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Abstract------------------------------­
Semiparametric generalized additive models are a powerful tool in quantitative econometrics. With 

response Y, covariates X, T the model is 

E(yIX;T) = G {XT JHa+ml(T1) + ... + I1ld(Td)}. 

Here, G is a known link, a, J3 are unknown parameters, and ml, ... , I1ld are unknown (smooth) 

functions of possibly higher dimensional covariates T}, ... , T d. Estimates of m}, ... , 11ld, a and J3 are 

presented and asymptotic distribution theory for both the nonparametric and the parametric part is 

given. The main focus is the application of bootstrap methods. It is shown that bootstrap can be 

used for bias correction, hypothesis testing (e.g. component-wise analysis) and the construction of 

uniform confidence bands. Various bootstrap tests for model specification and parametrization are 

given, in particular for testing additivity and link function specification. The practical performance 

of our methods is illustrated in simulations and in an application to East-West German migration. 

Keywords: Bootstrap; Specification tests; Generalized Additive models. 

* Hardle, Institut fur Statistik und Okonometrie, Wirtschaftswissenschaftliche Fakultat, Humboldt­
Universitat zu Berlin, D 10178 Berlin, Germany; Huet, Institut de Recherche Agronomique, Centre 
de Recherches de Jouy-en-Josas F 78352 Jouy-en Josas Cedex, France; Mammen, Institut fur 
Angewandte Mathematik, Ruprecht-Karls-Universitat Heidelberg Im Neuenheimer Feld 294, D 
69120 Heidelberg, Germany; Sperlich, Departamento de Estadistica y Econometria, Universidad 
Carlos ill de Madrid, Cl Madrid 126, 28903 Getafe, Madrid, Spain, e-mail: stefan@est­
econ.uc3m.es. This research was supported by the Deutsche Forschungsgemeinschaft, 
Sonderforschungsbereich 373 "Quantifikation und Simulation okonomischer Prozesse", Humboldt­
Universitat zu Berlin, DFG project MA 1026/6-2, and the Spanish "Direcci6n General de 
Ensenanza Superior", number PB98-0025. We thank Marlene MUller, Juan M. Rodriguez-P60 and 
two anonymous referees for helpful discussion. 

I 
I 

I 



1 Introd uction 

Many problems in applied econometrics and other fields require estimating and analyzing the 
conditional mean of a random response Y given random covariates. We will consider models 
where the covariate vector can be decomposed into two components X and T. The vector X 
enters linearly into the conditional mean; in particular X contains all dummy variables. The 
influence of T will be described by additive nonparametric functions of the components of T. 

The conditional mean m(x, t) = E(YIX = X; T = t) can be written as 

(1.1) 

for a known link function G, unknown coefficients 0, (3 and unknown nonparametric functions 
ml, ... , md of possibly higher dimensional covariates T1, ... ,Td. In this paper we discuss 
several bootstrap procedures. In particular we use boots trap for bias reduction, for component 
testing, for testing the link junction, for testing addidivity and for confidence bands of the 
nonparametric part of the model. 

A traditional estimation approach for m(x; t) assumes that m belongs to a known finite­
dimensional parametric family, e.g. a Generalized Linear Model which is specified by 

(1.2) 

with a known link function G and unknown coefficients 0, (3". This model and related 
parametric specifications are often motivated by economic theory, identifiability conditions 
or practical reasons. Parameters can be estimated with Op(lj y'ri) rate of convergence. 
Clearly, an estimated model of the form (1.2) can be misleading if m(x; t) is misspecified. 
Misspecifications however may be avoided by non- or semiparametric approaches. In Horowitz 
(1998) a detailed introduction into semiparametric modeling in econometrics is given. There 
it is explained that a full nonparametric specification of the influence of t on m(x; t) will 
not work for high-dimensional t. The nonparametric rate of convergence decreases rapidly as 

the dimension of the covariables increases ("curse of dimensionality"), see e.g. Stone (1985, 
1986). In addition, high-dimensional functions t -+ m(x, t) are difficult to graph and to 
interpret. A natural extension of the purely linear model is the popular Additive (Partially 
Linear) Model (see e.g. Fan, Hiirdle, Mammen, 1998) 

(1.3) 

The inclusion of a parametric component into the model is of high practical importance. It 
allows the introduction of discrete covariables, e.g. dummy variables. Furthermore linearly 
parameterized impact functions are used in several applications. Model (1.3) can be estimated 
at a rate typical for the lower dimensional explanatory variables T1 , ... , Td (Stone,1985). Pro­
jection smoothers using backfitting techniques have been considered in Hastie and Tibshirani 
(1990). Asymptotic theory for this iterative technique though is rather complicated, see Mam­
men, Linton and Nielsen (1999) or Opsomer and Ruppert (1997). Tj!1lstheim and Auestad 
(1994), and Linton and Nielsen (1995) introduced the marginal integration technique. The 
technical treatment of this method is easier and allows an asymptotic distribution theory. 
For a comparison of both approaches see e.g. Sperlich, Linton and Hiirdle (1999). 

Additive models of the form (1.3) do not apply to e.g. binary responses, survival time data or 
growth data. For such situations regression models have been introduced with link function 
G that maps the real line into a bounded set. In the parametric case this is provided by 
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the generalized linear model (1.2), see McCullagh and Nelder (1989). A natural semipara­
metric extension is given by the Generalized Additive Model (1.1). Both, semiparametric 
additive and generalized additive models are important in economic theory as well as empir­
ical economics. They have been introduced by Leontief (1947) and have been analyzed in 
the latent variable set up of Goldberger (1964), their importance is stressed in the standard 
works of Fuss, McFadden and Mundlak (1978) or Deaton and Muellbauer (1980). Apart 
from their statistical advantages they allow for economic or econometric analysis for subsets 
of regressors, permit decentralization in optimization and decision making. 

Several semiparametric estimates for (1.1) are proposed in Hastie and Tibshirani (1990) 

(without asymptotic mathematical theory). For the marginal integration approach estimates 
of a pure nonparametric components model have been discussed in Linton and Hardle (1996). 
Horowitz (1999) provides an estimation technique for an additive index with unknown link. 
The special case of a Generalized Partially Linear Model (Le. (1.1) with d = 1) is well studied. 
Severini and Staniswalis (1994), Ai (1997) discuss efficient estimation of the parametric com­
ponent. Their approach is based on iterative application of smoothed local and un-smoothed 
global likelihood functions. In this paper we will combine and extend ideas of Severini and 
Staniswalis (1994) with marginal integration to estimate the model. For an approach us­
ing smoothing splines that also achieves efficient estimates of the parametric component but 
avoids an iterative procedure see Mammen and van de Geer (1997). Nonparametric bootstrap 
tests for Generalized Partially Linear Models can be found in Hardle, Mammen and M iiller 
(1998). The related model E[YIX,T] = G{{3TX + m(TTa)} has been studied by Carroll, 
Fan, Gijbels and Wand (1997). The main emphasis of their model differs from our approach. 
Its aim is dimension reduction of the covariable T by projection and therefore the fitted 
nonparametric transformation m is typically more difficult to interpret than nonparametric 
curves in model (1.1). 

The main subject of this paper is the introduction of bootstrap procedures for the Generalized 
Additive Model. Bootstrap will be used for bias correction, tests and confidence bands. The 
decomposition of m into an additive structure allows for component-wise statistical inference. 
Typically, the integration estimate of an additive component has bias terms that depend on 
the shape of the other additive components. This complicates the data analytic interpretation 
of non parametric fits. We will show how bootstrap can be used to correct for these bias 
terms. Bootstrap tests will be considered for variable selection, for parametric specifications 
of impact functions, for testing additivity and for testing the specification of the link function. 
E.g. in the last testing problem (1.1) will be tested versus the alternative model that includes 
an interaction term of Tl and T2 

For tests of interaction terms in a purely additive model see also Gozalo and Linton (1999) 
and Spedich, Tj0stheim and Yang (1999). Our approaches for testing make use of some 
ideas of Hastie and Tibshirani (1990). They proposed (without asymptotic mathematical 
justification) to use the likelihood ratio test and to take critical values ofaX2 approximation. 
The test of this paper differs from this proposal by three modifications. Instead of comparing 
the nonparametric estimate with a linear fit we propose to compare the nonparametric fit 
with a bootstrap estimate under the hypothesis. Without this bias correction the test would 
not behave like an overall test, see Hardle and Mammen (1993) for similiar discussions. 
Our second modification takes care of the fact that different likelihood functions [smoothed 
and un-smoothed likelihood functions] are used in the construction of the parametric and 
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nonparametric estimates. Furthermore, we propose using the bootstrap for the calculation 
of critical values. Consistency of bootstrap is shown by asymptotic theory. 

The paper is organized as follows. In the next section we introduce estimates for parameters 
and nonparametric components of the semiparametric Generalized Additive Model (1.1). 
Asymptotic theory for these estimates is given in Appendix A2. Section 3 presents several 
applications of boots trap for analyzing the nonparametric components. We start by discussion 
of bootstrap bias corrections for the non parametric estimates. The largest part of Section 3 is 
concerned with bootstrap tests for different null hypotheses about the additive components. 
In the last part of Section 3 procedures and theory for uniform confidence bands are given for 
the nonparametric additive components. Again, their construction uses bootstrap. In Section 
4 the presented methodology is studied in simulations and in an application. Assumptions, 
asymptotic theory for the estimators and proofs are postponed to the appendix. 

2 Quasi-Likelihood Estimation in Generalized Additive Mod­
els 

We will now describe the Quasi-Likelihood technique. For simplicity of notation we first 
concentrate on an additive binary model. We then proceed with the generalized additive 
model. Our estimation starts with the iterative algorithm of Severini and Staniswalis (1994), 
yielding a nonparametric estimate (that has no additive structure). We then obtain estimates 
of the additive components by marginal integration. Results on the asymptotic performance 
are postponed to Appendix A2. 

2.1 Additive Binary Response Models 

In an additive binary response model LLd. tuples (Yi, Xi, Ti) are observed (i = 1, ... , n), 
where Ti = (Ti,1,"" Ti,d) is a random variable with components Ti,j in JRqj, Xi is in JRP 
and Yi is a binary response. Conditionally given (Xi, Ti) the variable Yi is distributed as a 
Bernoulli variable with parameter G{Xl',8+o:+m1{Ti,t}+ .. . +md{11,d)} where G is a known 
(link) function,,8 is an unknown parameter in JRP, and m1 : IRql -t JR, ... , md : JRqd -t JR are 
unknown functions. The parameter a is in JR. For identifiability of this model it is assumed 
that E W1 {Ti,t} m1 {11,t} = 0, ... ,E wd{Ti,d) md{11,d) = 0 for weight functions W1,.··, Wd· 
Given (Xi,11), the (conditional) likelihood of Yi is 

(2.1) Q{f..Lii Yi) = Yi log f..Li + (1 - Yi) 10g{1 - f..Li), 

where f..Li = G{ Xl',8 + a + m1 (11,1) + ... + md{Ti,d)}' The conditional likelihood function is 
given by 

n 

(2.2) £(m+,,8) = L Q{f..Lii Yi) 
i=1 

where m+{t) is the additive function a + m1{tt} + ... + md{td). 

