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1 Introduction 

In this article, we address the important issue of forecasting a vector of time series that has been 

generated by a set of dynamic common factors, possibly nonstationary. Dynamic factor models have 

been studied by Geweke (1977), Geweke and Singleton (1981), Engle and Watson (1981), Velu et al. 

(1986), Peiia and Box (1987), Stock and Watson (1988), Tiao and Tsay (1989), Gourieroux et al (1991), 

Engle and Kozicki (1993), Gonzalo and Granger (1995), Vahid and Engle (1997), and Peiia and Poncela 

(1999), among others. When the factors are nonstationary, the problem is very related to forecasting 

by using cointegration relationships (see Escribano and Peiia ,1994). Some recent applications of the 

factor model in the Economics field include Stock and Watson (1999) and Forni and Reichlin (1998). 

(See these articles for further applications). 

The question of how the presence of common factors, or equivalently cointegration relations, among 

a collection of variables affects forecasting is ambiguous. Engle and Yoo (1987) considered a bivariate 

model and found that taking into account the equilibrium relations improved the long-run predictions, 

but not the short-run ones. Reinsel and Ahn (1992) found that while overspecifying the number of units 

roots led to worse results in the short-run forecasts, underspecifying the number of unit roots led to 

worse long-run forecasts. In the same line, Clements and Hendry (1995) found that overspecifying the 

number of unit roots derives in worse results in forecasting. Lin and Tsay (1996) explored simulated 

and real data and concluded that imposing the correct number of unit roots improves the forecasting 

results for simulated data, while for the real data analyzed in their article, imposing the number of 

uni t roots suggested by the cointegration tests did not necessarily led to better results. Christoffersen 

and Diebold (1998) found that the presence of cointegration relations did not outperform the long run 

forecasts of univariate models and similar empirical results for the UK demand for money were found 

by Garcfa-Ferrer and Novales (1998). 

This paper has the following contributions. First we show that the forecasts from a factor model 

incorporate a pooling term similar to the one derived from hierarchical Bayesian models. This shrinkage 

terms can be, in some particular cases, identical to the pooling term proposed by Garcia-Ferrer et al 

(1987) that has been shown to work well in practice. Thus the factor model provides a formal justification 

for shrinkage methods in univariate forecasts and allows a way to derive the optimal shrinkage in each 

case. Second, we derive the expected gains in the one factor case of the forecasts from the factor model 

with respect to univariate, shrinkage univariate and multivariate ARIMA models. The advantage of the 

factor model increases with the dimension of the time series vector. Third, we show by Monte Carlo 

and a real example the reduction in mean square forecast error obtained from the factor model with 

respect to alternative forecasting approaches. 

The paper is organized as follows. In section 2 we briefly review the dynamic factor model and 

the generation of forecasts from it. In section 3 we analyze the structure of the factor model forecasts 

and in section 4 we study with more detail the one factor case. The large sample comparison of the 

forecast performance of the one factor model and the ARIMA univariate models is made in section 5, 
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and in sections 6 and 7 the forecast performance of the one factor model is compared to the shrinkage 

pooled univariate forecasts and to the VARMA forecasts. Section 8 presents some simulation results. 

In section 9 a factor model is built for forecasting the Gross National Product (GNP) of European 

countries and its forecasting performance is compared to the ones obtained by univariate and shrinkage 

univariate forecasts. Finally, section 10 presents some concluding remarks. The proofs of the lemmas 

and theorems in the text are given in the appendix. 

2 The factor model 

Let Yt be an m-dimensional vector of observed time series, generated by a set of r non observed common 

factors. We assume that each component of the vector of observed series, Yt, can be written as a linear 

combination of common factors plus noise, 

Yt 
m xl 

p ft + Et, 

mxr rx1 mx1 
( 1) 

where f t is the r-dimensional vector of common factors, P is the factor loading matrix, and Et "-' 

Nm(O,:E.), with :E. = diag(ai,'" ,0';,,) and 0'] < CXl Vj. We suppose that the vector of common 

factors follows a VARIMA(p,d, q) model 

rxr rx1 

8(B) at, 

r x r r x 1 
(2) 

where ip(B)= 1- iplB _ ... - ippBP and 8(B) = 1- 8 I B - ... - 8 qBq are polynomial matrices r x r, 

B is the backshift operator, such that BYt = Yt-I, the roots of lip(B)1 = 0 are on or outside the unit 

circle, the roots of 18(B)1 = 0 are outside the unit circle and at "-' N.r(O,:Ea), is serially uncorrelated, 

E(ata~_h) = 0, h =I O. We assume that the noises from the common factors and the observed series are 

also uncorrelated for all lags, E(atE~_I,) = 0, Vh. 

The model as stated is not identified, because for any r x r non singular matrix H the observed series 

Yt can be expressed in terms of a new set of factors and system matrices. To solve this identification 

problem, we can always choose either :Ea = I or pip = I, but it is easy to see that the model is not 

yet identified under rotations. Harvey (1989) imposes the additional condition that Pij = 0, for j > i, 

where P = [Pij]. This condition is not restrictive, since the factor model can be rotated for a better 

interpretation when needed (see Harvey, 1989, for a brief discussion about it). In this paper we will 

impose that:Ea = I; this restriction excludes the case where a common factor is just a constant, which is 

not analyze in this paper. We will add the standard restriction in static factor analysis, that is pl:E;lp 

diagonal. 

The model can be generalized to the case where the components in Et have dynamic univariate 

stationary structure, see Pena and Poncela (1999), but this does not affect the conclusions derived in 

forecasting and complicates the algebra involved. Also, it can be seen that the model is fairly general 

and includes the case where lagged factors are present in equation (1). 
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Estimation and forecasting can be carried out by written the model in state space form as follows: 

the vector of observable time series Yt, is given by the measurement equation, 

Yt 
mx 1 m x s 

Zt 

s x 1 
+ ft 

mx 1 
(3) 

and the state vector Zt containing the factors, forecasted factors, lagged factors or error terms (depending 

on the state space representation that is chosen) is driven by the transition equation, 

Zt 

s x 1 

G Zt-l + Ut, 

sxs sx1 sx1 
( 4) 

with E(ut) = 0, E(UtUD = ~u and E(utu~) = 0 if t =1= T. Both noises, ft and Ut, are also uncorrelated 

for all lags, E(ftU~) = 0 for all t and T. Given information until time t - 1, the well-known Kalman 

filter equations give the forecast of the state vector 

Zti t-l = GZt-llt-l ( 5) 

with associated covariance matrix, 

( 6) 

and the forecast for the vector of time series is computed by 

( 7) 

with covariance matrix 

( 8) 

When a new observation arrives, the state vector is updated by 

( 9) 

and its variance-covariance matrix by 

- 1-
Vtl t= V tlt- 1 - V tlt-lP/~0t-l PVtlt-l (10) 

where Kt is the filter gain, given by 

(11) 
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3 The structure of factor model forecasts 

In this section we derive a structural form for the predictions of the factor model that shows the effect 

of a pooling or shrinkage term in the predictions for each component of the vector time series. Consider 

the factor model in state space form given by (3) and (4). The h-steps ahead forecast of the state vector 

with observations up to time t is obtained applying repeatedly (5) 

(12) 

with mean square error (MSE) matrix V t+hlt = E(Zt+h - Zt+hlt)(Zt+h - Zt+hltY given by 

" (')" h-l (,)h-l , Vt+hlt = G Vtlt G +G ~u G + ... + G~uG + ~u. (13) 

>From (12) and (7) in t + hit, we obtain that the h steps ahead forecast for the observed series with 

origin in t is 

(14) 

with l'I'iSE matrix 

(15) 

Using (9) in (14), we can write the forecast of the observed series as 

9t+"lt= AIZtlt_l+A2Yt, (16) 

where 

- h -
A 1=PG (I-KtP) (17) 

and 

- It 
A 2 = PG Kt. (18) 

An equivalent expression of (16) can be obtained by using the well-known expression for the inverse of 

the sum of two matrices (see, Rao, 1973, p. 33) in (8) for the inverse of ~tlt_land plugging it into (18) 

through Kt in (11). This leads to 

(19) 

where 

(20) 
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is a m x m matrix and (see the appendix) 

(21) 

a s x s matrix. Note that although if p'~;lp = p'~;lp is a diagonal matrix, by the identification 

restrictions, nevertheless, V tlt - 1 and Vtlt do not need to be diagonal by (6), (8) and (10), even though 

~u and G were diagonal. 

