

UNIVERSIDAD CARLOS III DE MADRID

working papers

Working Paper 09-81 Economic Series (45) December 2009 Departamento de Economía Universidad Carlos III de Madrid Calle Madrid, 126 28903 Getafe (Spain) Fax (34) 916249875

"REFERENCES MADE AND CITATIONS RECEIVED BY SCIENTIFIC ARTICLES"

Pedro Albarrán*, and Javier Ruiz-Castillo*

Departamento de Economía, Universidad Carlos III

Abstract

This paper studies massive evidence about references made and citations received after a five-year citation window by 3.7 million articles published in 1998-2002 in 22 scientific fields. We find that the distributions of references made and citations received share a number of basic features across sciences. Reference distributions are rather skewed to the right, while citation distributions are even more highly skewed: the mean is about 20 percentage points to the right of the median, and articles with a remarkable or outstanding number of citations represent about 9% of the total. Moreover, the existence of a power law representing the upper tail of citation distributions cannot be rejected in 17 fields whose articles represent 74.7% of the total. Contrary to the evidence in other contexts, the value of the scale parameter is above 3.5 in 13 of the 17 cases. Finally, power laws are typically small but capture a considerable proportion of the total citations received.

Acknowledgements

The authors acknowledge financial support from the Spanish MEC, Grants SEJ2007-67436, SEJ2007-63098 and SEJ2006-05710. The database of Thomson Scientific (formerly Thomson-ISI; Institute for Scientific Information) has been acquired with funds from Santander Universities Global Division of *Banco Santander*. This paper is part of the SCIFI-GLOW Collaborative Project supported by the European Commission's Seventh Research Framework Programme, Contract no. SSH7-CT-2008-217436.

I. INTRODUCTION

This paper studies the following problem: are the citation distributions of different sciences very different among themselves, or do they share a number of essential characteristics in spite of differences in publication and citation practices across scientific fields? The answer is important for any attempt at explaining how these distributions get formed. Whether citation distributions are very different or can be described in terms of a few stylized features would determine whether we must search for as many explanations as distribution types, or for a single explanation capable of accounting for the fundamental characteristics shared by all the distributions in question.

The paper searches for regularities across sciences in two dimensions. In the first place, we investigate how the distribution of references made by articles in a given field becomes a highly skewed distribution of citations received in which a large proportion of articles gets none or few citations while a small percentage of them account for a disproportionate amount of all citations.¹ We are able to provide a much more complete view of this process than the picture drawn in Price's (1965) pioneer contribution with the newly available (but limited) data during the early 1960s, or in Seglen's (1992) seminal contribution where the skewness of citation distributions is only illustrated for a random sample of articles drawn from the 1985-1989 Science Citation Index, and for Magyar's (1973) data on the small sub-field of dye laser research.² The case of Vinkler (2009) is paradigmatic. He states that "As is well known, the distribution of citations by paper ... may be rather skewed' (p. 602), but his only references are to Seglen (1992) and to papers by Burke and Butler (1996) on the entire fields of the natural sciences and the social sciences and humanities in Australian universities, and Irvine and Martin (1984) and Lehmann et al. (2003, 2008) both on high energy physics. Two clear exceptions are the important contributions by Shubert et al. (1987), that describes the skewness of articles published and cited in 1981-1985 in 114 sub-fields, as well as Glänzel (2007) who studies 450,000 citable papers published in 1980, cited in the 1980-2000

-

¹ In the eloquent summary by Lehmann et al. (2003), "The picture which emerges is thus a small number of interesting and significant papers swimming in a sea of dead papers" (p. 7).

² Seglen (1992) also illustrates the skewness of citations to articles from single journals and from single authors, a type of citation distributions beyond this paper's scope.

period, and classified into 60 sub-fields and 12 major fields (However, Glänzel, 2007, only reports results for 12 sub-fields, while Glänzel, 2010, studies papers published in 2006 with a three-year citation window, but only reports results for three sub-fields).

In the second place, it is generally believed that the citation process in the periodical literature is one of the aspects of scientific activity in which power laws (or other extreme distributions) are prevalent (An extensive discussion of the properties of power laws can be found in the reviews by Mitzenmacher, 2004, and Newman, 2005, and in the references therein). However, the available evidence is very scant indeed. As far as we know, there are only results for a few samples of articles belonging to certain scientific fields—like physics or high-energy physics—or all fields combined.³ We investigate the existence of power laws for a broad array of scientific disciplines, including how they are inserted in the rest of the citation distribution.

In other words, this paper searches for a compact and systematic description of the distribution of references made and that of citations received by articles in different scientific fields, with special attention to the existence of power laws. A key feature of this empirical investigation is that it provides massive evidence about these issues using a large sample acquired from Thomson Scientific (TS hereafter), consisting of about 3.9 million articles published in 1998-2002, the almost 10 million references they make, and the more than 28 million citations they receive using a five-year citation window. After excluding the Arts and Humanities for its intrinsic peculiarities, we are left with the 20 natural sciences and the two social sciences distinguished by TS.

The shapes of the distribution of references made or citations received in any field are described using the characteristic scores and scales (CSS hereafter) technique that permits the partition of any distribution of articles into a number of classes as a function of its members'

_

³ Beyond the graphical illustrations included in Seglen (1992), the only directly estimated results we have found are those of Redner (1998, 2005), Lehmann *et al.* (2003), and Clauset *et al.* (2007); Laherrère and Sornette (1998) study the citation record of the most cited physicists. Under the hypothesis that citation distributions follow a power law, Glänzel (2007) obtains an equation relating the scale parameter of a power law and the parameters of the Characteristic Scores and Scales technique (see below for references); with direct estimates of the latter, estimates of the former are computed.

citation characteristics. Shubert *et al.* (1987), Glänzel and Shubert (1988), and Glänzel (2007, 2010) applied this technique to classify articles into five categories according to whether they receive no citations, or are poorly cited, fairly cited, remarkably or outstandingly cited in a sense made precise below. This classification method has two important invariance properties: the results do not change if the citations received by all articles are multiplied by a common scalar greater than zero (scale or unit invariance), or if the original distribution of articles and the citations they receive is replicated any discrete number of times (replication or size invariance).⁴

The estimation of a power law presents more subtle technical problems. From a statistical point of view, the estimation of a power law and the evaluation of the goodness-of-fit is known to be a much more complex problem than the direct linear fit of the log-log plot of the full raw histogram of the data, let alone the mere inspection of the histogram plotted on logarithmic scales to check whether it looks like a straight line.⁵ In this respect, there seems to be unanimity that a maximum likelihood (ML hereafter) approach provides the best solution to the estimation problem.