We now discuss how the additive components m1,"" md can be estimated. Without loss 
of generality, we will explain this only for the first component m1. We write r = q1 and 
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s = q2 + ... + qd. Define the smoothed likelihood 

(2.3) c's(m+,{3) = jtKh(tl-1i,dLg(LI-Ti,-dQ [G{xT{3 + m+(t)}iYi] dt, 
i=1 

where for the vector 1i = (1i,I, ... ,Ti,d) is a random variable with components 1i,j in lRqj. 

For a vector U = (Ul, ... , Ud) with components Uj in lRqj we denote the vector (U2, ... , Ud)T 

by U-l, similarly, we write 1i,-1 = (Ti,2, ... ,Ti,d)T.For a kernel function L defined on lRs put 
Lg(v) = (gl ..... gs)-1 L(g11vl, ... ,g;lvs) and for simplicity we assume that L is a product 
kernel L = I1j=1 Lj . Similarly, we define Kh(V) = h-1 K(h- 1v) for v E lRr and bandwidth 
vector h E lRr with product kernel K = I1j=1 Kj. The bandwidth vector 9 is related to 
smoothing in direction of the "nuisance" covariates. The relative speed of the elements of 9 

to the elements of h and the choice of these bandwidths will be discussed below. 

We now define an estimate of {3 and a preliminary estimate of m+. Following Severini and 
Wong (1992), Severini and Staniswalis (1994) and Hardle, Mammen and MUller (1998) we 
base our estimates on an iterative application of smoothed local and un-smoothed global 
likelihood functions. We define for {3 E B 

n 

(2.4) argm;XLKh(tl-1i,dLg(LI-Ti,-dQ [G{xT{3 + 1J}iYi] , 
i=1 

(2.5) 

(2.6) 

argmaxc'(ml3, {3), 
I3EB 

Equation (2.4) may be written as ml3 = argmaxc'S(m,{3). The result m is a multivari-
m 

ate kernel estimate of m+ which does not use the additive structure of m+. This m will 
be used in an additional step in order to obtain estimates a, ml, ... ,md of the additive 
components a, ml, ... , md. The final additive estimate of m+(t) will then be given by 
a+ml(td+ ... +md(td). For the estimation of the nonparametric component ml the marginal 
integration method is applied. It is motivated by the fact that up to a constant, ml (tl) 
is equal to {f w_l(v)dv}-1 J w_l(v)m+(tl,v)dv or {~}:~1 W_t{Ti,_I)}-I~ }:i=1 w_l(Ti,-d 
m+(tl, Ti,-d for a weight function W-l. An estimate of ml is achieved by marginal integra­
tion or summation of an estimate of m. In particular, this method does not use iterations so 
that the explicit definition allows a detailed asymptotic analysis. A weight function W-l is 
used here for two reasons. First, it may be useful to avoid problems at the boundary. Second, 
it can be chosen to minimize asymptotic variance, compare Fan, Hardle and Mammen (1998). 

For a weight function W-l define 

(2.7) 

which estimates the function ml up to a constant. An estimate of the function ml is given 
by norming with a weight function Wl 

(2.8) 

The additive constant a is estimated by 

(2.9) 
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Again, the weight functions Wo and WI may be useful to avoid problems at the boundary. The 
remaining non parametric components are estimated analogously. The final additive estimate 
of m is given by 
(2.10) m+(t) = & + ml(tt} + ... + md(td). 

2.2 Generalized Additive Models 

We now come to the discussion of the more general case of a generalized additive model. Sup­
pose that we observe an independent sample (YI , Xl, Tt}, ... , (Yn, X n, Tn) with E[Yi!Xi, TiJ = 
G{XT f3 + m(Ti)}. Additional assumptions on the conditional distribution of Yi will be given 
below. For a positive function V the quasi-likelihood function is defined as 

(2.11) f
y (s-y) 

Q(/-L; y) = V(s) ds 
p, 

where /-L is the (conditional) expectation of Y, Le. /-L = G{XT f3+m(T)}. The quasi-likelihood 
function has been introduced for the case that the conditional variance ofY is equal to 0"2V(/-L) 
where 0"2 is an unknown scale parameter. The function Q can be motivated by the following 
two considerations: Clearly, Q(/-L; y) is equal to -~(/-L-y)2v-1 where v-I is a weighted average 
of 1jV(s) for s between /-L and y. Maximum quasi-likelihood estimates can thus be interpreted 
as a modification of weighted least squares. Another motivation comes from the fact that 
for exponential families the maximum quasi-likelihood estimate coincides with the maximum 
likelihood estimate. Note that the maximum likelihood estimate if, based on an LLd. sample 
YI , ... , Yn from an exponential family with mean /-L((}) and variance V{/-L((})}, is given by 

n {) 

~ {)(}Q(/-L((}); Yi) = o. 
z=l 

We consider three models: 

Model A. (YI , Xl, Tt}, ... , (Yn, X n, Tn) is an LLd. sample with E[Yi!Xi, TiJ = G{XT f3 + 
m(Ti)}. 

Model B. Model A holds and the conditional variance of Yi is equal to Var[Yi!Xi, TiJ = 

0"2V(/-Li) where /-Li = G{XT f3 + m(Ti)} and where 0"2 is an unknown scale parameter. 

Model C. Model A holds and the conditional distribution of Yi belongs to an exponential 
family with mean /-Li and variance V(/-Li) with /-Li as in Model B. 

The quasi-likelihood function is well motivated for Models Band C. The more general Model 
A is included here for discussion of robustness issues. It allows to discuss the case of a 
wrongly specified [conditionalJ variance in Models Band C. If not otherwise stated all of the 
following remarks and results treat the most general Model A. The quasi-likelihood function 
and the smoothed quasi-likelihood function is now defined as in (2.2) and (2.3) with (2.1) 
replaced by (2.11). The estimates m{3, /3, m, ml, ml, m+ and & are defined as in (2.4) - (2.8). 
Asymptotics for ml are presented in Appendix A2. In particular, Theorem A2.1 shows that 

converges to a centered Gaussian variable where the bias c5~(tl) is of the form Ah~ + B9! + 
op(h~ + 9!), where h+ =maxl$j$rhj and 9+ =maxl$j$s9j. For a definition of A and B 
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see Theorem A2.1. Theorem A2.1 does not require that g+ is of smaller order than h+, 
an assumption that has been made in previous papers. Clearly, then the bias term Bg~ 
is asymptotically negligible and so asymptotics suggests the choice g+ = o{h+). However, 
stochastic and numerical stability of the pre-estimator m demands that h1 ..... hr . g1 ..... gs is 
large. Otherwise not enough covariables would lie in the local support of the multidimensional 
kernel. Often even larger values for gj than for hl are needed for satisfactory performance of 
m. The constant A depends on the value of mi and mq at t1 whereas the constant B depends 
on avemges of powers of mj (tj) and m'J (tj) over tj and over j =F 1. Typically the averaging 
leads to small values of B. 

The optimal rate of convergence for twice differentiable functions m1 is n-2/(Hr). As long 
as second order kernels K and L are used this rate can be achieved under the assumptions 
of Theorem A2.1 only for dimension s ~ 1. For higher dimensions s, one can see from our 
expansions that the n-2/(Hr) rate can be achieved by using higher order kernels L1' ... ' L s . 

Under higher order smoothness assumptions on m1 higher order kernels Kj and Li could be 
used. Also in this case one can show that the optimal rate for estimation of m1 can be achieved 
under weaker conditions on s. Furthermore, it can be shown that Theorem A2.1 holds under 
weaker conditions on the bandwidths 9 and h. However, an essential generalization would 
require complex higher order stochastic expansions of the pilot estimate m. 

The remaining additive components mj for j = 2, ... , d are estimated in analogy to ml. It 
can be checked that the estimates m1{tt}, ... , md{td) are asymptotically independent. The 
variance of the estimate ml{tl) can be consistently estimated, see Appendix A2. Asymptotic 
normality of 13 is shown in Theorem A2.2. It turns out that for unbiasedness no undersmooth­
ing is required in the nonparametric estimation part. The asymptotic performance of a will 
be discussed after Theorem A2.2. 

3 Bootstrap Applications in Generalized Additive Models 

In this section we will propose bootstrap procedures for bias correction, testing and confi­
dence bands. Three versions of bootstrap will be considered here. The first version is Wild 
Bootstrap which is related to proposals of Wu (1986), Beran (1986) and Mammen (1992) and 
which was first proposed by Hardle and Mammen (1993) in nonparametric settings. Note 
that in Model A the conditional distribution of Y is not specified besides the conditional 
mean. The Wild Bootstrap procedure works as follows. 

Step 1. Calculate residuals ti = Yi - Pi. 

Step 2. Generate n LLd. random variables ci, ... , c~ with mean 0, variance 1 and 
which fulfill for a constant C that Ici I ~ C (a.s.) for i = 1, ... , n. 

Step 3. Put Yi* = Pi + tici for i = 1, ... , n, where 

For Model B we propose a resampling scheme that takes care of the specification of the 
conditional variance of Y. For this reason, we modify Step 3 above by putting Yi* = Pi + 
fJ V {Pi} 1/2 ci for i = 1, ... , n. Here fJ2 is a consistent estimate of (J2. In this case the condition 

7 

I 
I 

I 



that IEi I is bounded can be weakened to the assumption that Ei has sub-exponential tails, 
i.e. for a constant G it holds that E(exp{[IEi I/G]}) ~ G for i = 1, ... , n [compare (A2)]. 

In the special situation of Model C (semiparametric generalized linear model), Q(Yi fJ,) is 
the log-likelihood. Then the conditional distribution of Yi is specified by fJ,i = G{ Xr (3 + 
m+(T)}. In this model we generate n independent yt, ... , y,: with distributions defined by 
fli' respectively. In the binary response example that we considered in Section 2, Yi is a 
Bernoulli variable with parameter fJ,i = G[XT (3 + m+(T)]. Hence, here we resample from a 
Bernoulli distribution with parameter fli. 

3.1 Bias Correction 

Theorem A2.1 shows that if the elements of the bandwidth vectors hand 9 are of the same 
order, the bias of m1 (td depends on the shape of the other additive components m2, ... ,md. 

This may lead to wrong interpretations of the estimate m1. Bootstrap bias estimates shall 
help to judge such effects. 