For the general case, and since ~< is a diagonal matrix, the j-th component of the forecast vector 

can be written as 

(22) 

where (X)j is the j-th component of vector X and Wji,t is the (j, i) element of Wt. This equation shows 

that the forecast of each component of the series incorporates a pooling term given by a weighted sum 

of all the series observed at time t with weights proportional to the elements of the W t matrix and 

inversely proportional to their noise variance. 

4 The prediction structure of the one factor model 

vVe analyze now how the observations at time t are incorporated in the forecasts with the one factor 

model. The one factor model has special interest because many economic time series are characterized 

by a common trend. For example, it can be considered that the GNP of some countries of a certain area 

of influence are driven by the same common trend. In this section we analyze the structure of forecasts 

for the one factor model, first when the factor is a common trend or a stationary AR(l) process, and 

second in the general case in which the factor follows and ARIMA model. We will also see that for the 

case of the common trend, this pooling term is permanent, while for a stationary ARMA(p, q) factor, 

the pooling term is transitory. 

Assume first the simplest one factor model 

P It + lOt, Yt 

m x 1 mx1 1x1 mx1 
(23) 

with lOt multivariate white noise with ~< = diag(ai, ... , a;',) and factor loading matrix P = (P1,P2, .. ·, Pm)'. 

The equation for the factor is 

It 
1 x 1 

</J It-1 + at, 
1x1 lxl lxl 

(24) 

with at white noise with var(ar) = a~ = 1, (by the identification restriction) COV(€i,tar) = 0 for all i, t 

and T and IcfJl 0 1. This specification includes AR(I) stationary processes when IcfJl < 1, as well as 
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nonstationary ones when rjJ = 1. The model is in state space form with P = P, Zt = ft, r = s = 1 and 

Ut = at· 
Let us study the structure of (19) in this case. Now Al by (17) and (11) is given by 

where Vtit-l is the varianoe (scalar, in this case) of the factor at time t with information up to time t - 1. 

Applying again the inverse lemma for the sum of to matrices (Rao, 1973) to :E~:_1 = (Vt1t - 1PP' +:E()-I, 
Al is given by 

(25) 

2 

with Ct = -L-v + 2:'''--1 -5. The second term in equation (19) is W t :E;l yt=Nt PP':E; lYt where Nt is 
tlt-1 1- (7i 

h 

now an scalar given by N t = L. The h steps ahead forecast of the observed series Yt+h with information 
Ct 

up to time t is, substituting in (19) Al and W t :E;IYt by their expressions is 

h ( m 2 ) ~ rjJ 1 Pi1L;W. 
Yt+hlt= P- -v. f t lt-l + L 2'( .) , 

Ct tlt-l i=1 (J i p, 

and the j-th component of the forecasted series is 

~ rjJh ( 1 ~ PT Yi,t ) 
Yj,t+/l·lt = Pj-;- v.-- ftlt-l + L." ;2(-) 

t tlt-l i=1 i Pt 

To understand the meaning of the previous equations, first notice that t- (~ftlt-l + 2:;"--1 ~(lW.l:)) 
t tlt-l - U i t 

is the estimation of the factor with information up to time t as a weighted mean. The first term is the 

estimation of the factor at time t with the information up to time t - 1, and it has a weight proportional 

to the precision of this estimation. The second term is the estimation of the factor provided by the 

information contained on Yt. To see this note that by (1) at each time t we have m new possible 
2 

independent estimates of ft given by E(ftIYJ' t) = L.!. with variances equal to ~ for each j = 1, .'" m. 
, P1 Pj 

The second term is a combination of these estimates weighted by their precision. 

Therefore we can conclude that the forecast of Yt+h incorporates a pooling term which is the weighted 

sum of all the series at time t standardized by their factor loadings, with weights inversely proportional 

to the noise variances in the measurement equation and directly proportional to the square of the factor 
2 

loadings. The quantities ~ will appear throughout the article because as we will see they are of key 
"i 

importance in comparing forecasts. Let us denote by 

2 _EL. 
f-ti - 2' i = 1, "., m, 

(Ji 
(26) 

to the precision of the estimation of the factor from series Yi' These measures determine how new 

information is incorporated into the forecasts. 
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If the common factor is stationary 11>1 < 1, so that 1>h ---> 0 as h increases, the forecast of the observed 

series and, in particular, the pooling term, decrease with exponential decay, until its effect disappears. 

This means that it is of a transitory nature. In the nonstationary case, rj>h = 1, and as it was expected, 

the term has a permanent effect. 

Moreover, if the common factor affects identically to all the series, the factor loading matrix P is 

the m x i vector P = Ip = p(1,1,"', 1)'. The forecast of the observed seriesYt+hlt is 

with Ct = ~ + p2 2:7~ 1 ~. The forecast of each component of the time series vector is the same for 
tlt-l t- u" 

all of them. Of course, in the case of common trends rj>h = 1. 

If all the series exhibit the same noise variance, the optimal forecast is obtained shrinking the series 
2 

towards the common mean. That is, if I1'I = 11'~ = ... = 11';" = 11'2, then Ct = ---l...-v + 7 and 
tlt-l er 

~ P1>" ( 1 pm_ ) 
Yj,t+hlt = -- -v, Itlt-1 + -2-Yt , 

Ct tlt-1 11' 

where Yt = 1/ m 2::: 1 Yi ,t is the mean at time t of the m observed variables. 

In particular, suppose that a set of time series are driven by a common factor that follows a random 

walk process, and that the variances of all the series are approximately the same. Then the univariate 

forecasts derived from this model incorporates a shrinking factor towards the mean of the individual 

series. Therefore, we expect that in these situations incorporating this term to the standard univariate 

forecasts will reduce the MSE of prediction. This property was found by Garcfa-Ferrer et al (1987). 

One of the predictors used by these authors and that we shall denote Th.t+h, (being the forecast of the 

j-th component of Yt h steps ahead) is 

0<7)<1, (27) 

where Yt(h) = 1/m 2:::1 Yi,t+"lt is the mean at time t of the univariate forecasts of the components of 

the series collected in Yt. If the series are random walks, both shrinkage are identical. Otherwise this 

last predictor has as pooling term the mean of the univariate forecasts with origin in t, instead of the 

sample mean at time t of the observed series. A conclusion we draw from this analysis is that if the one 

step ahead prediction errors are very different, when building a univariate shrinkage prediction instead 

of a simple mean of the forecasts it may be better to consider a weighted mean with weights inversely 

proportional to these variances. 

Let us consider the case in which the factor follows an ARIMA(p, d, q) process. The state space 

form we adopt here is the one originally proposed by Akaike (1974). Assume than the factor follows the 

ARl',lA process given by (2) for r = 1. The dimension of the state vector is s = max{p + d, q + 1}, the 
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measurement equation (3) is now 

r Pi 

Yt= I 'P2 

l Pm 

o 
o 

o 

(28) 

and the transition equation can be written as (4) with z~ = (It, It+1lt, ... It+8-1It), u~ = at (1,1/>1, 1/>2, ... , 1/> s) 

where the 1/>i are the coefficients obtained from 'P(B)1/>(B) = :.p(B) 2::':0 1/>;Bi = ()(B) where :.p(B) 

Vdrf;(B) and 

r 0 1 1 0 1 
G~ l 0 0 1 0 

j 
(29) 

0 0 0 1 

-'P'r -'Pr -l -'P'r -2 -'Pi 

with 'Pi = 0 if i > P + d. It is straightforward to show that the h steps ahead forecast of the j-th series 

in Yt, h < q is again 

(30) 

where nll is the element (1,1) of N t . As in the previous case, it is easily seen that the pooling term 

reduces to the common mean of the observed series in time t when the common factor affects to all the 

series in the same way (then Pi = P, Vi = 1, ... ,m) and the noise of all the series have the same variance 

(then aT = a 2 ,Vi = 1, ... ,m). Again, if the noise variances of the observed series are different, the 

pooling term is proportional to the weighted mean 2:;'~1 7' In the MA(q) case, G h = 0 for h> q, for 

any q positive integer, so the pooling term is zero for h > q. For the AR(p), in the stationary case, the 

pooling term vanishes when h --+ 00. If the process is nonstationary, the pooling term has a permanent 

effect. 