The rest of the paper is organized in three Sections. Section II presents the 1998-2002 sample, as well as the classification of reference and citation distributions in all fields into five characteristic classes following the CSS approach. Section III presents the results of the power law estimation in 22 fields (excluding Arts and Humanities) and all sciences as a whole. Finally, Section IV discusses the main findings and a number of possible extensions.

II. THE DATA AND A CHARACTERIZATION OF THE REFERENCE AND CITATION DISTRIBUTIONS

II.1. The Data

-

⁴ Of course, these properties are also satisfied for the partition of articles into classes according to the references they make

⁵ See inter alia Pickering et al. (1995), Clark et al. (1999), Goldstein et al. (2004), Bauke (2007), Clauset et al. (2007), and White et al. (2008).

TS-indexed journal articles include research articles, reviews, proceedings papers and research notes. In this paper, only research articles, or simply articles, are studied, so that 390,097 review articles and three notes are disregarded. The 52,789 articles without information about some variables (number of authors, Web of Science category, or TS field) are also eliminated from the analysis. Thus, the initial sample size consists of 8,470,666 articles published in 1998-2007, or 95% of the number of items in the original database. For the purpose of this paper, we have restricted ourselves to the sample of articles published in 1998-2002. How representative is this sample, consisting of 3,912,097 articles? And how large is the number of articles in the smallest sciences? The information on these issues is in Table 1, where the 1998-2007 and 1998-2002 samples are compared. The 20 fields in the natural sciences are organized in three large groups: Life Sciences, Physical Sciences, and Other Natural Sciences. The last two in the larger sample represent, approximately, 28% and 26% of the total, while Life Sciences represent about 37%. The remaining 9% correspond to the two Social Sciences and Arts and Humanities. The distribution of the 1998-2002 sample by fields is very similar: it contains 1.1% and 0.4% more Life and Social Sciences articles, and somewhat less from the Physical and the other natural sciences. Therefore, the 1998-2002 sample can be taken to be representative of the larger one. On the other hand, for most fields the 1998-2002 sample size is rather large: 12 fields have more than 100,000 articles; ten fields have between this number and 49,000 articles, and only the Multidisciplinary field has about 21,000 articles.

Table 1 around here

The original dataset consists of articles published in a certain year and the citations they receive from that year until 2007, that is, articles published in 1998 and its citations during the 10-year period 1998-2007, articles published in 1999 and its citations in the 9-year period 1999-2007, and so on until articles published in 2007 and its citations during that same year. The time pattern of citations varies a lot among the different disciplines. In this situation, ideally the citation window in each field should be estimated along other features of the stationary distribution in a dynamic

model. However, this estimation problem is beyond the scope of this paper. Therefore, it was decided to take all fields equally by taking a fixed, common window for all of them. Note that, in this way, all articles in a field would have the same chance of receiving citations independently of the year in which they had been published. The standard length of citation windows in the literature is three years, possibly because it is large enough for the citation process to be settled in the quickest disciplines that include most natural sciences (see *inter alia* Moed *et al.*, 1995). However, we wanted to make sure that the slowest sciences were relatively well covered. But the greater the citation window, the smaller the sample size had to be. We settled in a common five-year citation window for all articles published in 1998-2002.

It should be noted that the simplification of taking a common citation window implies that certain idiosyncratic features that differentiate some fields from each other will be preserved in our data: five years is a long enough period for the completion of a sizable part of the citation process for some disciplines, but rather short for others, notably the social sciences and other slower fields such as Psychiatry and Psychology, Geosciences, and Environmental and Ecology. However, Glänzel (2007) has established that, except for a short initial period of four years –below our five-year choice—, the particular length of a citation window was not important for the class sizes determined in the CCS approach applied below. Having selected a rather large citation window, together with a large sample size, we conjecture that we are also in the safe side for the estimation of a power law.

II. 2. Differences Across Fields In the Citation Process

For each field, Table 2 presents descriptive statistics about the two sides of the citation process: 28,426,632 references made, as well as 9,9767,108 citations received in the 1998-2002 sample. Naturally, the citations received by articles in a certain field would depend on the reference distribution in that field. In particular, the higher the mean (or the median, not shown in Table 2 but available on request), the higher the total citations received will be –and, presumably, the smaller the percentage of articles with zero citations will be. But references are made to many

different items: articles in TS indexed journals, as well as articles in conference volumes, books, and other documents neither of them covered by TS. Moreover, some references will be to articles published in TS journals before 1998 and, hence, outside of our dataset. The larger the number of references made to recently published articles, the larger the number of citations received will tend to be, and the smaller the ratio references made/citations received in column 3 in Table 2.

