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structure. Thus, the variance estimator is a weighted sample variance of the statistic evaluated in a 

"complete" series. We establish consistency for the variance and distribution of the sample mean. 

Also we extent this missing values approach to the blockwise bootstrap by assuming some missing 
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shown that our proposal produces estimates of the variance of several time series statistics with 

smaller mean squared error than previous procedures. 
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1 Introduction 

The classical jackknife and bootstrap, as proposed by Quenouille (1949), Tukey 
(1958) and Efron (1979), are not consistent in the case of dependent obser­
vations. During recent years these methods have been modified in order to 
account for the dependence structure of the data. The main existing proce­
dures could be classified as model based and model free. Model based pro­
cedures fit a model to the data and resample the residuals which mimic the 
LLd. errors of the model (see, e.g., Freedman (1984), Efron and Tibshirani 
(1986), Bose (1990) and Kreiss and Franke (1992)). Model free procedures 
consider blocks of consecutive observations and resample from these blocks as 
in the independent case (see, e.g. Carlstein (1986), Kiinsch (1989) and Liu 
and Singh(1992)). Sherman (1998) compares these approaches in terms of effi­
ciency and robustness and concludes that for moderate sample size the model 
based variance estimators provide a small gain under the correct model and, 
under mild misspecification, have bias similar to model free estimators while 
being more variable. 

In this paper we are interested in the moving blocks jackknife (MBJ) and 
the moving blocks bootstrap (MBB) introduced in Kiinsch (1989) and indepen­
dently in Liu and Singh (1992). These methods allow to estimate the variance 
of statistics defined by functionals of finite dimensional marginal distributions, 
which include robust estimators of location and scale, least-squares estima­
tors of the parameters of an AR model and certain versions of the sample 
correlations. 

As it is usual in the jackknife methods, the variance estimator is obtained 
by a weighted sample variance of the statistic evaluated in a sample where some 
observations (blocks of consecutive observations, in this case) are deleted or 
downweighted. Kiinsch (1989) showed that the MBJ that smoothes transition 
between observations left out and observations with full weight reduce the bias. 
Other resampling methods which also reduce the bias are: linear combinations 
of block bootstrap estimators with different block sizes proposed by Politis and 
Romano (1995), and the matched-block bootstrap of Carlstein et al. (1998) 
that suggest to use some block joining rule favoring blocks that are more likely 
to be close. 

When the time series has a strong dependence structure, computing auto­
covariance by deleting blocks of observations is expected to produce bias. An 
alternative procedure is to assume that the block of observations is missing. 
For independent data, deleting observations is equivalent to assume that these 
observations are missing but for autocorrelated data, as shown in Peiia (1990), 
both procedures are very different. Deleting a block of data means to sub­
stitute the observations in the block by their marginal expectation. Treating 
the block as missing values is equivalent to substitute the observations in the 
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block by their conditional expectations given the rest of the data. This is the 
procedure we propose in this paper. In our case, the observations left out 
in the MBJ are considered as missing observations and they are substituted 
by a missing value estimate which takes into account the data dependence 
structure. Thus, the variance estimator is a weighted sample variance of the 
statistic evaluated in a "complete" series. This procedure could be interpreted 
as smooth transition between the two parts with full weight in the blockwise 
jackknife. 

Also, we extend this idea to the blockwise bootstrap, defining a block of 
missing values between the blocks that form the bootstrap resample. Then, 
the procedure resemble to a block joining engine. In some sense, the matched­
block bootstrap has a common point with the procedure that we propose in 
this paper, in particular with their autoregressive matching. 

In Section 2 we define the MBJ with missing values techniques (M2BJ) and 
the bootstrap (M2BB). In Section 3 we present the missing values estimation 
procedures. In Section 4 the results about consistency of both methods as vari­
ance and distribution estimators for the sample mean are presented. Finally, 
the results of a simulation study comparing the MBJ and the M2BJ, and the 
MBB and the M2BB are presented in Section 5. All the proofs are given in an 
Appendix. 

2 Resampling algorithms 

2.1 Moving missing block jackknife 

Let Xl, ... ,XN be observations from a stationary process. Let us suppose that 
the statistics TN , whose variance or distribution we want to estimate, is defined 
by TN = TN(pN), where pN is the empirical measure of Xl,' .. , X N. As noted 
by Kiinsch (1989), it is impossible to estimate pN without assuming some struc­
ture for the stationary processes. Then, in blockwisejackknife (and bootstrap) 
we suppose that TN could be written as a functional of empirical m-dimensional 
distributions, i.e. TN = T(p[J), where p[J = n-l E~=l Oyt is an empirical m­
dimensional marginal measure, n = N - m + 1, yt = (Xt , ... , Xt+m-t) are 
blocks of m consecutive observations and Oy denotes the point mass at y E lRm. 

