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Abstract------------------------------­
A popular model in structural equation modeling involves a multivariate normal density with a 
structured covariance matrix that has been categorized according to a set of thresholds. In this 
setup one may estimate the covariance structure parameters from the sample tetrachoricl 
polychoric correlations but only if the covariance structure is scale invariant. Doing so when the 
covariance structure is not scale invariant results in estimating a more restricted covariance 
structure than the one intended. When the covariance structure is not scale invariant, then the 
model parameters must be estimated jointly from the sample thresholds and tetrachoricl 
polychoric correlations. 
In general, when fitting a covariance structure from a sample correlation matrix one should 
consider the population correlation structure under the null hypothesis. This is obtained by pre 
and post-multiplying the covariance structure by a diagonal matrix consisting of the inverse of 
the square root of the diagonal of the covariance structure under consideration. 
We provide computer algebra code for assessing whether a covariance structure is scale 
invariant and for assessing the identification of threshold and correlation structures. 
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Abstract 

Estimating a covariance structure from a sample correlation matrix requires complex 

non-linear constraints among the model parameters. When the covariance structure is scale 

invariant, then a simpler approach is possible. We cover the continuous observed variables 

case, as well as the categorical observed variables case, the latter under discretized 

multivariate normality assumptions. In the categorical case, we show that the covariance 

structure parameters can be estimated from the sample polychoric correlations if and only if 

the covariance structure is scale invariant. Otherwise, they must be estimated from the 

sample thresholds and polychoric correlations jointly. In the continuous case, we show that 
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one can estimate any covariance structure from a sample correlation matrix by minimizing a 

normal theory discrepancy function for sample covariances. 

Because determining whether a model is scale invariant leads to considerable 

simplifications, we provide computer algebra code that may be employed to determine 

whether a covariance structure model is scale invariant. Also, because when estimating a 

covariance structure from a sample correlation matrix not all covariance structure 

parameters may be identified we also provide computer algebra code to be used to determine 

which parameters of the covariance structure can be estimated from sample correlations. 

Numerical examples in which scale and non-scale invariant models are estimated from 

categorical and continuous data are provided. 

Keywords: Lisrel, Mplus, Mathematica, tau-equivalent model, normal ogive model 

I 
I 

I 



3 

1. Introduction 

In covariance structure analysis, one wishes to model the variances and covariances of 

the observed variables. That is, one assumes that the population covariance matrix 1J of the 

observed variables depends on a parameter vector 8, say 1J(8), whereas no structure is 

imposed on the population mean vector IL. The objective is then to estimate the parameter 

vector 8 from a sample co variance matrix. In contrast, in correlation structure analysis, one 

wishes to model the correlations among the observed variables. Thus, in this case it is the 

population correlation matrix P which is assumed to depend on a parameter vector 8, say 

P(8), whereas, as before, no structure is imposed on the population mean vector IL. 

Correlation structure analysis is often chosen when the observed variables have different and 

arbitrary scales. In this case, researchers may feel that it is more meaningful to transform 

the observed variables to standard deviation scales. In contrast, when all observed variables 

are on the same scale, researchers may feel that it is more appropriate to fit a covariance 

structure. 

It is not the aim of this paper to elaborate on when to perform covariance vs. 

correlation structure analysis. Rather, this paper aims at discussing the case in which a 

researcher wishes to estimate a covariance structure but s/he is unable to do so from a 

sample covariance matrix because only a sample correlation matrix is available for analysis. 

Estimating a covariance structure from a sample correlation matrix is not a trivial matter. 

Cudeck (1989) thoroughly reviewed this topic pointing out that doing this may result in (a) 

fitting a different model that the one intended, (b) incorrect X2 and other goodness-of-fit 

measures, and (c) incorrect standard errors. Given these problems, one should estimate a 

covariance structure from a sample covariance matrix if at all possible. However, in some 

cases is not possible. For instance 

a) When all observed variables are categorical. Although covariance structure 

-----------
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analysis was originally developed as a technique for continuous variables, over the last fifteen 

years the most popular software packages for structural equation modeling (LISREL: 

J6reskog & S6rbom, 1993; MPLUS: Muth€m & Muthen, 1998; EQS: Bentler, 1995) have 

incorporated routines for performing covariance structure analysis for categorical dependent 

variables as well by assuming that these arise by discretizing a multivariate normal 

distribution according to a set of thresholds. Nevertheless, when all the observed variables 

are categorical, then the parameters of the underlying covariance structure can not be 

estimated from a sample covariance matrix, as only the correlation matrix of the underlying 

normal variates (a matrix of tetrachoric/polychoric correlations) may be estimated. 

b) '\Then all observed variables are continuous but only a correlation matrix of is 

available (e.g., when one is interested in estimating a covariance structure from a published 

correlation matrix). Since in this case only the correlation matrix is available, estimation 

must proceed under multivariate normal assumptions. 

Clearly, the first instance will be encountered more frequently than the second, and 

correspondingly, it will be the main focus of the present research. The standard procedure to 

fit a covariance structure to categorical observed variables when no restrictions are imposed 

on the thresholds consists in estimating each sample threshold and polychoric correlation 

separately from the first and second order marginals of the observed contingency table. 

Then, the parameters of the underlying covariance structure are estimated from the sample 

tetrachoric/polychoric correlations alone using a weighted least squares discrepancy function. 

