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1 Introd uction 

In this paper we provide a general framework to deal with Cournot-Walras (CW) equi­
librium models. Such a concept is the natural extension of Cournot's ideas into a general 
equilibrium framework. This model assumes that firms are the only noncompetitive agents 
while consumers are considered to be competitive. In other words, CW models take into 
account the situation where each firm maximizes its objectives given the production deci­
sions of the remaining firms, exactly as in the Cournot model. 

There exists a large literature on partial noncompetitive markets that arernaracter­
ized by the behavior of firms which do not treat prices as exogenous parameters. Most 
of these models derive from the work of Cournot (1838) and the notion of Nash equilib­
rium introduced later (Nash, 1950, 1951). Subsequent contributions have refined the Nash 
equilibrium concept and developed a theory of noncompetitive equilibrium that seems to 
work well in partial analysis. Today, partial equilibrium theories of imperfect competition 
embody a great variety of models which are characterized by different assumptions on 
firms' behavior, on the nature of products, on market mechanisms and so on. See, for ex­
ample, Friedman (1977, 1982), Tirole (1988), Fudenberg and Tirole (1992), among others. 
But, unfortunately, there is not satisfactory theory of general equilibrium with imperfect 
competition yet. Two main approaches have been considered to date. 

The first one is called the subjective demand approach and was proposed by Negishi 
(1961, 1972, 1989, 1994). He studied the existence of a general equilibrium for a monop­
olistic competition economy. He assumed that each monopolistic firm has a subjective 
inverse demand function for its outputs and a supply curve for its inputs. Then, given 
their conjectures, each firm chooses production plans that maximize profits. The main 
criticism is that there is an element of arbitrariness in the conjectures of monopolistic 
firms. Furthermore, Negishi's approach rules out bilateral monopoly and oligopoly. 

The second approach was studied originally by Gabszewicz and Vial (1972) (see also 
Fitzroy (1974), Roberts (1980), Mas Colell (1982), Hart (1985) and Gary-Bobo (1989), 
among others). Given a production allocation, they defined a price vector corresponding 
to a \Valrasian equilibrium of the pure exchange economy. This is the objective inverse 
demand function facing each firm. Thus, firms choose production plans that maximize 
their profits, taking the production decision of the remaining firms as given. This leads 
to a C\V equilibrium. These authors were already aware of the main difficulties raised by 
their approach: for example, their concept of CW equilibrium depends on the rule chosen 
to normalize prices, and hence, the results would be dependent on this rule. 

Surveys in this area are due to Bonano (1990), Hart (1985), Gabszewicz and Michel 
(1992), Gabszewicz and Thisse (1999). Codognato (1994) also discusses the main problems 
raised by these approaches. 

The purpose of this paper is to develop a general approach to existence problems in the 
C\V framework, and appropriate algorithms for the computation of equilibria in large-scale 
CW models. 

\Ve establish the existence of a CW equilibrium assuming that, instead of just maxi­
mizing profits, firms have a general objective to maximize. In the literature of competitive 
general equilibrium it is shown that, under some assumptions, profit maximization is the 
reasonable goal that all firms agree upon. However, in the case of imperfect competition, 
profit maximization may not be a rational objective for firms and there is no objective 
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of the firm which shareholders unanimously agree to, as it is pointed out in Gabszewicz 
and Vial (1972), Dierker and Grodal (1986, 1988) and Grodal (1992), and is discussed in 
Codognato (1994). We also assume that firms have perfect knowledge of their demand 
conditions, but we avoid the use of inverse demand functions. 

Although the computation of CW equilibria plays an essential role in the applied 
general equilibrium theory, as far as we are aware the CW equilibrium literature provides 
approaches to compute such equilibria that may be difficult or inefficient to apply to large 
problems. In this paper we state practical conditions that characterize CW equilibria and 
suggest algorithms for finding these points. The chief idea is that an equilibrium should 
be defined in terms of local optimizers. Therefore, we introduce a definition for what we 
call local CW equilibria. 

Finally, we prove the existence of equilibria under the main imperfect competition 
assumptions that the traditional partial equilibrium theory takes into account, such as 
externalities, Stackelberg, collusive and Nash equilibrium models. 

The rest of the paper is organized as follows. In Section 2 we describe the basic model 
and indicate its main properties. Section 3 is devoted to the existence of a CW equilib­
rium. In Section 4, we characterize the local CW equilibrium as the solution of a nonlinear 
system of equations under convexity assumptions and we provide sufficient conditions for 
local CvV equilibria relaxing the standard convexity assumptions. In section 5, we prove 
the uniqueness of such equilibria. In section 6, we propose algorithms to compute such a 
equilibrium. Section 7 extends all previous results to others noncompetitive models. For 
instance, we consider models where each firm possesses market power for some commodi­
ties, or models that present externalities. Finally, we also consider Stackelberg, collusive 
and Nash equilibrium models. 

2 The model 

vVe consider an economy with D perfectly divisible commodities, I consumers and J firms. 
vVe take ]R.D as the commodity space. For any x E ]R.D, xT denotes the transpose of x, 
'which is an D-dimensional row vector. For any x, y E ]R.D, x . Y = xT y denotes the inner 
product of vectors x and y. 'Ye assume that consumers are price-taking utility maximizers 
and firms behave in the Cournot way. We also assume that all relevant information is 
available when agents take decisions (i.e. perfect information). 

In this setting, prices are decision variables for firms. We define prices on the nonneg­
ative simplex, 

6.p = {p E]R.D :f.,Pd = 1, Pd ~ 0, d = 1, ... ,D}. 
d=l 

2.1 The consumers 

\Ve assume that the choice set for the ith consumer is given by a subset Xi C ]R.D which 
describes feasible consumption vectors. Each consumer has preferences given by a utility 
function Ui : Xi --+ ]R., and is endowed with a vector Wi E Xi. Assuming market economies 
with private ownership (the consumers own firms), rij E ]R.+ denotes the ith consumer's 
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I 
participation in the jth firm, with 2: Tij = 1, Vj = 1, ... , J. Thus, the ith consumer's 

i=l 
demand can be obtained as the solution to the following program: 

where 

lvlax 
xiE)'[i 

Ri = ~ (p,y*) = p. (Wi+ t TijY;) , Vi = 1, ... ,I, 
J=l 

J 

(1) 

for y* = (Yi, ... , yj) E IT Vj the optimal production decisions of the firms and p E !1p a 
j=l 

price vector. 
Under the following assumptions: 

C.l. The ith consumer's consumption set Xi C ]RD is closed, bounded below, convex and 
Wi E Xi, 

C.2. The utility function Ui : Xi --. ]R that represents the ith consumer's preference 
relation ~i is continuous and concave, 

the existence of a solution for this problem is guaranteed. This solution is known as 
the demand correspondence and denoted by Xi (p, ~ (p, y*)). By the Maximum Theorem 
under convexity 1 , this correspondence is non-empty, compact-valued, convex-valued and 
usc. 

Furthermore, if we also assume that the utility function is strictly concave, such a 
solution Xi (p, ~ (p, y*)) is a continuous function. In this case, let 

I I 

X (p, y*) = LXi (p, ~ (p, y*)) CL Xi 
i=l i=l 

J 
be the market demand junction, defined for all p E !1p and for all y* E IT Vj . 

j=l 

2.2 The firms 

In this paper, we assume that the jth firm maximizes a general objective function OJ (Yj,Pj) 
on its production set V j C ]RD and the price set !1p C ]RD, given the production decisions 
of the remaining firms, exactly as in the Cournot model. In this context, firms believe that 
they may affect market prices and therefore, the decision problem of firms is to choose 
a production plan and a vector price that maximize a general objective and satisfy the 
market clearing condition given the expected behavior of the remaining firms and the 
market demand function. Usually, it is assumed that the firm's objective is to maximize 

[The r.laximum Theorem under convexity restrictions is a consequence of the Maximum Theorem 
gi\·en by Berge (see Berge (1963), pp. 115-116). The Maximum Theorem under convexity is presented in 
Sundaram (1996, pp. 237-239) and Ginsburg and Keyzer (1997, pp. 472-476). 
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its profit, i.e. OJ(Yj,p) = p. Yj. Our proposed setting allows the consideration of other 
alternative objectives. 