5 Comparison of univariate forecasts and forecasts from the 

one factor model 

In this section we will show that for the one factor model, the MSE of prediction is smaller than the 

1ISE of prediction of the univariate ARlMA models. We are interested in quantifying the efficiency 

improvement achieved with the factor model and finding the causes that determine it. 

First, we will obtain the univariate ARIMA models implied by the factor model. Second we will 

compute the MSE of prediction of the factor model and then, we will compare the trace of the MSE of 

prediction of the factor model with the sum of MSE of prediction of the univariate ARIMA models. 
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5.1 Univariate ARlMA forecasts 

>From (23) and (24), the univariate series generated by the one factor model verify 

(31) 

and they·will follow an ARMA(l,l) model with the same AR parameter, as 

(32) 

In order to obtain the MA parameter implied by this representation, let var(vj,d=O:;, then from (31) 

and (32) 

(33) 

and equating moments in both sides and using definition (26)(see proof of Lemma 1 in the appendix), 

Bj must satisfy 

(34) 

The invertible solution to the previous equation is given by 

J.L. + 1 + 4;2 - ..j(J.L. + 1 + 4;2)2 - 44;2 B. - J J 
J - 24; (35) 

Note first that sign(Bj) = sign(4;). Also, if J.Lj = 0, then Bj = 4;. This will happen ifp; = O. In this case 

the series is not affected by the factor and it will follow a white noise process. In what follows, and to 

simplify the exposition, we will eliminate this case by assuming, without loss of generality, that fLj of. O. 

On the other hand, if J.Lj --> oo,Bj --> 0 and the univariate series will be AR(l). From (34), it is also 

straightforward to show that the difference between the AR and MA parameters is given by 

(36) 

Next, we will proof some auxiliary results to characterize the new error term of the univariate ARIMA 

models, Vj,L, and to establish the correlation between this new set of errors and the ones from the (actor 

model 

Lemma 1 For the one factor model given by (23) and (24), if (i) E(atvj,o) = 0 and (ii) E(Cj,tVi,O) = 0, 

Vj, i = 1, ... , m, then 
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_ -2 _ 2 ...!5- . _ 
1. Var(vj,d - o-j =j + l-</>0j , VJ - 1, ... ,m, 

2. E(atVj,T) = 0, Vj = 1, ... , m, "IT < t, 

3. E(atvj,t) = Pj, Vj, i = 1, ... , m; j ::j= i, 

4. E(€j,tvj,t) = o-~, Vj = 1, ... ,m, 

5. E(€j,tvj,t+h) = -B7- 1
(</J - Bj)o-], Vj, i = 1, ... , m, j ::j= i, Vj = 1, ... , m, Vh > 0, 

6. E(€j,tVi,T) = 0, Vj,i = 1, ... ,m; j::j= i,VT integer, 

7. Cov(Vj,t,vi,d=aji= 1:~7oi,Vj,i=1, ... ,m, and 

0jPiPi .. 
8. COV(Vjt+h,Vit) = 1 o.o.,VJ,~=1, ... ,m,Vh>0. 

, , - ] '& 

Proof: The proof is given in the appendix. 

Once the new innovations have been characterized, we can compute the MSE of prediction of the 

ARMA univariate model as a function of the parameters of the factor model. 

Lemma 2 Let U be the sum of MSE of the h step ahead prediction of the AR1MA univariate models 

obtained from the one factor model in (23) and (24). Then 

(37) 

Proof: The proof is given in the appendix. 

The sum of MSE of prediction depends on the number of series m, the ratio between the noise 

variances , the coefficients Pj, which measure the effects on the series of the factor, the AR parameter 

</J which gives the dynamics of the common factor and, of course, the forecast horizon h. 

Next, we will analyze the previous expression for the two cases of interest: the nonstationary case 

with a random walk as the common factor and the case of an AR(1) stationary factor. 

CASE 1:Nonstationary common or 1(1) factor. 

In this case </J = 1 and the univariate models are IMA(1,1). From (36) for </J = 1, 

(38) 

The sum of MSE of prediction for the observed series h steps ahead can be written using (38) in (37) as 

m 

U = Lo-;(2-Bj +J1j h). 
j=l 

Note that, as the series have a unit root, when the horizon of prediction goes to 00, the sum as well as 

the average of MSE of prediction also goes to 00. 
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CASE 2: Stationary common or 1(0) common factors. 

If IcPl < 1, the univariate models are ARMA(I,I). From (37), the sum of MSE of prediction is 

If the horizon of prediction goes to 00, the aver age prediction MSE of converges to 

where pi! = 'L,j~l P] Im is the average square factor loading, and O'i! = 'L,;:l 0'] Im. This equation 

shows that this limit is the sum of the average univariate measurement error plus the average induced 

effect by the factor model. 

5.2 Comparison with the one factor model 

In this subsection, we will prove that the one factor model provides prediction with an average smaller 

MSE of prediction than the univariate ARlMA models. Let l:!.u-f = U - F, where F = ~t+hlt. The 

better forecasting performance of the factor model is to be expected since we assume that it is the data 

generating process, however it is not clear in advance how much we can win over the ARIMA univariate 

models. The answer to this question is provided by the following theorem. 

Theorem 3 For the one factor model given by (23) and (24), with J.Lj =1= 0, let l:!.u-f = U - F. For the 

nonstationary case 

m 

l:!.u-f = I>; 2: 0, (39) 
j=l 

where Ti = I/m 'L,~~l J.Lj, and it is positive if m > 1. For the stationary case, l:!.u - f becomes 

(40) 

and if h -> 00 l:!.u-f -> O. For finite h, l:!.u-f > 0 if 

Proof: The proof is given in the appendix. 

Some comments on this theorem are in order. Consider the case of a common nonstationary factor. 

First note that l:!.u-f increases with m, and so we can conclude that the average gain increases with the 
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number of series in the system. In fact, it is easy to see that if m = 1 !1 u - f = 0, that is, in the trivial 

case of a simple time series the difference is zero as expected. Second, the difference also increases with 

the square of the factor loading matrix PJ. Third, the difference decreases with the ratios /l-j which give 

us the precision at which new information enters into the factor model. 

In the stationary case when h -+ 00, !1 u - f -+ 0 and there is no difference between the two models. 

For finite h note that in (41), the first term does not depend on m whereas the other two decrease 

when m increases. As shown in the appendix the first term is positive, so note that this inequality will 

be always true for large m. 

We conclude that both for the stationary case, as well as for the nonstationary case, there is an 

efficiency gain from using the factor model instead of ARIMA forecasts. In both cases, this difference 

decreases with the precision at which new information enters into the factor model, therefore increases 

with the square of the corresponding factor loading and decreases with the noise variance of each series. 

It also increases with the number of series and the value of the AR parameter. The difference will 

be greater in the nonstationary case and when the univariate models are less informative about their 

dynamics. This is a contradiction with the result in Christoffersen and Diebold (1998), who found that 

there is no efficiency gain in the medium and long run forecasts in considering the cointegration relations 

with respect to the ARIMA univariate models. A reason for that could be that they do not take into 

account the number of series that satisfy the long run or cointegration relation. In this analysis, we 

have found that the number of series is a key factor for the forecasting improvement when explicitly 

modelling the common trends of the series. 

The theorem provides an estimate of the expected decrease in MSE provided for the factor model 

when we have alarge sample and, therefore, using consistent estimates for the parameters, we can assume 

that the parameter values are approximately known. For instance, consider a large sample generated 

by the simplest common random walk factor, and assume that PJ = 1, l'T~ = l'TJ = 1, 'ifj = 1, ... , m. 

Then (Jj = .38 'ifj = 1, ... , m, and the relative decrease ll: MSE of the factor model with respect to the 

univariate models for the one step ahead prediction error is 

!1 u - r _ .5v3 - .5 - 2(m + vm2 + 4m)-1 
U - 2+ .38/(1- .38) 

which is equal to .06 for m = 4 and goes to .14 when m -+ 00. These numbers provides some indication 

of the advantages that we can obtain from the factor model with respect to the univariate forecasts. 

6 Comparison of pooled forecasts and forecasts from univariate 

and the one factor model 

Empirically, Garcia Ferrer et al (1987) showed that the univariate forecast of a collection of variables 

improves, in the sense that the MSE of prediction decreases, when a pooling term is used in forecasting. 