By using this approach, one can estimate the covariance model parameters, obtain 

asymptotically correct goodness-of-fit measures and standard errors for the parameter 

estimates. But, as we shall show, if and only if the covariance structure being fitted is scale 

invariant. If this procedure is used to estimate a covariance structure that is not scale 

invariant, then one ends up fitting a different (and more restricted) covariance structure 

I -• 



than the one intended. We shall also show that to fit covariance structure that is not scale 

invariant to categorical observed variables one must use in the final stage of the estimation 

procedure a weighted least squares discrepancy function using both the sample thresholds 

and tetrachoric/polychoric correlations. To illustrate our discussion, we shall provide a 

numerical example in which we fit scale invariant and non-scale invariant factor models to 

the well known LSAT 6 dataset (Bock & Lieberman, 1970). 
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Next, we shall discuss how to fit a covariance structure model to a sample correlation 

matrix of continuous variables. Covariance structure models can be estimated from a sample 

correlation matrix by minimizing a normal theory generalized least squares function of the 

sample correlations under normality assumption (Jennrich, 1970; Browne & Shapiro, 1990). 

However, this is actually not needed. One can estimate any covariance structure from a 

sample correlation matrix by minimizing a normal theory discrepancy function for sample 

covariances. This is convenient, because to our knowledge discrepancy functions for sample 

correlations have not been implemented in standard software packages such as LISREL, EQS 

or l\IPLUS. Unfortunately, no standard software package can currently estimate a non-scale 

invariant covariance structure from a sample correlation matrix. To illustrate our discussion 

of the continuous case we shall use some data originally published by J6reskog (1978) and 

also considered by Cudeck (1989). 

Because determining whether a model is scale invariant is critical in applications in 

which a covariance structure is estimated from a sample correlation matrix, we provide in an 

appendix computer algebra code in Mathematica (Wolfram, 1999) that may be employed to 

determine whether a covariance structure model is scale invariant using results from Bekker, 

~Ierckens and \Vansbeek (1994). Also, because when estimating a covariance structure from 

a sample correlation matrix not all covariance structure parameters may be identified we 

provide in another appendix Mathematica computer algebra code to be used to investigate 

-• 
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the identification of the model parameters. -• 
2. Covariance structure analysis for categorical dependent variables 

Let y* rv N" (~,:E(9)) and suppose that each variable y; has been categorized using 

h = 0,,,,, k - 1; i = 1, ... , n (1) 

where a = -00,0: = 00 . That is, for notational ease, we assume that all variables Yi have 
lO 'l/.; 

the same number of categories, k. Our objective is to estimate the q-dimensional parameter 

vector () from the observed categorical variables y. 

According to this model, the probability of observing any categorical pattern Ye is 

c = 1, ... , kf (2) 

where cP" Ce) denotes a n-variate normal density and the intervals of the area of integration 

Rare R = (0: ,a. ) if Y = h . 
t 1" 1',+1 I 

Because the underlying variables y* are normal, the pattern probabilities (2) are 

unchanged when we standardize each y* by subtracting its mean and dividing it by its 
I 

standard deviation using 

1 

Do = Diag(:E(9)f2 (3) 

where Diag( e) denotes a square matrix whose non-diagonal elements have been set to O. 

Denoting by Oi.(()) a diagonal element of JJ(()), the diagonal elements of De are of the type 

[; = 1 
i ~aii (9) 

(4) 

As a result of (3), z* has mean zero and correlation structure 
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p(e) = D9~(e)D9 (5) I 

I 
i.e., P(8) has ones along its diagonal. Furthermore, defining 

(6) 

when we change the variable of integration in (2) using (3) we find that at y: = Cl\. ' 

Z' = T . Thus, (2) can be equivalently written as 
I lIt 

(7) 

with intervals of integration R = (T. ,T ) if Y = h, where T. = -00, T. = 00. 
I III 1,,+1 I 10 lk 

Now, because (2) and (7) are equivalent, we see that only the correlation structure 

(5) can be identified (estimated) from categorical data. There is an additional identification 

problem in (6), namely, that the f.1's can not be separately estimated from the a's. The 

easiest way to solve this identification problem is to assume in applications that J-L = 0. We 

shall do so in the remainder of this paper. Note, however, that if we were to generate data 

according to this model with J-L += 0, we would be estimating a O = a - J-L rather than a 
1" 1/1 I 11. 

, 
\Ve shall now introduce some notation. Let a" = (a1" ,"', a",) , a' = (0./, ... , o.k_/) , 

, 
'\')' = (o.',e') andT" ('\')) = (\, ('\')), ... ,T", ('\'))) ,where from (6) and the identification 

restriction J-L = 0, 

(8) 

obtained by stacking the lower diagonal elements of P( {)) excluding the diagonal onto a 

column vector. Note that in fact p depends only on the covariance structure parameters 8, 
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see (5). I 

As pointed out in the introduction, standard software programs such as EQS, I 
LISREL and MPLUS estimate e using several stages (see Joreskog, 1994; Lee, Poon & 

Bentler, 1995; Muthen, 1978, 1984, 1993; Muthen, du Toit & Spisic, in press; Muthen & 

Satorra, 1995). First, the sample thresholds T are estimated from the first order marginals of 

the contingency table. Then, the polychoric correlations p are estimated from second order 

marginals of the contingency table given the estimated sample thresholds. 

Consider now the estimation of {} from the parameters estimated in the first two 

stages, K,' = (T', p'). Before estimating the model parameters in the last stage using (9), 

however, we must investigate its identification. Most often, when estimating {} from K" e 

will not be identified even if the covariance structure model 1J( e) is identified. Denoting by 

e* the subset of identified parameters in e, a general approach to estimate the identified 

model parameters {}*' = (0..', s*,) from K, is by minimizing 

(9) 

where W is a matrix converging in probability to W, a non-negative definite matrix, and 

from (5) and (8) 

(10) 

To use this general approach we need to be able to model simultaneously the thresholds and 

tetrachoric/polychoric correlations. In addition, we need to be able to enforce the complex 

non-linear constraints (4). MPLUS (Muthen & Muthen, 1998) can be used to do the former, 

but not the latter. LISREL (Joreskog & Sorbom, 1993) and EQS (Bentler, 1995) only have 

capabilities for modeling tetrachoric/polychoric correlations. 