Given the expected production decision of the firms ye E C, where 

denotes the set of attainable productions, the jth firm faces the problem 

lvlax OJ (Yj,Pj) 
(Yj,pj)E'lr'j xb.p 

s.t. 
I I 

Yj = 2: Xi (Pj, R (Pj, Yj, Y:'j)) - ,2: yj,- ?= Wi, 
2=1 J'i=J 2=1 

(2) 

Pj . Yj 2: 0, 

where Y:'j = (Yl, ... , yj-1' Yj+1' ... , yj) is the vector of expected production decisions of 

the remaining firms j' i= j. 
Note that if we remove the no-loss constraints (Pj . Yj 2: 0, for all j = 1, .. , J), firms 

could have negative profits. Since the wealth of consumers depends on the profits or 
losses of firms, the total income of consumers could be negative and the market clearing 
condition might not be satisfied. As a consequence, it could lead to the nonexistence of 
equilibria. 'When firms are profit maximizers it is not necessary to take into account the 
no-loss constraint if we assume ° E V j . 

Under the following assumptions: 

P.1. The objective function for the jth firm OJ : Vj x 6.p -+ ~ is continuous in Vj and 
6.p , 

P.2. The set of feasible points of Problem (2) is nonempty and compact, 

the existence of a solution for this problem can be proved from standard results. Let 

Yj (Y:'j) C Vj be the set of optimal quantity choices for the jth firm and Pj (Y:'j) C ~D 
be the optimal price vector. By the Maximum Theorem, these solutions are non-empty, 
compact-valued, convex-valued and usc correspondences. 

2.3 The economy 

An economy can be described by a set 

whose elements satisfy the following conditions: 

H.1. The i - th consumer's consumption set 'Xi C ~D is closed, bounded below and 
Wi E 'Xi. 
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H.2. The utility function Ui : Xi ---t lR that represents the i - th consumer's preference 
relation b is continuous. 

H.3. Xi is convex, Vi = 1, ... , I. 

H.4. Ui (.) is strictly concave in Xi, Vi = 1, ... ,1. 

H.5. Ui (.) is a strictly monotonous increasing function, Vi = 1, ... , I. 

H.6. The market demand (by consumers) is one-to-one in prices (and conseqimntly, it is 
J 

invertible in prices); i.e. Vy E IT Yj, the function x(·,y) defined on b..p is one-to-one. 
j=1 

H.7. The production set for the j - th firm, Y j C lRD , is closed, bounded and 0 E Y j . 

H.8. The objective function for the j - th firm OJ : Y j x lRD ---t lR is continuous, and 

I:{=1 rij = 1. 

H.9. Y j is convex, Vj = 1, ... , J. 

H.ID. OJ (Yj,p) is quasiconcave in Y j , Vp E lRD , Vj = 1, ... , J. 

H.Il. OJ (Yj,p) is homogeneous of degree Cl: in p, for some Cl: > 0, Vj = 1, ... , J. 

H.12. For each firm j E {1, ... , J} and for each ye E C, the set of feasible productions 
and prices 

(3) 

is non-empty, closed, bounded and convex. Suppose further that there exists a point 
(Yj,Pj) E Y j x b..p such that Pj . Yj > 0 (Slater's condition). 

These assumptions are very similar to the standard ones used in the context of CW 
models. In particular, the assumptions made on the consumers ((H.l) to (H.5)) and the 
technology of the firms ((H. 7) , (H.9)) are standard in this literature. 

Assumption (H.6) cannot be relaxed, in general. The parametric monotonicity theory 
identifies sufficient conditions on parametric families of optimization problems under which 
optima vary monotonically with the parameter. Unfortunately, these conditions are not 
satisfied by the utility maximization problem (1) . See Sundaram (1996), pp. 253-267. 

Assumptions (H.8) and (H.ll) are satisfied when firms are profit maximizers. 
The quasiconcavity of the objective functions for the firms, Assumption (H.10) , could 

be a very restrictive assumption. For example, OJ (Yj,Pj) = Pj . Yj is only quasiconcave 
when Pj 2: 0 and Yj 2: o. Almost every CW example in the literature avoids this problem 
assuming there are not inputs in the economy (Yj C lR~, V j) or assuming that the 
allocation input is fixed a priori (as a technological parameter). Both assumptions are 
hardly realistic. See, for instance Gabszewicz and Vial (1972). 
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Finally, note that Assumption (H.12) is quite restrictive. The set 

{
(Yj,Pj) E Vj x b.p : Yj = x (Pj,Yj'Y~j) - LYj,- t Wi} 

j'h i=l 

is convex when the demand market function is quasimonotone2 in Vj and b.p . On the 
other hand, the functions Pj . Yj are only quasiconcave when Pj ~ 0 and Yj ~ O. Hence, 
the set 

{(Yj,Pj) E Vj x b.p : Pj' Yj ~ O} 

is convex when Pj ~ 0 and Yj ~ O. Consequently, we can guarantee that the set (3) is 
convex if the demand function is quasimonotone in Vj and b.p and the functions Pj . Yj 
are quasiconcave. However, these conditions are not necessary. 

2.4 The concept of a CW equilibrium 

"Ve now introduce the concept of a CW equilibrium. 

Definition 1 CW Equilibrium. The allocation 

(x' ,y"p') E (g XiX Q 11; X L'>p) . 

with p* #- 0, is a CW equilibrium for an economy E if: 

CP Each consumer solves its Problem (1). 

FP Each firm solves its Problem (2). 

FPC Fixed Point conditions: pj = p* and in Problem (2) , yj = Yj, Vj = 1, ... ,J. 

In other words, a CW equilibrium is a vector y* such that yj = fh (Y:'-j) , for all 

J = 1, ... , J. As a consequence, the equilibrium price p* is defined biunivocally by the 
equation 

J I 

x(p,y*) =LYj+ LWi, 
j=l i=l 

I 
where x (p, y*) = I: Xi (p, ~ (p, y*)) . 

i=l 
Note that a CW equilibrium also satisfies the traditional market clearing condition 

I J I 

Lxi =Lyj+ LWi. 
i=l j=l i=l 

The traditional Cournot model avoids the use of prices as decision variables by means 
of the inverse demand correspondence. We will see that both methodologies are analogous 
in the next section. 

2 A function f defined on X C JRD, nonempty and convex set, is called quasimonotonote if f is both 
quasiconvex and quasiconcave. If f is continuous and {x EX: f(x) = a} is a convex set for every a E JR, 
then f is quasimonotone. 
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2.5 The inverse demand approach 

In this section, we consider an alternative way to define the decision problem of firms by 
means of the inverse demand function. 

Each firm uses quantities as strategic variables. This corresponds to the traditional 
Cournot approach. As discussed in the introduction, the literature on Cournot-Walras 
equilibria uses the inverse demand correspondence, expressing the price of each commodity 
as a function of the quantity demanded. The inverse demand correspondence is defined as 

p (x,y) = {p E t:.p :; xi (p,ll; (p,y)) = x}. 
Assumption (H.6) enssures that p (x, y) is a one-to-one function. 

First, note that the inverse demand takes into account prices and decisions of firms. 
In the context of general equilibrium theory, the consumers wealth depends on the distri­
bution of profits and, of course, on prices. 

In order to allow the existence of a one-to-one demand function, it is necessary to 
consider a normalization of prices. This is due to the homogeneity of degree zero of the 
demand function in the prices. On the other hand, in orde~ to assure the existence of 
optimal prices, we must assume that prices are defined on a compact set. 

In this setting, we define prices on the simplex 6.p without loss of generality, since 
the demand functions are homogeneous of degree zero in prices (Le. Xi (p, ~ (p, y*)) = 
Xi (cp, ~ (cp, y*)) for all c > 0) and the firms' objectives are homogeneous of degree et > 0 
m pnces. 

The Walrasian convention is to normalize the price vector by setting a particular 
commodity as the numeraire. In other words, the numeraire price is chosen to be equal 
to one (for example). But this normalization does not meet the required assumption on 
the compactness of the price set. Nevertheless, at equilibrium it is possible to rescale such 
prices taking one of the commodities as numeraire to measure the relative prices of the 
other commodities. 

vVhenever the demand is one-to-one, we can rewrite the jth firm problem, Problem 
(2), as follO\vs 

.AIax Dj (Yj,Pj) 
(Yj ,Pj )E"Ifj x 6.p 

s.t. 

This problem is equivalent to 

lvlax Dj 
YjE"Ifj 

s.t. 

p 
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Many theoretical models of imperfect competition assume that firms are profit maxi­
mizers despite the limitations of this criterion. Although it is in accordance with the partial 
equilibrium approach used in industrial organization, as pointed out by Gabszewicz and 
Vial (1972), the owner of a firm may prefer to have lower profits distributed to him, in 
exchange for a much lower price in purchasing some desired commodity. 