In this section, we will show that, for the series driven by a common factor, pooled forecasts always 
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outperform univariate ARIMA forecasts, and that factor forecasts outperforms both of them. We will 

show that the factor model outperforms the pooling technique even when the shrinkage is performed in 

more favorable conditions. Recall that the equation for pooling is (27) where fft(h) = l/m 2:: 1 Y;,t+"lt 

is just a simple mean of the univariate forecasts. Therefore, the shrinkage technique should work better 

for the case that all the series have a similar behavior. (Otherwise a weighted mean should be preferable 

in order to build the pooling term). For that reason, we will assume that J.tj = J.t,Vj = 1, ... ,m 

(and therefore OJ = O,Vj = 1, ... ,m) throughout this section. The previous conjecture is showed in 

subsections 6.1 (theorem 7) and 6.2. Lemmas 4, 5 and 6 are simply auxiliary results needed to prove 

the main conjecture. 

6.1 The pooled forecasts versus the univariate forecasts 

Suppose that we forecast a vector of time series by using the pooling model (27) and extend this model 

for the extreme cases 1) = 0,1. Note that for 1) = 0, this forecast collapses to the univaril).te ARlMA 

forecasts and for 1) = 1, we are using the mean of the univariate forecasts for all the series. The forecast 

error of the pooling predictions is 

and its MSE of prediction 

AI SE(Yj,f+h - Yj,t+"lt) + 1)2 E(YjJ+hlt - Yt(h))2 

+21)E [(Yj,t+h - Yj,t+hlt)(Yj,t+hlt - Yt(h))]. (42) 

The first term of the right hand side in this equality is the MSE of prediction of the ARIlVIA univariate 

forecasts and it is given by (61) in the appendix. To show that M SE(Yj,t+h - fIi,t+h) < M SE(Yj,t+h -

Yj,t+hlt) is equivalent to show that the sum of the second and third term of the right hand side of (42) 

is negative. We will prove some preliminary lemmas 

Lemma 4 If J.tj = J.t and Pj = p,Vj = 1, ... , m, 

(i) cjJ(Ej,t - Et) - O(Vj,t - Vt) = (Ej,Hl - Et+d - (Vj,tH - Vt+d, 

(ii) E(Ej,t+l -Et+d2 = mTT:lO'2, 

(iii) E(Vj,t+l - Vt+l? = 02 m,.;;-' 0'2 [1 + 't:12] , 
and (iv) E[(Ej,tH-€tH)(Vj,t+l -VtH)] = mr~IO'2, 

where Et = l/m 2:::1 Ei,t andVt = l/m 2:::1 Vi,t. 

Proof: The proof is given in the appendix. 

L 5 I'. - d - \..I' - 1 E(· ~ (h))2 _ ",2(h-l)~ 2 (0_0;)2 emma J J.tj - J.t an Pj -P,v) - , ... ,m, Yj,t+hlt -Yt - 'f' rn O'j~' 
J 

Proof: The proof is given in the appendix. 
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Lemma 6 If /-Lj = /-L and Pj = p,'ij = 1, ... ,m, then 

(a) E[(Vj,t+T(fj,t - Et)] = -wT~' BT-1(cjJ - B)a2 ,'ih > 0; 

(b) E[(v· (v -v)] = _=.lBT- 1 'p 11)(1 pO) J,t+h J,t t m 1-0 2 

and (c) E [Vj,t+TCQj,t+hlt - Yt(h))] = _w,;;-' B
T

-
1

cjJh-1 't~t, 'iT> 0, 

where et= l/m 2::::1 ei.t andvt = l/m 2::~~1 Vi,t· 

Proof: The proof is given in the appendix. 

With these lemmas we can prove the following theorem: 

Theorem 7 For the one factor model, given by (23) and (24), the MSE of prediction obtained through 

pooled forecasts is smaller than the MSE of prediction obtained only through A RIMA univariate forecasts. 

The advantage increases with the number of series, the value of the autoregressive parameter and with 

the weight given to the pooling term in the pooled forecasts. Calling P = 2::;~1 MSE(Yj,t+h - fli,t+h) to 

the sum of MSE predictions of the pooled forecasts, we have 

(43) 

Proof: The proof is given in the appendix. 

The MSE of prediction using pooled forecasts reaches its minimum for TJ = 1, giving the highest 

possible weight to the pooling term. In this case, the best predictor is the mean of the univariate 

ARIMA forecasts iht+h = l/m 2::::1 1Ii,t+hlt. When TJ = 1, 2TJ - TJ2 reaches its maximum value of 1, so 

we subtract the maximum possible quantity to the univariate ARIMA forecasts. Obviously, if TJ = 0, 

the predictor and the MSE of prediction are the ones corresponding to the univariate ARIMA case. 

The theorem shows that the difference of MSE of prediction between thEl ARIMA univariate model 

and the pooled forecasts increases with the number of series, with the value of the AR parameter and 

with the weight given to the pooling term. The difference between both models gets smaller as the 

precision /-L decreases, since in this case B -+ cjJ and the second term in (43) vanishes. In this case, the 

univariate series tend to behave as white noise and nothing is gain, in terms of efficiency, from using a 

linear combination of them. 

6.2 Pooled versus one factor model forecasts 

In this subsection, we will compare the forecast obtained from the factor model to the pooled forecasts. 

Let D.p-f be the difference between the sum of MSE of prediction of the pooled forecasts and the trace 

of the MSE of prediction matrix of the factor model, that is, D.p-f = P - F = 2::j=1(MSE(Yj,t+h -

Yj,t+h)) - tr(~t+hlt)· 

We want to show that D.p- f > 0, for any TJ, ° C TJ 0 1. The case TJ = 0, collapses into the ARIMA 

univariate forecasts. The worst case to show the previous claim is TJ = 1, since it gives the minimum 

MSE of prediction of the pooled forecasts. We already know the improvement of the pooled forecasts 

with respect to the univariate ARIMA forecasts. 
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First, consider the nonstationary case, we can write for rj> = 1, 

>From (35) and since rj>2 = 1 

) 
21 - B 

D..p_1 = D..,,_I - (m - 1 (J --B' 
1+ 

1 _ B = J J.L2 + 4J.L - J.L . 
2 

Substituting D..u-I in (44), and after some straightforward algebra, we have 

D.. = 2(l(J1+ i _1)mB+1_ 2 ) 
p-1 P 2 J.L 1 + B J.L + J J.L2 + 4~ 

(44) 

(45) 

For m = 1 =} D..p_1 = 0. In (45) and for a given J.L, the first term is always positive (recall that B is 

positive since it has the same sign as rj» and increases with m, whereas the second term decreases with 

m. In fact as m -> 00 the first term diverges to 00 while the second term converges to 1/ J.L . Therefore 

as the number of series considered increases the efficiency lost in prediction for not using the factor 

model increases. The pooled forecasts lose their advantages over the ARlMA univariate forecasts when 

J.L decreases, since in this case B -> rj> = 1 and the second term in (44) will vanish, so D..p-I -> D..u-I. 

Notice that in this case the univariate series will behave as white noise and there is no improvement 

in terms of the MSE of prediction with the pooled forecasts with respect to the ARIMA univariate 

forecasts. 

In the stationary case, 1rj>1 < 1, and from (43) and (36), for 'f/ = 1, D..p_1 can be written as 

D.. =D.. _( _1)rj>2(h-l) p2(rj>-B)B 
1'-1 u-I m (1-B2)(1-rf;B)' 

and taking into account (69) from the appendix and since J.Lj = J.L and Pj = p, \:/j = 1, ... , m 

2 
2 (B 1 1 - rj> ) 2ft 

D.. p_ 1 = pm rj>(1- rj>B/ - VmJ.L(jJ2 + rj> 2 mJ.L rj> 

where {3 = 1 - ~ lW-002 ' Notice that the first term is always positive since Band rj> are of the same sign 
m -

and (3 is always positive because:(1) if rj> = 0, then B = ° and {3 = 1; (2) if rj> > 0, t:(:2 = m < 1 and 

{3 > 0; (3) finally, if rj> < 0, :~o~ < ° and {3 > 1. 