In all three resampling schemes, one uses the data (Xl, T1 , yt), ... , (Xn, Tn, y,:) to calculate 
the estimate mi. This is done with the same bandwidth h for the component h and with the 
same 9 for the other d-l components. The bootstrap estimate of the mean of m1(t1) is given 
by E*mi(td, where E* denotes the conditional expectation given the sample (Xl, T1, Yd, 
... , (Xn, Tn, Yn). The bias corrected estimate of m1 (t1) is defined by 

where 8;;,(td = E*mi(td - m1(t1). The next theorem shows that the bias terms of order g2 
are removed by this construction. 

Theorem 3.1 
Assume that Model A , Model B or Model C hold and that the corresponding verswn of 
bootstrap is used. Suppose further that assumptions (At) - (Att) apply and that assumptions 

analogous to (A3) and (A4) hold for the estimation of the other additive components mj for 
j = 2, ... , d [h being always the bandwidth used for the estimated component mj and g the 
bandwidth for the nuisance components]. Furthermore, suppose that the elements of hand g 
tend to zero and that nh1 ..... hrgf· ... . g;(1ogn)-2 tends to infinity. Then it holds that 

(3.1) 

Bootstrap applications in non parametric regression often use resampling from a modified 
estimate of the regression function. Suppose e.g. that in the third step of the bootstrap 
algorithm fli is replaced by G{ Xr /J + & + mp (11,1) + m2(Ti,2) + ... + md(Ti,d)}, where mp is 
defined as m1 but with bandwidth vector hO instead of h. Then if h? /h+ ~ 00 (1 ~ j ~ r) 
one can show that the left hand side of (3.1) is of order Op{(h~)4 + g4 + (nhp ..... h?) -1/2}, 
where h~ is the maximal element of ha. For appropriate choices of hO (e.g. for hO with h~)4 
and (nhp ..... h?)-1/2 of the same asymptotic order) this is of smaller order than the right 
hand side of (3.1) with resampling from m1. 
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3.2 Component-wise Hypothesis Testing 

Interesting shape characteristics may be visible in plots of estimates of the additive compo­
nents. The complicated nature of the model though makes it difficult to judge the statistical 
significance of such findings. A hypothesis test as well as uniform confidence bands are useful 
and necessary tools to analyze and interpret the estimated component functions. As dis­
cussed above, there are several reasons why it is interesting to test special parameterizations 
of the components. We concentrate here on the hypothesis that the components are linearly 
parameterized. This contains the case of polynomial regression and in particular it includes 
tests for linearity of a component 

(3.2) 

and for variable selection 

(3.3) Ho: m 1 (t d = Cl for all t 1 and a constant Cl, respectively. 

Due to the condition E[mtJ = 0, in (3.3) we have Cl = O. The variable selection problem 
is easier to handle than the first testing problem. For this reason we only treat tests for 
hypothesis (3.2). 

As indicated above, our test is a modification of a general approach by Hastie and Tibshirani 
(1990). In semiparametric setups they propose to apply likelihood ratio tests and to use 
X2 approximations for the calculation of critical values. Approximate degrees of freedom 
are heuristically derived by calculating the expectation of asymptotic expansions of the test 
statistic under the null hypothesis. Here we give better approximations for the degrees of 
freedom. First we correct for the bias of the nonparametric estimate. Second, we correct 
the test statistic for the different likelihoods [smoothed or un-smoothed] that are used in the 
calculation of the nonparametric or parametric components. For this modified test statistic 
asymptotic normality is established in Theorem 3.2. The convergence to the normal limit 
is very slow as mathematical arguments and simulations indicate. Therefore we propose the 
bootstrap also for the calculation of critical values. Consistency of bootstrap is shown in 
Theorem 3.3. 

The bias correction is used in the test because also on the hypothesis the estimate m1 (td may 
have a non-negligible bias. For this reason, m1(td is compared with a bootstrap estimate of 
its expectation under the hypothesis. We therefore calculate semiparametric estimates in the 
hypothesis model (3.2) 

E(YiIXi, Ti) = G{XT (3 + a + ,1Ti,1 + m2(Ti,2) + ... + md(1i,d)}· 

The a occurring in the preceding equation can be different from the a defined in Section 2.1, 
because Xi is now replaced by (Xi, Ti,d. Estimation of the parametric components {3, a and 
11 and of the nonparametric components m2, ... , md can be done, as described in Section 
2.1. This defines estimates ~,5, 1'1, m2, ... , md. Put 

For the bootstrap one proceeds now as follows: generate independent samples (yt, ... , 
y;) as in the beginning of Section 3 but with J.ti replaced by fli. Then, using the data 
(Xl, T1 , yt), ... , (Xn, Tn, y;) calculate the estimate mi. The bootstrap estimate of the 
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mean of ml(td is given by E*mi(tl), where E* denotes the conditional expectation given 
the sample (Xl, Tl , yt), ... , (Xn, Tn, Yn). Define the following test statistic: 

(3.4) R = ~ w(T.·) [G'{XT,a i m+(1i)}]2 {m (T.. ) _ E*m*(T.. )}2. 
~ ~ V(G{xTf3+ m +(Ti)}) 1 ~,l 1 ~,l 

Here, m+(t) = &+ml(td+ ... +md(td)' The weights [G'{ .. . }]2 jV(G{ ... }) in the summation 
of the test statistic are motivated by likelihood considerations, see Hiirdle, Mammen and 
MUller (1998). They could be replaced by other weights. The following theorem states that 
the test statistic R has an asymptotic normal distribution. 

Theorem 3.2 
Assume that Model A , Model B or Model C hold and that the corresponding version of 

boots trap is used. Furthermore suppose that assumptions (Al) - (All) hold with Xi replaced 
by (Xi, Ti,t). Then, if additionally, n l /2h l ..... hrg~· ... · g;(1og n)-l --+ 00 and if all elements 

of hand 9 are of order o(n- l /8 ), on the hypotheses (3.2), it holds that 

v;;l(R - en) ~ N(O, 1) 

with 

(h l · ... · hr)-l IT! Kj(u)2 duE[AfTl(Tt)], 
j=l 

v~ = (hl· ... ·hr)-l il! Ky)(u)2 duE {E[AIT1]2fTl(Td 3
} , 

j=l 

1 w_l(T-dw (T)Z4ff._l(T_t} Var[YIX,T] 

E[W-l(T-d] E[Z2IT]2ff,(T) V{XT f3+m+(T)}' 
A = 

where Ky)(u) = I Kj(u - v)K(v) dv is the convolution of K j with itself. 

The quantities en and Vn may be consistently estimated. Critical values for the test statistic 
can be therefore calculated using the normal approximation. In similar cases the normal 
approximation does not perform well (see e.g. Hiirdle, Mammen and Miiller, 1998), we thus 
propose using the boots trap for the calculation of critical values of the test statistic R. The 
boots trap estimate of the distribution of R is given by the conditional distribution of the test 
statistic R*, where R* is defined as follows. 

(3.5) R* = ~ w(T.·) [G'{XT~ + m+(Ti)}]2 {m*(T.' ) _ E*m*(T.' )}2. 
~ ~ V{XT f3 + m+(Ti)} 1 ~,l 1 ~,l 

The conditional distribution £*(R*) (given the original data (Xl, Tl , Yt}, ... , (Xn, Tn, Yn) ) 
is our bootstrap estimate of the distribution £(R) of R (on the hypotheses (3.2». 

Consistency of bootstrap is the content of the next theorem. 

Theorem 3.3 
Under the assumptions of Theorem 3.2, it holds that 
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where dK denotes the Kolmogorov distance, which is defined for two probability measures f.l 

and 1/ (on the real line) as 

With similar arguments as in Hfu-dle and Mammen (1993) one shows that the test R has 
nontrivial asymptotic power for deviations from the linear hypothesis of order n- 1/ 2 (h1 •.••• 

hr )-1/4. This means that the test does not reject alternatives that have a distance of order 
n-1/ 2 . However, the test detects also local deviations [of order n-1/ 2 (h1 ..... hr )-1/4] that are 
concentrated on shrinking intervals with length of order h. The test may be compared with 
overall tests that achieve nontrivial power for deviations of order n- 1/ 2 • Typically, such tests 
have poorer power performance for deviations that are concentrated on shrinking intervals. 
For our test, the choice of the bandwidth determines how sensitive the test reacts on local 
deviations. For smaller h the test detects deviations that are more locally concentrated, 
at the cost of a poorer power performance for more global deviations. In particular, as an 
extreme case one can consider the case of a constant bandwidth h. This case is not covered 
by our theory. It can be shown that in this case R is a n-1/ 2 consistent overall test. 

Finally we want to emphasize again that the same procedure works through for any other 
linearly parameterized hypothesis 

where (h, ... , ()q are unknown parameters and where ft, ... , Iq are some given functions. In 
particular, this includes the hypothesis (3.3), i.e. testing for significant impact ofT1, as well as 
the model in which m1 is a polynomial. Moreover, the results of this section can be extended 
to tests of other parametric hypotheses on m1, e.g. 

(3.6) Ho: m1(t1) = me(td for all tt and a parameter (), 

where {me: () E 8} is a parametric family. This can be done similarly as in Hfu-dle and 
Mammen (1993). In our case it requires an asymptotic study of parametric estimates in the 
model (1.1) with parametric specification (3.6) for m1. 

3.3 Testing Separability and Interactions 

Our estimate of m1 is robust against non-additivity of the other components. In the con­
struction of the estimate it is only used that m(x; t) is of the form 

(3.7) 

for an arbitrary function m2, ... ,d. It is not assumed that the function m2, ... ,d is additive, i.e. 
m2, ... ,d(T2, ... ,Td) = m2(T2) + ... + md(Td). Also even in case that m(x; t) is not of the form 
(3.7) the estimate m1 still makes sense and can be interpreted as an estimate of the average 
effect of T1 • Nevertheless the hypothesis of additivity is of its own interest and may be an 
important step in a model choice procedure. Following a similar idea as Sperlich, Tj0stheim 
and Yang (1999), we therefore consider a split of the first covariate T1 into two components 
T1:1 and T1:2 and consider the hypothesis that 

(3.8) 
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Estimates of m1:1 and m1:2 can be constructed by marginal integration 

1 n - L fih{t1:1, 11,1:2)W{11,1:2) 
n i=1 

The remainder, i.e. m1:1,2{td = m1{td - m1:1{t1:d - m1:2{t1:2) is an estimate for the (first 
order) interaction of T1:1 and T1:2. Note that model (1.4) fits into this framework. There the 
interaction between T1 and T2 has been considered. 

We now discuss tests for the hypothesis (3.8). For this purpose we proceed similarly as in 
Section 2.2 and define 

R. - ~ w{T,.) [G'{XT.a + m+{Ti)}]2 {m (T.. T,. ) _ E*m* (T.. T.. )}2 
.L"lnter - £i ~ V{G{XT.a + m+(11)}) 1:1,2 z,1:1, z,1:2 1:1,2 z,1:1, ~,1:2 , 

where mi:1,2 is an estimate based on a bootstrap sample. Bootstrap samples are generated 
as described in the beginning of Section 3 but now with Pi replaced by 

Asymptotic normality of the test statistic Rinter is stated in the next theorem. 