In particular, if we assume firms are profit maximizers and 0 E Vj , the problem that 
the jth firm faces is 

(4) 

where OJ (Yj,p) = p . Yj· The solution of this problem is a correspondence denoted by 

fh (Y='-j) . 

In this setting, an equilibrium is a vector y* such that yj = fh (Y~j) for all j = 1, ... J. 
Then, the price and the consumption in equilibrium are unique and are defined as 

Therefore, in the context of general equilibrium, an equivalent formulation in terms of 
the inverse demand function can be considered. Using the inverse demand function, the 
firm's problem is to decide on the level of production allocation, and the price at which it 
can sell this production is given by the inverse demand function. 

However, in practice it might be difficult to get the inverse demand function p(x,y) 
explicitly. Furthermore, in order to compute a CW equilibrium it is convenient to work 
with the excess demand function instead of the inverse demand function. The use of the 
direct functions is computationally more efficient than the use of the inverse functions. In 
the practical optimization literature, it is widely known that computing a solution using 
inverse functions is more likely to give rise to ill-conditioned problems. See e.g. Wright, 
11. H. (1997) and its references. 

As discussed in the introduction, the literature on CW equilibria uses the inverse 
demand function. For example, in order to guarantee the existence of a solution for 
this problem, Negishi (1961) assumes that the inverse demand functions are linear and 
decreasing with respect to outputs. Gabszewicz and Vial (1972) assume that the profit 
functions are strictly quasiconcave with respect to outputs. In this setting, almost every 
model of imperfect competition assumes that the profit functions, defined by the inverse 
demand function as in (4), are quasiconcave in the outputs. But the quasiconcavity of 
these functions does not follows from simple assumptions on preferences and technologies. 
Bonanno (1990, pp. 311-315) presents a simple model where the profit functions are not 
quasiconcave. For further discussion, see Codognato (1994). 

On the other hand, note that, in a partial equilibrium setting, only a subset of equi­
librium relations is specified. The unspecified part is covered by the assumption that 
"other things are assumed constant". In this setting, consumers' wealth is exogenously 
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determined and consequently, the inverse demand correspondence depends only on prices 

p(x) = {p E b.p :1= x; (p,~) = X}. 
2=1 

Finally, observe that these simplifications may introduce significant distortions on the 
equilibrium values. 

3 Existence of a CW equilibrium 

Under mild assumptions, it is possible to prove the existence of a solution for the consumers 
and firms problems in a CW economy. However, we require additional and stronger 
assumptions to show the existence of a CW equilibrium (x*,y*,p*). This is the purpose 
of this section. 

Theorem 2 Existence of a CW equilibrium. Let E be an economy satisfying condi­
tions (H.l) to (H.12). Then there exists a CWequilibrium 

I J 

(x*,y*,p*) Ell XiX II Yj X b.p . 

i=l j=l 

Proof. 
Let ye E C and consider Problem (2) , for all j = 1, ... , J. To prove the existence of a 

C\V equilibrium, we first prove that there exists a solution of Problem (2). In step Il, we 
show that this solution could be a CW equilibrium, under certain conditions that depend 
on the parameters ye. In step III we verify that such conditions are satisfied. Finally, 
we prove that this solution satisfies the fixed point conditions and solves the consumers' 
problems. 

Step I: 
By \Veierstrass' theorem, for each ye E C we can guarantee the existence of a solution 

for Problem (2). Denote this solution as 

J 

(y(ye) ,p(ye)) Ell (Yj X b.p ) . 

j=l 

Observe that, for example, Yj (ye) only depends on y=-j and not on the j - th coordinate of 
ye. Notationally, however, it is much easier to write Yj as depending on the entire vector 
ye. 

Step II: 
We now show that there exists y* E C such that yj E Yj (y*) , Vj. 
Consider the correspondence 9 from C to itself defined by 9 (ye) = (fi1 (ye) , ... , YJ (ye)). 

By applying the Maximum Theorem under convexity to Problem (2), Yj (ye) , Vj are non­
empty, compact-valued, convex-valued, usc correspondences on C, a nonempty, convex 
and compact set. Hence, by Kakutani's theorem, this correspondence admits a fixed point 
y* E C such that: 
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y* E (fiI (y*) , ... , fiJ (y*)) . 

Step Ill: 
We now prove that the uniqueness of equilibrium prices, i.e. fh (y*) 

holds. Since y* E fJ(y*) , we have that 

I J I 

L Xdpj (y*) ,~(Pj (y*) ,y*)) = LYj+ L Wi, Vj = 1, ... , J. 
i=1 j=1 i=1 

... = PJ (y*) 

But then, by Assumption (H.6) , we also have PI (y*) = ... = PJ (y*). Let us denote this 
price vector as p*. 

Step IV: 
Finally, note that for all i, 

xi = Xi (p*,~ (p*,y*)) = arg max {Ui (Xi) : p*. Xi::; ~ (p*,y*)} 

• 
Assumption (H.6) is necessary to avoid that individual prices PI (y*) , ... , PJ (y*) could 

be different. This assumption presupposes the existence of equilibrium prices, and it is 
quite strong. But, as discussed in the introduction, other approaches considered to date 
assume even stronger hypothesis. 

As discussed in the definition of the economy, Assumptions (H.10) and (H.12) could 
be very restrictive. If we relax these assumptions, Problem (2) is not convex and the CW 
equilibrium may fail to exist. Hence, the preceding approach cannot be applied to that 
case. 

4 Characterization of a local CW equilibrium 

Having established in Section 3 conditions under which a CW equilibrium (x*, y*, p*) is 
guaranteed to exist, in this section we provide a characterization of a CW equilibrium as 
the solution of a system of nonlinear equations. 

\Ve first introduce the concept of local equilibria. Then, we characterize a local equi­
librium as a solution of a system of nonlinear equations. 

Definition 3 Local CW Equilibrium. The allocation 

with p* =1= 0 is a local CW equilibrium for an economy E if there exists c > 0 such that: 

CP Each consumer solves its Problem (1) in Xi nB(xi,c). 

FP Each firm solves its Problem (2) in Y j n B (yj , c) and flp n B (pj, c) . 
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FPC Fixed Point conditions: pj = p* and in Problem (2) , yj = Yj, Vj = 1, ... ,J. 

The local CW equilibrium concept fails to satisfy the completeness property, see Mas 
Colell et al. (1995) p. 6. But note that in applied models we may not be able to 
know a full specification of the market. Modelers may address these problems by using 
local estimations of production functions, preferences and consumption sets. A further 
discussion of this issue can be found in Esteban, Gourdel and Prieto (2000). 

The local equilibrium concept is more realistic than the traditional equilibrium defini­
tion. It is important to emphasize that in this model, the local equilibria with nonnegative 

prices are defined on the sets {Yj n B (yj , c) } :=1' {Xi n B (xi, c)} ~=1 and b..pnB (p*, c) . 
These sets can be interpreted as information sets for the agents regarding their technolo­
gies and their preferences. We can assume that a local equilibrium will change when the 
agents get new information. This is what we observe in the real world. 

On the other hand, the market demand function may not be one-to-one for any prices 
on the nonnegative simplex. Note that the concept of local CW equilibria only requires that 
the market demand function is locally one-to-one in a neighborhood of the equilibrium's 
pnces. 

If Definition 3 is satisfied Vc > 0, then (x*,y*,p*) is a CW equilibrium for a economy 
E. 

In order to compute a local equilibrium, it is necessary to provide practical conditions 
that characterize local CW equilibria and suggest algorithms for finding these points. 
This characterization requires strong assumptions such as pseudocpncavity of the firms' 
objective functions, since quasiconcave functions may have stationary points where the 
gradient vanishes that are not local maxima. 

The next theorem states conditions to characterize a local equilibrium for the economy 
E. ~Without loss of generality, we assume that the technology of the j - th firm is described 
by inequality constraints 

Y j = {Yj E lRD : Fj (Yj) ::; o} . 

An inequality constraint is said to be active at a given point if it is satisfied with equality 
at this point. 

Theorem 4 Characterization of local CW equilibria. Let E be an economy satis­
fying conditions (H.1) to (H.7) , (H.8) and (H.ll). If there exists a vector 

J 

z* = (y* p* a;* (3* 11*) Err y. x b.. X lRDJ X lRJ X lRJ 
, , "t"" J P + +, 

j=l 

that satisfies the following conditions: 

H.6'. The market demand is (locally) one-to-one in the price set b..p n B (p*, c). 