Letting S be a consistent estimate of the asymptotic covariance matrix of K, , then, 
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obvious choices of W in (9) are W = 8-1 (WLS: Muthen, 1978), W = diag(8r (DWLS: 

r..luthen, du Toit & Spisic, in press), and W = I (ULS: Muthen, 1993). WLS estimation 

has asymptotically optimal properties (Le., minimum variance) among the class of estimators 

(9). However, it has been found repeatedly in simulation studies (e.g., Muthen & Kaplan, 

1992; Muthen, 1993; Reboussin & Liang, 1998) that unless the model is very small and the 

sample size very large \VLS has an unacceptable small sample behavior. Furthermore, ULS 

and DWLS behave well in small samples (Muthen, 1993; Muthen et al., in press), the 

difference between the two being negligible (Maydeu-Olivares, in press). 

Suppose now that the covariance structure .E( 8) is scale invariant. A covariance 

structure is scale invariant (e.g., Browne & Shapiro, 1991) if for any parameter vector 8 

belonging to the parameter space e and a diagonal matrix Db with non-zero and distinct 

elements 0" one can find a parameter vector 9 belonging to e such that 

(11) 

Since (8) is a special case of (11), when a co variance structure .E(8) is scale invariant 

(a) one can always find a parameter vector 9 satisfying P(9) = :E(9) , and 

(b) exactly n elements of 9 will not be identified because 9 must satisfy the 

constraint (Cudeck, 1989: p. 319) 

Diag (:E (9)) = I (12) 

Thus, when a covariance structure .E(8) is scale invariant one can always find a subset of 

identified parameters in 9, say 9*, such that (12) is satisfied. Then, letting (\ := Do' 0." 

and t) = 0., 9 , -*' (, -*') 
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(13) -
is equivalent to (10), where :E(O*) has ones along its diagonal and has the same functional .. 
form as the original covariance structure E(8). 

Thus, when E( 8) is scale invariant it is always possible to reparameterize iJ* as -l}* , 

where the latter is greatly preferable from a computationally point of view. On the one hand, 

when the thresholds and polychoric correlations are parameterized as a function of -l}* one 

takes rid of the non-linear constraints (4). On the other hand, as there is a one to one 

relationship between the parameter vector 0. and T, and as p depends only on 0* , one may 

estimate the (reparameterized) covariance structure parameters 0* from the estimated 

tetrachoric/polychoric correlations p only by minimizing 

(14) 

In Appendix 1 we show, following l.,luthen (1978, p. 554), that when 0* is estimated using 

(14) with W = {S;I, diag (Sp f ' or I} ,and Sp is a consistent estimate of the asymptotic 

covariance matrix of p, one obtains the same parameter estimates for 0* than when (9) is 

minimized with respect to -l}* with W = {S-\ diag (Sf ' or I}, respectively. Furthermore, 

i; = F;. However, the estimates for 0. will be the same if ULS or DWLS is employed, but 

not when \VLS is employed. LISREL (Joreskog & Sorbom, 1993), MPLUS (Muthen & 

l\Iuthen, 1998) and EQS (Bentler, 1995) all have capabilities for estimating a covariance 

structure from categorical data using a sequential procedure with (14) in the last stage. 

In sum, scale invariance of E( 8) is a sufficient condition to estimate the parameter 

vector 8 only from the sample polychoric correlations. It is a necessary condition as well. 

Often times, we can turn E(8) into a correlation structure by enforcing Diag (:E (9)) = I. In 

so doing we are fitting to the data the model on the left hand side of (11). When E(8) is not 
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scale invariance, then the models on the left and right hand side of (11) are not equivalent 

and the model on the left hand side of (11) is a restrictive version of the model on the right 

hand side of (11). Hence, when :E(8) is not scale invariant and we turn it into a correlation 

structure by enforcing Diag(b(9)) = I, we are actually fitting to the data at hand a 

different and more restrictive model than the one intended. 

Because when :E( 8) is scale invariant considerable computational gains are obtained 

in performing covariance structure analysis when all the observed variables are categorical, it 

becomes critical in applications to be able to assess whether :E( 8) is scale invariant. In 

Appendix 2 we provide computer algebra code in Mathematica (Wolfram, 1999) that will 

enable researchers to determine whether :E( 8) is locally scale invariant. 

\Ve shall now apply this general theory to a particular class of covariance structures. 

3. An application of the general theory: The common factor model 

Consider the class of covariance structures implied by the common factor model, 

b(9) = A<I>A' + w (15) 

where \.f! is a diagonal matrix. \Ve shall assume that enough restrictions have been imposed 

on the model so that the covariance structure :E( 8) is identified and that J1, = 0 for 

identification purposes. The threshold and correlation structure implied by this model are by 

(8) and (5) 

where De = diag(A<I>A' + 'lift. \Ve shall now consider how to estimate the parameter 

vector 8 from the estimated thresholds and polychoric correlations. 

(16) 

One way of estimating any member of this class is to introduce enough restrictions in 

-.. 
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e so that (16) is identified. The identified parameters, e*, are then estimated from K. -
simultaneously with 0: using (9). .. 

