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Pulsed magnetic flux leakage techniques for
crack detection and characterisation
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Abstract

Magnetic flux leakage (MFL) techniques have been widely used for non-intrusively inspecting steel installations by applying magnetization.
In the situations where defects may take place on the near and far surfaces of the structure under inspection, current MFL techniques are unable
to determine their approximate size. Consequently, an extra transducer may have to be included to provide the extra information required. This
paper presents a new approach termed as pulsed magnetic flux leakage (PMFL) for crack detection and characterisation. The probe design and
method are introduced. The signal features in time–frequency domains are investigated through theoretical simulations and experiments. The
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esults show that the technique can potentially provide additional information about the defects. Lastly, potential applications are
2005 Elsevier B.V. All rights reserved.
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. Introduction

Magnetic flux leakage techniques are widely used for
ipe and tank floor inspection[1–7]. This technique requires
agnetisation of the specimen under test. The magnetisation
enerates magnetic flux flowing in the specimen in a certain
irection, which is ideally perpendicular to the axis of the
rack to be detected. The presence of any flaws will imple-
ent as an abrupt change of magnetic permeability to the flux

n the specimen. The permeability of the flawed part is gen-
rally lower than flawless parts, providing high resistance

o the flux and forcing it to take a different route. In cases
here the other routes are magnetically saturated, some flux

eaves the specimen to the surrounding space temporarily
ausing flux ‘leakage’. This leakage is readily detectable by
magnetic sensor located in the proximity of the specimen

urface. The defect parameters that affect the distribution of
he leakage flux are the ratio of depth of the defect to the
hickness of the pipe wall, length, width, sharpness at the
dges and sharpness at the maximum depth[2]. In practice,

the magnetisation device is usually a permanent magn
an electromagnet[8,9]. For dc inspection, Hall devices, ma
netoresistives and SQUIDs[10] can be used to measure
leakage field. For ac measurements, pick-up coils are an
alternative. The advantage of MFL techniques is its simpl
and low cost. The technique is more robust to the variatio
magnetic properties in magnetic materials compared to
current techniques, which belong to electromagnetic N
techniques as well. Like many electromagnetic techniq
MFL is also non-contact, which is a very useful feature
on-line dynamic inspection. Unlike eddy currents, howe
MFL only works with magnetic materials.

Improvement in accuracy in NDT techniques is des
in many applications, such as pipe inspection where
accuracy in defect detection and characterisation can
reduce unnecessary costly pipe replacements. To mee
requirement, pulsed MFL technique is proposed in this p
The technique potentially offers richer information ab
structural defects compared to the other MFL techniq
Our study on this proposed technique is presented in
paper. In the following sections, simulation and experim
on PMFL are reported, followed by conclusions and fur
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2. Pulsed MFL

The dc MFL technique provides limited information on
the defects detected in terms of location and sizing. Gen-
erally, it has to be ensured that only one type of defect is
present and these defects can only happen on one side of
the inspected structure to allow accurate inference of the
defect size, because the technique only relies on one mea-
surement feature, i.e. the magnetic field leakage intensity.
In some implementations they are complemented with sen-
sors of other modality to allow discrimination of near and
far surface defects. With ac MFL, the inspection is generally
sensitive to only one side of the sample depending on the
excitation frequency chosen. With pulsed MFL, the probe is
driven with a square waveform and the rich frequency com-
ponents can provide information from different depths due to
the skin effects. It is expected that we could inspect thicker
samples for far side defects and at the same time has good sen-
sitivity for near surface defects. In addition, we should also
have additional information such as the location and size of
defects. The development of the pulsed MFL system is an
extension of our work on pulsed eddy current NDT systems
[11,12].

To explore the potential of the technique, a probe was
designed and built using a U-shaped ferrite yoke.Fig. 1shows

F
p

the dimensions of the probe in mm. A Hall device sensor
from Honeywell’s SS490 family[13] has been chosen and
is positioned halfway between the yoke’s poles to measure
the magnetic field density normal to the sample surface. The
Hall sensor has a sensitivity of 3.125 mV/G. A coil of wire is
wound around the top horizontal part of the yoke and driven
with a rectangular waveform for excitation. During operation,
the excitation current is controlled to avoid the ferrite yoke
getting magnetically saturated. Data acquisition is performed
using a 14-bit digitisation at 100 kHz sampling rate.

3. Simulation

Finite element modelling (FEM) has been widely used
for the study of electromagnetic NDT techniques, including
MFL [4]. In this work, a FEM package called FEMLAB is
used to study the effects of surface and sub-surface cracks
on the magnetic field and to predict the system outputs. The
package uses the finite difference method to perform tran-
sient analysis that is required for our purpose.Fig. 2 shows
the meshed model used in the simulation. Finer meshes are
created surrounding the slot to give more accurate results.
The width of all the slots used in the simulation is 1 mm. In
this article, the depth of the surface slots refers to the length
o and
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ig. 1. (a) Illustration of the probe and a test ample and (b) pulsed MFL
robe layout and dimensions.
f the slot from the surface to the bottom tip of the slot
n the simulation it is varied from 1 to 3 mm. The depth
ub-surface slots is the distance between the top surfa
he sample to the top of the slots that always have an op
n the bottom surface of the sample. The sub-surface
re located 0.5 and 1 mm below the surface in the simula

Fig. 3shows the calculated normal magnetic field den
bove the right hand side edge of the each slot.Fig. 3a and
show the results from surface and sub-surface slots re

ively. In the figures, time = 0 is when the excitation pu
tarts rising. It is shown by the shapes of the signals tha

Fig. 2. FEM simulation.
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Fig. 3. FEM simulation results: (a) surface slots and (b) sub-surface cracks (symbols are for identification, not actual data points).