Pm. 
N' 

The MBJ deletes or downweights blocks of m-tuples in the calculation of 

n 

pr;,(j) = (n -llwnllt}-l L (1 - wn(t - j)) Oyt, (1) 
t=l 

where Ilwnlll = E~=l wn(i) and j = 0,1, ... , n - l. The weights satisfy 
o :::; wn(i) :::; 1 for i E Z, and wn(i) > 0 iff 1 :::; i :::; l, and l is the length 
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of the downweighted block. Note that wn(i) = 1 for 1 ::; i ::; l, corresponds to 
the deletion of blocks. 

The MBJ variance estimator of T N is defined as follows: 

n-l 

aJack = (n - Ilwnlld2n-1 (n - l + 1)-11Iwnll;-2 L (T~) - Tt)) 2 , (2) 
j=O 

where T~) = TN(pr;,(j)) is the j-th jackknife pseudo-value, Tt) = (n - l + 
1) -1 "n-I T(j) d 11 112 "I (.)2 L.Jj=O N an Wn 2 = L.Ji=1 Wn 'l . 

In our approach we will use the following expression to calculate PN: 

where Yt,j is an estimate of yt supposing that it is a missing value in the j-th 
sample, and then calculate T~) = TN(j/;/j)), for j = 0,1, ... ,n -l. Note that 
in (3) instead of eliminating the blocks indexed by j + 1, ... ,j + l, we consider 
those l + m -1 consecutive observations as missing in the time series sequence. 
The M2BJ and variance estimator is defined by: 

n-I 

~2 (l 1)-111 11-2 "" (T~(j) T~(·))2 aJack = n n - + Wn 2 ~ N - N . (4) 
j=O 

Also, we are interested in the distribution of TN. We define the following 
jackknife-histograms, as in the subsampling method of Politis and Romano 
(1994): 

n-I 

HN(X) = (n - l + 1)-1 L 1 {T1l-1(n - l)(T~) - TN) ::; X}, (5) 
j=O 

for the MBJ, and 

n-I 

HN(X) = (n -l + 1)-1 L 1 {Tll-1(n -l)(T~) - TN) ::; X} , (6) 
j=O 

for the M2 BJ, where TI is an appropriate normalizing constant (typically TI = 
Vi), and 1{ E} denotes the indicator of the event E. 

2.2 Moving missing block bootstrap 

In the case of bootstrap, we will use the circular block bootstrap (CBB) of 
Politis and Romano (1992) and Shao and Yu (1993) which could be described 
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as follows. First, the sample is "extended" with 1 - 1 observations: 

X. ={ Xi ifiE{l, ... ,n} 
z,n X i - n if i E {n + 1, ... ,n + 1 - 1} 

(7) 

Second, define blocks of 1 consecutive observations Yi,n = (Xi,n, ... ,XHI-1,n). 
Then {Yi,n} ~=l is used to obtain resamples (yt, ... , ~*) such that Pr* {Yj* = 
Yi,n} = 11n, and this implies that Pr*{X; = Xi} = 11n. Then, the bootstrap 
estimator is TN = TN(PN)' where PN = n-1 L~=l c5yt •. The bootstrap variance 
and distribution of TN, 

Var* (TN) = E* [(TN - E* [TN])2] (8) 

and 
(9) 

are used as variance and distribution estimators of T N. In (9) the normalizing 
constant TN should take into account the number s of blocks in the bootstrap 
resamplej usually s is selected such that n = sl. 

Other blockwise bootstraps have been proposed, for instance, the moving 
blocks bootstrap (MBB) of Kiinsch (1989) and Liu and Singh (1992), the 
non-overlapping block bootstrap (NB B) based on Carlstein (1986), and the 
stationary bootstrap (SB) of Politis and Romano (1994). A recent paper of 
Lahiri (1999) compare these block bootstrap methods and concludes that CBB 
and MBB have better performance than NBB and SB in term of mean square 
error as variance and bias estimators. 