Consider now the subset of models of (15) that are scale invariant. For these models 

(17) 

is equivalent to (16) where 

A=DA e (18) 

To identify (17) and fulfill (12) we may simply let 

~ = 1- Diag (A<I>A') (19) 

Substituting (19) in (17), we obtain 

(20) 

Thus, in this case, one can estimate e* in the last stage of the estimation procedure simply 

using (14). 'Vhen the number of categories k and the number of items n are large this is 

greatly preferable from a computational viewpoint than to estimate all the identified 

parameters in {j using (9) with (16). 

'Ye shall now consider the results of estimating a covariance structure that is not 

scale invariant by introducing the constraints (19) to identify the model. When we use (20) 

with (19) we are effectively postulating that P . , rather than L. , has the parametric 
y y 

structure h(e). 'When the model is scale invariant this has no effect as p. and L. have 
y y 

the same structure. However, when the model is not scale invariant p. and ~. have 
y y 

different structures and thus fitting the model to p. rather than to ~. results in fitting a 
y y 

more restrictive model. Another way to put it is to say that applying (19) with (20) implies 
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fitting 1J(8) to the standardized variables z', rather than to the unstandardized variables y'. I 

Again, when 1J(8) is scale invariant, it is irrelevant whether one imposes this structure on z' I 
or on y*. But when it is not scale invariant, however, the covariance structures of z' and y* 

have different parametric forms. Thus, when 1J(8) is not scale invariant, imposing this 

structure on z' will always results in poorer fit that imposing the same structure on y'. 

To illustrate the present discussion, consider a n-variate normal distribution y' with 

mean zero that have been dichotomized via a threshold relationship (1). Note that since we 

are considering dichotomous variables, there is only one set of thresholds. The following four 

covariance structures for y' will be considered 

~(e) = AA' + '11 (21 ) 

(22) 

~(e) = 11' + {it (23) 

(24) 

where all matrices lP are diagonal with elements 'ljJi' The covariance structures (21) and (22) 

correspond to the well-known one factor and tau-equivalent models, respectively. Using the 

computer algebra code provided in Appendix 2, one may easily verify that (21) is scale 

invariant, whereas (22), (23), and (24) are not scale invariant. 

By (16), the threshold and correlation structures corresponding to models (21) to (24) 

have elements 

(25) 
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-(26) .. 
(27) 

T. f) = i ( 
. ) a 

, ~)..2 +1 
(28) 

After introducing suitable (if any) identification constraints, any of these threshold 

and correlation structures can be estimated employing (9). In Appendix 3 we provide 

computer algebra code in Mathematica (vVolfram, 1999) that will enable users to determine 

whether these threshold and correlation structures are locally identified using results of 

Bekker, Merckens and vVansbeek (1994). 

We shall first consider the one factor model (25). Using the code in Appendix 3 we 

find that n constraints need to be introduced in this model for this structure to be identified. 

The constraint \[I = I identifies the model. One set of identified parameters is therefore 

f)* = (a
1
,···, an' -\, ... , A,,)' and we may rewrite (25) as 

(29) 

Now, because the one factor model is scale invariant using (19) and (20) we can 

reparameterize it as 

p, (~*) = 5:5:, 
n t 1 

(30) 

with ~ = 1- diag ();.);.'). The parameterization (30) is considerably more convenient than 

(29) because the parameters of the covariance structure can be estimated in the third stage 

as a correlation structure problem using (14) rather than as a threshold and correlation 

structure problem using (9). Furthermore, the non-linear restrictions in (30) are considerably 
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simpler than in (29). The relationship between the parameterizations (29) and (30) is given 

by 

ex 
a - ' 

i ~A~ + 1 

- A 
A = · 

i ~A: + 1 
(31) 

Consider now the tau-equivalent model (26). Using computer algebra we find that 

just one constraint needs to be introduced in this model to identify it. The constraint A = 1 

identifies the model. Alternatively, the constraint ~. = 1 also identifies the model. If we use • 

5: = 1 to identify the model, (26) becomes 

(32) 

which is identical to (27). But if we substitute 

a , 
ex , (33) 

into (30), we also see that (27) is equivalent to (30). Thus, the covariance structures (21), 

(22) and (23) are equivalent when only categorical data is observed. This is a remarkable 

result. 

'Ve shall now consider the results of applying (20) with (19) to a covariance structure 

that is not scale invariant, such as the tau-equivalent covariance structure (22), in order to 

estimate it as a correlation structure only via (14). In this case, letting ,J, = 1- diag (~2111), 

we would estimate a threshold and correlation structure with elements 

(34) 

Clearly, (30) and (34) are not equivalent models. Thus, applying (20) with (19) to estimate a 

covariance structure that is not scale invariant from a sample correlation matrix results in 
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estimating a different, more restrictive, model than the one intended. To what covariance 

structure for y. corresponds the threshold and correlation structure (34)? Consider the 

covariance structure (24). It can be readily verified by substituting 

a . a . _ ,\2 
~2 =_. __ 

>.? + 1 
(35) 

into (34) that (34) and (28) are equivalent, and therefore that by fitting (34) we are actually 

estimating the covariance structure (24). 

vVe shall now provide a numerical example to illustrate our discussion. The 

covariance structures (21) to (24) will be fitted to a small binary dataset. We chose the well 

studied LSAT 6 dataset (Bock & Lieberman, 1970) for this example. This dataset consists of 

1000 observations on 5 binary variables. 

The following table summarizes the co variance structures fitted, the parameterization 

employed in their threshold and correlation structure, and how they were estimated in the 

last stage of the sequential procedure employed. 