Theorem 3.4 
Under the assumptions of Theorem 3.2, on the hypotheses (3.8), it holds that 

v;;1{~nter - en) ~ N{O, 1) 

with en and Vn defined as in Theorem 3.2. 

As in Section 3.2 we argue that the normal approximation is too inaccurate and we therefore 
use bootstrap for the calculation of critical values. The bootstrap estimate of the distribution 
of ~nter is given by the conditional distribution of the test statistic Rinter' where Rinter is 
defined as follows (compare also (3.5)). 

(3.9) Rinter = 
t w(11) [G'{XT~ + m+(11)}]2 x 
i=1 V{XT.B + m+{Ti)} 

{mi:1,2{11,1:1,11,1:2) - E*mi:1,2{11,1:1, Ti,1:2) } 
2 

, 

with mi:1,2 defined as m1:1,2 but from a bootstrap sample instead of the original sample. 

Consistency of this bootstrap is the content of the next theorem. 

Theorem 3.5 

Under the assumptions of Theorem 3.4, it holds that 

dK{£*{R*),£{R)} ~ O. 

The proofs of Theorems 3.4 and 3.5 are similar to the proofs of Theorems 3.2 and 3.3, 
respectively, and therefore skipped. 
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3.4 Testing the Link Function 

We now discuss tests for the specification of the link function G. Horowitz and mu·dle 
(1994) introduced the HH test for the null hypothesis of a fully parametric generalized linear 
model. mirdle, Spokoiny and Sperlich (1997) discussed rate optimality of those tests. Hardle, 
Mammen and Proenca (2000) introduced bootstrap modifications of the HH statistic. We 
use the latter approach for the null hypothesis of a generalized additive model. 

(3.10) 

(3.11) 

Ho 

HI 

E[YIX, T] = G {v(T, X,.8)} versus 

E[YIX,T] = H {v(T,X,.8)} where H(·) unknown. 

In our case we have v(T, X,.8) = .8T X + a + ml(Td + ... + md(Td). The test statistic is 
defined as 

(3.12) 

where hL is an additional bandwidth and where Vi = jJI'Xi + a + ml(Ti,d + ... + md(Ti,d). 
For further details see also Section 4. 

3.5 Uniform bootstrap confidence bands 

In this section we apply the bootstrap to the construction of uniform confidence bands. We 
define 

8 = supwI(tr)lml(tl) - ml(tr) - 6A(tdlo-l l (td, 
tt 

where o-r(tr) is the estimate of the variance of ml (h), defined in (A2.1). In the simulations we 
also tried a bootstrap estimate of 0"1 (td, see Section 4. For the estimation of the distribution 
of 8 we again use bootstrap, as introduced in Section 2.2 for Model C. This defines the 
statistic 8* = SUPtwI(tdlmi(td - E* mi(tl)lo-ll(tl). In the definition of 8* the norming 
o-(td could be replaced by o-i(td. We write 8** = SUPtwI(tdlmi(td -E* mi(tl)l[o-il-l(tl). 
Here ai(td is an estimate of the variance of mi(h), that is defined similarly as o-I(td but 
that uses a bootstrap res ample instead of the original sample. The first norming may help to 
save computation time, for the second choice bootstrap theory from other set ups suggests 
higher order accuracy of boots trap. 

Both bootstrap procedures can be used to construct valid uniform confidence bands for 
additive components. This follows from the following theorem. 

Theorem 3.6 
Assume that Model A , Model B or Model C hold and that the corresponding version of 
bootstrap is used. Furthermore suppose that assumptions (Al) - (All) apply, that all elements 
of hand 9 are of order 0(n- I / 8 ) and that nhl ..... hrgr· ... · g;(1ogn)-2 -t 00. Then it holds 
that 

dK{£*(8*), £(8)} 

dK{£* (8**), £(8)} 

~ 0, 

~ o. 

l.From Theorem 3.6 we see that critical values of 8 can be consistently estimated by bootstrap. 
This gives uniform confidence intervals for ml(td - 6~(h). For confidence bands for ml 
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we need a consistent estimate of 5~(ttl. Estimation of 5~(ttl can be done by plug-in or
l 

bootstrap. Both approaches require oversmoothing, i.e. choice of a bandwidth vector hO wit~ I 
h? /h+ -+ 00, see also the remark after Theorem 3.1. For related discussions in nonparametric i 

density estimation and regression see Bickel and Rosenblatt (1973), Eubank and Speckman 
(1993) or Neumann and Polzehl (1998). 

4 Simulations and Applications 

In the first part of this section we present simulations for the performance of our methods 
in small samples. We give results for estimation, for tests and for confidence bands. Level 
accuracy is checked for testing linearity of an additive component and for testing the speci­
fication of the link function. For the first test problem also power functions are calculated. 
Furthermore, coverage probabilities of confidence bands are checked. In the second part, we 
examine a real data example in an empirical economic analysis, based on studies of Burda 
(1993) and Burda, Hardle, MUller, Werwatz (1998). Throughout this section we set all weight 
functions W-l, Wo and Wl equal to 1 for simplicity. 

4.1 Simulation Results 

Binary response data are simulated from 

(4.1) E(Y!X = x, T = t) = P(Y = l!X = x, T = t) = G{{JT X + m+(t)}, 

where G is the Logit distribution function and m+(t) = a + 2:~=1 mj(tj). The explanatory 
variables Xl, X2, Tl and T2 are chosen as independent random variables, Xl and X2 are 
standard normal and Tl and T2 have uniform distribution on [-2,2]. We generate n = 250 
data points with {J = (0.3, -0.7)T, ml(td = 2sin(-2td, m2(t2) = t~ - E[Ti] and a = O. 

For all computations in this section the quartic kernel t~ (1- u2 )2 I(!u! ::; 1) is used. Further, 
in this section we use the following notation: hi is the bandwidth that is used for the 
estimation of (J; the bandwidth that is applied for the estimation of the fitted components 
mk [k = 1, = 2,] is denoted by h. Finally, 9 is the bandwidth used in the smoothing for the 
nuisance component(s) mj [j -:/= k]. Figure 1 shows plots of ml, m2 and of the estimates for 
one sample. The chosen bandwidths are hi = 9 = (1.0, 1.0)T, h = 0.9. 

We now consider the test problem (3.2) Ho: ml (td is linear. As discussed above the normal 
approximation of Theorem 3.2 is quite inaccurate for a small sample size like n = 250. 
This can be seen from Figure 2. There a density estimate for the test statistic R, based 
on 500 Monte Carlo replications, is plotted together with its limiting normal density. The 
parameters are chosen on the null hypothesis, with ml(tl) = tl, {J, m2 and a as above. The 
density estimate for R is a kernel estimate with bandwidth according to Silverman's rule of 
thumb, i.e. 1.06· 2.62· n-l /5 times the empirical standard deviation. For better comparison, 
the normal density is convoluted with the quartic kernel using the same bandwidth. In a 
simulation with 500 runs the level of the bootstrap test is estimated for B = 249 bootstrap 
repetitions. We get a relative number of rejections of 0.03 for theoretical level 0.05 and 0.06 
for theoretical level 0.1, i.e. the bootstrap test keeps its level. 

Figure 3 plots the power of the test (thick line) for theoretical levels 0.05 and 0.1. The power 
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Figure 1: Plots of the nonparametric components mI(td = 2sin(-2td, m2(t2) = t~ - E[T?] 
and their estimates. 

is plotted for the alternatives mI(td = (1- V)tI + v{2sin(-2td}, 0 ~ v ~ 1. The other 
parameters are chosen as above. For comparison, we perform the same simulations for a 
parametric Likelihood Ratio Test (LRT) that tests the hypothesis '11 = ... = '14 = 0 in the 
parametric model 

Clearly, this comparison is far away from being fair since for the parametric test the alter­
native as well as m2 are assumed to be known. Nevertheless, the better performance of the 
parametric test [see Figure 3] is partly just due to the fact that the test R is conservative, 
see above. [Compare the power of R in the right plot with the power of the Likelihood Ratio 
Test in the left plot.] 

For bootstrap confidence bands we investigate four questions; what is the coverage accuracy 
in a small sample, does it depend strongly on the bandwidth, how much vary the width of the 
band with the chosen coverage probability, and finally, does it really matter how we estimate 
CT~(td. In the simulations we use two estimates of CT~(h). The first estimate cT~(td was 
defined in (A2.1), see Section 3. The second estimate is the empirical variance of mi(td in 
the bootstrap resamples. This estimate is denoted by o-~(td. The simulated model is again 

E(Y!X = x, T = t) = G{(3T x + m+(t)}, 

where G is the Logit distribution function, (3 = (0.3, -0.7)T, mI(td = 2sin(-2td, m2(t2) = 
t~ -E[T?], a = 0, and n = 250. Now T has a uniform distribution on [-1,1]. The simulation 
is only done for the first component mI. For simplicity we only use identical bandwidths 
hI = h = g. 

For bandwidths from hI = h = 9 = .3 to .6 we obtain reasonable coverage accuracies. The 
results for hI = h = 9 = .5 are given in Table 1. The empirical coverage probabilities are 
close to the theoretical ones for all levels and for both variance estimates. For too small and 
too large bandwidths the accuracy is less accurate. This is caused by poorer bootstrap bias 
correction. The variance of the estimates is always well estimated by the bootstrap. 

In Figures 4, 5 we compare 95% and 85% confidence bands. Despite their different levels the 
bands do hardly differ. So it is surprising how well the bootstrap fits the different coverage 
probabilities. 

15 

l 
I 



Density Estimate 

-2 o 2 4 6 
x 

Figure 2: Standardized density estimate of the test statistic (thin line) and standard normal 

density (thick line). 

Power function: 5% level 

0.2 0.4 
v 

0.6 0.8 

o ... 

Power function: 10% level 

0.2 0.4 
v 

0.6 0.8 

Figure 3: Power functions for theoretical levels 0.05 and 0.1 , for the nonparametric bootstrap 

test (thick line) and the likelihood ratio test (thin line). 

Theoretical coverage 

using u~(td 
using o-~(td 

95% 

.963 

.948 

90% 

.912 

.904 

85% 

.846 

.839 

80% 

.776 

.776 

Table 1: Coverage probabilities for bootstrap confidence bands with hi = h = g = 0.5. 
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95% Conf. Bands 85% Conf. Bands 
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Figure 4: 95% and 85% Confidence Bands, using fJ2. Dashed lines are the confidence bands 
and corresponding estimates, solid lines are the data generating functions. 

95% Conf. Bands 

....... 
.... -.... ~ ... -... ... 

/-.... ::.... 
/- ...... . ...... 

...... .._----... .... 
Il10..... . ..... . 

' .. ............. 

85 % Conf. Bands 

Figure 5: 95% and 85% Confidence Bands, using ij. Dashed lines are the confidence bands 
and corresponding estimates, solid lines are the data generating functions. 