H. 9'. Y j n B (yj , c) is convex and Fj (.) is continuously differentiable in Y j n B (yj , c) , 
Vj, 
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H.lD'. OJ is continuously differentiable and pseudoconcave3 in Vj n B (yj,c) and!::1p n 
B (p* , c), \f j. 

H.12'. For each firm j E {1, ... ,J} and for each ye E C, the set of feasible productions 
and prices 

Pj . Yj ~ 0, 

Yj = x (Pj,Yj,Y:'j) - l: Y'J'- t Wi} 
j'ch i=l 

is nonempty, closed, bounded and convex. 

H.13. The market demand (by consumers) is continuously differentiable4 in VjnB (yj , c) 
and !::1p n B (p* , c), \f j. 

H.14. The allocation (y*,p*) is a regular point? of Problems (2), for all j = 1, ... ,J, 

and the following holds: 

VyjOj /(yj ,p~) + f3jp* - o:j VYjX (p*, y*) + o:jej - p,jVYjFj (Yj) = 0, \fj = 1, ... , J, 

VpOj (Yj,p*) +f3jyj -o:jVpx(p*,y*) = 0, \fj = 1, ... ,J, 

p,jFj (Yj) = 0, Fj (yj) ~ 0, \fj = 1, ... , J, 

f3j (p*T yj) = 0, p*T yj ~ 0, \fj = 1, ... , J, 
I J I 
'\' * '\' * '\' . h * ~ (* *) ~ Xi = ~ Y j + ~ Wi, wzt Xi = Xi P , Y , 
i=l j=l i=l 

(5) 
where ej = (0, ... , 1 (j), ... O{ , then (x*, y* ,p*) is a local CW equilibrium for the economy 
E. 

Proof. 
Consider Problems (2) for all j = 1, ... , J. Note that (y* ,p*) is a feasible point of these 

problems. Furthermore, the vector z* defines a local optimizer for Problems (2) , for all 
j = 1, ... , J. This is an immediate consequence of the Karush-Kuhn-Tucker optimality 
(sufficient and necessary) conditions for pseudoconcave functions; see Avriel (1976), Th. 
6.7, pp. 152-153 and Bazaraa et al. (1979), Th. 4.3.8, pp. 164-165 . 

• 
:IIf OJ is quasiconcave, twice continuously differentiable and its gradient does not vanish in Yj x b.p , 

then OJ is pseudoconcave. See Arrow and Enthoven (1961), p. 783. 
lSee j\Ias-Colell (1985), pp. 84-89, for sufficient conditions. The market demand function x (p, w) is 

differentiable if and only if the determinant of the bordered Hessian of u (.) is nonzero at x (p, w) . 
:; A feasible \"ector (x', y') for which the active constraint gradients are linearly independent is called 

regular. Equivalently, a feasible vector (x', y') for which the matrix of active constraint gradients has full 
row rank is called regular. 
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Note that Assumption (H.14) is a constraint qualification under differentiability. Note 
also that a sufficient condition for Assumption (H.12') is that the no loss constraints are 

quasiconcave in Y j n B (Yj, c) and b..p n B (p*, c), V j, and the residual demand functions 

I 

Yj - x (Pj, (Yj,Y=-j)) + LY)'+ L Wi 

j'#J i=l 

are quasimonotone in Yj n B (Yj, c) and b..p n B (p*, c) , Vj. 

The characterization of a CW equilibrium is described by a set of equality and inequal­
ity constraints. The inequalities can be transformed into equations and simple bounds by 
adding nonnegative slack variables. For example, let us consider a production set defined 
as 

then we may consider an equivalent technology set 

, 
where fj are nonnegative slack variables. In an optimization icontext, the simple bounds 
can be treated as part of the objective functions using barrier terms. See Fiacco and 
McCormick (1968). As a consequence, a CW equilibrium can be characterized by a system 
of nonlinear equations together with bound constraints. Let H (z) = 0 denote the system 
(5) of nonlinear equations that characterize a CW equilibrium, where z now contains the 
variables and slacks; and I ::; z ::; u denote the bound constraints, where I and u are 
vectors of lower and upper bounds on the components of z. Some components of z may 
lack a lower or an upper bound, in these cases we set the appropriate components of I and 
u to -00 and +00, respectively. 

Another important issue is the difficulty of meeting the required assumptions on 
pseudoconcavity. For example, the profit functions OJ (Yj,Pj) = Pj . Yj are only quasi­
concave when Pj 2:: 0 and Yj 2:: 0 and pseudo concave when Pj > 0 and Yj > O. However, 
almost every model of imperfect competition imposes this condition to characterize a CW 
equilibrium from the solution of a system of equations H (z) = O. See for example, the 
productive economy defined by Gabszewicz and Vial (1972). 

A similar difficulty arises in satisfying the quasimonotonicity of the residual demand. 
For example, a linear fractional function defined on a convex set where the denominator 
never vanishes is quasimonotone. In particular, the demand functions are quasimonotone 
when they are linear and decreasing with respect to outputs (as Negishi (1961) assumes). 

In spite of the difficulties to meet the required convexity assumptions of Theorem 4, 
under differentiability assumptions, the system of nonlinear equations (5) gives a necessary 
condition for a CW equilibrium. In other words, a CW equilibrium satisfies the system of 
nonlinear equations (5) given by Theorem 4. 

The following result provides additional sufficient conditions for a vector (x*, y*, p*) to 
be a local C\V equilibrium in a general setting. This result suggests an efficient computa­
tional method to find local CW equilibria, if they exist. 
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Consider Problems (2) , for all j = 1, ... , J. Let 

gJ (Yj,Pj) = Pj . Yj ~ 0, 
g; (Yj,Pj) = -Fj (Yj) ~ 0, and 

I 

hj (Yj,Pj) = Yj - x (Pj, (Yj,Y:'j)) + .2:. Y.f'+ 2: Wii 
J'~J t=1 

denote the constraints of Problem (2) and 

denotes the Lagrangian function of Problem (2) , where /3j, J.Lj ~ 0, for all j = 1, ... , J. 

Theorem 5 Sufficient conditions fOT local CW equilibria. Let E be an economy. 
If there exists a vector 

J 

* (* * * /3* *) IT W A IDDJ mJ IDJ Z = Y , P , a, , J.L E II j X Up X .lI.'\,. x .lI.'\,.+ x .lI.'\,.+, 
j=1 

that satisfies (5) and the following conditions for some e > 0, 

H.9". Fj (-) is twice continuously differentiable in Yj n B (yj, e), 'ij, 

H.lD". OJ is twice continuously differentiable in Yj n B (Yj , e) and ~p n B (p*, e), 'ij. 

H.13. The market demand function is twice continuously differentiable in Yj n B (Yj, e) 
and ~p n B (P* ,e), 'ij 

H.14. For all j = 1, .'" J, it holds that 

where 

V] (\1 2Lj (yj,p*,a;,/3;,~L;)) Vj < 0, 'iVj =1= 0, with Vj E Vi (yj,p*), (6) 

\1gJ (Yj,p*)T V = 0, si gJ (yj,p*) = ° y /3j > 0, 

\1gJ (yj,p*)T v ~ 0, si gJ (yj,p*) = ° y /3; = 0, 

n 2 (* *)T _ ° . 2 (* *) - ° * ° vgj Yj,P V - , S2 gj Yj,P - Y J.Lj > , 

\1g; (Yj,p*)T v ~ 0, si g; (yj,p*) = ° y J.Lj = 0, 

\1 hj (yj, p* ) T v = ° } 
then (y*, p*) is a local CW equilibrium. 
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Proof. 
Consider Problems (2) , for all j = 1, ... , J. The vector z* defines a local optimizer for 

these problems. This is an immediate consequence of the Karush-Kuhn-Tucker optimality 
(sufficient) conditions for pseudo concave functions. See Avriel (1976), Th. 3.11, pp. 48-51 
and Bazaraa et al. (1979), Th. 4.4.2, pp. 169-170 . 

• 
These necessary and sufficient conditions for a CW equilibrium are very useful when 

the conditions in Theorem 4 do not hold. 
Consider a private ownership economy E in which firms are profit maximizers and the 

inverse demand functions are linear and decreasing in Yj C ]RD, as in Negishi's approach. 
Then, the firms' problem is as follows: given ye E C, 

Nlax Pj . Yj 
(Yj ,Pj )E'll j x D.p 

S.t (7) 

where x (p, y) = (p - a) / b for some a > 0 and b < 0, for all j = 1, ... , J. In this example, 
the firms objective functions are not quasiconcave and hence Theorem 2 cannot be applied. 
However, the sufficient conditions (6) are trivially satisfied for the solution of the system of 
nonlinear equations (5) . Therefore, from Theorem 5 such a solution is a CW equilibrium. 