"t\Iodel Covariance structure Parameterized as Estimated in the third stage using 

A (21 ) (29) (9) 

B (21) (30) (14) 

C (22) (32) (9) 

D (24) (35) (9) 

E (24) (34) (14) 

I 

To estimate these models, the elements of I'\, = (T, p) and their asymptotic 

covariance matrix S were estimated as in Muthen (1978). Parameter estimates, their 

asymptotic standard errors and goodness of fit tests for the structural restrictions I'\, (e) were 

---------
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obtained employing DWLS in the third stage as in Muthen, du Toit and Spisic (in press). 

The parameter estimates and standard errors for these models are shown in Table 1. 

Insert Table 1 about here 

The so called models {A, B, C} are equivalent (they are just reparameterizatios of 

each other) and so are models {D, E}. The Satorra-Bentler's scaled statistic for assessing the 

structural restrictions imposed on the threshold and correlation structures by models 

{A, B, C} is Ts = 4.741, 5 d.f., p = 0.448, and for models {D, E} is Ts = 5.269, 9 d.f., p = 

0.810. A nested test (Satorra and Bentler, 1999) reveals that the less restricted models 

{A, B, C} do not fit significantly better these data than the more restricted ones: 

T,bj = 0.856, 4 d.f., p = 0.931. Furthermore, one can verify in Table 1 the equivalencies 

among the models: Parameter estimates for models A and B are related by (31), for models 

Band C by (33), and for models D and E are by (35). 

4. Estimating a covariance structure model from a sample correlation 

Inatrix of continuous variables 

'When a covariance structure 1J( 8) is to be estimated from a sample correlation 

matrix one must obtain the population correlation structure associated with the covariance 

structure. \Ve saw in previous sections that there are two ways to do this: By using scaling 

constraints 

1 

Ds = Diag(~(9)r2 (36) 

or by reparameterization 
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P(9)=:E(a) (37) 

were one can employ (37) if and only if E(8) is scale invariant, whereas (36) can be used to 

estimate a covariance structure from a sample correlation regardless of whether E( 8) is scale 

invariant or not. The application of (37) to estimate a covariance structure that is not scale 

invariant results in estimating a different and more restrictive covariance structure than 

intended. In any case, not all the parameters in 8 can be estimated, and the same number of 

identification constraints must be imposed if one uses (36) or (37) to estimate a scale 

invariant covariance structure. To identify (37) one simply needs to enforce Diag (:E (a)) = I, 

whereas identifying (36) is more complex and we provide computer algebra code in Appendix 

3 to do so. 

In sum, because in general estimating a covariance structure from a sample 

correlation matrix (a) requires enforcing complex constraints among the covariance structure 

parameters, and (b) not all the parameters of the covariance structure can be estimated, one 

should not estimate a covariance structure from a correlation matrix unless one is forced to 

do so because only the sample correlation matrix is available. When only the sample 

correlation matrix among the observed continuous variables is available, then estimation 

must proceed under multivariate normal assumptions. 

One can estimate the identified subset of 8 or of a by minimizing a normal theory 

(NT) generalized least squares (GLS) discrepancy function for sample correlations (Jennrich, 

1970; Browne & Shapiro, 1990). To our knowledge this discrepancy function has not been 

implemented in any standard software package for covariance structure analysis. 

Fortunately, it is not needed to employ a NT discrepancy function for sample correlations to 

correctly estimate a covariance structure from sample correlations. One may simply employ a 

NT discrepancy function for sample covariances provided (a) the degrees of freedom are 

-• 
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I 

tl t d n (n -1) - q* where q* . th b f'd t'fi d t d correc y compu e as IS e num er 0 1 en 1 le parame ers, an 
2 

I 

1 I 
(b) one imposes the constraints among the identified parameters De = Diag (:E (9)f2" if (36) 

is employed, or Diag(b(9)) = I if (37) is employed. 

Both LISREL and MPLUS can be used to fit scale invariant covariance structures to 

a sample correlation matrix by using (37) enforcing Diag(b(9)) = I and a NT discrepancy 

function for sample covariances. To our knowledge, the current version of EQS can not 

enforce constraints Diag (b (9)) = I and hence, it can not be used to correctly estimate a 

covariance structure from a sample correlation matrix of continuous variables. Neither 

LISREL, l\IPLUS, nor EQS can enforce the complex non-linear constraints implied by (36), 

and hence, these programs can not be used to estimate a non-scale invariant covariance 

structure from a saIl}ple correlation matrix. 

To illustrate our present discussion numerically, we shall use a sample covariance 

matrix considered by Cudeck (1989) and originally published in J6reskog (1978). The sample 

covariance matrix and its corresponding correlation matrix are given in Table 2. 

Insert Table 2 about here 

Consider a factor analysis covariance structure b(9) =A<JlA' + w with the following 

constraints: 

Model A 
-\ 
o 

o 

~l (38) 

Model B A'=[~ \ 
o 

o 

~l (39) 
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For both models, <j\ ~ [~ ~ 1 ' and ., ~ diag ( .f" ... , .f, ). Model A is scale invariant, whereas 

:Model B is not. Both models are identified if estimated from sample covariances. 

The following table summarizes the various submodels to be fitted. 

Submodel Cov. structure Associated corr. structure obtained by Estimated from sample 

A A covariances 

Al A scaling constraints correlations 

A2 A reparameterization correlations 

B B covariances 

BI B scaling constraints correlations 

Estimation in all cases was performed by minimizing a maximum likelihood discrepancy 

function for sample covariances. The resulting parameter estimates, standard errors and 

goodness of fit tests are shown in Table 3. 

