
1211

Ttttt
m

  such that the initial condition 

in ],[
1

*

m
tt  is taken to be the condition at 

*t . 

B. Runge-Kutta-like method 
Ahmad and Yaacob [3] developed composite arithmetic-

harmonic, explicit Runge-Kutta-like methods for solving 
problem (1). The iterative formula they proposed is given as 
follows, 
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where h  is the time stepsize. For further details the reader 

is referred to [3]. 

III. Test Problems 
In this section, we shall demonstrate how well the MADM 

compares with the RungeKutta-like method of [3] for the 
solutions of both linear and non-linear system of ordinary 
differential equations (ODES). The Adomian iterative 
algorithm is coded in the computer algebra package Maple. 
The Maple environment variable Digits controlling the 
number of significant digits is set to 16 in all the calculations 
done in this paper. 

A. Problem 1 
Consider linear stiff initial value problem [28]: 

21

1 9.491.0 yy
dt

dy
 ,          (13) 

2

2 50y
dt

dy
 ,           (14) 

32

3 12070 yy
dt

dy
 ,          (15) 

subject to the initial conditions 

2)0(,1)0(,2)0(
321

 yyy .         (16) 

The exact solutions of the system (13)-(15) are given by 
tt eety 1.050

1
)(   ,                        (17) 

tety 50

2
)(  ,           (18) 

tt eety 12050

3
)(   .          (19) 

The iterative formula based on (5) and (6) for the system 
(13)-(15) are given by 
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From Fig 1, it is observed that the 4-term MADM 
solutions agree very well with the exact solutions. 

A. Problem 2 
Now consider nonlinear stiff initial value problem [29] 

2
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1 1012 yy
dt

dy
 ,                       (24) 
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 ,         (25) 

subject to the initial conditions 
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The exact solutions of the system (24)-(25) are given by 
tety 2

1
)(  ,          (27) 
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2
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The iterative formula based on (5) and (6) for the system 
(24)-(25) are given by 
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where some of the Adomian polynomials for 
k

A and 
k

B  

obtained from (7) are given bellow: 
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In Figure 2 we compare the 4-term decomposition solutions 
with the exact solutions and that obtained by the Runge-Kutta 

method. The MADM solutions at 
310h  are of comparable 
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accuracy with the exact solutions and that of the Runge-Kutta 
method at the same step size. 

 
 

 

 

 
Figure 1: The MADM solutions using 4 terms at time 

step  
310h  as compared with the exact solutions 

for Problem 1. 
 
 
 
 

 
 
 

 

 
Figure 2: The MADM solutions using 4 terms as compared 

with the exact solutions and that obtained by the Runge-Kutta 
method for Problem 2. 

 
 

IV. Conclusion 
In this paper, we presented the multi-stage Adomian 

decomposition method (MADM) for solving both linear and 
non-linear stiff system of ODEs. Direct applications of the 
classical ADM can fail for stiff problems. The MADM is 
shown here to be a promising alternative method for stiff 
equations. In addition to the choice of time stepsize, the 
MADM has the number of terms of the series solution as an 
extra parameter for controlling the accuracy of solutions. 
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