In certain situations, however, it could be difficult to get a closed-form expression for 
the demand market functions. In this case, we should replace the demand function by 
other practical conditions. Under conditions (H.1) to (H.5) and 

H.6'. The utility function Ui (.) is continuously differentiable, 

the solution of each consumer Problem (1) can be characterized by its first-order con­
ditionsG• Given ye E C, the jth firm then faces the problem 

!\!ax Dj (Yj,Pj) 
(Yj,pj)E'Yj xD.p 

s.t. 
I I 

Yj = l: Xi- l: yj,- l: Wi, 
i=l j'h i=l 

Pj . Yj 2:: 0, 
(8) 

\7 XiUi (Xi) - AiPj = 0, Vi, 

P · . X· - p . . W· - p . . (r .. y.+ '" r· .,ye.) - 0 Vi J l J l J lJ J u lJ j' - , , 
j'h 

where Ai is the Lagrange's multiplier of Problem (1) for the i - th consumer. 
In this case, conditions that characterize a CW equilibrium can be established in a 

similar way, except that we have to take into account the first-order conditions of Problem 
(1) for each consumer. As discussed in the definition of the economy, in this context, it 

fi To be rigorous, the K uhn-Tucker necessary conditions are valid only if the constraint qualification 
condition holds. In this context, this requirement is always met. 
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could be difficult to check the invertibility requirement of the demand market function. 
Nevertheless, the concept of local CW equilibria requires only that the market demand 
function is locally one-to-one in a neighborhood of equilibrium's prices. And in practice, 
the utility functions commonly used in applied economics are such that they define locally 
one-to-one demand functions. 

5 Global uniqueness of equilibria 

Having established in Section 3 conditions under which a CW equilibrium (x*, y*, p*) is 
guaranteed to exist, we study its uniqueness. 

Proposition 6 Under the assumptions in Theorem 4 and 

U .M. H is uniformly monotone on Do 7 , where H is the system of nonlinear equations 

J 

H : Do ---) IT Y j x D.p X ~DJ X ~~ X ~~, 
j=1 

J 
defined by Theorem 4, and Do C IT Y j x D.p X ~DJ X ~~ x~:!. is an open and convex 

j=1 
set, 

there exists a unique z* E Do such that H (z*) = O. Hence, there exists a unique CW 
equilibrium (y*, p*) for the economy E. 

Proof. 
The result is an immediate consequence of the monotonicity of operator H. See Ortega 

and Rheinboldt (1970), pp. 141-145 .• 
Ortega and Rheinboldt (1970, pp. 142) provide sufficient conditions for Assumption 

(U.Af.) . 

6 Computing local CW equilibria 

The traditional literature on general CW equilibria constructs such equilibria in three 
stages. In a first stage, all noncompetitive agents (e.g. firms) anticipate the consequences 
of their actions (construct their inverse demand function), then they make their optimal 
decisions and finally the market clears. 

In particular, the approach called the objective demand approach, proposed by Gab­
szewicz and Vial (1972), is a good way to prove the existence of CW equilibrium when 
firms are profit maximizers. This approach can be summarized as follows: 

Step I: Get the inverse demand function 7r (y): given ye, they solve 

J J I 

z(p) =Lxdp,~(p,ye))- LYj- LWi=O. 
j=1 j=1 i=1 

7 A mapping H : D c !Rn ~!Rn is uniformly monotone on Do C D, an open convex set, iff there exists 
I> 0 such that (H (x) - H (y)) (x - y) ~ I (x - y)T (x - y), Vx, yE Do. 
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Let 

Step 11: Solve the firms problems: 

riJ = arg max 7T (Yj' {Y}'} .,-1-.) . Yj = arg max p-l 
~E~ J~ ~E~ 

where the profit functions of the firms are assumed to be quasi concave in outputs 
(the inverse demand functions are assumed to be such that the profit functions are 
quasiconcave in outputs). 

Step Ill: Apply Fixed Point arguments: 

* ~ (*) \.-I • Y = Yj Y ,VJ. 

The main problem of this approach is that, in practice, the inverse demand function 
is difficult to obtain explicitly. In this section, we propose algorithms that avoid the use 
of the inverse demand function. 

First, we present an algorithm (Algorithm 1) based on the characterization given by 
Theorem 4. But, as we mentioned before, it is quite difficult to meet these convexity 
assumptions. An alternative algorithm is proposed later; this second approach solves the 
firms problems iteratively (Algorithm 2). 

6.1 Algorithm 1 

In this section we outline how a local equilibrium can be computed using traditional 
methods (Newton's method). We consider the system of nonlinear equations given by 
Section 4, H (z) = 0, where z E Do and the bounds constraints of the form l ~ z ~ u. As 
we have shown, the solutions of this system are equilibria for a given economy E under 
certain convexity assumptions. Note that we cannot solve this system using traditional 
methods (Newton's method) due to the simple bounds. We will solve an alternative 
inequality-constrained optimization problem: 

z 
~ IIH(z)ll~ 

(9) 
lvIin 

s.t. 
l ~ z ~ u. 

using Interior Point Methods for non-linear programming. In Appendix A, we present a 
scheme of the interior point algorithm for a general constrained problem. For additional 
details on interior point methods applied to Problem (9) , see Esteban, Gourdel and Prieto 
(2000) . 

To illustrate this approach, we present some examples. 
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Example 7 Consider a two-commodity static exchange economy with two consumers and 
two goods. The excess demand function is defined as 

with aI, a2 > O. Firms are profit maximizers and their production sets are ]R2. Taking as 
an initial point Zo = eT and the parameters al = ~, a2 = ~, the interior-point algorithm 
converges to 

z* = [.11, .11, .11, .11, 1.333, 1.333, -0.11, -0.11, -0.11, -O.l1J 

in 6 iterations. 
We can be certain that yi = (.11, .11) , yi = (.11, .11) and p* = (1.333,1.333) is a 

CW equilibrium since the excess demand function is linear and decreasing in outputs as in 
Negishi's framework and, consequently, it satisfies the assumptions given in Theorem 4. 

Example 8 Consider a two-commodity static exchange economy with two consumers and 
two goods. The excess demand function is defined as 

with aI, a2 > O. Firms are profit maximizers and their production sets are, respectively, 

Cl = {(Yl,Y2) E]R2: 2Yl +Y2 ~ 10}, 

C2 = {(Yl, Y2) E ]R2 : Yl + 2Y2 ~ 10} . 

Taking as an initial point Zo = eT and the parameters al = ~, a2 = ~, the interior-point 
algorithm converges to 

z* = [4,0,0.09,3.68,0,0.5,2.5,2.88, -5.18, -2.9, -1.89, -6.8J 

in 1 iterations. 
We can be certain that Yi = (4,0), yi = (0.09,3) and p* = (0,0.5) is a CWequilib­

rium since the excess demand function is linear and decreasing in outputs as in Negishi's 
framework and, consequently, it satisfies assumptions given in Theorem 4. 

Example 9 This is a slightly modified version of the example given by Gabszewicz and 
Vial (1912). Consider a two-commodity static exchange economy with two consumers 
and two goods. The utility functions of consumers 1 and 2 are, respectively, Ul(Xl,X2) = 

1 3 3 1 

(Xl)4 (X2)4, andu2(Xl,X2) = (Xl)4 (X2)4, theparticipations of the consumers in the firms 
are 

rij 1 2 
1 1 0 
2 0 1 

without initial endowments. Firms are profit maximizers and their production sets are, 
respectively, 

Cl = {(Yl,Y2) E]R2 : 2Yl +Y2 ~ 10}, 

C 2 = {(Yl,Y2) E]R2 : Yl + 2Y2 ~ 10}. 
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Taking as an initial point Zo = eT, the interior-point algorithm converges to 

z* = [4.4,0,0,4.4, .25, .25, 0, 0, .083, .25, .25, .083] 

in 6 iterations. 
However yi = (4.4,0) , Y2 = (0,4.4) and p* = (.25, .25) is not a CW equilibrium since 

Theorem 4 cannot be applied {Cobb-Douglas demand functions are not quasimonotone in 
prices} and the second-order conditions (6) are not satisfied. 

Example 10 This is the example given by Gabszewicz and Vial {1972} in which produc­
tions are bounded 

Cl = {(Yl,Y2) E R2: 2Yl +Y2::; 10,0::; Yl ::; 2,0::; Y2::; 8}, 

C2 = {(Yl, Y2) E R2 : Yl + 2Y2 ::; 10,0 ::; Yl ::; 8,0 ::; Y2 ::; 2} . 