Table 2 around here

Fields can be classified in three groups according to the value of the references/citations ratio: (A) six of the eight Life Sciences and Space Science, characterized by a relatively low value (between 1.9 and 3) of the ratio; (B) the two remaining Life Sciences and another seven natural sciences with a ratio between 3 and 5.2, and (C) a group of seven fields with a ratio greater than 5.2 (including Engineering, Plant and Animal Sciences, Computer Sciences, Mathematics, the two Social Sciences, plus Arts and Humanities with a value equal to 38.2). With few exceptions, the means of the reference distributions in group (C) are relatively small, ranging from 15.8 to 30.9, and relative high in group (A), ranging from 25.5 to 38.2, with intermediate values in group (B). On the other hand, reference and citation inequality are measured by the coefficient of variation (CV hereafter), that is, the standard deviation normalized by the mean. It is observed that there is a negative association across fields between the mean in the reference distribution and the CV (the correlation coefficient between columns 1 and 2 in Table 1 is -0.73). Correspondingly, the dispersion of the former is greater than the dispersion of the latter. Mean differences across fields are important: they range from fewer than 17 references per article for Engineering and Mathematics to more than 37 for Neuroscience and Behavioral Science, and Molecular Biology and Genetics. The CV ranges from 0.48 for Immunology to more than one for Multidisciplinary and Arts and Humanities. But it is between 0.5 and 0.7 for 13 disciplines and between 0.71 and 0.80 for the remaining seven.

Thus, fields in group (C) make fewer references on average and receive fewer citations. Correspondingly, they are characterized by a relatively high percentage of articles with no citations at all, a relatively low mean, and a relatively low h-index (columns 4, 5, and 7 in Table 2). Indeed, for six of these seven fields the percentage of articles without citations ranges from 22.3% to 43.2%, while for the remaining field in group (C), Arts and Humanities, that percentage is an astronomical 82.9%. With few exceptions, the opposite is the case for Life Science fields in group (A): the percentage of articles with zero citations ranges from 4.6% to 16.4%, while group (B) is characterized by intermediate values. Since greater mean references are associated with smaller reference/citations ratios, the dispersion of mean citations increases: apart from an uncommon low mean of 0.5 citations per article for Arts and Humanities, mean citation goes from a low 2.4 per article in Computer Science to a value greater than nine in most fields in group (A) with Molecular Biology and Genetics on top with 20.2 citations per article. Similarly, the *h*-index in column 7 ranges from 50 in Mathematics (or 63 in Economics and Business, and 67 in Arts and Humanities) to 253 in Molecular Biology and Genetics, and 323 in Clinical Medicine. On the other hand, when we go from the reference to the citation distribution the CV dramatically increases by a factor greater than three or four generally, and greater than six in Arts and Humanities and Computer Science (column 6). Citation inequality now ranges from 1.2 in Microbiology to 4.7 in Computer Science and 6.6 in Arts and Humanities. But, as before, once the extreme values are taken away, the range is very limited: there are 17 fields with a CV between 1.35 and 1.99 and three more with this measure between 2 and 3.1.

The overall conclusion is that, as expected, the reference and citation processes present large differences across fields. The reference distribution of fields in group (A) are characterized by low reference/citation ratios, a high mean, and a relatively low CV; correspondingly, these fields tend to have lower percentages of articles without citations, higher citation means, and higher *b*-indices. Fields in group (C) present the opposite pattern, while fields in group (B) constitute an intermediate case. Citation inequality is always much greater than reference inequality. However, as soon as we normalize by the mean in the CV, both distributions become considerably more similar across fields.

The 1998-2002 and 1998-2007 reference distributions are very similar indeed (results for the original 1998-2007 dataset are available on request). Likewise, a five-year citation window for the articles published in 1998-2002 appears to be large enough for the sample's citation distribution to closely resemble that of the entire dataset. Taking also into account that the sample's distribution by field is also very similar to that of the dataset (see Table 1), we are confident that the 1998-2002 sample constitutes a good testing bank to explore the empirical issues that motivate this paper.

A special case should be singled out: it is clear that Arts and Humanities constitute an entirely different, or an extreme case of a scholarly field that makes relatively few references, a very small part of which appear as citations received by articles published only a few years later in TS indexed journals. This leads us to eliminate this field from further analysis and to define the all-sciences category as the sum of the remaining 22 TS scientific fields, namely, 3,771,994 articles that make 9,7043,743 references and receive 28,355,343 citations.

II. 3. Similarities Across Fields: References Made

In this sub-section the CSS methodology is applied to the ordered distribution of references made by the articles published in 1998-2002, $\mathbf{r} = (r_b ..., r_n)$ with $r_1 \le r_2 \le ... \le r_m$ where r_i is the number of references made by the i-th article, i = 1,..., n. The following *characteristic scores* are determined:

$$s_0 = 0$$
 $s_1 = \text{mean references per article}$
 $s_2 = \text{mean references of articles with references above average}$
 $s_3 = \text{mean references of articles with references above } s_2$

These scores are used to partition the set of articles into five categories:

Category 0
$$r = s_0$$
= articles that make no references;Category 1
 $r \in (s_0, s_1]$ = articles that make few references, namely,
references lower than average;Category 2
= articles that make a fair number of references,

 $r \in [s_1, s_2]$ namely, at least average references but below s_2 .

Category 3 = articles that make a *remarkable* number of references, namely, no lower than s_2 but below s_3 .

<u>Category 4</u> = articles that make an *outstanding* number of references, $r \ge s_3$ namely, no lower than s_3 .

As indicated in the Introduction, the classification of any distribution into these five categories satisfies two important properties, also satisfied by the CV: the classification is invariant when the references each article makes are multiplied by any positive scalar, and when the initial distribution is replicated any discrete number of times. The first property implies that the classification method is independent of the units in which references are measured. Consequently, it allows for a comparison of two distributions with different means. The second property implies that the classification method only responds to references per article. Consequently, it allows for a comparison of distributions of different sizes.⁶

The classification of the reference distributions into five categories for TS fields is in Figure 1. Two comments are in order. Firstly, taking as reference the distribution for All Sciences combined, it is observed that it is a rather skewed distribution: the mean is well to the right of the median, while the last two categories represent about 15% of all articles. Secondly, after the normalization involved in the classification method most differences across fields essentially vanish. On average, the first two categories represent 57.4% in the 22 fields, with a minimum value of 53% for Immunology and a maximum one of 67.1% for Multidisciplinary.