To show that D.. p_ 1 > 0, we have to show that 

> 
mJ.L + rj>2 - 1 + J (mJ.L - 1 + rj>2)2 + 4mJ.L 

(46) 

When m increases, (3 converges to a constant, so the first term ofthe left hand side in (46) also converges 

to a constant. The second term decreases mJ.L, while the right hand side (46) decreases with 2mJ.L. 
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7 Comparison of the VARIMA forecast and the forecast of the 

one factor model 

In this section we analyze the VARMA models derived from the factor model and it is shown that, 

when the parameters are known, both models have the same forecast performance. This result is to be 

expected, as in both cases we are taking into account the common structure. From a practical point of 

view, the parameters of the model will be estimated and due to the estimation problem with VARlMA 

models in the presence of common structures (some matrices may not be identified, see Peria and Box, 

1987), we expect better results in practice with the factor model. In this section we derive the VARlMA 

model form of the factor model and compute their MSE of prediction. 

The VARMA model that is derived from the factor model is 

Yt PZt + Et=P(GZt- 1 +at) + Et 

PGP-Yt-l + Et + Pat - PGP-Et_l (47) 

since Zt-l = P-(Yt-l - Et-d, where P- is the generalized Moore-Penrose inverse of P, such that 

PP-P = P. SO, we will observe 

Yt = if:>Yt-l +Vt - (}Vt-l (48) 

where var(Vt)=:E u . From (47) and (48), we obtain the following relations between second moments 

and for the AR parameters 

if:>P=PG. 

For the one factor model, G = cp, Zt = It , P = P, the general solution of this system of equations can 

be found in Peria and Box (1987) 

if:> = cpPP- + C(I - PP-), (49) 

where C is an arbitrary matrix, with the only restriction that the eigenvalues of if:> must be outside or 

over the unit circle. Equation (49) has not an unique solution, but once a certain solution is selected, if:> 

is considered fixed and we can solve for () and :E u • It can be verified that the solution of these equations 

is 

() = if:> -cp >. pp':E- 1 

1 + >.mf-£ • 
(50) 
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and 

~,,= >..pp' + ~(' (51) 

where m"'j1 = p'~;lp and >.. verifies 

m"'j1>..2 _ >..(m"ji + r:p2 - 1) - 1 = O. (52) 

>From equation (50), the difference between both parameter matrices cl> - () is given by 

(53) 

Next, let Yt+h-Yt+hlt the forecast error with the VARMA model and D the MSE matrix of prediction 

associated to the previous error and 6. v - 1 = tr(D - ~t+hlt) the trace of the difference between the MSE 

matrices of the VARMA and factor models. In the appendix it is shown that when the Kalman filter 

reaches the steady state 6."-1 = O. 

8 Some simulation results 

The previous analysis has been obtained by assuming that the parameters are known. To check these 

results in the usual case in which the parameters are estimated from the sample, we have carried 

out some Monte Carlo studies. In a first set of simulations, we assume the most favorable situation 

for shrinking forecasts: a common non stationary factor (common trend) for m = 4 observed series, 

p = 1 =p(l, 1,1,1)', E(€d = 0, var(€t) = 14 , E(at) = 0 and var(at) = a~ = 1 for different values of p 

(1, 10 and 0.1). In this case /-Lj = /-L, Vj = 1, ... , m and /-L = p2. Notice that this is the same as keeping 

p = 1 in all cases and letting the noise variance of the factor to vary according to a~ = 1,10,0.1. We 

made 1000 replications. The sample size for each of the simulated series was 124 observations. The 

first 104 observations were used to estimate the models and the last 20 were reserved to compute the 

forecasts. 

We analyzed the behavior of 7 different models. First, we fitted an ARI(3) for each of the series as 

an approximation to the true univariate model, ARIMA(O,l,l), and compute the univariate forecasts. 

Then we computed pooled forecasts using (27) and the three values of TJ, (TJ = 0.25,0.50 and 0.75), 

which were used by Garcia Ferrer et al (1987). We also fitted two VARMA models: a VAR(3) in levels 

and also a VAR( 3) in first differences. Finally, we have estimated the factor model through the EM 

algorithm via the Kalman filter. For all these models we made forecasts h = 1, ... ,20 steps ahead and 

computed the MSE of predictions for horizons 1, 5, 10 and 20. Table 1 shows the root mean square 

error (RMSE) of prediction for /-L = 0.1,1 and 10. Each model is characterized by a single the value of /-L, 

which indicates that all the series behave in a similar way within a model. The first column shows the 

horizon of prediction; the second one shows the precision of generation of each of the series /-L; the third 

column shows the results for the univariate ARI(3) model and columns 4 to 6 show the RMSE obtained 
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with the pooling technique for the three values of TJ previously indicated; columns 7 and 8 show the 

RMSE of the VAR(3) for the series in first differences and in levels, respectively, and finally, the last 

column shows the results for the factor model. 

horiz. /-L UNIV TJ = .25 TJ = .50 TJ = .75 VAR diff. VAR lev. FACT 

h=1 .1 1.1877 1.1466 1.1165 1.0984 1.2393 1.1686 1.1097 

h=5 .1 1.3515 1.3114 1.2817 1.2633 1.3649 1.3011 1.2638 

h=lO .1 1.5089 1.4745 1.4499 1.4355 1.5116 1.5183 1.4380 

h=20 .1 1.8066 1.7768 1.7552 1. 7421 1.8130 1.9063 1.7406 

h=l 1 1.6567 1.6066 1.5701 1.5481 1.6604 1.5985 1.5337 

h=5 1 2.5751 2.5420 2.5181 2.5034 2.5751 2.6319 2.4977 

h=lO 1 3.3195 3.2942 3.2760 3.2650 3.3192 3.5802 3.2668 

h=20 1 4.5538 4.5362 4.5239 4.5168 4.5467 5.2523 4.5164 

h=1 10 3.5331 3.4892 3.4581 3.4403 3.6629 3.6256 3.4566 

h=5 10 7.3283 7.3056 7.2892 7.2793 7.3614 7.7708 7.2650 

h=lO 10 9.8499 9.8328 9.8206 9.8133 9.8801 10.8733 9.8297 

h=20 10 14.2844 14.2722 14.2633 14.2578 14.3119 16.7690 14.2339 

Table 1 Comparison of RMSE of prediction for the univariate ARIMA, pooled, vector ARMA and 

factor models for three different values of /-L = .1,1,10. 

To give an idea of the results obtained, see for instance the central rows of the table, corresponding 

to the value /-L = 1. In this case the factor model improves the univariate forecasts by {1.6567-

1.5337)/1.6567 = 0.0742 for h=l, by {3.3195 - 3.2668)/3.3195 = 0.0159 for h=lO and by {4.5538-

4.5164)/4.5538 = 0.0082 for h=20. The best forecasts from the pooling method correspond to TJ = .75 

and the gains with respect to the univariate forecasts is, for one step ahead, (1.6567 - 1.5481)/1.6567 = 

0.0656 similar to the one from the factor model. We see that the pooling forecast performs very similar 

to the factor model for all horizons. The factor model provides better forecasts than both VARMA 

models. The gains of the factor model with respect to the VARMA models are similar for all values of 

/-L and sometimes are also considerable for the long periods of forecasting. For example, for /-L = .1 the 

gain for h=lO is 0.0470 and for h=20 is 0.0365. 

In a second set of simulations we allow the precisions in estimating the factor associated to each of the 

series, /-Li' to be very different. We will assume the same set of parameters of the previous simulation, 

but for var{et) = diag{.12,.5 2,12,32) and P = (1,.5,.2,.05)'. The first column shows the horizon of 

prediction; the second one shows the results for the univariate ARI(3) model and columns 3 to 5 show 

the RMSE obtained with the pooling technique for the three values of TJ previously indicated; columns 

6 and 7 show the RMSE of the VAR(3) for the series first differences and in levels, respectively, and 

finally, the last column shows the results for the factor model. 
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horiz. UNIV 1] = .25 1] = .50 1] = .75 VAR diff. VAR lev. FACT 

h=l 1.8987 1.9819 2.3761 2.9595 1.9629 1.7949 1.7206 

h=5 2.2157 2.2681 2.6030 3.1310 2.2462 2.0968 2.0569 

h=lO 2.5147 2.5373 2.8198 3.2962 2.5199 2.4925 2.3537 

h=20 3.1215 3.1366 3.3663 3.7716 3.1290 3.3668 2.9916 

Table 2 Comparison of RMSE of prediction for J-Ll = 100, J-L2 = 2, J-L3 = .2 and J-L4 = .0056. 

The results of Table 2 correspond to the case in which each of the series behaves in a different way. 