The method that we propose could be described as follows: given a CBB 
resample (yt, ... , Ys*) , the idea of moving missing block bootstrap (M2BB) 
is to introduce a block of k "observations" between two consecutive blocks, 
Y;*. Then, the M2BB resample is (yt, ft, 1';* ... , ~*-ll ~*, ~*). For simplicity, 
we will use a fixed block size k for the blocks included and we will always 
introduce a final block in order to have ks missing observations. Another way 
of interpreting the M2BB res ample is to put 1 + k as the block size in the CBB, 
and then to consider the last k observations in each block as missing values. 

The M2BB estimator is TN = TN(/i'N) , where PN = n-1 L~=l c5yt., and ~* = 
~* if! E {1, ... ,l, l+k+ 1, ... , 2l+k, . .. , (s-l)(l+k) +1, ... , (s-l)(l+k)+l} 
and ~* is prop~ly an estimate, otherwise. Then the bootstrap variance and 
distribution of TN, 

and 

Var* (TN) = E* [(TN - E* [TNJf] 

Pr* {TN (TN - E* [TN J) ~ x } , 

(10) 

(11) 

are used as variance and distribution estimators of T N. In (11), TN is a function 
of s(l + k). 
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3 Missing values techniques 

There are a number of alternatives to obtain Yt for stationary and invertible 
linear processes, see e.g. Harvey and Pierse (1984), Ljung (1989), Peria and 
Maravall (1991), and Beveridge (1992), and for some nonlinear processes as in 
Abraham and Thavaneswaran (1991). In this paper we will use the generalized 
least square method presented in Peria and Maravall (1991). 

If {XthEZ is a stationary process that admits an AR( 00) representation: 
<I>(B)(Xt - jL) = at, where <I>(B) = Z:;:o rPjBj, B is the backshift operator and 
E[Xtl = jL, let's denote Zt = X t - jL, and assume that the finite series Zt has 
m missing values at times T1 , T2 , ..• , Tm with Ti < Tj . We fill the holes in the 
series with arbitrary numbers Z7i and construct an "observed" series Zt by: 

Z = { Zt + Wt if t E {Tl' T2 , • •. , Tm} 
t Zt otherwise 

(12) 

where Wt is an unknown parameter. In matrix notation, we can write, 

Z= z+Hw, (13) 

where Z and Z are the series expressed as a N x 1 vector, His N x m matrix 
such that H7i,i = 1 and Hi,j = 0 otherwise, and W is a m x 1 vector of unknown 
parameters. Let ~ be the N x N autocovariance matrix of the series Zt, then 
the generalized least squares estimator of w is: 

(14) 

and the missing values estimates are obtained by: 

(15) 

Note that (15) could be interpreted as a "nonparametric" estimator of the 
missing values, because does not require any distributional or model assump­
tions. However, the optimality properties (minimum mean square error and 
maximum likelihood) are established in the gaussian linear case. 

When we apply this method to the j-th jackknife resample, we consider that 
observations Xj+l, ... ,Xj+l are missing values, i.e., there are m = l consecutive 
missing values and the matrix H = Hj takes the form: 

[ 

OjXI ] 
Hj = I1xl 

ON-(l+j)xl Nxl 

(16) 

In the case of the bootstrap, we have m = k r n/ (l+k) 1 missing observations, 
where l is the length of the block in the bootstrap res ample and k is the number 
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of missing observations between two consecutive blocks. The matrix H is fixed 
and it has the following expression: 

a/x/ O/Xk O/xk O/xk 

Okx/ I kxk Okxk O/xk 

H= (17) 

a/x/ O/xk O/xk O/xk 

°kx/ °kXk °kxk hxk 

Ljung (1989) suggests to use 0 in the missing values positions for Z, but in 
our case should be more convenient to use Zt (then Wt = 0); in such a case: 

Z - Z = H (H''L,-l H)-l H''L,-lz, 

and since z = X - /1 and calling Z = X - /1, we have 

X - X = H (H''L,-l Hfl H''L,-l(X - /1), 

(18) 

(19) 

which is a more tractable expression. For the bootstrap, the X in (19) is 
replaced by the X* forming the bootstrap resample. 

4 Consistency results 

We now study the consistency of the proposed missing values approaches for 
jackknife and bootstrap for the sample mean. This case corresponds to m = 1, 
T(Fl) = J xdF1(x) = E[Xtl = /1. We will show that both procedures provide 
consistent estimators of the variance and the distribution of the sample mean. 
Theorem 1 and Proposition 2 present the fundamental results for the jackknife 
and Proposition 3 for the bootstrap. Also in Theorem 2 we establish the 
consistency of the MBJ of Kiinsch (1989) as distribution estimator of linear 
statistics. 