Figure 1

II. 4. Similarities Across Fields: Citations Received

The classification into five categories of articles without citations or poorly-cited, fairly-cited, remarkably-cited, and outstandingly-cited articles for the 22 TS fields is in Figure 2. Again two

_

⁶ Suppose there are two distributions x and y with size n and m, respectively. Distributions x and y can be replicated m and n times, respectively, so that each will be of size n times m after the operation is performed. However, the replication will leave unchanged the classification into five categories of either x or y. Thus, the two distributions could be compared using their corresponding $n \times m$ replicas.

comments are in order. Firstly, the essential change from Figure 1 is that now all distributions are even more skewed to the right than before. Taking All Sciences as a representative example, a large percentage of articles without citations is observed, the mean is shifted about ten percentage points, and the last two categories constituting the upper tail of the distribution represent only about 9% of all articles. Secondly, the only difference across scientific fields is the percentage of articles without citations. However, these differences essentially disappear when the sum of the first two categories is compared. This long lower tail represents on average 70.3%, with a minimum of 66.3% for Plant and Animal Science, and a maximum of 78.2% for Multidisciplinary.

Figure 2 around here

Taking into account the considerable changes in scientific communication during the lat two decades (see Persson *et al.*, 2004, documenting the intensification of research collaboration and coauthorship), this 70–21–9 rule for 3.7 million articles published in 1998-2002 with a five-year citation window and classified into 22 TS fields, is not that different from the 75–18–7 rule reported in Glänzel (2007) for 450,000 papers published in 1980 with a twenty-year citation window and classified into 60 sub-fields and 12 major fields.

To complete this discussion one could also ask about the percentage of references made and citations received by each category (beyond the first that, by definition, accounts for no references or citations at all). Firstly, on average categories 1 and 2 of the reference distributions account for 32% and 33.7% of all references, respectively, while the upper tail formed by 15.9% of all articles in categories 3 and 4 accounts for the remaining 34.3% of all references. Secondly, as has been noted above, citation distributions show an even greater skewness to the right than the reference distributions. Thus, on average categories 1 and 2 account only for 22.7% and 33.3% of all citations, respectively, while the upper tail formed by 9.2% of all articles in categories 3 and 4 accounts for the remaining 44% of all citations.

_

⁷ The skewness of the citation distribution is even more pronounced in the high-energy physics sub-field, where Lehmann *et al.* (2003) report that four per cent of the papers account for half of the citations.

III. THE ESTIMATION OF THE POWER LAW

III. 1. The Maximum Likelihood Approach

Let x be the number of citations received by an article in a given field. This quantity is said to obey a power law if it is drawn from a probability density p(x) such that

$$p(x)dx = \Pr(x \le X \le x + dx) = Cx^{-\alpha}$$
,

where X is the observed value, C is a normalization constant, and α is known as the exponent or scaling parameter. This density diverges as $x \to 0$, so that there must be some lower bound to the power law behavior, denoted by ρ . Then, provided $\alpha > 1$, it is easy to recover the normalization constant, which in the continuous case is shown to be

$$C = (\alpha - 1) \rho^{\alpha - 1}.$$

Assuming that in each field our data are drawn from a distribution that follows a power law exactly for $x \ge \rho$, and assuming for the moment that ρ is given, the maximum likelihood estimator (MLE hereafter) of the scaling parameter can be derived. For instance, the MLE in the continuous case can be shown to be (see Appendix B in Clauset *et al.*, 2007):

$$\hat{\alpha}_{MLE} = 1 + T \left[\sum_{i=1}^{T} \ln \frac{x_i}{\rho} \right]^{-1} \tag{1}$$

where T is the sample size for values $x \ge \rho$. These authors test the ability of the MLEs to extract the known scaling parameters of synthetic power law data, finding that the MLEs give the best results when compared with several competing methods based on linear regression. Nevertheless, for very small data sets the MLEs can be significantly biased. Clauset *et al.* (2007) suggest that $n \ge 0$ is a reasonable rule of thumb for extracting reliable parameter estimates.

The large percentage of articles with no citations at all, as well as the low value of the mean in most fields (see column 5 in Table 2), indicate that we are in the typical case where there is some non-power law behavior at the lower end of the citation distributions. In such cases, it is essential to have a reliable method for estimating the parameter ρ , that is, the power law's starting point. In

this paper, as in Clauset *et al.* (2007), we choose the value of ρ that makes the probability distributions of the measured data and the best-fit power law as similar as possible above ρ . To quantify the distance to be minimized between the two probability distributions the Kolmogorov-Smirnov, or KS statistic is used. Again, Clauset *et al.* (2007) generate synthetic data and examine their method's ability to recover the known values of ρ . They obtain good results provided the power law is followed by at least 1,000 observations.

The method described allows us to fit a power law distribution to a given data set and provides good estimates of the parameters involved.⁸ An entirely different question is to decide whether the power law distribution is even a reasonable hypothesis to begin with, that is, whether the data we observe could possibly have been drawn from a power law distribution. The standard way to answer this question is to compute a *p*-value, defined as the probability that a data set of the same size that is truly drawn from the hypothesized distribution would have a goodness of fit as bad as or worse than the observed one. Thus, the *p*-value summarizes the sample evidence that the data were drawn from the hypothesized distribution, based on the observed goodness of fit. Therefore, if the *p*-value is very small, then it is unlikely that the data are drawn from a power law.

To implement this procedure, we again follow Clauset *et al.* (2007). Firstly, take the value of the KS statistic minimized in the estimation procedure as a measure of its goodness of fit. Secondly, generate a large number of synthetic data sets that follow a perfect power law with scaling parameter equal to the estimated α above the estimated ρ , but which have the same non-power law behavior as the observed data below it. Thirdly, fit each synthetic data set according to the estimation method already described, and calculate the KS statistic for each fit. Fourthly, calculate the p-value as the fraction of the KS statistics for the synthetic data sets whose value exceeds the KS statistic for the real data. If the p-value is sufficiently small, say below 0.1, then the power law distribution can be ruled out.