In this case the pooling techniques are not so successful in forecasting, while the factor model keeps 

maintaining considerable gains over the remaining models. For instance, Table 2 shows that the factor 

model improves the univariate forecasts by (1.8987 - 1.7206)/1.8987 = 0.0938, for h=l, by 0.064 for 

h=10 and by 0.0416 for h=20. The pooling methods show the worst forecasting performance of all the 

models tested. The best forecasts with the pooling method correspond to 1] = .25, and as 1J increases 

the behavior of the pooling method worsens. The factor model provides better forecasts, as expected, 

than both VARMA models for all the horizons of prediction. 

9 An economic application 

The data we considered are annual observations of the real GNP, from 1949-1997, for some OECD 

countries. An extended data base, from 1948-1986, was analyzed by Garcia-Ferrer et al (1987), who 

considered several alternatives to forecast the output growth rates defined as gt =In(oo. ), where Ot 
t-1 

is real GNP, for several OECD countries. Forecasts were compared by the root mean square error of 

prediction (RMSE) for one step ahead forecasts. The problem was further studied by Zellner and Hong 

(1989,1991), Mittnik (1990), Zellner et al (1991), Min and Zellner (1993), Garcia-Ferrer et al (1996), Li 

and Dorfman (1996) and Zellner and Min (1998). Garcia-Ferrer and Poncela (1999) based on empirical 

information and historical and geographical considerations made three groups of countries. 

A factor model with a common trend and a common stationary factor was built for the European 

group of countries: Belgium, France, Italy, the Netherlands and Spain. A graph of the logs of real GNP 

is shown in figure 1. 

Figure 1 goes around here. 

The difficulty in forecasting this data set is the presence of several turning points. We will show 

that the RMSE of prediction decreases in a dynamic factor model with respect to an ARIMA univariate 

model and pooled forecasts, when increasing the numbers of countries considered. Each of the models 

was estimated with data from 1949 to 1980, then we generated one step ahead forecasts. We reestimated 

the models adding one observation at the time and made new forecasts. Finally, we compute the mean 

square error (MSE) of prediction for each country. 
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In order to achieve a systematic procedure for our comparison, and as in Garcia-Ferrer et al (1987) 

and Garcia-Ferrer and Poncela (1999), we fitted and AR(3) model for each growth rate. 

(54) 

Then, we built a factor model. Applying the results in Pena and Poncela (1999), we found a common 

trend plus a common AR(l) stationary factor. Let Yt = (YI,t'''',Ym,tY, Yi,t = log(Oi.t), i = 1, ... ,m, 
t = 1, ... , T, the factor model could be written as 

Yt 
mx 1 

P ft + nt, 

mxr rx1 mx1 
(55) 

where f t is the r-dimensional vector of common factors, P is the factor loading matrix, and nt is the 

vector of specific components. In our case, f; = [T::f~,t], where Tt is a common trend and /z,t, is an 

AR( 1) stationary common factor, 

(56) 

where at = (al,t a2,tY,..., N2(0, :Ea), is serially un correlated, E(ata~_h) = 0, h =1= O. After extracting 

the common dynamic structure, we fitted a univariate AR( 3) for each of the specific components in 

order to capture the remaining dynamic structure 

(57) 

The sequence of vectors et = (e l ,!' ... , em.d' are normally distributed, have zero mean and diagonal 

covariance matrix :E e. We assume that the noises from the common factors and specific components are 

also uncorrelated for all lags, E(ate~_h) = O,V'h. 

We repeat the process discarding one country at the time. The series were discarded in a Spanish 

alphabetical order (Spain starts with ESP in Spanish). The results are shown in table 3. The first 

column has the number of series considered in each of the factor models. Columns 2 to 6 have the 

R1ISE of prediction for each of the countries with each of the factor models and columns 6 and 7 show 

the mean and median of the RMSE of prediction of each model. 

r--
m BEL FRA SPA HOL ITA Mean Median 

I--
5 1.27 1.52 1.20 1.96 1.48 1.49 1.48 -
4 1.45 1.57 1.31 1.90 1.56 1.51 -
3 1. 75 1.51 1.40 1.56 1.51 -
2 1.82 2.55 2.18 2.18 
~ 

Table 3:RMSE of predictIOn for each country for a factor model built by usmg 5, 4, 3 and 2 series. 

It is clear that the mean and median of the RMSE of prediction decreases with the number of series. 

By using 5 series the mean RMSE decreases 31.65% with respect to the case in which only 2 series are 
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used. Pooled forecasts were also built for values of 1/ equal to 0.25, 0.50 and 0.75. Table 4 shows a 

comparison of the factor model, ARI(3) model and pooled forecasts. 

Model BEL FRA SPA HOL ITA Mean Median 

FM 1.27 1.52 1.20 1.96 1.48 1.49 1.48 

P,1/=0.75 1.86 1.64 1.69 1.82 1.79 1.55 1.79 

P, 1/ = 0.50 1.88 1.63 1.62 1.93 1.77 1.77 1.77 

P,1/ = 0.25 1.90 1.63 1.57 2.06 1.77 1.79 1.77 

ARI(3) 1.92 1.64 1.54 2.22 1.77 1.82 1.77 
Table 4: RMSE of predictIOn for each country for the complete factor model, pooled forecasts for 

three values of 1/, 0.75,0.50 and 0.25 and an ARI(3) model. 

It is clearly seen that the best forecasting results are achieved through the factor model. Also, when 

we increase the value of 1/, from 0.25 to 0.75, giving a greater weight to the pooling term the mean and, 

therefore, the sum of RMSE of predictions decreases. The ARI(3) model gives the overall worse results. 

Finally, we want to check the infl uence of the number of series m in the forecasting performance of 

the different models and if these models rank in a similar way when we decrease the number of series. 

In order to do so, we will repeat table 4, discarding one series at the time. The series are discarded in 

Spanish alphabetical order. The results are shown on tables 5, 6 and 7. 

Model BEL FRA SPA HOL Mean Median 

FM 1.45 1.57 1.31 1.90 1.56 1.51 

P, 1/ = 0.75 1.90 1.66 1.71 1.85 1.78 1.78 

P,1/ = 0.50 1.90 1.64 1.63 1.96 1.78 1.77 

P, 1/ = 0.25 1.90 1.64 1.58 2.08 1.80 1.78 

ARI(3) 1.92 1.64 1.54 2.22 1.83 1.78 
Table 5: RMSE of predictIOn for each country for the factor model with four senes, pooled forecasts 

for three values of 1/, 0.75,0.50 and 0.25 and an ARI(3) model. 

Model BEL FRA SPA Mean Median 

FM 1.75 1.51 1.40 1.56 1.51 

P, 1/ = 0.75 1.80 1.60 1.67 1.69 1.67 

P, 1/ = 0.50 1.83 1.60 1.61 1.68 1.61 

P,1/ = 0.25 1.88 1.62 1.57 1.69 1.62 

ARI(3) 1.92 1.64 1.54 1.70 1.64 
Table 6: RMSE of predictIOn for each country for the factor model with three series, pooled forecasts 

for three values of 1/, 0.75,0.50 and 0.25 and an ARI(3) model. 
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Model BEL FRA Mean Median 

FM 1.82 2.55 2.18 2.18 

P, 7] = 0.75 1.85 1.64 1.75 1.75 

P, 7] = 0.50 1.87 1.64 1.76 1.76 

P, 7] = 0.25 1.90 1.64 1.77 1.77 

ARI(3) 1.92 1.64 1.78 1.78 
Table 7: RMSE of prediction for each country for the factor model with two series, pooled forecasts 

for three values of 7], 0.75,0.50 and 0.25 and an ARI(3) model. 

Again, the factor model gives the best results and the ARI(3) model the worst ones. The effect of 

the number of series is consistent in the sample. 

10 Conclusions 

"Ve have shown that, under certain restrictions, the forecasting equations of the factor model imply 

a pooling term. In particular, when the noise variance associated to the observed series is a diagonal 

matrix, the forecast incorporates a weighted sum of all the variables observed in t. For the one factor 

model, and under some further assumptions, the forecasting equation of the observed series imply the 

sample mean as the pooling term. 

For the one factor model and assuming that the parameters are known, we have shown the gain in 

efficiency, in terms of the MSE of prediction, of the factor model with respect to univariate ARIMA and 

pooled forecasts. We have also shown that the pooled forecasts have a smaller MSE of prediction that 

the univariate forecasts, due to the introduction of some common information. On the steady state, 

we have shown that the factor model presents a similar MSE of prediction than the VARIMA model. 