Finally, we simulate the test for the link function that has been introduced in Section 3.4. In 
the simulations this test checks the null hypothesis of a logit link. The data are generated as 
in the simulations of confidence bands. The simulation results for level accuracy are reported 
in Table 2 for hI = h = g = .35. We also tried different bandwidths with no major difference 
in the results. An additional bandwidth hL is used in the definition of the test statistic, see 
Section 3.4. This has been chosen as hL = 0.4 . SI where SI is an estimate of the standard 
deviation SI of the index. As can be seen from Table 2 bootstrap critical values work quite 
well. 

1% 5% 10% 15% 

.014 .046 .090 0.13 

Table 2: Levels for testing the Link function using hL = SI * .4, n = 250, B = 250. 

17 

l 
ii 

I 

I 



4.2 Application to East-West German migration data. 

The following discussion of an application has two major intentions. On the one hand we 
want to demonstrate that our methods are feasible and robust in practice and do not break 
down when the model and data do not follow a simulated ideal situation but are drawn from 
a realistic complex structure. Those complex structures are typical in empirical research. 
Furthermore we discuss possible additional insights that may be gained by the more flexible 
structure of our semiparametric modeling. Additionally, robustness of our tools against choice 
of the bandwidths is shown and we will see that the findings of our different statistical tools 
are not contradictory but consistent in themselves. 

For a 1991 GSOEP data set, Burda (1993), Miiller (2000) and Burda, Hardle, Miiller, Wer­
watz (1998) investigated the impact of various possible determinants on the intention of East­
Germans to migrate to West Germany. The original data set contains 3710 East Germans who 
were surveyed in 1991 in the Socio-Economic Panel of Germany, see GSOEP (1991). Here we 
consider the data sets from two East German countries: the most northern country of East 
Germany, i.e. Mecklenburg-Vorpommern (M-V) with n = 402, and the most southern one, 
Sachsen (Sax) with n = 955 observations. We use the following explanatory variables: fam­
ily /friend in West, unemployed/job loss certain, middle sized city (10000-100000 habit ants) 
and female [dummies (= 1 if yes, = 0 if no), age (AGE) and household income (HHINCOME) 
[continuous variables]. The response is 1 if the person said he is willing to migrate and 0 
otherwise. Figure 6 gives plots for the densities of AGE and HHINCOME for both coun­
tries. Tables 3 and 4 contain descriptive statistics. In the following, the variables AGE and 
HHINCOME are studentized. 

Age, M. - V. 

Age, Sachsen 

1000 

Hhincome, M. - V. 

2000 
hhincome 

3000 

Hhincome, Sachsen 

1000 2000 

hhincome 
3000 

4000 

4000 

Figure 6: Density plots for Mecklenburg- Vorpommern (top) and Sachsen (bottom), AGE on 
the left, HHINCOME on the right. 

In a first step we fit a parametric generalized linear regression model with logit link. The 
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MECKLENBURG-VORPOMMERN I 
sample size n 402 I 

min. max. mean stdev. I response y 0 1 0.390547 0.488481 

family /friends in West Xl 0 1 0.88806 0.315686 
unemployed/job loss certain X2 0 1 0.211443 0.40884 

city size (10000-100000) X3 0 1 0.358209 0.480071 
female X4 0 1 0.502488 0.500617 

age tl 18 65 39.9353 12.8911 
household income t2 400 4000 2262.22 769.822 

Table 3: Descriptive statistics for the data from Mecklenburg- Vorpommern. 

SACHSEN 

sample size n 955 

mIn. max. mean stdev. 

response y 0 1 0.395812 0.489281 

family/friends in West Xl 0 1 0.824084 0.380948 
unemployed/job loss certain X2 0 1 0.183246 0.387071 
city size (10000-100000) X3 0 1 0.259686 0.438692 
female X4 0 1 0.51623 0.499998 

age tl 18 65 40.3675 12.6942 

household income t2 200 4000 2136.31 738.719 

Table 4: Descriptive statistics for the data from Sachsen. 

results are presented in Table 5 for both countries, M-V and Sax. 

PARAMETRIC ESTIMATION RESULTS 

Mecklenburg-Vorpommern Sachsen 

Coeff. stdev. P> JzJ" Coeff. stdev. P> JzJ 

family/friends West 0.5893 0.3820 0.124 0.7604 0.1972 <0.001 
unemployed;' .. 0.7799 0.2779 0.005 0.1354 0.1783 0.447 
middle sized city 0.8216 0.2421 0.001 0.2596 0.1556 0.085 
female -0.3884 0.2315 0.093 -0.1868 0.1382 0.178 
age (standardized) -0.9227 0.1330 <0.001 -0.5051 0.0728 <0.001 
hh. income (stand.) 0.2318 0.1221 0.057 0.0936 0.0707 0.187 
constant -1.3673 0.2969 0.001 -1.0924 0.2003 <0.001 

Table 5: Results of a generalized linear regression. 

The variable AGE is by far the most significant variable. This holds true for both countries. 
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On the other hand people behave quite differently in the two countries. This concerns Xl 
[relatives or friends in West Germany], X 2 [their status of employment] and X3 [city size]. 

In a second step we fit a semiparametric generalized additive model for both data sets. We 
present the results for different smoothing parameters, choosing h = 1.0 and h = 1.25 for 
M-V and h = 0.75, h = 1.0 for Sax. The other bandwidths have always been hi = 9 = 1.1· h. 
In Figures 7 and 8 the additive components for AGE and HHINCOME are plotted. Table 6 
gives the estimates for the parametric part. 

Household Income vs. Intention 

1000 lOOO 
hhincorne 

JOOO 

Household Income vs. Intention 

4000 

Figure 7: The semiparametric estimates for the influence of AGE (left) and HHINCOME 
(right) in Mecklenburg- Vorpommern. The upper plots were estimated with h = 1.0, the lower 

ones with h = 1.25. 

COEFFICIENTS OF THE LINEAR PART 

M-V Sax 

par. semi. a semi. b par. semi. a semi. b 

family /friends West .5893 .5920 .5809 .7604 .7137 .7289 
unemployed/ ... .7799 .7771 .7992 .1354 .1469 .1308 
middle sized city .8216 .7156 .7127 .2596 .3134 .2774 
female -.3884 -.3309 -.3485 -.1868 -.1898 -.1871 
constant -1.367 -1.462 -1.411 -1.092 -1.105 -1.101 

Table 6: Results of purely parametric estimates (par.) and of the parametric part of a 

generalized additive partially linear regression model: semi. a (with bandwidth h = 1.0), 
semi. b (h = 1.25) for M- Vi semi. a (h = 0.75) and semi. b (h = 1.0) for Sax. 

All estimates do not depend strongly on the chosen bandwidth. Moreover, for the linear part 
of the model the results are similar to the values of the parametric model, see Table 6. So the 
qualitative interpretation of the parametric coefficients does not change. In the figures the 
influence of AGE in M-V does not differ strongly from the influence of AGE in Sax, except 
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Household !neODle vs. intention 

Household Income vs. intention 

~~----~--~----~----~ 

Figure 8: The semiparametric estimates for the influence of AGE (left) and HHINCOME 
(right) in Sachsen. The upper plots were estimated with h = 0.75, the lower ones with 

h = 1.0. 

that the curve from Sax is more flat in the middle part. In contrast, for HHINCOME the 
curves from both countries have a totally different shape. On first glance one would guess 
that AGE could be modeled linearly, at least for M-V. This is less clear for HHINCOME. 

In a third step we apply our bootstrap test for linearity to the variables AGE and HHINCOME. 
We always use 499 repetitions in the bootstrap resampling. The bandwidths are chosen 
as above. For the input AGE, linearity is always rejected for the 1 percent level, for all 
bandwidths in both countries. For the variable HHINCOME, the observed p-values are .16 
[for h = 1.0, M-V], .14 [for h = 1.25, M-V], .02 [for h = 0.75, Sax], and .01 [for h = 1.0, 
Sax]. So the deviations for AGE from linearity are much more significant. At first sight, this 
seems to be surprising and even unreasonable because the plots for HHINCOME differ much 
more from linearity. Reasons are presumably that the estimates for HHINCOME have large 
variance and/or the model(s) is (are) misspecified, e.g. the link function G(·) is misspecified. 
The latter point could cause the somehow strange result for the impact of AGE in M-V since 
we do not know exactly what the bootstrap does when G(·) is (strongly) misspecified. 

In a next step we construct uniform confidence bands. In Figure 9 95% uniform confidence 
bands are given for the impact functions for M-V. We use bandwidths h = 1.25, hI = 9 = 1.1h 
and B = 500 bootstrap replications. In Figure 10 we give 95% confidence bands for Sax with 
h = 0.75, hI = 9 = 1.1h and B = 500. All confidence bands contain a linear fit. Only for 
HHINCOME and country Sax the linear fit would lie on the boundary. So inference only based 
on uniform confidence bands would not lead to rejection of linear indices. 

In a last step we test the specification of the link function. For the test statistic, see Section 
3.4, we use h = 0.75, hI = 9 = 1.25h for M-V and h = 0.6, hI = 9 = 1.25h for Sax. For the 
band width h L we chose h L = c· SI where S I is an estimate of the standard deviation SI of the 
index and where C = 0.6 to 0.75 for M-V and c = 0.5 to 0.6 for Sax. With B = 499 bootstrap 
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Figure 9: Estimates and 95% uniform confidence bands for the impact of AGE (left) and 

HHINCOME (right) in M- V with h = 1.25, hI = g = 1.1h. 

Ase 

Figure 10: Estimates and 95% uniform confidence bands for the impact of AGE (left) and 

HHINCOME (right) in Sax with h = 0.75, hI = g = 1.1h. 

replications we get p-values of about 7% for all bandwidths for M-V and p-values that are 
always larger than 15% for Sax. So we can indeed conclude that the slight inconsistency we 
found in the results for AGE in M-V might be caused by a misspecification of the link G(·). 

Al Assumptions 

We now state the assumptions that are used in the results in Sections 2.1, 2.2 and Appendix 
A3. We use the notation 

hprod = hI ..... hrg1 ••••• g8' 

- h2 (h )-1/2 PI - max + n prod , 

h2 (1 )1/2( h )-1/2 P2 = max + og n n prod . 

Furthermore, we put Ai(U) = Q{G(U)jYi}, A(U) = Q{G(U)jY}. With this notation we have 

(ALl) 

A~'(U) 

Yi - G(u) , 
V[G(u)] G (U), 

[ 
G"(u) V'(G(u)) G'(U)2] G'(u)2 

- {Yi - G(u)} V[G(u)] - V[G(u)]2 - V[G(u)]' 

22 

-1 
i 

I 

I 



For our asymptotic expansions we use the following assumptions. 