Insert Table 3 about here 

Consider first Model A. To fit this model from sample correlations, we obtain its 

associated correlation structure using (36). Because the covariance structure is scale 

invariant, when estimating it from a sample correlation matrix exactly n elements in () can 

not be estimated. Using the methods given in Appendix 3, we find that the constraint 1P = I 

identifies the model. This is submodel Al' Because Model A is scale invariant when 

estimating it from sample covariances or correlations we obtain the same (a) goodness of fit, 

(b) parameter estimates and standard errors for scale free parameters (in this case for p) -see 
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Cudeck (1989). However, we obtain different parameter estimates for the elements of A in A 

and Aj because these parameters are not scale free. In this example, because we have both 

the sample covariance and correlation matrices we can obtain the same parameter estimates 

for A using correlations than covariances if instead of fixing tJ! = I when estimating the 

model from correlations, we fix these values at the values estimated using covariances. This 

is submodel A j•. Note that the standard errors for non-scale free parameters estimated from 

correlations are larger. Finally, because Model A is scale invariant, we can alternatively use 

the reparameterization approach (37) to fit it from sample correlations and estimate the 

reparameterized matrices of factor loadings (18) and uniquenesses (19). 

Consider now Model B. Because it is not scale invariant, in can only be estimated 

from correlations using scaling constraints. Using the methods given in Appendix 3, we find 

that two constraints need to be introduced in the parameter vector () to estimate it from 

sample correlations. The constraints -\ = 1, -\ = 1 identify the model. This is model B j. The 

goodness of fit of models Band B j are different because model B j is a constrained version of 

model B. In fact, B j is equivalent to models Aj and A2• That is, although Models A and B 

are distinct covariance structures, they have equivalent associated correlation structures. 

6. Conclusions 

\\Then fitting a covariance structure from a sample correlation matrix one must 

consider the population correlation structure associated with it under the null hypothesis. 

This is obtained by pre and post-multiplying the covariance structure specified by the null 

hypothesis by a model-based diagonal matrix. That is, this diagonal matrix consists of the 

inverse of the square root of the diagonal of the covariance structure under consideration. As 

a result, in general, estimating a covariance structure from a sample correlation matrix 

requires estimating complicated non-linear functions of the covariance structure parameters. 
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However, it is well known (see for instance Cudeck, 1989) that if the covariance structure is 

scale invariant then one can find a reparameterization of this correlation structure that has 

the same functional form as the covariance structure specified by the null hypothesis. This 

reparameterization approach to estimate covariance structures is greatly preferable from a 

computational point of view, but it is only possible with scale invariant models. 

Furthermore, the goodness of fit indices obtained when estimating a covariance structure 

from sample correlations and from a sample covariances will be the same only if the 

covariance structure is scale invariant because not all the parameters of the covariance 

structure can be estimated from sample correlations. Hence the substantive conclusions a 

researcher may reach if s/he estimates a covariance structure that is NOT scale invariant 

from sample covariances or correlations may be different. Hence, assessing whether a 

covariance structure is scale invariant is critical in estimating it from a sample correlation 

matrix. 

\Vhen all the observed variables are categorical these problems can not be avoided, as 

in this case one can only estimate a matrix of sample tetrachoric/polychoric correlations. 

Furthermore, we have shown that in this case the common practice of estimating the 

covariance structure parameters from a matrix of sample tetrachoric/polychoric correlations 

when no restrictions are imposed on the thresholds is admissible only if the covariance 

structure specified by the null hypothesis is scale invariant. Otherwise, one estimates a 

covariance structure that is more restrictive than that specified by the null hypothesis. We 

have also shown that to correctly estimate a covariance structure that is not scale invariant 

from categorical observed variables, one has to do so jointly from the sample thresholds and 

tetrachoric/polychoric correlations. 

-.. 
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Appendix 1: 

Proof of the equivalence of (9) and (14) for scale invariant models 

\Vhen h(O) is scaled invariant, K.(-b*)' = [T(a)' ,p(e*)'J. Now, letting 

e
1 

:= f - T (0.), e
2 

:= p - p (e*), and partitioning W according to the partitioning of "", (9) 

may be rewritten as 

F = (e' 1 1 
(40) 

Now, since there is a one-to-one relationship between T and 0. , from the first order 

condition for minimizing (14) 

of of, , 
__ 1 = _1 = 2W e + 2W 'e = 0 :::::} aa' aT' 11 1 21 2 

W' -lW' , 
e1 = - 11 21 e2 

( 41) 

and substituting this into (40), we obtain 

(42) 

where the last equality follows from a well-known result for the inverse of a partitioned 

matrix (e.g., l\lardia, Kent & Bibby, p. 459). For instance, whEm W = 8-1
, W- 1 = 8, and 

lW' -1] - '::' '- '::' 
22 - ...... 22 .- ...... p . 

Hence, since F;. = F;, when the covariance structure parameters e* are estimated by 

minimizing F2 the resulting parameter estimates and their standard errors will equal those 

obtained had these been estimated by minimizing F1. If one is interested in estimating the 

threshold parameters 0. after minimizing F2, from (41) one may use 
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(43) 

This implies that 0. = T if and only if W is a diagonal matrix (that is for DWLS or ULS). 

Else, if one takes W = §-1 , the estimates and standard errors of 0. depend on the 

parameter estimates 0*. 

-• 
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Appendix 2: 

Assessing local scale invariance using computer algebra 

Assessing whether E( 8) is scale invariant amounts to verifying if we can find an 

alternative parameter vector e such that (11) is satisfied, i.e., :E(e) = D6:E(0)D6' under the 

additional conditions that (a) 0 and e belong to the same parameter space e and (b) the 

elements of the diagonal matrix D6 are non-zero and distinct elements. Most often E is a 

non-linear function of 8. In that case, it is very difficult to solve the system of non-linear 

equations (11) unless the model is small, even with the aid of software systems capable of 

performing symbolic computations, such as :Mathematica (Wolfram, 1999). 