Therefore, for the one factor model with known parameters, we have that 

MSEu> M SEp > M SEf = MSE", 

where MS E f and MS E" are the trace of M SE of predictions of the factor and VARMA model, respec­

tively, and MSEu and MSEp are the sum of MSE of prediction of the univariate ARIMA model and 

pooled forecasts. When the parameters are unknown we have shown by Monte Carlo that the factor 

model behaves better than the multivariate ARMA model. 

11 Appendix 

Proof of (21): 

Starting from (18) and (11), and using (8) we have that 

A = PGhV p/(~-l _ ~-lp(p/~-lp + V-I )-l)p/~-l) 
2 tlt-l f f f tlt-l • 
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and calling A 2= PNtP'l:;l, we can write N t = GhVtlt_1(Is-P'~;lp(:p'~;lp + V~:_l)-l) and 
- - -1 

computing again the inverse of (p'~;lp + Vtlt-l)' we obtain (21). 

Proof of Lemma 1: 

1. Equating variances in both sides of (33) 

(58) 

and for the equality of the first order autocovariances, Bja/ = 4>a~. From both equations we obtain 

that Bj must satisfy (35), also solving for a/ then a j2
2

= P; + (1 + (4) - Bj )4»al. Introducing (36) in 

the last equation a / = a; + (1 + l~~iOj) P; = a; + l~~Oj' 
2. To show that E(atVj,T) = 0, we solve for Vj,T in (33) and by backward substitution we get that 

E(atVj,T) = BTE(atvj,o) = 0, by hypothesis (i). 

3. We solve for Vj,T in (33) and introduce it in E(atvj,t) =E(at(pjat + Ej.t - 4>Ej,t-l + (}jVj,t-l)) = Pj, 

Vj = 1, ... ,m. 
4. E(Ej,tVj,t) =E(Ej,t(Pjat + Ej,t - 4>Ej,t-l + (}jvj,t-d) = a;, Vj = 1, ... , m. 

5. Applying (33) in time j +h and by backward substitution Vj,t+h h times, E(Ej,tVj,t+h) = _(}~-l (4)­

(}j)a; Vj,i = 1, ... ,m, j i= i,Vj = 1, ... ,m,Vh > 0. 

6. To show E(Ej,tV;,T) = 0, Vj, i = 1, ... , m; j i= i, 'IT integer, is immediately from backward substitu­

tion of Vi,T T times from (33) and applying hypothesis (ii). 

7. From (33), aji = E(vj,t, Vi,t) == E [(pjat + Ej,t - 4>Ej,t-l + (}jVj,t-d(Piat + Ei,t - 4> Ei,t-l + (}ivi,t-dl = 
PjPi + (}j(}iaji' Solving for aji, we get aji = l'!:i%.~ Vj,i = 1, ... ,m; j i= i. 

J ' 

8. Applying recursively (33) h times and from parts 2 and 6 of this lemma, E(vj,t+h' vi.d 

E [(Pj at+h + Ej.t+h - 4>Ej,t+h-l + (}j Vj,t+h- dVi,tl = (}j E( Vj,t+h-l Vi,t) = BJ E( Vj,tVi,t) = (}J l~iO~iOi . 
Proof of Lemma 2: 

The forecast of the observed series h steps ahead is given by 

(59) 

d h I · h b h ",,11.-1 ;.-1 ( ()) an t e true va ue III t + can e written as Yj,L+h = 4> Yj,t + Vj,t+h + L.Ji= 1 4> 4> - j Vj. t+h-i -

4>"-l(}jVj,t, so the forecast error is 

h-1 

Yj,t+h - Yj,t+h.lt = Vj,t+h + L 4>i-1(4) - (}j)Vj,t+h-i, 
;=1 

and the MSE of prediction 
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where the last equality is obtained replacing 0/ by its expression given in lemma 1.1. Then, the sum 

of MSE for all the series, U = '£,';=1 (MSE)j, will be 

and using (36) and after some straightforward algebra we finally have 

(62) 

Proof of Theorem 3: 

For the one factor model, substituting (13) in (15), with ~u=l by the identification restriction and 

G =q;, we obtain that the trace of the MSE of predictions matrix is 

tr(~t+hlt)=tp; (~ltq;2h + ~ q;2i) + to;. (63) 

The difference between (37) and (63), after some straightforward algebra, is 

(64) 

that can be written, both for 1q;1 = 1 as well as for 1q;1 < 1 as 

(65) 

We will compute !1 u - f assuming that the Kalman filter has reached the steady state. Pre- and postmul­

tiplying ~~tl_l by pip and from (8) and using again the lemma for the inverse of the sum of two ma-

trices, (Rao, 1973), PI~;I; IP = 1+ :t . Now, from (10), Vtlt can be written as Vtlt = 1+ v'*'v: 1 
• 

- m tjt-l 'TTlJ.1. tlt-l 

Substituting Vt- 1It-l as given by (10) in (6) and assuming that the filter reaches the steady state, 

vtl t-l = vt-llt-2 = V, we obtain the algebraic Riccatti equation 

that can be written, using again the lemma for the inverse of the sum of two matrices (Rao, 1973), as 

(66) 

and the steady state of ~It is 

V 1 1 _ q;2 

VmjIq;2 - mjIq;2 . (67) 
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Also from (66) 

(68) 

>From (65) and since the steady state of Vilt is given by (67) 

_ 2(h-l) 2 cjJlJ j _1_.!..=..t.. on ( 2) 
1111.-1 - cjJ ~Pj (1 - cjJlJ j ) - Vm"Ji + m"Ji . (69) 

Now from (36) and (35), and inserting in this equation V as the positive solution of (68) we have that 

where note that the first term is positive because (J-lj + 1 + cjJ2)2 - 4cjJ2 = (J-lj + 1 - cjJ2? + 4J-lj cjJ2; and 

the last two terms go to 0 as m -+ 00. 

Let us prove that in the nonstationary case if m > 1 then 1111.-1 > O. Inserting cjJ = 1 in (70), we 

have 

we want to prove now that this difference is positive, that is, for m> 1, 

( J J-l] + 4J-lj - J-lj) (m"Ji + J m2712 + 4mj1) - 4J-lj > O. 

Calling A = Jm2"ji2 + 4mJ-l and B = J J-l] + 4J-lj , and noting that B - J-lj > 0, m"Ji> J-lj and A > B, 

this expression can be written as (B - J-lj)( m"Ji + A) - 4J-lj > (B - J-lj )(B + J-lj) - 4J-lj = 0, and the result 

is proved. It is easy to check that if m = 1 1111.-1 = O. 

For the stationary case, in the long run, when h -+ 00, there is no difference between the two models 

for finite h, a sufficient condition for 1111.- 1 :::: 0 is 

26 



Proof of Lemma 4: 

(i) From (33), 

rjJEj,t - BVj,t = pat+l + Ej,Hl - Vj,t+l; 

applying this equation for j = 1, ... ,m, summing up and dividing by m, we get that 

(72) 

(73) 

where Et = l/m2::::: 1 E;,t YVt = l/m2::::: 1 Vi,t. Subtracting (73) from (72) we get the desired result. 

(ii) Since ILj = IL,Vj = 1, ... ,m => (J'; = (J'2,Vj = l,oo.,m, and E(Ej,Hl -Et+d 2 

E(m-l .l.,\,Tn .)2 _ (~)2 2+~ 2_~ 2 m Ej,t+l - m L.i=IJ#j Ei,t+l - TT! (J' m2 (J' - m (J' . 

(iii) E( Vj,t+l - Vt+d 2 = E ( Tn~ 1 Vj,t+l - T;' 2:::::1#j Vi,t+! r ; expanding the square and taking into 

account ILj = IL,Vj = 1, ... ,m => a; = a 2,Vj = 1,oo.,m, and that aij is the same Vj,i = 1,oo.,m;j i= i, 

(aij has been defined in Lemma 1, part 7) 

(
m - 1) 2 2 1 (~ \ 2 m-I ( ~ \ 
--:;;;- E(vJ,t+d + m2E \ 6 V;,t+l) - 2~E \Vj,t+l .6 .V;,t+l) 

,=I,'#J ,=I.'#J 

(
m - 1) 2 -2 m-I -2 --- (J' +-(J' + 

m m 2 
(m - 1)(m - 2)a. _ (~)2 (j 

m2 'J m 'J 

By lemma 1, parts 1 and 7, E( Vj,t+l - Vt+!)2 = !T!T~J ((J'2 + p2 (~- ~)) = !T!T~J (J'2 (1 + (7=~f) . 
(iv) E[(Ej,t+l - Et+!)(Vj,t+l - Vt+d] = E(Ej,t+lVj,t+l - Et+!Vj,t+l + Ej,t+lVt+! + Et+lVt+l) = (J'2_ 

~ ~ ~_,Ul..;;..I. 2 
'TTt+;n+'rn- rn a . 