Fig. 4. Comparison of different excitations.

technique can potentially discriminate the depths of the slots
detected and also the position of the defect by using temporal
information of the signals.

Fig. 4shows the plots of the calculated normal magnetic
field against the distancex to the central major axis of a sur-
face slot with different excitation waveforms. The surface
slot’s depth is 3 mm. The plots show that the transient per-
forms slightly better than the 10 kHz frequency excitation and
significantly better than both the dc and the low frequency
excitations.

4. Experimental results

The experiments are designed to give us some initial
results that illustrate the capabilities of the technique. The
samples have surface slots with depths varying from 1 to
9 mm and sub-surface slots with location depths ranging from
0.5 to 7 mm. The width of the slots is approximately 1 mm.

The coil is driven with a square waveform with a pulse width
of 40 ms. The plots of signals shown in this section are: initial
experiment results show that the highest signal peak ampli-
tudes are obtained at different normal distances from the slot’s
central major axis depending whether the slot is on the top
surface or on the bottom surface of the sample. When the
slot is located below the surface, the measured field is more
spread out due to field dispersion. Therefore, the positive peak
to negative peak distance is larger than the slot width. This
is illustrated by experimental results plotted inFig. 5. The
slots’ width is approximately 3 mm. The depth of the surface
slot is 3 mm and the buried slot is located 1 mm below the
surface. The thickness of the sample is 10 mm. The results
were obtained by manually scanning the probe over the slots
with a 1 mm step andx = 0 being the central major axis of
the slots. The probe is unmoved every time a measurement is
taken. The signal amplitudes are taken for the plot. It is known
that with MFL techniques, the polarity of the magnetic field
Fig. 5. Scanning results of sub-surface and surface slots.
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Fig. 6. Results with surface slots with depths of 1, 2 and 3 mm; the rising edge
of the excitation pulse initiates at time = 1 ms(symbols are for identification,
not actual data points).

changes if the sensor is scanned over a crack. The plots show
that with the 1 mm scanning step used, the distances between
the positive and negative peaks are 4 and 8 mm for the surface
and sub-surface slots, respectively.

As can be seen inFig. 5, the amplitude of the signal varies
with the relative position of the probe to the slot axis. From
now on, the output signals used are obtained when the probe
is such positioned that the highest signal amplitude is mea-
sured. The positive peaks are taken with the assumption that
the negative peaks have the same absolute amplitudes due
to symmetry.Fig. 6 shows the resulting signals from sur-
face slots with different depths. It shows that the technique is
able to differentiate different depths of the inspected slots by
using the amplitudes of the signals, provided that the location
of the slot is known. It should be noted that all plots of the
experimental signal output against time have been arranged
so that the rising edge of the excitation pulse coincides with
time = 1 ms.

Fig. 7 shows the comparison of the signals obtained for
both surface and sub-surface slots. It clearly shows that the
signal of the sub-surface has a different characteristic where
it initially increases slowly and after some point in time
increases at a faster rate. In other words, the inflexion points
of sub-surface slot signals happen later than those of surface
slot signals. These can be more clearly seen by taking the first
derivative of the signals.
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Fig. 7. Surface and sub-surface slot signals; the rising edge of the excitation
pulse initiates at time = 1 ms(symbols are for identification, not actual data
points).

approximately the same time, while the inflexion point of the
deeper-located sub-surface slot happen at a later time than in
the case of a sub-surface slot that is closer to the surface. All
these results indicate that the inflexion point can be used to
discriminate the depth location of a detected slot.

Fig. 9 shows the frequency analysis of the signals. The
plots support our statement that the temporal information,
which is represented as phase in the frequency analysis, is
useful for characterising the defects. The low frequency com-
ponents, below 50 Hz, seem to discriminate not only between
surface and sub-surface but also discriminate the distance of
the sub-surface slots below the surface. Location discrimina-
tion seems to also be achievable using the frequencies around
200 Hz. It is, therefore, clear that determination of the slot’s
distance from the surface and the discrimination of which sur-
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Experimentally it was found that the probe could not de
ub-surface slots 1 mm below the surface. To demonstra
bility to discriminate surface and sub-surface and also
ble to discriminate the location depths of the sub-su
iscontinuities, another probe with a bigger yoke havin
orizontal length of 93 mm is used. The results are sh

n Fig. 8, which demonstrates that again the inflexion po
f the sub-surface slot signals happen later than the su
lot signals. The inflexion points for surface signals occu
ig. 8. Surface and sub-surface slot signals using a bigger-yoked pro
ising edge of the excitation pulse initiates at time = 1 ms(symbols are fo
dentification, not actual data points).
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Fig. 9. Frequency analysis of the surface and sub-surface signals: (a) magnitude, (b) phase (symbols are for identification, not actual data points).

face the slot is located, can be achieved conveniently using
the pulsed MFL technique.

5. Conclusions

A variant of pulsed MFL technique has been proposed
and investigated. The numerical analysis and experimental
studies has shown PMFL clearly has advantages in terms of
defect location and sizing by using features in time–frequency
domain, including the arrival time of the inflexion point, sig-
nal magnitude and phase variation of frequency components.
It has been shown that the technique is able to discriminate
cracks’ locations in addition to give relative depths of the
cracks. The probe design should be tailored to the applica-
tion in hand as the dimension of the yoke determines the depth
of penetration, where generally a larger yoke offers deeper
penetration. The scanning results also show the potential of
exploiting a linear array of magnetic sensors between the
yoke poles for better understanding of the sample conditions.
The simulation results show that the transient or pulsed MFL
performs the best overall for both surface and sub-surface
cracks inspection. The advantages of PMFL make it poten-
tially suitable for many applications for ferromagnetic mate-
rials, including detection of cracks in ferromagnetic metal
strips where defects can be present on both sides while access
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