Note, however, that :E(O) is nested within D6:E(0)D6' Thus assessing scale 

invariance amounts to assessing whether two nested models are equivalent. To do so, we 

may apply a result due to Bekker et al. (1994: Section 2.8) by which, under appropriate 

regularity conditions, :E(O) and D6:E(0)D6 are locally equivalent (and hence :E(O) will be 

scale invariant) if and only if 

[
8 vecs (D6:E (0) D6 )] [8 vecs (:E (0) )] 

rank ( ") = rank , + n 
8 0,0 80 

(44) 

where n is the number of observed variables, and vecs(.) deno.tes a column vector obtained 

by stacking the lower triangular elements of a matrix, including the diagonal, into a column 

vector. 

Condition (44) can be very easily verified using a software package with symbolic 

computational capabilities, often for large models. Consider the covariance structure models 

A and B described in Section 4. Vie shall now provide some very simple Mathematica code 

to assess whether these models are scale invariant using (44). The code consists of four parts. 



We first need the following function definitions 

T[matrix_List] := Transpose[matrix] 

L[matrix_List] := Length[matrix] 

Diag[matrix_List] := Table[lf[i == j, matrix[[i, j]], 0], {i, L[matrix]}, {j, L[matrix]}] 

VecLow[matrix_List] := Flatten[Maplndexed[Take[#1, First[#2] - 1] &, matrix]] 

VecLowDiag[matrix_List] := Flatten[Maplndexed[Take[#1, First[#2]] &, matrix]] 

VecDiag[matrix_List] := Table[matrix[[i, i]], {i, Length[matrix]}] 

where VecDiag(.), VecLow(.), and VecLow Diag(.) vectorize the diagonal, below the 
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(45) 

diagonal, and below and diagonal elements of a matrix, respectively. Diag(.) simply sets the 

off-diagonal elements of a matrix equal to zero. 

The second block of the program simply constructs E(O). For model A, this would 

simply be 

n = 4; 

la = {{11 ,0},{12,0},{0,13},{0,14}}; 

phi = {{1 ,r},{r, 1}}; 

psi = DiagonaIMatrix[Table[ToExpression["ps" <> ToString[i]], {i, n}]] 

sigma = la . phi. T[la] + psi: 

The third block of the program constructs vecs(~(e)) and O. The latter is 

(46) 

accomplished by vectorizing A, P and tP, putting them together and dropping constants and 

repeated parameters. 

omega=VecLowDiag[sigma]; 

Print["This is the parameter vector theta"] (47) 

theta =Cases[U n ion [Flatten [la], VecLowDiag[phi], VecDiag[psi]],_ Symbol] 

8 vecs (~(e)) 8 vecs(D6~(e)D6) 
Finally, the fourth block constructs 8' = , ' 8'2 = ( ") , 

1 ae 8 e,~ 

and informs the user of whether E(O) is (locally) scale invariant or not by verifying 

-• 



where N (SS) denotes a basis for the null space of the Jacobian matrix SS. 

j =Outer[D,omega,theta]; 

Inu 1 =L[NuIlSpaceU]]; 

d=DiagonaIMatrix[Table[ToExpression["d"<>ToString[i]],{i,n}]]; 

j2 =Outer[D,VecLowDiag[d . sigma . d],Join[theta,VecDiag[d]]]; 

Inu2=L[NuIlSpace02]]; 
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(48) 

If[lnu1 + n == Inu2,Print["The covariance structure is scale invariant"],Print["The covariance structure 

is NOT scale invariant"]] 

Using (45), (46), (47) and (48) one may readily verify model A is scale invariant but 

model B is not. 
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Appendix 3: 

Assessing local model identification using computer algebra 

Following Bekker et al. (1994) a necessary and sufficient condition (under appropriate 

regularity conditions) for the local identification of iJ in the parametric structure K.(iJ) is 

that the Jacobian matrix 8' = o",,(~) be of full column rank. This condition may be verified of} 

by constructing a basis for the null space of 8' , say N, such that N8" = 0 , and checking that 

N is an empty set. 'Whenever the model is not identified, the number of constraints we need 

to introduce in the parameter vector iJ will be given by the rank of N. Furthermore, a zero 

column in N indicates an identified parameter. 

\iVe shall now provide some very simple Mathematica code to assess whether a 

threshold and correlation structure is locally identified using these results. We shall apply it 

to investigate the identification of the tau-equivalent covariance structure (22) for binary 

data. The code consists of four blocks. 

The first block is simply (45). The second block constructs the threshold and 

correlation structure of the model of interest. In this case, it would be 

n = 4; 

la = Table[l, {n}, {1}]; 

psi = DiagonaIMatrix[Table[ToExpression["ps" <> ToString[i]], {i, n}]]; 

sigma = la . T[la] + psi; 

d = Inverse[Sqrt[Diag[sigma]]]; 

alpha = Table[ToExpression["a" <> ToString[i]], {i, n}]; 

t = d . alpha; 

rho = d . sigma . d; 

(49) 

The third block constructs K.( iJ), prints out the parameter vector iJ and the degrees 
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of freedom of the threshold and correlation structure. 

omega=Join[t, VecLow[rho]]; 

Print["This is the parameter vector theta"] (50) 

theta =Cases[Un ion[ al pha, Flatten[la], VecDiag[psi]] ,_Symbol] 

Print["The number of degrees of freedom is ", L[omega] -L[theta]] 

Finally, the fourth block obtains the Jacobian matrix SS = 8K.(?) , finds a basis for 
81} 

its nullspace, and reports that the threshold and correlation structure is (locally) identified if 