⁸ As a matter of fact, to estimate the parameters α and ρ we use the program that Clauset *et al.* (2007) have made available in http://www.santafe.edu/~aaronc/powerlaws/.

III. 2. Estimation Results

For the 1998-2002 sample with a five-year citation window, the results of the ML approach are presented in Table 3. Judging by the *p*-value, the results are very satisfactory: in 17 fields –as well as All Sciences– with a *p*-value close to 0.1 or greater, the existence of a power law cannot be rejected. These fields represent 74.7% of all articles in the natural and the social sciences. In the remaining five fields (Pharmacology and Toxicology, Physics, and Agricultural Sciences from group (B), as well as Engineering, and Social Sciences, General from group (C)) the *p*-value is clearly below the critical value 0.1.9

Table 3 around here

With regard to the 17 fields for which the existence of a power law cannot be ruled out, the following three comments are in order:

1. Only for Computer Science is the estimated scale parameter between two and three. For three fields $\hat{\alpha}$ is below 3.5, for seven fields is between 3.5 and four, for five fields is between four and five, and for the remaining field (Neuroscience and Behavioral Sciences) $\hat{\alpha}$ is greater than five. This is rather at variance with previous research in bibliometrics: Redner (1998) reports that $\hat{\alpha}$ is approximately three for papers published in a single year in a variety of scientific fields, while Lehmann *et al.* (2003) finds that for papers with 50 or more citations in high-energy physics $\hat{\alpha}$ is equal to 2.31. Through indirect methods, Glänzel (2007) concludes that the most relevant range for $\hat{\alpha}$ is [1.5, 3.5].¹⁰

2. As expected, the estimated value of ρ that determines the beginning of the power law is rather low in group (C) –ranging from 18 citations in Computer Science to 50 in Plant and Animal Science– and very high in group (A) –ranging from 66 in Microbiology to 152 in Molecular Biology

power law model can be firmly ruled out. ¹⁰ For the very different 17 phenomena for which a power law cannot be rejected in Clauset *et al.* (2007), in four cases

the scale parameter is below two, in eight cases between two and three, and in five cases above three.

⁹ This is important when for seven of the data sets rigorously investigated in Clauset *et al.* (2007) –HTTP connections, earthquakes, web links, fires, wealth, web hits, and the metabolic network– the *p*-value is sufficiently small that the power law model can be firmly ruled out.

and Genetics. The estimated value of ρ in group (B) ranges from 37 in Materials Science to 72 in Chemistry.

3. Perhaps more interestingly, all power laws are of a relatively small size but account for a considerable percentage of all citations in their field. The power laws in eight fields represent between 0.2% and 0.9% of all articles, and account for 3.5% to 12.2% of all citations. In six fields the power laws represent between 1% and 1.9% and capture between 8.3% and 17.7% of all citations. Computer Science and Immunology represent 2.2% and 2.4% of all articles, and account for 29.5% and 17.4% of all citations, respectively. Finally, the power law in the Multidisciplinary field accounts for 19.5% of all citations. ¹¹

IV. DISCUSSION AND FURTHER RESEARCH

IV. 1. Summary and Results

This paper has been concerned with the question of whether the distributions of references made and citations received by scientific articles have many things in common. Publication and citation practices are very different across disciplines. As a result, certain key statistics—such as the mean reference or the mean citation ratio, the percentage of articles without citations, or indicators of scientific excellence such as the *b*-index— exhibit a large range of variation across scientific fields. However, this paper has demonstrated that, from another perspective, the shape of the reference and citation distributions of different sciences share many basic features.

The paper has analyzed the largest dataset ever investigated in search of basic differences or similarities across 22 broad fields, consisting of about 3.6 million article published in 1998-2002 with a five-year citation window. We have used state-of-the-art techniques, namely, we have ranked references made and citations received into five classes using the CSS approach, and we have

and in the remaining three cases this percentage is between 8% and 16%.

15

¹¹ There are seven phenomena in Clauset *et al.* (2007) where the sample size is larger than 10,000 observations and a power law cannot be rejected. Ordered by sample size, these are solar flair intensity, count of word use, population of cities, Internet degree, papers authored, citations to papers from all sciences, and telephone calls received. In the last three, the size of the power law is less than 1% of the sample size; in two cases this percentage is between 1% and 3%,

searched for the existence of a power law in the upper tail of citation distributions using maximum likelihood methods. The main results can be summarized by the following three observations:

- (i) Reference distributions are rather skewed to the right: the mean is almost ten percentage points to the right of the median, and articles with a remarkable or outstanding number of references represent less than 18% of the total.
- (ii) Part of the references made during a certain period (the so-called citation window) becomes the citations received by earlier published articles. These citation distributions are highly skewed: about 70% of all articles receive citations below the mean, and articles with a remarkable or outstanding number of citations represent about 9% of the total. The corresponding figures reported in Glänzel (2007) for papers published 20 years ago, are 75% and 7% —a very small difference indeed, that speaks about the stability of these features of the citation process in a large number of fields and during a long period of time. At any rate, in our sample this 9% of highly cited articles accounts for 44% of all citations received.
- (iii) The existence of a power law cannot be rejected in All Sciences taken together, as well as in 17 out of 22 fields whose articles represent 74.7% of the total. Contrary to the evidence in other contexts, the value of the scale parameter is above 3.5 in 13 of the 17 cases. Due to the prevalence of articles with none or few citations, power laws are typically small (representing between 0.2% and 2.4% of all articles) but receive between 3.5% and 19.5% of all citations, with a maximum of 29.5% in Computer Science.

It can be concluded that what is needed is a single explanation of the decentralized process whereby scientists made references that a few years later translate into a highly skewed citation distribution crowned in most cases by a power law.