(Ai) (Xl, Tl , Yd, ... , (Xn, Tn, Yn) are LLd. tuples. Ti = (Ti,l, ... , Ti,d) is a vector with com­
ponents Ti,j in JRqj, Xi is JRP valued, and Yi is JR valued. We write r = ql and 

s = q2 + ... +qd· 

(A2) E(YIX, T) = G{XT (3 + m+(T)} with (3 E JRP. Here m+ denotes the function m+(t) = 
a+ml(td+ .. . +md(td), with E mj(1i,j) = 0 for j = 1, ... ,d. The conditional variance 
Var(YiI1i = t) has a bounded second derivative. Furthermore the Laplace transform 
E exptlYiI is finite for t > 0 small enough. 

(A3) Xi and Ti have compact support Sx, ST. The support ST is of the form ST,l X ST,-l 
with ST,l c JRT and ST,-l C JRs. T has a twice continuously differentiable density fr 
with inf fT(t) > o. 

tEST 

(A4) For compact sets B C JRP and H C 1R we define 

where, as above, 

m/3(t) is defined as 

fj = arg max C(m/3' (3), 
/3EB 

n 

C('f}, (3) = L Q{ G(XT (3 + 'f}(Ti)j Yi}. 
i=l 

n 

m/3(t) = arg~a: ~Kh(tl -1i,dL g(Ll - Ti,-dQ [G{XT (3 + 'f}}j Yi] . 
z=l 

For (3 E B we put 

m/3(t) = argmaxE [>'(XT(3 + 'f})IT = t]. 
'T/EH 

We assume that m/3(t) lies in the interior of H for all tEST and (3 E B. This implies 
E{>.'((3TX +m/3(t))lT = t} = O. We assume also that E[>."{(3TX + m/3(T)} IT = t] -1= 0 
for all tEST and (3 E B and that for all c > 0 there exists a 6 > 0 such that for all 
'f} E H, tEST, (3 E B 

implies that 

(A5) There exists an 6 > 0 such that G(k)(u), k = 1, ... ,3 and G'(u)-l are bounded on 
u E S+ = {xTb+ 'f} + "': x E Sx,b E Band 'f} EH,'" E 1R with 1"'1 ~ 6}. Furthermore 
V-I, V' and V" are bounded on G(SO). 

(A6) ml, ... , md are twice continuously differentiable functions from JRqj to JR. The weight 
functions w, W-l and Wl are positive and twice continuously differentiable. To avoid 
problems on the boundary, we assume that for a 6 > 0 we have that W-l(t) = 0, 
WI(t) = 0, and w(t) = 0 for t E Sr_l = {s: there exists an u rt ST,-l with Ils-, 
ull ~ 6}, t E SrI = {s: there exists an u rt ST,l with lis - ull ~ 6} or t E Sr = , 
{s: there exists an u rt ST with lis - ull ~ 6}, respectively. Furthermore, the weight 
function Wl is such that Is wl(tdml(tdfTl (tt}dh = 0, where fTl denotes the density 

T,l 

ofTI . 
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(A7) The kernels K and L are product kernels K(v) = Kl(Vt} ..... Kr(vr) and L(v) = 
Ll(vd ..... Ls(vs). The kernels Ki and Lj are symmetric probability densities with 
compact support ([-1,1], say). 

(AS) E [AnXif30 + m+(Td}ITl = t] and E [AnXif30 + m+(Tt}}XIITl = t] are twice con­
tinuously differentiable functions for tEST. 

(A9) The matrix E Z2 XXT is strictly positive definite. The random vectors Z and X have 
been defined in Theorems A2.1 and A2.2, respectively. 

This assumption implies that X does not contain an intercept. Note that if the first 
element of X would be constant, a.s., e.g. XiI == 1, then Xil == O. 

(A10) ml, ... , md are four times continuously differentiable on JR. 

(All) The kernels Ki and Lj are twice continuously differentiable. 

Assumptions (A1)-(A3) and (A5)-(A6) contain boundedness conditions on covariables and 
standard smoothness conditions on regression functions, design densities, link function and 
variance function. Condition (A4) contains a slightly modified definition of our estimates. 
We now assume that in the definition of the parametric and nonparametric estimate the 
minimization of the quasi likelihood only runs over a bounded set (denoted by B or H, 
respectively). This assumption together with (AS) and the other assumptions of (A4) en­
ables us to prove consistency of the parametric and non parametric estimates and to derive 
a stochastic expansion of these estimates. Condition (A7) is a standard assumption on the 
kernels K and L. Condition (AS) guarantees that the Fisher information of the parametric 
estimate is positive definite. Conditions (AlO) and (All) are used for second order bounds 
on expansions of bias terms. 

A2 Asymptotic Theory for Estimation 

This section contains asymptotic results on the marginal integration estimates mj and the 
parametric estimate 11. 

Theorem A2.1 
Suppose that the assumptions (Ai) - (A9) apply. If the elements of hand 9 tend to zero and 
nhl ..... hr 9r .... ·9;(1ogn)-2 tends to infinity, then 

converges to a centered Gaussian variable with variance 

2() f 2() h(td [Zll ] 
0"1 h = K u du {EW-l(T_dF E Z2 Tl = tl , 

where fr-l and fT are the densities of T-l or T = (T1 , T-d, respectively. [For a vector 
(Vl, ... ,Vd) with Vj E JRqj we denote the vector (Vl, ... ,Vj-l,Vj+l, ... ,Vd) by V_j.] Zl and 

Z2 are defined in the following way: 

Zl = W~(T-dV[G{XT::m+(T)}]{tl(T_dVar(Ylx,T), 

24 



E [Z2JTI = tl,T_I]2 ff(tl,T_d, 

G'(XT (3 + m+(T))2 

V[G{XT(3 + m+(T))]· 

For the asymptotic bias 8!:JtI), one has 

where 

g~ iJR'-' E [a1
(X, t1, u) t. iiJbj (X, tt, u) IT ~ (tt, u) 1 h_, (u )du 

+h! ( E [al(X, tl, u) a}bl(X, tl, u) IT = (tl, u)] fT_l (u)du. 
lIRd-l 

Here fTl denotes the density of TI . We write fh(v) = a~j fT(V). Furthermore, aL,j 

I s2 dLj, a} = I s2dK and 

E[W-I(T_ I )] E[Z2IT = V]/T(V) V[G(xT (3 + m+(v))]' 

~ [GII(xT (3 + m+(v))m~(vjf HJm~(vj) + G'(xT (3 + m+(v)) trace [m; (vj)HJ]] 

fT(V) + G'(xT (3 + m+(v))m~(vjfHJ fh(v), 

where HI is a diagonal matrix with diagonal elements 

and where for j = 2, ... , d the matrix Hj is a diagonal matrix with diagonal elements 

Under the additional assumption of (AiO) the rest term op(h2+g2) in the expansion of 8~(tt} 

can be replaced by Op(h4 + 94 ). 

The estimation of the other additive components mj for j = 2, ... , d can be done as the 
estimation of ml in Theorem A2.1. If assumptions analogous to (AI) - (AIO) hold for the 
other components, then the corresponding limit theorems apply for their estimates. [In the 
assumptions h denotes always the bandwidth of the estimated component and g is cho­
sen as bandwidth of the other components.] Then under these conditions the estimates 
ml (tt}, ... , md( td) are asymptotically independent. This leads to a multidimensional result. 
The random vector 

v:;;r" : 
( 

ml(td - ml(tl) - 8ii(td ) 

md(td) - md(td) - 8~(td) 

converges to a centered Gaussian variable with covariance matrix 

o ... 

... 0 
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The variance d(td of (iTh(td - Em1(tt}) can be estimated by 

n 

(A2.1) o-f(tt} = L fl, 
i=l 

where 

[t W_1(Tj,_dj-1 ~ t w_1(Tj,-dll:i(t1, Tj,-d 
3=1 3=1 

[
1 n G'(XT.B+m+(Tz))2 ]-1 
; ~ V[G{~r.B + m+(ll)}] Il:I(t1, Tj,-d x 

G'(xT.B+ m+(t1,Tj,-d) A 

A ~, 

V[G{xr f3 + m+(t1' Tj,-d}] 

(A2.2) 
K h(t1 - Ti,dL g (L1 -1i,-d 

k 2:j=l Kh(t1 - Tj,d L g(L1 -1j,-d 

{ 

[Yi - JLiF in case of Model A, 
s2V(Pi) in case of Model B, 
V(JLi) in case of Model C 

with 

and 

The estimation of the nonparametric components yields also an estimate of the parameter f3. 
We show that under certain conditions a rate of order Op(n- 1/ 2 ) can be achieved. This is a 
consequence of the iterative application of smoothed local and un-smoothed global likelihood 
function in the definition of 73. Our conditions imply that s + r ~ 3. Again this constraint 
can be weakened by assumption of higher order smoothness of m1, ... , md and by the use of 
higher order kernels. 

Theorem A2.2 
Suppose that the assumptions (Al) - (A9) apply. Then, ifhgd- 1n1/2 (1ogn)-1 tends to infinity 

and hand 9 = o(n- 1/ 8 ), it holds that: 

converges in distribution to N(O,I-1) where Z2 is defined as in Theorem A2.l and where 

I - EZ2XXT with 

Our estimate of f3 does not make use of the additive structure of m. For this reason it is 
not efficient in our model (1.1). However it achieves the efficiency bound in the partial linear 
model m(x; t) = G{xT f3 + a + m(T1, ... , Td)}, see Mammen and van de Geer (1997) for 
calculation of the efficiency bound in this model. An estimate that takes care of additivity is 
given by 

~ ~+ f3 = arg max .c(m/3' (3) 
/3EB 
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where inJ(t) is defined as m+(t) with m replaced by m{3 in equation (2.7). We expect that this 
estimate achieves higher efficiency. However this estimate has two drawbacks. Calculation 
of this estimate would need several nested iterative algorithm and is for this reason for 
larger data sets not feasible. Furthermore, the estimate is not robust against deviations from 
additivity. 

Compared to (:J root-n consistency of a requires additional conditions. The estimate a inherits 
by construction the biases of the nonparametric estimates m, ml, ... , md. These biases are 
only of order o(n- l / 2 ) if the elements of hand 9 are of order o(n- l / 4 ). Note that this is not 
necessary for 13. On the other hand it can be checked that a has as 13 asymptotic variance 
of order O(n- l ). Clearly, these remarks are not that essential. For most applications the 
parameter a has no direct interpretation. 

A3 Proofs 

For simplicity of notation we give all proofs only for the case ql = ... = qd = 1. Then r = 1 
and s = d - 1. Furthermore we suppose that 91 = ... = 9d-l and denote this bandwidth by 
9. The bandwidth hI is denoted by h. 

A3.1 Proof of Theorem A2.1 

We start by showing consistency of the estimate 13: 

(A3.1) 13 = 130 + op(l). 