Starting with the MBJ with missing values replacement we have that ac­
cording to (3), the statistics evaluated in the j-th completed res ample is: 

T~) = n-1 (L:~=l (1 - wn(t - j)) X t + L:~=l wn(t - j)Xt,j) 

= TN - n-1 L:~=l wn(t - j)(Xt - Xt,j), 
(20) 

where TN = n-1 L:~=l X t . First, we will consider the expression L:j::~(T~) -
TN)2. The use ofTN as a central measure seems more natural than Tt) because 
TN = T(F};) (see Liu and Singh (1992)). We have that 

(21) 
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~ (~ ~)' where Wn,j = (wn(l - j), ... , wn(n - D)' and Xj = X 1,j, ... , Xn,j ,with 

~ . _ {~t if wn(t - j) = 0 
X t ,] - X·f (t .) 0 t 1 Wn - J > . 

(22) 

In order to prove the consistency of jackknife variance estimator we will 
use the following proposition established in Berk (1974): 

Proposition 1 Suppose that {XthEZ is a linear process such that E~o CPiXt-i = 
et, where {ethEZ are independent and identically distributed r.v. 's with E[etl = 
o and E[e;l = (I2, and CPo = 1. Assume also that ~(z) = E~o CPizi is bounded 
away from zero for \z\ ~ 1. Then, there are constants Fl and F2, 0 < Fl < F2, 
such that 

where 1\~l\spec = max: { -J).. : >. is eigenvalue of ~/~} denotes the spectral norm. 

Condition (23) allows us to establish the asymptotical unbiasness of (J=}ack. 
We substitute in (4) Tt) by TN and under standard assumptions we prove in 
Corollary 1 that the effect of this substitution is negligible. 

Lemma 1 If the conditions of Proposition 1, hold, and assuming that wn(i) = 
1 iiJ 1 ~ i ~ Z, Z = Z(n) -t 00, and E%:l k\tk\ < 00, then E[n(J=}ackl -t (I~ = 
~+oo 
L..Jk=-oo tk· 

Now, we must prove that Var(n(J=}ack) -t O. We have that 

n-l n-l 

Var(n(J=;ack) = (n -Z + 1)-2I\wnl\;-4 L L cov(n2(T;jl- TN )2, n2('ft) - TN )2.) 
j=O i=O 

(24) 
Note that n2(T~) - TN )2 = W~,j(X - J.l)(X - J.l),wn,j, where Wn,j = ~-1 Hj 

(Hj~-1 Hj)-1 Hjwn,j, thus the only difference with Theorem 3.3 of Kiinsch 
(1989) is replacing Wn,j by Wn,j. A crucial aspect in his proof is the number 
of non zero elements (Z = o(n)) in the vector Wn,j. The following lemma 
establishes that Wn,j = Wn,j + 0(l-1/2), where wn,j has at most Z + 4W/2l non 
zero elements. 

Lemma 2 Under the conditions of Lemma 1, and assuming that E~=1 k2\tk\ < 
00, we have Wn,j = Wn,j + 0(Z-I/2). 
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The next result follows by combining the previous lemmas 1 and 2 and 
Theorem 3.3 of Kiinsch (1989). 

Theorem 1 Under the conditions of Lemma 2, and assuming that E[IXt l6+0] < 
00, with 6 > 0, L:r=l k2a!/(6+

0
) < 00 where ak are the strong mixing coeffi-

cients, and l = o(n), it follows that naJack ~ a~. 

Corollary 1 Under the conditions of Lemma 1, and assuming that l = 0(nl/2), 
we have that 

n-l 

na~ack = n2(n -l + 1)-11Iwnll;-2 L (T~) - TN) 2 + Op(l-l). 
j=O 

The previous results assume that the matrix ~ is known; the next lemma 
shows that the consistency result oblained in Theorem 1 holds if we substitute 
~ by an autoregressive estimator ~, i.e., the n x n autocovariance matrix 
of an AR(p) process, with p = p(n). We will use the matrix column-sum 
norm IIAllcol = max{L:~=l laijl : j = 1, ... , n}, and the vector maximum norm 
IIXlloo = max{xi: i = 1, ... ,n}. 