IV. 2. Extensions

1. It is natural to work at the aggregate level of the 22 scientific fields distinguished by TS. Quite apart from other alternatives at this level (see *inter alia* Glänzel and Schubert, 2003, Tijssen and van Leeuwen, 2003, or Adam *et al.*, 1998) it is interesting to investigate these issues at the sub-

field level –a topic addressed in Schubert *et al.* (1987), where 114 sub-fields are analyzed, Glänzel (2007, 2010) that study 60 sub-fields, and Albarrán *et al.* (2010a) that studies the 219 Web of Science categories within the 22 fields analyzed here.

- 2. The preliminary results obtained in this paper constitute the most complete evidence available in the Scientometrics literature about the prevalence of power laws among the citation distributions arising from the academic periodicals indexed by TS (or other comparable journal collections). The following three points are left for further research.
- a. As pointed out in Clauset *et al.* (2007), the fact that a power law cannot be rejected does not guarantee that a power law is the best distribution that fits the data. New tests must be applied confronting power laws with alternative distributions, such as the log-normal or the exponential distributions. Moreover, confidence intervals around the parameter estimates must be obtained.

b. The ML approach might be quite vulnerable to the existence of a few, but potentially influential extreme observations consisting of a small set of highly-cited articles at the very end of the citation distribution. A possibility currently being investigated is an estimation method that uses the relationship that, for a citation distribution following a power law, has been shown to exist between the Hirsh or *b*-index for that sample, the sample size, and the scale parameter of the power law (Glänzel, 2006, and Egghe and Rousseau, 2006). The rationale for this strategy lies in the fact that the *b*-index, of course, is robust to the presence of extreme observations.

c. In the case of high-energy physics, Lehmann (2003) estimated a second power law for the lower-impact articles not included in the first one –a possibility that needs to be further explored.

REFERENCES

Adams, J., T. Bailey, L. Jackson, P. Scott, D. Pendlebury and H. Small (1997), "Benchmarking of the International Standing of Research in England. Report of a Consultancy Study on Bibliometric Analysis", *mimeo*, University of Leeds.

Albarrán, P., I. Ortuño, and J. Ruiz-Castillo (2009), "The Measurement of Low- and High-impact in Citation Distributions with Size Independent Indicators: Technical Results", Working Paper 09-57, Economics Series 35, Universidad Carlos III.

Albarrán, P., J. Crespo, I. Ortuño, and J. Ruiz-Castillo (2010a), "The Skewness of Science in 219 Sub-fields, and A Number of Aggregates", mimeo.

Albarrán, P., I. Ortuño and J. Ruiz-Castillo (2010b), "High- and Low-impact Citation Measures: First Empirical Applications", Working Paper, Economic Series 10-09, Universidad Carlos III.

Bauke, H. (2007), "Parameter Estimation for Power-law Distributions By Maximum Likelihood Methods", *Theoretical Physics*.

Burke, P., and L. Butler (1996), "Publication Types, Citation Rates, and Evaluation", Scientometrics, 37: 473-494.

Clark, R. M., S. J. D. Cox, and G. M. Laslett (1999), "Generalizations of Power-law Distributions Applicable to Sampled Fault-trace Lengths: Model Choice, Parameter estimates, and Caveats", *Geophysical Journal International*, **136**: 357-372.

Clauset, A., C. R. Shalizi, and M. E. J. Newman (2007), "Power-law Distributions In Empirical Data", http://arxiv.org/abs/0706.1062.

Egghe, L. and R. Rousseau (2006), "An Informetric Model for the Hirsch-index", Scientometrics, 69: 121-129.

Glänzel, W. (2006), "On the *h*-index –A Mathematical Approach To a New Measure of Publication Activity and Citation Impact", *Scientometrics*, **67**: 315-321.

Glänzel, W. (2007), "Characteristic Scores and Scales", Journal of Informetrics, 1: 92-102.

Glänzel, W. (2010), "The Application of Characteristic Scores and Scales To the Evaluation and Ranking of Scientific Journals", to be published in *Proceedings of INFO*, Havana, Cuba.

Glänzel, W. and A. Schubert (1988), "Characteristic Scores and Scales in Assessing Citation Impact", *Journal of Information Science*, **14**: 123.127.

Glänzel W. and A. Schubert (2003), "A new classification scheme of science fields and subfields designed for scientometric evaluation purposes", *Scientometrics*, **56**:357-367.

Goldstein, M. L., S. A. Morris, and G. G. Yen (2004), "Problems With Fitting To the Power-law Distribution", *The European Physical Journal B*, **41**: 255.

Irvine, J., and B. R. Martin (1984), "CERN: Past performance and Future Prospects II. The Scientific Performance of the CERN Accelerators", Research Policy, 13: 247-284.

Laherrère, J and D. Sornette (1998), "Stretched Exponential Distributions in Nature and Economy: Fat tails with Characteristic Scales", European Physical Journal B, 2: 525-539.

Lehmann, S., B. Lautrup, and A. D. Jackson (2003), "Citation Networks in High Energy Physics", *Physical Review*, **E68**: 026113-8.

Lehmann, S., B. Lautrup, and A. D. Jackson (2008), "A Quantitative Analysis of Indicators of Scientific Performance", *Scientometrics*, **76**: 369-390.

Magyar, G. (1973), "Bibliometric Analysis of a New Research Sub-field", Journal of Documentation, 30: 32-40.

Mitzenmacher, M. (2004), "A Brief History of Generative Models for Power Law and Lognormal Distributions", Internet Mathematics, 1: 226-251.

Moed, H. F., R. E. De Bruin, and Th. N. van Leeuwen (1995), "New Bibliometrics Tools for the Assessment of national Research Performance: Database Description, Overview of Indicators, and First Applications", *Scientometrics*, 33: 381-422.