Proof of lemma 5: 

First, we will calculate the difference between the univariate forecast and the mean of the univariate 

forecasts. From (59), and substituting Yj,t by its expression as a function of the common factor 

rjJhYj,t - rjJh- 1Bj vj,t - (rjJhYt - rjJh- 1flVd 

rjJh(pft + Ej,t) - rjJh- 1Bj vj,t - rjJh(pft + 'Et) + rjJh- 1flVt 

rjJh(Ej,t - Et) - rjJh-l Bj (Vj,t - Vt) 

rjJh-l(Ej,t+! - Et+l - (Vj,t+l - VtH» 

(74) 

where the last equality comes from part (i) of lemma 4. Take the expectation of the square of this 

expression 

2(h-l)[ ( -)2 ( -)2 rjJ E Ej,t+l - Et+ 1 + E Vj,t+! - VHl 

-2E(Ej,t+! - Et+d(Vj,t+l - VtH)]' 
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Parts (ii), (iii) and (iv) of lemma 5 allows to write 

",2(h-l) (m -1 2 m-I 2 ( (r/J - O?) m-I 2) 
'f' --17 + -17 1 + - ,- -2-17 

m m 1- 02 m 

",2(h-l) m-I 2 (r/J - 0)2 
'f' --17 

m 1- 02 ' 
(75) 

Proof of Lemma 6 

To proof (a), applying parts 6 and 7 of lemma 1 

(
m) m T-l 2 E ~Vj,t+T€j.t = -~O (r/J - 0)17 , 

we get the desired result. 

To proof (b), after some straightforward algebra and applying part 8 of lemma 1 

>From (36), the previous expression can be written as 

Once (a) and (b) have been proven, it is easy to show (c) 

E[ · (- ~(h))] - "n-'llT-l h-lld>-ot W F () k' () d V),t+T Yj,t+hlt - Yt - -~u r/J 1-0' vT > O. rom 74, ta ing mto account a an 

(b), and after some straightforward algebra 

Proof of theorem 7: 

The proof is structured in two parts. First, from lemma 6 we will show that 

E [(Yj,t+h - Yj,t+hlt)(:~ht+hlt - Yt(h))] < 0, Vh > 0 and will give its expression. And second, we will 

show that the pooling forecasts methods produces a MSE of prediction smaller than the one obtained 

with the ARIMA univariate forecasts. 
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(i) Proof of E [(Yj,t+h - Yj,t+hlt)(yj,t+hlt - Yt(h))] < 0, Vh > O. From (60) and part (c) of lemma 6, 

E [(Yj,t+h - Yj,t+hlt)(Yj,t+hlt - Yt(h))] = 

E [ (Vj,t+h + ~ rjJi-l(rjJ - O)Vj,t+h- i ) (Yj,t+hlt - Yt(h))] 

_ m-I (rjJ - 0)2 rjJh-l(j2 X (Oh-l + (rjJ _ 0) ~ rjJi-l 0h-i-l) . 
m 1_02 ~ 

,=1 

To solve the parenthesis, take rjJh-2 as common factor in the summation, 2:~':/ rjJi- 10h-i-l = rjJh-2 2:7':~ (t) i ; 

where now the sum is the geometric series of general term t. Since t is always smaller than 1, (but for the 

trivial case rjJ = 0, which we do not consider here), the general term of the geometric series (~)' converges 

to zero as i -> 00. Therefore, it is straightforward to show that Oh-l + (rjJ - 0) 2:~::11 rjJi- 10h-l-i = rjJh-l. 

Introducing this last expression in (76) 

E((. _A. )(A. _~)) __ m-l 2(11-1) 2(rjJ-0)2 
Y),t+s Y),t+slt Y),t+slt Yt - m rjJ (j 1 _ 02 ' (76) 

which obviously is negative as we have expected. 

Finally the expression of the MSE of prediction when we use pooled forecasts is obtained substituting 

(75) and (76) in (42), 

MSE(Yj,t+h - Yj,t+hlt) + 7]2 E(yj,t+hlt - Yt(h))2 

+27]E((Yj,t+s - Yj,t+slt)(Yj,t+slt - Yt)) 

SE ( A) ( ) m-I 2(h-l) 2 (rjJ - O? 
M Yj,t+h - Yj,t+hlt - 7] 2 - 7] --:;;;-rjJ (j 1 _ 02 . 

Since 7] is between 0 and 1, the second term of the previous equality is always positive and since 

it is subtracting, the MSE of prediction obtained with pooling forecasts is always smaller to the one 

obtained only from the ARIMA univariate forecasts, since we always add a negative amount to this last 

one. Summing up for all j = 1, ... , m we finally have (43). 

Proof of the results of section 7: 

The forecast of the observed series h steps ahead is Yt+hlt = <l>hYt - <l>h-l e v t. The true value Yt+ h 

;F..h ",h-l ;F..i-l (;F.. e) ;F..h -le h f . can be written as Yt+h = ~ Yt+Vt+h + L."i=1 ~ ~ - Vt+h-i - ~ Vt, so t e orecast error IS 

h-l 

Vt+h + L <l>i-l(<I> - e)Vt+h-i 
i=1 

h-l ). 

+ '" ;o.i-l pp'~-1 Vt+h ~.,... \ "-'< Vt+h-i, 
I+Amj-L 

i=1 

(77) 
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where the last equality is obtained form (53). From (51) and since p':E;l:E,,:E;lp = mj7(l + Am"ji), 

the matrix of MSE of predictions D is given by D = MSE(Yt+h-Yt+hlt) and 

D 

IfC = I", in (49),<1> = qyI, so the MSE of prediction matrixisD = :E(+( 1 + l+Tlt 'L,~::: qy2i) App'and 

the trace of the MSE of prediction matrix 

m (A - h-1 ) 
tr(D) = La; + AP; 1 + mJ-t L. qy2i . 

1+ AmJ-t 
j=l .=1 

(78) 

and from (78), (15) and (13) 

(79) 

We will analyze the previous formula for the two cases of interest considered in the paper. Starting 

with the nonstationary common factor, qy = 1 and C = I u " all the series will have the same autoregressive 

structure, <I> = qyP(p'p)-l p ' + C(I - P(p'p)-l p ') = Im' which indicates that the series follow a 

VARIMA (0,1,1) with (J = Im - ~PP':E;land :Et, = APP' +:E, ,and A verifies 

mj7A2 - Am"ji - 1 = O. (80) 

The trace of the difference between the MSE of predictions obtained through a VARIMA model and a 

factor model is given by (79) when qy = 1, therefore and after some straightforward algebra 

m (A ) ~"-f = LPT 1 + Am - Vtlt 
i=l J-t 

since A satisfies (80). The previous equation states that the difference between both methods is due to 

the difference between Vilt, the variance of the estimation of the state in t, with information up to time 

t and the ratio l+frnt. In the steady state, Vtl t is given by (67) and there are no differences between 

both methods since A and V satisfy the same equation: equation (68) of the appendix for V and (80) 

for A. 

For stationary factors, the trace of the difference of MSE of prediction between both methods is 

since qy2 < 1 

2 A mJ-t A mJ-t - 'I' 2h m ( ,2 - (,2 - ) 1 ,,2h ) E Pi A - 1 + AmJ-t + 1 + AmJ-t - 1 1 _ qy2 - Vtltqy (81) 

~ 2 2h (A ) 
LPiqy 1 + Am - Vtl t 
.=1 J-t 

(82) 
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where the last equality is obtained by (52). Again in the steady state Vtlt is given by (67) and there is 

no difference between the two methods since>. and V must satisfy the same equation: (68) for V and 

(52) for >.. 

>Ftom both cases, we can conclude that there are no differences, once the steady state has been 

reached (which usually takes place in a few iterations) between the factor model and the VARMA model. 
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Figure 1: Graph 1: Logs of real GNP of Belgium, France, Spain, Holland and Italy. 
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