For the proof of (A3.1) we show first that 

(A3.2) sup Im{3(t) - ffi{3(t)1 = op(l). 
t,{3 

Proof of (A3.2): For the proof of claim (A3.2) we show first that: 

(A3.3) 

where the following notation has been used: 

(A3.4) 

D.('f/, t, (3) 

D.l ('f/, t, (3) 

E[>"(XT 13+'f/)IT=t] , 

Kh(tl -Ti,dLg(Ll - Ti,-d 

For the proof of (A3.3) we remark first that 
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--- I 
This can be seen by standard smoothing arguments. Furthermore, D..I(1], t, (3) is a sum of 
LLd. random variables with bounded Laplace transform, see (A2). By standard application 
of exponential inequalities we get for every III > 0 that for C' large enough I 

(A3.5) 

We consider the partial derivatives of the summands of D..(1], t, (3) with respect to 1], t and f3. 
They are bounded by C"nV2 for CIf and lI2 large enough. Together with (A3.5), following the 
same argument as in Hardle and Mammen (1993), we obtain (A3.3). 

For the proof of (A3.2), one can conclude from (A3.3) that, with probability tending to one, 
mi3(t) lies in the interior of H, see (A4). This gives 

(A3.6) 

With (A3.3) we obtain 
sup ID..2(mi3(t), t, (3)1 = Op(P2). 
t,i3 

With assumption (A4) this yields (A3.2). 

We use (A3.2) to prove (A3.1) (consistency of 13). 

Proof of (A3.1). Let k(f3) = E[Q{XT f3 + mi3(T)i Y}]. We will show that 

(A3.7) (in probability). 

This implies claim (A3.1) since 

kIf (f3o) E [A"{XT f30 + m+(T)} {X + 8;;: (f3o, T)} {X + 8;;: (130, T)} T] 
_E(Z2XXT) 

is strictly negative definite and k(f30) = sUPi3EH k(f3). 

It remains to prove (A3.7). This follows from 

(A3.8) sup 1~£(mi3,f3) - k(f3)I--+ 0 (in probability), 
i3EB n 

(A3.9) sup 1~£(mi3,f3) - ~£(mi3,f3)I--+ 0 (in probability). 
i3EB n n 

Claim (A3.8) holds since £(mi3, (3)/n converges to k(f3) by the law of large numbers and 
because {£(mi3,f3)/n,f3 E B} is tight. For the proof of tightness note first that 

I ~£(mi311 f3d - ~£(mi32' (32) I < Tn ,IIlf3I - f3211 + Tn,2 s~p Imi31 (t) - mi32 (t)1 

< Tn,IIlf3I - f3211 + Tn,2St~f II~mi3(t)IIIIf3I - !hll, 

where 
1 n 

sup - L A'(XT f3 + 1]) 11 Xi 11, 
13,1] n i=1 

1 n 
- sup - L A'(XT f3 + 1]). 

13,1] n i=1 
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Under our conditions, Tn ,l and Tn ,2 are bounded in probability. To see that :{3m{3(t) is 
uniformly bounded in {3 and t note that 

(A3.1O) am{3 ({3 ) = _ E[,x"{{3TX + m{3(T)}X IT = t] 
a{3 ,t E[,x"{f3TX + m{3(t)}IT=t] . 

Equation (A3.10) follows by differentiation of EP'({3TX + m{3(t))IT = t} = O. This shows 
(A3.8). Claim (A3.9) follows from 

Thus finally (A3.1) is shown. 

Next, we establish uniform stochastic expansions of fj and m(t). 

(A3.11) 

(A3.12) 

with 

(A3.13) 

(A3.14) 

(A3.15) 

(A3.16) 

..6.(t) 

m(t) 

Sf {t E ST : t + 'fI E ST 

for all 'fI with 1'fI11 ~ 9 and l'fIjl ~ h (j = 2, ... ,d)}, 

Xi - {E[ZtITin -1 E[Zt XiITi], 

G'(Xr {3 + m+(Ti))2 
V[G(Xr (3 + m+(1i))]· 

Equations (A3.11) and (A3.12) follow from a slight modification of Lemma A3.3 and Corollary 

A3.4 in Hardle, Mammen and Miiller (1998). There it has been assumed that the likelihood 
is maximized for {3 in a neighborhood of {3o with radius PI, see assumption (A7) in Hardle, 
Mammen and MUller (1998). In our set up we have that for a sequence 8~ with 8~ -+ 0 with 
probability tending to one 

R = arg max £(m{3 R). 
,.., {3:II{3-{3oI19:' ,,.., 

Using the same arguments as in Hiirdle, Mammen and Miiller (1998), one can show that 

This shows (A3.11). Equation (A3.12) can be shown similarly. 
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With the help of (A3.l2) we arrive at 

(A3.l7) Ei=l w-l(1i,-dm(tl' 1i,-d 0 (2 -1/2) 
- n ( ) + p P2+ n 

Ei=l W-l Ti,-l 

ml(td + RI + bol(td + Op(p~ + n- l
/
2
), 

where 

where A.1, K,j and Zi are defined by equations (Al.l), (A2.2) and (A3.l6) respectively. Given 
Zn = ((Xl, Tl,l, ... , Tl,d) , ... , (Xn, Tn,l, ... , Tn,d)), the term bol(td is a sum of independent 
variables. For the conditional variance the following convergence holds in probability 

For this convergence, one uses for instance 

I sup _ n-
l t Kh(tl - Tl,k)Lg(Ll - T-l,k) - iT(tl, Ldl = op(l), 

t=(tJ ,t_ !)E5T k=l 

n 

n- l :E Kh(t l - Tl,k) - iT! (tl) = op(l). 
k=l 

Asymptotic normality of bol(td - E(bol(tdIZn) follows from the convergence of the condi­
tional variance and from 

(A3.l8) P(dK (c( bo l (tl) - E(bol (tl)IZn)), N(O, Var(bol(tl)IZn))) > 8) -+ 0 

for all 8 > O. Here dK is the Kolmogorov distance, which is for two probability measures f.L 
and v (on the real line) defined as 

dK(f.L, v) = sup I J.t(X ~ t) - v(X ~ t)l· 
tEIR 

For the proof of (A3.l8) one shows that a conditional Lindeberg condition holds with prob­
ability tending to one. It remains to study the conditional expectation E(bol(tl)IZn). This 
can be done by showing first that 

1 n f -:E Kh(tl - vdLg(1i,-l - v-I) 
n i=l 

(A3.l9) 

E [{ G(XT,6 + m+(v)) - G(XT,6 + m+(tl, Ti,-d)} 

al(X, tl, 1i,-l)ITi,l = tl, 1i,-1] iT(V)dv + rn 

where the function a l is defined in Theorem A2.l, rn = Op(p~ + n- l / 2 ) + op(h2 + g2). 

Furthermore, rn = Op(p~ + n- l / 2 + h4 + 94 ) under the additional assumption (A10). The 
proof of (A3.l9) follows by standard, but tedious calculations. The asymptotic form of 
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E(.6. I (tdIZn) can be easily calculated from (A3.19). Note that the asymptotic bias of 7Th (td 
is asymptotically equal to 

E(.6. I (tdI Zn) - ! E(.6.dvd IZn)WI (vdfTl (vd dvI/ ! wI(vdfTl (vd dVI 

because we assumed that J WI (vd ml (vd fTl (vddvI = O. Furthermore, note that up to first 
order, ml(td and ml(iI) have the same asymptotic variance. 

A3.2 Proof of Theorem A2.2 

The conditions on h and 9 imply p~ = o(n- l / 2 ). Therefore the statement of Theorem A2.2 
can be followed from (A3.11). 

A3.3 Proof of Theorem 3.1 

The statement of the theorem follows from 

(A3.20) 

Claim (A3.20) follows from 

(A3.21) 2ml(td - E* ml*(tt) - ml(td = RI - RI + Op(h4 + 94 + (nh)-1/2), 

(A3.22) 

where 

and where RI has been defined after (A3.17). 

We give only the proof of (A3.21). Claim (A3.22) follows similarly. By (A3.17) we have that 

ml(td = ml(tt) + RI + DI(td + Op(h4 + 94 + (nh)-1/2), 

where 

1 1 t w_l(Ti,-dKj(tl,Ti,-t) G'{XJ.B+m+(tl,Ti,-d} 

~i=l w-l(Ti,-d n i,j=l E(ZlITi,l = tl, Ti,-d V(G{XJ.B + m+(tl, Ti,-l)}) 

[G{xJ.B + m+(Tj)} - G{XJ.B + m+(tl, Ti,-l)}] . 

Similarly, one obtains 

where 
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For claim (A3.21) it suffices to show 

(A3.23) 
I 

This can be done by lengthy but straight forward calculations. We do not want to give all I 
details here. In a first step one shows that 

n 
Dl(td - Dl(td - L Wi,j [G{XJ.B+m+(Tj )} - G{XJ.B+m+(tl,Ti,-d} 

i,j=l 

(A3.24) -G{XJ /3 + m+(Tj)} + G{XJ /3 + m+(tl, 1i,-1)}] 

+Op(h4 + 94 + (nh)-1/2), 

where 

1 1 W-l(Ti,-dll:j(tl,Ti,-d G'{XJ.B + m+(tl,Ti,-t}} 
Wi,j = ",n (rp) - 2 T . 

L..i=l W-l .Li,-l n E(Zi ITi,l = tl, Ti,-d V(G{Xj.B + m+(tl, Ti,-d}) 

The left hand side of (A3.24) can be treated by using Taylor expansions of G and the stochastic 
expansions of mj given in (A3.17). Consider e.g. for k i= 1 

n 

Ck(tt} = L Wi,jG'{XJ.B + m+(Tj)} [mk(Tj,k) - mk(1i,k) 
i,j=l 

Then by using the expansions of mk given in (A3.17) and the expansion of the bias of mk 
[see Theorem A2.1] one sees that 

where 

n 

Ckl(tt} = L Wi,jG'{XJ.B + m+(Tj )} [-c5~(Tj,k) + c5~(Ti,k)] . 
i,j=l 

and where 

with some uniformly bounded constants Wi,n(Zn, td: 

It can be easily seen that Ckt{tl) = Op(h4 + 94 + n- l/2) and Ck2(td = Op(n- l/2). We have 
discussed this term because it shows how the terms of order 92 cancel in mf(tt} - ml(tt}. 
By similar calculations for the other terms one can show the theorem. 

A3.4 Proof of Theorem 3.2 

We consider the statistic 
n 

U = LWi {ml(1i,t} - E*mi(Ti,t}}2, 
i=l 
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where 

Note that 

with 

We will show that 

(A3.25) 

(A3.26) 

where 

V 

/-l(x, t) 

n 

R = L wd ml (Ti,d - E*mi(1i,d} 
2 

i=l 

u = V + Op(h- l
/
2

), 

R U + Op(h- l / 2 ), 

n 2 
LWi{mfPPRl(Ti,d} , 
i=l 

1 n 
- L al(Xi' tl, Ti,-l)!T_l (1i,_r)Kh(tl - Ti,dt:i, 
n i=l 

Yi - /-l(Xi, 1i), 

G [xT f3 + a + Iltl + m2(t2) + ... + md(td)] . 