Newman, M. E. J. (2005), "Power Laws, Pareto Distributions, and Zipf's law", Contemporary Physics, 46: 323-351.

Persson, O., W. Glänzel, and R. Danell (2004), "Inflationary Bibliometric Values: The Role of Scientific Collaboration and the Need for Relative Indicators In Evaluation Studies", *Scientometrics*, **60**: 421-432.

Price, D. J de S. (1965), "Networks of Scientific Papers", Science, 149: 510-515.

Pickering, G., J. M. Bull, and D. J. Sanderson (1995), "Sampling Power-law Distributions", Tectonophysics, 248: 1-20.

Redner, S. (1998), "How Popular Is Your Paper? An Empirical Study of the Citation Distribution", European Physical Journal B, 4: 131-134.

Redner, S. (2005), "Citation Statistics from 110 years of Physical Review", Physics Today: 49-54.

Schubert, A., W. Glänzel and T. Braun (1987), "A New Methodology for Ranking Scientific Institutions", *Scientometrics*, 12: 267-292.

Seglen, P. (1992), "The Skewness of Science", Journal of the American Society for Information Science, 43: 628-638.

Tijssen, R.J.W. and T.N. van Leeuwen (2003), "Bibliometric Analyses of World Science, Extended Technical Annex to Chapter 5 of the Third European Report on Science & Technology Indicators", *mimeo*, Leiden University.

Vinkler, P. (2009), "The π-index: A New Indicator for Assessing Scientific Impact", Journal of Information Science, 35: 602-612.

White, E., B. Enquist, and J. Green (2008), "On Estimating the Exponent of Power-law Frequency Distributions", *Ecology*, **89**: 905-912.

Table 1. Articles by TS Field In the Entire 1998-2007 Dataset, and In the 1998-2002 Sample

	1998-2007	0/0	1998-2002	0/0
	Dataset		Sample	
LIFE SCIENCES	3,165,734	37.4	1,507,634	38.5
(1) Clinical Medicine	1,667,362	19.7	791,723	20.2
(2) Biology & Biochemistry Neuroscience & Behav.	470,483	5.6	228,908	5.9
(3) Science	244,508	2.9	116,100	3.0
Molecular Biology & (4) Genetics	216,835	2.6	102,800	2.6
(5) Psychiatry & Psychology Pharmacology &	198,225	2.3	91,905	2.3
(6) Toxicology	135,116	1.6	64,271	1.6
(7) Microbiology	130,458	1.5	60,754	1.6
(8) Immunology	102,747	1.2	51,173	1.3
PHYSICAL SCIENCES	2,365,084	27.9	1,056,552	27.0
(9) Chemistry	1,004,835	11.9	458,373	11.7
(10) Physics	809,301	9.6	375,075	9.6
(11) Computer Science	233,757	2.8	76,460	2.0
(12) Mathematics	212,496	2.5	97,309	2.5
(13) Space Science	104,695	1.2	49,335	1.3
OTHER NATURAL SCIENCES	2,186,875	25.8	987,794	25.2
(14) Engineering	701,423	8.3	318,504	8.1
(15) Plant & Animal Science	466,587	5.5	218,385	5.6
(16) Materials Science	388,218	4.6	168,724	4.3
(17) Geoscience	228,221	2.7	101,783	2.6
(18) Environment & Ecology	207,795	2.5	90,520	2.3
(19) Agricultural Sciences	155,466	1.8	69,051	1.8
(20) Multidisciplinary	39,165	0.5	20,827	0.5
SOCIAL SCIENCES	469,799	5.5	220,014	5.6
(21) Social Sciences, General	337,041	4.0	156,523	4.0
(22) Economics & Business	132,758	1.6	63,491	1.6
ARTS & HUMANITIES	283,174	3.3	140,103	3.6
(23) Arts & Humanities	283,174	3.3	140,103	3.6
ALL FIELDS	8,470,666	100.0	3,912,097	100.0
Reviews and Notes	390,100			
Articles Without Information About Some Variables	52,789			
Number of "Items" In the Original Database	8,913,555			

Table 2. The Distribution of References Made and Citations Received

		References			Citations				
		Mean (1)	CV (2)	Ratio Refs./Cits.	% zeros (4)	Mean (5)	CV (6)	<i>h</i> -index (7)	
LIFI	E SCIENCES								
(1)	Clinical Medicine	25.5	0.67	2.7	16.4	9.4	2.27	323	
(2)	Biology & Biochemistry	33.7	0.52	2.7	9.9	12.3	1.62	187	
(3)	Neuroscience & Behav. Science	37.1	0.56	2.7	7.5	13.5	1.35	161	
(4)	Molecular Biology & Genetics	38.2	0.50	1.9	7.4	20.2	1.63	253	
(5)	Psychiatry & Psychology	34.8	0.62	5.2	18.7	6.7	1.63	107	
(6)	Pharmacology & Toxicology	28.6	0.60	3.7	13.1	7.7	1.41	94	
(7)	Microbiology	32.4	0.52	2.9	8.1	11.3	1.23	108	
(8)	Immunology	35.5	0.48	2.2	4.6	16.0	1.41	161	
PHYSICAL SCIENCES									
(9)	Chemistry	24.6	0.69	3.4	18.2	7.3	1.75	156	
(10)	Physics	20.7	0.71	3.0	22.0	6.8	2.23	198	
(11)	Computer Science	18.1	0.76	6.4	43.2	2.8	4.75	85	
(12)	Mathematics	16.8	0.70	7.1	37.6	2.4	1.90	50	
(13)	Space Science	31.1	0.66	2.9	18.1	10.8	1.76	138	
OTF	IER NATURAL SCIENCES								
(14)	Engineering	15.9	0.85	5.6	39.8	2.8	1.90	85	
(15)	Plant & Animal Science	28.4	0.66	5.7	22.3	4.9	1.59	97	
(16)	Materials Science	17.3	0.75	4.2	31.3	4.1	1.93	97	
(17)	Geoscience	31.7	0.71	5.1	22.0	6.3	1.57	92	
(18)	Environment & Ecology	31.2	0.65	4.6	15.6	6.7	1.42	88	
(19)	Agricultural Sciences	23.6	0.69	5.2	26.0	3.5	1.54	69	
(20) SOC	Multidisciplinary IAL SCIENCES	15.5	1.06	4.5	46.3	3.4	3.06	69	
(21)	Social Sciences, General	30.9	0.80	10.5	36.1	3.0	1.81	71	
(22)	Economics & Business	24.0	0.90	7.6	40.7	3.2	2.00	63	
ARTS & HUMANITIES									
(23)	Arts & Humanities	19.4	1.12	38.2	21.8	0.5	6.63	67	
ALL SCIENCES			0.72	3.4	82.9	7.5	2.13	170	