Lemma 3 Under the conditions of Theorem 1, and assuming that II~-lllcol < 
M < 00, p = o((n/ logn)1/6), IIX - 111100 = O(logl/2 n) a.s., and l = 0(n2/21- e ) 

with c > 0, it follows 

-2 ~2 
na Jack - na Jack = 0(1) a.s., (25) 

where 
...... 2 2 -:::. J n-l ( (.) ) 2 

a Jack = n(n - l + 1t1
11wn ll;- f; T N - TN , (26) 

The condition II~-lllcol < M < 00 is satisfied by stationary and invertible 
ARMA(p, q) process. This is a direct consequence of the representation of ~-l 
in Galbraith and Galbraith (1974). For general processes the proof is still valid 
if II~-lllcol = 0W/4

-
a ) for some a such that ° < a < 1/4. 

Now, we prove that the moving block jackknife (MBJ) of Kiinsch (1989) 
could be used as an estimator of the distribution of linear statistics. We 
will use the analogy between the subsampling of Politis and Romano (1994) 
and the blockwise jackknife. First, we introduce some notation: SN,t = 
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Tb (Xt, ... ,Xt+b-d is the estimator of T(p) based on the block or subs ample 
(Xt, ... ,Xt-b+1). Let Jb(p) be the sampling distribution of 

(27) 

where Tb is the normalizing constant. Also define the corresponding cumulative 
distribution function: 

(28) 

and denote IN(p) the sampling distribution of Tn(TN - T(p)). The approxi­
mation of IN(p) proposed by subsampling is 

N-b+1 
LN(X) = (N - b + 1)-1 2: 1 {Tb(SN,t - TN) ::; x} . (29) 

t=l 

The only essential assumption in Politis and Romano's approach is that 
there exists a limiting law J(p) such that IN(p) converges weakly to a limit 
law J(p), as n -+ 00. 

For simplicity, we only prove the consistency of MBJ for linear statistics, 
as the sample mean 

(30) 
t=l 

where yt = (Xt , ... , X t+m - 1), n = N - m + 1 and f is a continuous function 
on }Rm. 

In the MBJ we have l deleted blocks (Yj+l, ... , Yj+l) which corresponds to 
b = l + m-I consecutive observations. Using (1), we have 

T~) (n _l)-1 L~=l (1 - wn(t - j))f(yt) 
(n -l)-lnTN - (n _l)-1 L1:~+1 f(yt) (31) 

- (n -l)-lnTN - (n _l)-lSN,j+l. 

Assuming without loss of generality that m = 1, 

(32) 

(33) 

and 
n-l 

LN(X) = (n -l + 1)-12: 1 {T1l-
1(n - l)(TN - T~)) ::; X}. (34) 

j=O 
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The MBJ analogous to LN(X) is 

n-l 

HN(X) = (n -l + 1)-1 L 1 {T1l-1(n -l)(T~) - TN) ~ X}. (35) 
j=O 

Roughly speaking HN(X) = 1 - LN( -x), in a sense that they could be 
different at most in a finite set of x, or we could change in (35) the ~ by a < 
and then the equality hold for all x. 

We obtain the consistency under the following assumption: 

Assumption 1 There exists a symmetric limiting law J(p) such that In(p) 
converges weakly to a limit law J(p), as n -+ 00. 

The following theorem shows that jackknife-histograms are consistent esti­
mators of the distribution. 

Theorem 2 Assume Assumption 1 and that Tz/Tn -+ 0, lln -+ 0 and 1 -+ 00 

as n -+ 00. Also assume that the a-mixing sequence satisfies that ax(k) -+ 0 
as k -+ 00. 

1. Ifx is a continuity point of J(.,p), then HN(X) -+ J(x,p) in probability. 

2. If J(., p) is continuous, then sUPx IHN(X) - J(x, p)1 -+ 0 in probability. 

Also, we could use the M2BJ method as distribution estimator. We estab­
lish the consistency for the sample mean. The MBJ and the M2BJ statistics 
satisfy 

n 

T~) - TN = -(n _l)-1 L wn(t - j)(Xt - TN), (36) 
t=l 

and 
n 

T~) - TN = _n-1 L wn(t - j)(Xt - Xt,j). (37) 
t=l 

Therefore, 

n 

l-1/2n(T~) -TN) = l-1/2(n-l)(T~) -TN )+l-1/2 L wn(t- j)(Xt,j-TN). (38) 
t=l 

The following proposition establishes that the second term in the right 
hand side of (38) is op(l). 
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Proposition 2 Assume that lln ---7 0 and l ---7 00 as n ---7 00. Also assume 
that wn(i) = 1 ifJ 1 ~ i ~ l, 2:::'=1 kl'Ykl < 00, and !lI:-1I1col < M < 00. 
Then l-1/2 2:~=1 wn(t - j)(XtJ - TN) = op(l). Furthermore, if !IX - f-tlloo = 
Oa.s.(logl/2(n)), then it is oa.s.(l) uniformly in j. 