The function a l has been defined in the statement of Theorem A2.1. Asymptotic normality 
of V can be shown as in Hardle and Mammen(1993). In particular, one gets [with pairwise 
different indices i, j, k and 1] 

EV = E {Wial(Xj, Ti,l, Tj,-r)!T_l (Tj,_d 2 K~(Ti,l - Tj,r)Var[YjIXj , Tj])} 

+O(n- l h-2 ) 

en + O(h + n- l h-2
), 

Var[V] E {WiWlal(Xj, Ti,l, Tj,_r)al(Xj, 11,1, Tj,_dal(Xk, 1i,1, Tk,-d 

al(Xk' 11,1, Tk,-d!f_ 1 (Tj,-r)!f_ 1 (Tk,-d 

Kh(1i,l - Tj,r)K h(11,l - Tj,dKh(Ti,l - Tk,l) 

K h(11,l - Tk,dVar[YjIXj, Tj]Var[YkIXk, Tk]H 

+O(n-l h-2 ) 

v; + O(h + n-l h-2 ). 

Because v~ is of order h- l for the proof of the theorem it remains to show (A3.25) and 
(A3.26). 

Proof of (A3.25). Because p~ = o(n- l / 2 ), it follows from (A3.12) [compare (A3.17)] that 
uniformly for tl in Br 1 : , 

where 
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Furthermore, for .6.1(tr) one can show the following uniform expansion: 

.6.1(tr) = .!. ~ a1(Xi' t1, Ti r)Kh (t1 -11 r)[Yi -p,(Xi' t1, 11 -r)] + op(n-1/2). n~ , , , 
i=l 

By similar expansions as in the proof of Theorem A2.1 one can show that this implies the 
following uniform expansion of m1' 

(A3.27) 

where 

~APPR2() 1 L:n 
() m1 t1 = - Wi n 2 t1 Ci 

n " i=l 
with some uniformly bounded functions Wi,n,2: 

sup sup Wi,n,2(tt) = 0(1). 
1::;i::;n tI EST,l 

The function c5~ has been defined in Theorem A2.1. 

Furthermore, using similar arguments as in the proof of Theorem 3.1 one can show that 

with 

~APPR:3() 1 L:n 
() m1 t1 = - Wi n 3 t1 Ci 

n " i=1 
for some uniformly bounded functions Wi,n,3' 

Together with (A3.27) and a stochastic expansion of l' this gives that uniformly for t1 in Si 1: , 

with 

~APPR4() 1 L:n 
() m1 tt = - Wi n 4 t1 Ci n ' , 

i=1 
for some uniformly bounded functions Wi n 4. , , 

Claim (A3.25) follows from 

n 
'" W-mAPPR1(T.- )mAPPR4(T._ ) L...J '1 z,1 1 z,1 
i=1 

n 

L: IWimtPPR4(Ti,r) I 
i=1 
n 

L: IWimtPPR1(Ti,r) I = op(n1/2h-1/2). 
i=1 

These bounds can be shown by calculation of expectations of the terms on the left hand side. 

Proof of (A3.26). Because of Theorem A2.2, we have that jj - (:) = Op(n- 1/
2

) and a - a = 
Op(n- 1/ 2 ). Moreover we can easily show that 

1 
sup 1.6.1(tr) - - L: .6.1 (11,r)I = Op (P2) . 
tI n i 
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It follows that 

Now, 

n 

IU - RI < s~p IWi - Wil L {m1(Ti,r) - E* mH1i,r)}2 
l::;l::;n i=l 

This proves (A3.26). 

- Op (P2 + n-1/2) Op(h-1) 

_ Op(h-1/ 2 ). 

A3.5 Proof of Theorem 3.3 

This theorem follows by replication of the arguments in the proof of the last theorem for the 
"Bootstrap world". 

A3.6 Proof of Theorem 3.6 

The proofs for Models A and B can be done as in Neumann and Polzehl (1998), where wild 
bootstrap of one-dimensional regression functions has been considered. In this paper it has 
been shown that the regression estimates in the bootstrap world and in the real world can 
be approximated by the same Gaussian process. For this purpose one shows that m1(td -
E[m1(tt}IZn] and mi(tt} -E*[mi(tt}] have linear stochastic expansions. In particular, using 
the expansions given in the proof of Theorem A2.1, one shows that 

su~ Im1(tt} - E[m1(t1)IZn] - ~ ta1
(Xi' tt, 1i,-r)!T-l (1i,-t}K h(t1 -1i,l)E:il 

tlEST,l l=l 

= Op(n-1/ 2 y'logn). 

Here, for a> 0 small enough we have put Sr 1 = {s : there exists an u tJ- ST,l with Is-ul sa}. 
[Then, if a is small enough we have that W1'( tt} = 0 for s tJ- Sr 1.] Similarly one can see that , 

su~ Imi(td - E*[mHtr)] - ~ t a1(Xi' t1, Ti,-l)!Ll (Ti,-r)K h(t1 - Ti,dE:1 
hEST,l z=l 

= Op(n-1/ 2 y'logn). 

By small modifications of the arguments of Neumann and Polzehl (1998) one can see that 
their approach carries over to our estimates. 

We will give now a sketch of the proof for Model C. First note that dK{.c+(S), .c(S)} ~ 
o in probability where .c+ denotes the conditional distribution given Zn = ((Xl, T1,1, .•. , 

T1,d), ... , (Xn, Tn,l, ... , Tn,d)). This can be seen as in Neumann and Polzehl (1998). The 
proof of the theorem will be based on strong approximations. For this purpose we introduce 
random variables Y1+ , Y1++, ... , Y1+, Y1++, ... , Yn+, Yn++ by the following construction: choose 
an LLd. sample U1, ... , Un that is independent of Zn. We put Yi+ = Fi-

1(Ui) and Yi++ = 
G:;l(Ud, where Fi and Gi are the distribution functions of .c+(Yi) and .c*(Yi*), respectively. 
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Then given the original data (X1,T1,Yd, ... ,(Xn,Tn,Yn), (y1+,y1++), ... ,(yn+,Yn++) are 
conditionally LLd., £*(Y/) = £+(Yi) and £*(li++) = £*Pi*). Furthermore we have that 

(A3.28) 

Here E* denotes the conditional expectation given the original data (Xl, T1, Yd, ... , (Xn, 
Tn, Yn). Note that £*(Y/) and £*(Yi++) belong to the same exponential family with expec­
tation f-ti or Pi, respectively. Property (A3.28) follows from 

E*IYi++ - Yi+1 - fo1IFi-1(u) - Gi1(u)1 du 

i: lFi(V) - Gi(v)1 dv 

- O(f-ti - Pi) = Op(P2). 

Put et = Yi+ - f-ti and et+ = Yi++ - Pi· The estimate of the first component that is based on 
the sample Y1+' ... ' Yn+ is denoted by mt(td. The estimate that is based on Y1++'···' Yn++ 
is denoted by mt+(td. 

We argue now that for T > 0 small enough 

(A3.29) 

This can be seen by straight forward calculations using (A3.28) and the fact that the natu­
ral parameter of £*(Yi+) and L:*(Yi++) is bounded away from the boundary of the natural 
parameter space of the exponential family, see (A2). 

It can be shown that for a sequence Cn = 0(1) and for all an < bn with bn - an ~ 
Cn logn (nh)-1/2 one has that P(S rJ. [an, bnD converges to O. This can be seen similarly 
as for kernel smoothers in one-dimensional regression, see e.g. Neumann and Polzehl (1998). 

The statements of Theorem 3.6 follow from 

(A3.30) 

(A3.31) 

(A3.32) 

sup lut{td - O"l(tdl = op(l), 
tIEST,1 

sup lui(tt) - O"l(tdl op([lognt1), 
h EST,1 

su~ ![mt+(td-m1(td] 
tl EST,1 

- [mt(td - mt{t1)]! = op((nh)-1/2[lognt1/2). 

We give here only the proof of (A3.32). One shows first that 

su~ Imt(td - m1(t1) - ~ t a1(Xi, tt, Ti,-d K h(t1 - Ti,l)etl 
hEST,1 $=1 

= op((nh)-1/2[lognt1/2), 

su~ Imt+(t1) - m1(td - ~ ta1(Xi, t1, Ti,-dK h(t1 -1i,det+1 
tIEST,1 $=1 

= op((nh)-1/2[lognt1/2). 
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This can be done by using expansions of the type (A3.12). Note that the bias of mt (td and 
mt+(td is of order op((nh)-1/2[logn]-1/2). So, for (A3.32) it remains to show 

(A3.33) 
1 n 

su~ I;:;: ~al(Xi' tl, Ti,-dKh(tl -1i,t}[E:t - E:t+]1 
hEST,l ~=l 

= op((nh)-1/2[logntl/2). 

For the proof of this claim we use a standard method that has been applied for calculation 
of the sup-norm of linear smoothers. We show first that for all constants Cl > 0 there exists 
a constant C2 such that 

(A3.34) su~ p* {1~tal(Xi,tl,Ti'-l)Kh(tl-Ti,d[E:t -E:t+]1 > C2K.n} 
hEST,l ~=l 

= op(n-Cl ), 

where K.n[nh/ pd- l/2[lognp/2 and where P* denotes the conditional distribution given given 
the original data (Xl, Tl , yt}, ... , (Xn, Tn, Yn). Note that K.n = o((nh)-1/2[lognt l/2). Equa­
tion (A3.34) shows that (A3.33) if the supremum runs over a finite set with O(nCl) elements. 
This implies (A3.33) by taking a crude bound on 

su~ I a~l ~ tal(Xi' tl, 1i,-dKh(tl -1i,t}[E:t - E:t+] 
tlEST,1 ~=l 

It remains to show (A3.33). Note that 

P* { ~ ~ al(Xi' tl, Ti,-t}Kh(tl -1i,t}[E:t - E:t+] > C2K.n} 

~ E* exp [IOgnK.;;:l.!. t al(Xi' tl, Ti,-dKh(tr - Ti,t}[E:t - E:t+]] exp[lognK.;;:lC2K.n ] 
n i=l 

C ITn * [log n 1 + ++ ] ~ n- 2 E exp --a (Xi, tl, Ti,-t}Kh(tr - Ti,t}[E:i - E:i ] . 
i=l K.nn 

We use now the expansion exp[x] ~ 1 + x + x2/2 {I + exp[x]}. Because of E*E:t - E:t+ = 0 
and because of (A3.29) this gives that the last term is bounded by 

where C is a constant. We use now 1 + x ~ exp[x]. This gives the bound 

With another constant C' this can be bounded by 

~ n -C2 exp [Cl (l~f :t P2] 

~ nC'-C2. 

For C2 large enough, this is of order o(nC1 ). This shows (A3.33). 
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