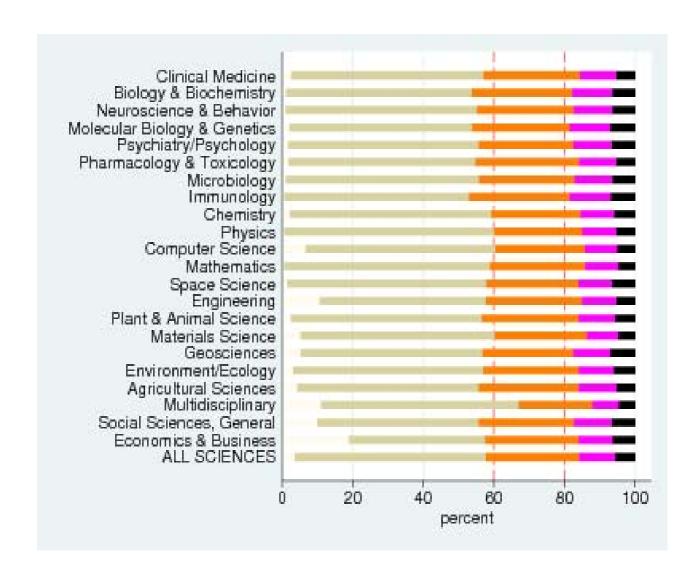


Figure 1. References Made By Articles Published In 1998-2002

Number of References:

(see the main text for a complete explanation)

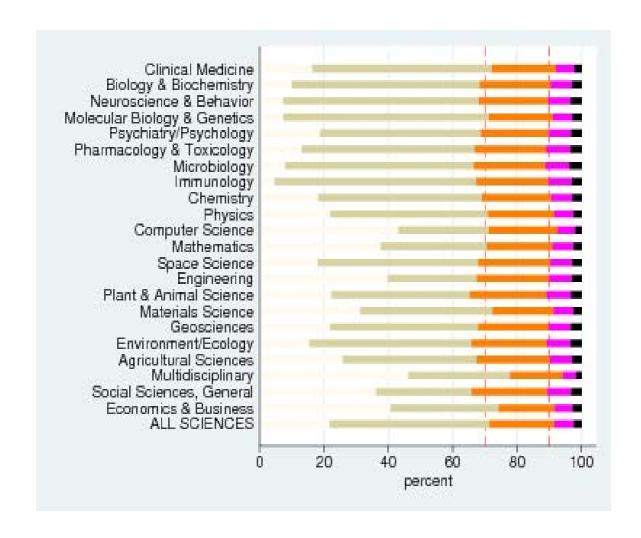


Figure 2. Citations Received By Articles Published In 1998-2002 With a Five-year Citation Window Number of References:

(see the main text for a complete explanation)

Table 3. Power Law Estimation Results.

Articles Published in 1998-2002 With A Five-year Citation Window

					No. of	% of	% of
					Power Law	Total	Citations
		α	ρ	p-value	Articles	Articles	
	E SCIENCES						
(1)	Clinical Medicine	3.28	136	0.879	2,408	0.30	7.78
(2)	Biology & Biochemistry	3.82	71	0.233	3,219	1.41	12.64
(3)	Neuroscience & Behavioral Science	5.05	137	0.304	305	0.26	3.51
(4)	Molecular Biology & Genetics	3.86	152	0.089	1,073	1.04	11.81
(5)	Psychiatry & Psychology	3.77	42	0.097	1,495	1.63	15.50
(6)	Pharmacology & Toxicology	3.73	33	0.000	2,037	3.17	20.61
(7)	Microbiology	4.56	66	0.457	626	1.03	8.27
(8)	Immunology	3.57	73	0.367	1,223	2.39	17.37
PHY	SICAL SCIENCES						
(9)	Chemistry	4.02	72	0.099	1,777	0.39	5.79
(10)	Physics	3.35	55	0.028	4,253	1.13	15.74
(11)	Computer Science	2.92	18	0.672	1,701	2.22	29.55
(12)	Mathematics	3.83	20	0.614	841	0.86	11.18
(13)	Space Science	3.37	62	0.552	909	1.84	17.72
OTHER NATURAL SCIENCES							
(14)	Engineering	3.59	20	0.015	4,953	1.56	17.21
(15)	Plant & Animal Science	4.16	50	0.157	900	0.41	6.01
(16)	Material Science	3.62	37	0.245	1,460	0.87	12.20
(17)	Geosciences	4.02	39	0.254	1,253	1.23	11.38
(18)	Environment & Ecology	4.14	48	0.633	645	0.71	7.42
(19)	Agricultural Sciences	3.85	27	0.008	1,111	1.61	14.25
(20)	Multidisciplinary	3.23	48	0.918	166	0.80	19.51
SOCIAL SCIENCES							
(21)	Social Sciences, General	3.63	19	0.001	2,928	1.87	18.53
(22)	Economics & Business	4.63	46	0.667	207	0.33	6.46
ALL	SCIENCES	3.58	136	0.850	6,119	0.16	4.80