Taking as an initial point Zo = eT, the interior-point algorithm converges to 

z* = [2,3.3,3.3,2, .25, .25,0,0, -.0357, -.1072" -.1072, -.0357] 

in 6 iterations. As before, yi = (2,3.3), Y2 = (3.3,2) and p* = (.25, .25) is not a CW 
equilibrium since Theorem 4 cannot be applied {Cobb-Douglas demand functions are not 
quasimonotone in prices} and the second-order conditions (6) are not satisfied. 

6.2 Algorithm 2 

Let us consider an economy E under the assumptions in Theorem 2 and assume that Oj (.) 

and x (.) are differentiable. An algorithm to get CW equilibrium is as follows: 

Step O. Let ye E C. 

Step 1. Solve the of Problem (2) for all j = 1, ... , J, and obtains pj (ye) and fh (ye) for all 
j = 1, ... ,J. 

Step 2. Update yj ~ fh- The algorithm stops if the convergence criteria are satisfied; 
otherwise, go to Step 1. 

This iterative method is known as the success'ive substitution method. This method 
uses 

e ~( e) Yk+l = Y Yk (10) 

to generate the sequence {yk} from a given initial point yi. If this method converges then 
it converges to the solution. In other words, if there exists a limit point y* for this sequence 
{yk} , then y* is the vector of optimal productions. The most popular of these approaches 
are the Jacobi and Gauss-Seidel iterative methods to solve systems of linear equations. 
For details to these nonlinear iterative methods see Ortega i;md Rheinboldt (1970) and 

I 

Rheinboldt (1998). 
Unfortunately, the resulting iteration may converge quite slowly, or not at all. The 

rate of convergence depends upon how small is the spectral radius of matrix \lfj. In 
other words, it depends on the condition II\lfj(Y*)11 < 1 being satisfied. The smaller (in 
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modulus) the eigenvalues of \1y, the more rapid is the rate of convergence. See Golub and 
Van Loan (1996). 

This result is well-known in the literature on partial noncompetitive markets. See, 
for example, Varian (1992, ch. 16). He presents examples of Cournot oligopoly models 
in which this type of algorithm diverges. In this context, y(.) is a so-called reaction 
function. Note that the equations of the form (10) are difference equations. The solutions 
or stationary states of the system (10) are CW equilibria. In this context, y* is called a 
steady or stationary state that is asymptotically stable if 11 \1y (y*) 11 < 1 and unstable if 
II\1y(y*)11 > 1. If y* is asymptotically stable, there exits a neighbourhood of y*in which 
iteration (10) converges, and the order is at worst linear. 

The main advantage of the successive substitution methods is that they do not require 
computing the first derivatives \1Y. However, under differentiability, there exits alternative 
approaches that ensure the convergence, such as variants of Newton method. 

Using a Newton-like method is reasonable since it has the potential for a much more 
rapid rate of convergence. Note that the updating of parameter ye is given by the system 
of nonlinear equations 

y(y*) - y* = 0, 

and y is assumed to be continuously differentiable8 . 

The kth iteration of a Newton-like method can be written as 

Yk = Yk-l + op, 

where 0 = 1 for the standard Newton method and p is given by 

(11) 

(12) 

(13) 

The convergence of this method at a rapid rate happens when the initial point YI is close 
to the fixed point y*. In other words, local convergence is assured. 

Since the computation of \lYj could be a very expensive task, we consider an ap­
proximate matrix Bk instead of (\lYj (Yk-l) - 1) , updated using Broyden's method (a 
quasi-Newton method). The matrices are updated to take account of the new information 
in each iteration. The update formula is defined as 

B - B + (Sk - BkPk)pI 
k+l - kT' 

PkPk 

where Sk = (y(yk) - yk) - (Y (Yk-l) - Yk-l) . The initial approximation Bo is usually taken 
as the identity matrix if no additional information is available. However, we use the finite­
difference approximation to \lYj (yI) minus the identity matrix. For an introduction to 
quasi-Newton methods and details about the local convergence behavior of these methods 
sce Dennis and Schnabel (1996). 

However the above approach is only appropriate for providing local convergence. An 
algorithm that is locally convergent offers no guarantee of returning any meaningful answer 
(since these methods converge when started close enough to a local optimum). In general, 
we can obtain algorithms with global convergence properties (these algorithms converge 

'Necessary conditions are given by the Implicit Function Theorem. See Ortega and Rheinboldt (1970), 
pp. 128-129. 
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to a local optimum when started far from all local minima). An iterative algorithm is 
globally convergent if any limit point of the sequence generated by the algorithm is a 
solution of the problem. Generally, algorithms with global convergence properties may be 
slower than those with local convergence properties. 

There are several alternatives to ensure global convergence: line search methods, trust­
region methods and filter-type methods. We briefly present the first two (the third one is 
very promising but very recent): 

A) LINE SEARCH METHODS 
The algorithm mentioned above can ensure global properties by enforcing that a certain 

function, known as merit junction, decreases sufficiently at each iteration. The merit 
function should be constructed so that an optimum of this function is an optimum of the 
original problem. 

To ensure sufficient descent, each iteration of the line search approach decides how far 
to move along the direction Pk-l' In other words, each iteration of this algorithm has the 
form: 

Yk = Yk-l + CYk-l Pk-l, 

where CYk-l is a scalar obtained by the merit function such that in each iteration the value 
of merit function decreases. In this context, an adequate merit function could be 

To ensure that CYk-l is an adequate value we require that Pk-l is a descent direction 
of the merit function (to assure this property, it could be necessary to modify the lineal 
system of equations that defines Pk-l). For details, see Dennis and Schnabel (1996). 

However, in this context this result cannot be used. Note that we cannot assure that the 
Newton step (13) is a descent direction for (11) , since Bk is not equal to the true Jacobian 
(viii (Yk-l) - 1) . As a consequence, it might be impossible to get an appropriate value of 
CYk-l in some iterations. The descent property ensures that the sequence {yk} generated 
by Kewton's method converges to a limit y*, when the initial point y'l is far away from 
the limit point y*. 

B) TRUST-REGION lVIETHODS 
In this setting, the iterates are defined by the formula 

Yk = Yk-l + Pk-l· 

In order to get global convergence, Pk-l is defined as the solution of a certain optimization 
problem whose behavior near Yk-l is similar to that of the original problem. Since the 
approximation may not be good when the optimum is far from Yk-l' we restict the length 
of the direction Pk-l, i.e. Ilpk-lll :::; b..k . In other words, we obtain the search direction 
Pk-l by solving the following subproblem: 

vVhenever we use a quasi-Newton approximation Bk instead of the true Jacobian 
viii (Yk-l) - I, the search direction P is given by 
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for a certain scalar ILk ~ o. 
This approach is known as the Levenberg-Marquardt method. By choosing ILk ade­

quately, the global convergence property is guaranteed. See Dennis and Schnabel (1996). 
We present a scheme of the proposed algorithm, summarizing the aspects described 

previously: 

Step O. Let ye E C and c > o. 
Step 1. Solve Problem (2) for all j = 1, ... , J, and obtain Pj (ye) and Yj (ye) -rer all j = 

1, ... ,J. 

Step 2. Update yj +- Yj+P, where p is given by (Br Bk + ILk!) P = -Br (rh (Yk-l) - Yk-l) . 
The algorithm stops if the convergence criteria \\Yk - Yk-l\\ < c are satisfied; other­
wise, go to Step 1. 

Finally, we present a methodology to compute the reaction functions Y (-) numerically. 
In other words, we propose an approach to solve Problems (2) for all j = 1, ... , J at each 
step. The literature on partial noncompetitive markets always assumes that the functional 
form of Yj (.) is known. But note that in applied models it is difficult to specify in advance 
the functional form of Yj (.). 

Clearly, the approach used to solve Problems (2) for all j = 1, ... , J at each step plays a 
crucial role in this algorithm. We solve these problems using interior-point methods. For 
details, see Appendix A. 

To illustrate this approach, we present some examples. 

Example 11 Consider a two-commodity static exchange economy with two consumers 
and two goods. The excess demand function is defined as 

with aI, a2 > O. Firms are profit maximizers and their production sets are ]R2. Taking as 
an initial point Zo = eT and the parameters al = i, a2 = ~, the Algorithm 2 converges to 
yr = (.11, .11) , Y2 = (.11, .11) and p* = (1.333,1.333) in 3 steps. 