N is an empty set. Otherwise, when N is not an empty set, it reports that the model is not 

identified, it yields a list of the non-identified parameters, and it reports how many 

restrictions must be enforced among them to identify the model. 

j =Outer[D,omega,theta]; 

nu =Simplify[NuIlSpace[j]]; (51) 

If[L[nu]==O, Print["The model is identified"], Print["The model is NOT identified.", L[nu]," constraint(s) 

need to be introduced among these parameters"] && 

Print[theta[[Complement[Range[L[theta]],Flatten[Position[T[nu],Table[O,{L[nu]}]]]]]]]]; 

In this example, the program reports that none of the parameters is identified, and 

that one constraint must be introduced in the model to identified. At this point, one can 

check whether the estimated N is actually a basis of the nullspace of SS verifying that 

Simplify[nu .T[ j]] 

yields a zero matrix, or print N using MatrixForm[nu], which in this example yields, 

[2~, .. ' 
Finally, one can fix one of the non-identified parameters, say A = 1, and re-run the program 

to verify that the model is identified for any number of observed variables n. A word of 



caution. Because of the non-linear constraints (4), finding a basis for the nullspace in these 

models requires considerable computer resources unless the model is small. 
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Table 1 

Parameter estimates and standard errors for some models applied to the LSAT 6 data 

Parameter Model A Model B Model C Model D Model E 

<Xl -1.555 -1.433 -3.678 -1.432 -1.563 

(0.100) (0.059) (1.072) (0.059) (0.067) 

<X2 -0.600 -0.550 -1.386 -0.550 -0.600 

(0.051) (0.042) (0.310) (0.042) (0.046) 

<X3 -0.151 -0.133 -0.283 -0.133 -0.145 

(0.046) (0.040) (0.100) (0.040) (0.043) 

<X4 -0.773 -0.716 -1.900 -0.716 -0.781 

(0.054) (0.044) (0.437) (0.044) (0.049) 

<X5 -1.199 -1.126 -3.290 -1.127 -1. 229 

(0.067) (0.050) (0.909) (0.050) (0.057) 

Al 0.423 0.389 la 0.400c 0.436c 

(0.143) (0.112) (0.031) (0.041) 

A2 0.433 0.397 1" 0.400c 0.436c 

(0.107) (0.083) (0.031) (0.041) 

\3 0.534 0.471 1" 0.400c 0.436c 

(0.128) (0.088) (0.031) (0.041) 

A. 0.407 0.377 1" 0.400c 0.436c 

(0.105) (0.083) (0.031) (0.041) 

A5 0.364 0.342 1" 0.400c 0.436c 

(0.112) (0.093) (0.031) (0.041) 

tPI 1" 0.848b 5.593 0.840b la 

(0.087) (3.781) (0.025) 

tP2 la 0.842b 5.342 0.840b la 

(0.066) (2.640) (0.025) 

tP3 1" 0.778b 3.502 0.840b la 

(0.083) (1.683) (0.025) 

tP4 1" 0.858b 6.039 0.840b 1" 

(0.063) (3.102) (0.025) 

tP5 la 0.883b 7.531 0.840b la 

(0.064) (4.621) (0.025) 

Notes: " parameter fixed for identification purposes; b parameter constrained to be a function 

of other parameters for identification purposes; c parameter constrained to be equal across 

variables. 



35 

Table 2 

Sample covariance and correlation matrices for some vocabulary tests 

15 items, 15 items, 75 items, 75 items, 

untimed timed untimed timed 

15 items, untimed 86.40 .67 .62 .64 

15 items, timed 57.78 86.26 .65 .65 

75 items, untimed 56.87 59.32 97.29 .76 

75 items, timed 58.90 59.67 73.82 97.82 

Notes: N = 649; covariances below the diagonal, correlations above the diagonal. 

From "Structural Analysis of Covariance and Correlation Matrices" by K.G. Joreskog, 1978, 

P sychometrika. 
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Table 3 -
Results of fitting some models to the vocabulary tests data 

Model A 

A] A2 A3 A4 '4>] '4>2 '4>3 '4>4 P X2 d.f. p-val. 

A 7.50 7.70 8.51 8.68 30.13 21.93 24.89 22.56 0.90 0.70 1 0.40 

(0.32) (0.32) (0.33) (0.33) (2.47) (2.43) (2.36) (2.35) (0.02) 

A] 1.37 1.49 1.71 1.83 1" 1" la la 0.90 0.70 1 0.40 

(0.08) (0.10) (0.11) (0.12) (0.02) 

A]' 7.50 7.70 8.51 8.68 30.13 a 21.93 a 24.89 a 22.56 a 0.90 0.70 1 0.40 

(0.45) (0.49) (0.53) (0.58) (0.02) 

A2 0.81 0.83 0.86 0.88 0.35b 0.31b 0.26b 0.23b 0.90 0.70 1 0.40 

(0.02) (0.02) (0.01) (0.01) (0.03) (0.03) (0.02) (0.02) (0.02) 

Model B 

A] A2 '4>] '4>2 '4>3 '4>4 P X2 d.f. p-val. 

B 7.60 8.59 29.71 27.39 24.41 23.05 0.90 1.28 3 0.74 

(0.27) (0.28) (2.35) (2.26) (2.15) (2.1) (0.02) 

B] la la 0.54 0.45 0.34 0.30 0.90 0.70 1 0.40 

(0.07) (0.06) (0.04) (0.04) (0.02) 

Notes: a parameter fixed for identification purposes; b parameter constrained to be a function 

of other parameters for identification purposes. 