Example 12 This is the example given by Gabszewicz and Vial (1912) in which produc­
tions are bounded 

Cl = {(Yl,Y2) E]R2: 2Yl +Y2 ~ 10,0 ~ Yl ~ 2,0 ~ Y2 ~ 8}, 

C2 = {(Yl,Y2) E]R2: Yl + 2Y2 ~ 10,0 ~ Yl ~ 8,0 ~ Y2 ~ 2}. 

Taking as an initial point Zo = eT, the Algorithm 2 converges to Yi = (1.76,6.47) , Y2 = 
(6.47,1.76) and p* = (.5, .5) in 1 steps. 

Example 13 This is the example given by Gabszewicz and Vial (1912) in which firm 1 
maximize its expected profits. Taking as an initial point Zo = eT, the Algorithm 2 converges 
to Yi = (1.36,7.27) , Y2 = (6.84,1.57) and p* = (.52, .47) in 14 steps. 
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Finally, note that if the functions X, Dj and Fj are not differentiable (but still convex 
and finite everywhere) the conditions to characterize an equilibrium are similar, except 
that we have to take into account the sub differentials of X, Dj and Fj instead of their 
gradients. For an introduction to nonsmooth optimization see, for example, Rockafellar 
(1970, 1981), Clarke (1990). In practice most economic models satisfy differentiability 
assumptions. 

7 Extensions 

Throughout this paper, we have assumed that firms behave in the Cournot way for every 
commodity. In this section we present an existence proof of equilibrium, assuming that 
firms posses market power for some goods. We extend all previous results in a simple 
manner to Stackelberg, collusive and Nash equilibrium models. Finally, we describe the 
existence of CW equilibria in the presence of externalities. 

7.1 General Equilibrium in the CW model with "competitive" and "non-
competitive" commodities 

In practice, it is unrealistic to assume that firms are sufficiently powerful to affect all 
market prices. In this section, we consider that firms act as price takers for some goods 
and as noncompetitive for the rest. 

Let E be an economy in which there are Dl competitive commodities Dc = {I, ... , Dd 
and D - Dl noncompetitive commodities Dnc = {Dl + 1, ... , D}. 

The jth firm faces the problem 

Afax Dj (Yj,pC,PjC) 
(Yj,P't) 
s.t. 

I 

yjc=LxrC(pC,pjC,RdpC,pjC,yjC,(y~jr))- L (yrrr- Lwrc, 
i=l j'=h i=l 

where (y~j) e is the vector of optimal noncompetitive production decisions of the remain­

ing firms j' -I j and pc is the price of the competitive commodities. 

Proposition 14 Existence of a CW equilibrium with "competitive" and "non­
competitive" commodities. Under the assumptions in Theorem 2, there exists a CW 
equilibrium. 

Proof. 
Let ye E C and pe = (p~,P~J E 6.P' and define the following problems for all j = 1, ... , J, 
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lvIax 
(Yj,Pjc) 
s.t. 

Yj = (Yj,yr) E Y j , (p~,pjc) E 6.p , (14) 

(p~,pjc) . Yj ~ 0, 

yr =t Xic (p~,PjC,~ (p~,pjC,yjC, (y~j)e)) - .2:. (yyc)e - t wrc, 
t=l J'#J t=l 

where x (.) is the market demand. Let Z (pe, ye) be the excess demand function, that 
should satisfy Walras' law 

pez (pe, ye) = 0. 

Note that in equilibrium znc (p*, y*) = ° by definition, and ZC (P*, y*) = ° by monotonicity 
of utility functions. 

The proof is very similar to that of Theorem 2. 
Step I: 
By "Veierstrass' theorem, for each ye E C, there exists a solution for the above Problem, 

denoted as 
J 

(fj(ye,pc) , (pc,pnc (ye,pc))) E IT (Yj x 6.p ). 

j=l 

Let Xi (pC, pnc (ye, pC) , ~ (pC, pnc (ye, pC) , ye)) denote the consumption decisions of con­
sumers. 

Step II: 
"Ve now show that there exists (y*, (p*c, pmc)) E C x 6.p such that 

y* fj (y* ,p*c, p*nc) , 

p*nc P'lC(y*,p*c,p*nc) , Vj=l, ... ,J, 

° z (y* ,p*c, p*nc) . 

'Ve can define the correspondence 1jJ from the convex and compact set ex 6.p to itself, 

of,. () (~() p+max{O,z(y,p)} ) 
'f'. y, P 1---+ Y y, p, DD· 

2: Pd+ 2: max {a, zd (y,p)} 
d=l d=l 

Following the lines of Arrow and Hahn (1971, ch. 2), by Brouwer's theorem, there exists 
a fixed point (y*, p*) such that: 

p* + max {a, z (y* ,p*)} 
y* = fj (y* ,p*) , p* = --------'---'----'---"--

D D 
2: Pd+ 2: max {a, zd (y* ,p*)} 
d=l d=l 

Then, Zd (y* ,p*) ::; 0, Vd = 1, ... , D. Note that the monotonicity of utility functions 
ensures that there are nonzero prices in equilibrium and, as a consequence, Zd (y* ,p*) = 0, 

25 

-.. 



Vd. This property is known as desirability and it is satisfied when utility functions are 
increasing in all commodities. 

As a consequence, we have proved the existence of an optimal production allocation 
y* and a optimal price p*c of the competitive commodities. It only remains to prove that 
pmc is the vector of optimal prices for noncompetitive commodities. 

From the residual demand constraint of Problem (14) for all j = 1, .. J, we have that 

J I 

x (p*c,flt (y*,p*),y*) =LYj+ LWi, Vj = 1, ... ,J. 
j=l i=l 

implying P'{c (y*,p*) = ... = f1Jc (y*,p*). On the other hand, by assumption (H.6) and 

we have pj (y*,p*) = pmc, Vj . 

• 
The quasiconcavity of the objective functions of firms is still a very restrictive assump-

tion. In this setting, the decision variables of firms are the production plans and the price 
of noncompetitive commodities, that are often assumed to be kiefined on ]R~+. 

vVhen firms are profit maximizers and have market power in outputs, given the price 
of competitive commodities pC, the jth firm's objective is as follows: 

,vith yjC » 0 and pjC » O. But the quasiconcavity assumption of OJ is not satisfied since 
the sum of a linear function and a quasiconcave function is not a quasiconcave function. 
As a consequence, the CvV equilibrium may fail to exist. 

An example of a firm objective function that satisfies the quasiconcavity property 
is the following: consider an economy in which the set of goods that can be outputs, 
y7 = (Yl,···,YD1 ), is distinct from the set that can be inputs, yJ = (YD1+l, ... ,YD). In 
such a case, the technology set is given by 

i 

Yj = {(yJ,y7) E]RD: Y7 Sf (yJ) ,yJ S 0,y7 ~ o}. 

For some appropriate parameters a and /3, the firms' objective can be defined as follows: 

Dl 

L [ad log (Pd) + /3d log (Yd)] 
d=l 

D 

L [ad log (Pd) + /3d log (-Yd)]. 
d=Dl+l 

In this setting, firms are maximizing revenues and minimizing costs. 
Analogously, we can also characterize such a equilibrium as a solution of a set of 

equations under some appropriate conditions. 
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7.2 General Equilibrium in the Stackelberg Model 

Let E be an economy in which L = {1, ... , JI} firms are the so-called leaders and S = 
{J1 + 1, ... , J} firms are the followers. Given a price vector p E lRP, the firm j E S faces 
the problem 

Under convexity and compactness assumptions, the existence of solution for this problem 
can be proved. This solution is a correspondence denoted by fh (p) . Furthermore, under 
strong convexity, such a solution is a function. 

Let define the residual demand 

I 

f(p) = LXi (p) - L Yj' (p) 
i=l j'ES 

where Xi (p) are consumer's demand for all i = 1, ... ,1. We assume that f(p) is a one-to-one 
function. Then, the leaders face the following problem 

Jvlax OJ (Yj,Pj) 
(Yj,pj)E'Yj xb..p 

s.t. 
I 

Yj = r(pj) - l: Yj,- l: Wi, 
j' EL \ {j} i=l 

Under convexity and compactness assumptions, the existence of solution for this prob­

lem can be proved. This solution is a correspondence denoted by Yj (Y:'j) C Yj and 

pj (Y:'j) C ~D. 
In equilibrium it is satisfied 

* ~ ( * ) Yj = Yj Y-j , Vj = 1, ... ,J, 

. e * \.-I' 
Le. Yj = Yj' VJ 1, ... , J. Moreover, pj = pj (Y:'j) = p, Vj 1, ... , J since f(p) is 

one-to-one. 

Proposition 15 Existence of a Stackelberg equilibrium. Under the assumptions in 
Theorem 2 (assuming that f(p) is one-to-one instead of demand), there exists a Stackelberg 
equilibrium. 
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7.3 General Equilibrium in the Collusive Model 

Let E be an economy in which firms collude and form a cartel, that is, firms make optimal 
decisions by maximizing a joint objective function. Then, the problem to be solved is 

lvIax 
({Yj},p) 

s.t 
J 

({Yj} ,p) E IT Yj x D..p, 
j=l 

I I 

Yj =L: Xi (p,~ (p,Yj,Y:'j)) - L: yj,- L: Wi, Vj = 1, ... ,J. 
i=l j'#) i=l 

Proposition 16 Existence of a collusive equilibrium. Under the assumptions zn 
Theorem 2, there exists a collusive equilibrium. 

7.4 Nash General Equilibrium in the non-cooperative static game 

In a Nash equilibrium every agent faces given values of variables x:'i = {x~,} i'oIi set by 
other agents and makes his optimal choice Xi, choosing from elements belonging to a set 
Xi (X:'i) . In this case, every agent i faces the following problem 

Xi (X:'i) = arg max 'Ui (Xi, X:'i) , (15) 
XiEXi(X"-i) 

where the function 'Ui (Xi, x:.i) is the agent's objective function, for all i = 1, ... , I. 
Then, x* = (xi, ... , xj) is a Nash equilibrium if every agent solves Problem (15) and 

there is a coordination mechanism such that 

Vi = 1, ... , I. 

By applying the Maximum theorem to Problem (15), under continuity and strict con­
cavity, there exists a continuous function Xi of the other agents' decisions that satisfies 
the condition for Kakutani's theorem. Then, there exists a fixed point x* of Xi. As a 
consequence, the Nash equilibrium is a fixed point of Xi. The function Xi (X:'i) which as­
sociates the best response of the agent i to the decisions of other agents x:' i is known as 
the reaction function of i. 

l'\ote that the system of equations xi = Xi (X:'i) , Vi characterizes a Nash equilibrium. 
This setting is an appropriate representation of a Nash equilibrium to describe the relation 
between agents, but in applied models it is difficult to specify their functional forms. 

Under convexity and smoothness conditions, a Nash equilibrium is characterized as a 
solution of the first order conditions of Problem (15) . See e.g. Ho (1970) and Basar and 
Olsder (1982). However these convexity assumptions are very difficult to satisfy in practice. 
In order to overcome these requirements, alternative approaches had been developed based 
on Jacobi and Gauss-Seidel methods. 

Following a Jacobi approach, each agent optimizes its decision given the previous itera­
tion solution for other agents. Following a Gauss-Seidel approach, each agent optimizes its 
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decision given the current iteration solution for other (preceding) agents. However, both 
algorithms may converge slowly and convergence cannot be always assured. See Ortega 
and Rheinboldt (1970). 

To overcome these problems, overrelaxation procedures have been proposed. The main 
disadvantage of these methods is that they depend critically on the choice of some para­
meters. See Ortega and Rheinboldt (1970). 

Finally, note that Algorithm 2 proposed in this paper is also appropriate to solve this 
type of problems. 

7.5 Externalities 

In this section, we outline how externalities can be incorporated into noncompetitive 
economy. 

Assume that firms are directly affected by the actions of the remaining firms. Then, 
we can describe externalities in the j - th firm's production set as follows 

where Y_j = {YJ'} j'#j . These externalities can also be incorporated to the j - th firm's 

objective as OJ (Yj,{W}j'h'P). 
All results derived in the previous sections are valid for this section. Further discussions 

on this extension can be found in Esteban, Gourdel, Prieto (2000). 

8 Appendix A: Interior-Point Methods 

In this section we describe the implementation of Interior-Point Methods. We consider 
the following nonlinear, and possibly non-convex problem: 

lvlax f (z) 
ZElRD 

S.t. 

c(z) = 0, 
l ~ z ~ u, 

where f : ]RD ----> ]R and c : ]RD ----> ]Rm. Note that an inequality constraint c (z) 2 0 can 
be rewritten as equality by adding a slack variable, c (z) + S = 0 with S 2 O. 

During the 1960s, many techniques were derived for unconstrained optimization. It 
was standard practice to convert a constrained problem into a sequence of unconstrained 
problems, by incorporating to the objective function additional terms that would add 
arbitrarily high costs either for infeasibility or for approaching the boundary of the feasible 
region. The most popular of these approaches for inequality constrained problems was 
the use of barrier methods. Interior point methods are closely related to the classical 
logarithmic barrier methods. The barrier method is defined by introducing a parameter 
~l, called the barrier parameter, and a logarithmic barrier function that is defined in the 
interior of the feasible set of the original problem. 
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Interior point methods transform this inequality-constrained optimization problem into 
a sequence of equality-constrained optimization subproblems defined as: 

Max 
zElRD 

s.t. 

I I 

! (z) + IL I: log (Zi -li) + IL I: log (Ui - Zi) 
i=l i=l (16) 

C(Z) = o. 
Under mild conditions, every limit point of a sequence {z* (IL)} of local minimizers of these 
problems is a local minimum of the original constrained problem; i.e. z* (IL)~ z* as 
IL -+ O. This method was studied by Fiacco and McCormick (1968). In spite of the good 
properties of this method, it became unpopular because of the numerical ill-conditioning 
of the barrier Hessian. Recently, it was proved that under conditions that normally hold 
in practice, this ill-conditioning does not degrade the accuracy of the computed solution. 
See Wright, M. (1997) and Wright, S. (1998). 

In 1984, Karmarkar presented a polynomial-time linear programming method. In 
1986, Gill et al. showed that there is an equivalence between Karmarkar's method and 
logarithmic barrier methods. Since then, interior points have become very popular. For 
an introduction to interior-point methods see, e.g. Wright, M. (1998) and its references, 
and for details, see Nesterov and Nemirovskii (1994). 

\Vhen interior point methods are applied to Problem (16), the corresponding first-order 
conditions have the form: 

V! (Zk) + Vc (zkf Ak + IL (Zk - L)-l - IL (U - Zk)-l = 0, 

C(Zk) = 0, 

where Zk = diag(zk), L = diag (l) and U = diag (u). 
Let vVl = /-L (Zk - L)-l and Wf = IL (U - Zk)-l , then we can rewrite the first-order 

conditions as 

V! (Zk) + Vc(zkf Ak +wk - w~ = 0, 

(Zk - L) wl -IL = 0, 

(U - Zk) Wf - /-L = 0, 
C(Zk) = 0, 

1 2 0 wbwk> , 

that we will denote as by F (Zk, Ak, wk, w~) = 0, where Wl = diag (wk) and Wf = 
diag (w~) . This is the standard primal-dual system that we will solve using Newton algo­
rithm (See e.g. Dennis and Schnabel (1996, pp 86-154)): 

Step 1. Let zo, w6, w6 E ffiP, AO E ]Rmand c > O. Set k = 1, Zk f-- Zo, wk f-- w6, w~ f-- w6 
and Ak f-- Ao. 

Step 2. If IIF (zk,Ak,wk,w~)112 < c, stop (the problem is solved); else, solve the system 
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Step 3. Compute az, aA, awl, a w2 E (0,1) such that Zk+l = Zk + a z.6.z, w~+1 = w~ + 
a w2.6.w2

, wk+l = wk + a Wl.6.w1 and Ak+1 + a A .6.A are feasible. 

Step 4. Consider the merit function 

I I 

L (z, A; p) = f (z) + JL 2:: log (Zi -li) + JL 2:: log (Ui - Zi) - AT c (z) 
i=l i=l 

and let m (a) = L (z + a .6.z, A; p). 

m 

+~ 2:: PjCj (z )2--:­
j=l 

While m (0) - m (az ) < -P a z V m (O)T .6.z, where 0 < P < 1; set a z f-- a z /2 and 
Zk+l = Zk + a z .6.z. 

Step 5. Update 
(Zk -If Wk + (u - zkf W~ 

I-L f-- '"'( 2D ' 

where 0 ::::; '"'( < 1, and k f-- k + 1 and go back to step 2. 

The parameter JL measures the average value of the pairwise products (Zk -If wk 
and (u - zkf w~. The success of this algorithm depends critically on the choice of the 
parameters I-L and '"'(. Unfortunately, difficulties can arise if unsuitable values of these 
parameters are used. See e.g. Wright, M. (1998). 
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