The consistency follows now from Theorem 2.1 in Politis and Romano 
(1994), Proposition 2 and the asymptotic equivalence lemma (cf. Rao (1973)). 

Theorem 3 Under the conditions in Proposition 2, for all x 

n-l 
HN(X) = (n - l + 1)-12: 1 {Tll-1(n -l)(ft) - TN) ~ X} ---7 J(x, p) (39) 

j=O 

in probability. 

~(.) dj) 
Remark 1 In the proof of Lemma 3 we obtained that n(T rl - TN) - n(T N -
TN) is o(l3/2(nl logn)-1/3log1/2 n) a.s., thus (39) holds if we substitute I: by 
}3, and l = o(n1/3). 

Now, we prove that the M2BB provide us with consistent estimators ofthe 
variance and the distribution of the sample mean. We have the following eBB 
and M2BB statistics: 

s I 

X~,s = (sl)-l 2: 2: X(i-l)l+j, (40) 
i=l j=l 

and 

s (I l+k ) 
X:,s = (s(l + k))-l ~ f;X~-l)(l+k)+j + j~l X(i-1)(l+k)+j , (41) 

where Xt is an estimate of the "missing observation" Xt, that takes into 
account the dependence structure on the original process {Xt }. 

We could write the M2BB analogous to (Sl)1/2(X~ s - Xn) as follows: , 

~* 

(s(l + k))1/2(Xn,s - Xn) 

= (s(l + k))-1/2( 2::=1 2:~=1(X(i-1)(1+k)+j - Xn) 

+ 2::=1 2:~!~+1(X(i-1)(I+k)+j - Xn)) (42) 
= (ll(l + k))1/2(sl)1/2(X~,s - Xn) 

+(s(l + k))-1/2 2::=1 2:~!:~+1 (X(i-1)(l+k)+j - X n). 

11 



Notice that if kll --+ 0 as n --+ 00 we have that ll(l + k) --+ 1 and then the 
first term in (42) satisfies the conditions in Theorem 1 in Politis and Romano 
(1992). The following proposition establishes that the second term in (42) is 
op(l). 

Proposition 3 Assume that lln --+ 0, l --+ 00, and kll --+ 0 as n --+ 00. Also 
assume that E~l kl"Ykl < 00, E~l k2a!/(6+5) < 00, where ak are the strong 
mixing coefficients, and 1I~-lllcol < M < +00, then (s(l + k))-1/2 E:=l E~!:~+1 
(X~-l)(I+k)+j - Xn) = op(l). 

Now, using the statement (1) of Theorem 1 in Politis and Romano (1992), 
Proposition 3 and the Cauchy-Schwarz inequality we have: 

* ( 1/2 (-:::: * - )) P 2 Var (s(l + k)) Xn,s - Xn -t (loo' (43) 

and from statement (2) of Theorem 1 in Politis and Romano (1992), Propo­
sition 3 and the asymptotic equivalence lemma, we obtain the consistency 
results. 

Theorem 4 Under the conditions in Proposition 3, for all x 

* 1/2 - - 1/2 -
{ 

-* } Pr (s(l + k)) (Xn,s -Xn) ~ x1X1, ... ,Xn - Pr {n (Xn - jJ) ~ x} --+ 0, 

(44) 
for almost all sample sequences Xl, ... ,XN . 

5 Simulations 

In this section, we compare the performance of the MBJ and MBJ with miss­
ing values replacement (M2BJ), and the MBB and MBB with missing val­
ues replacement (M2BB). We consider the following autoregressive models 

X t = Ef=l qyiXt-i + Et: 

• (M1) AR(l) qy1 = 0.8, Et i.i.d. N(o,l). 

• (M2) AR(2) qy1 = 1.372, QY2 = -0.677, Et i.Ld. N(O, 0.4982). 

• (M3) AR(5) QY1 = 0.9, QY2 = -0.4, QY3 = 0.3, QY4 = -0.5, QY5 = 0.3, Et LLd. 
N(O,l). 

• (M4) AR(l) QY1 = -0.8, Et i.i.d. N(o,l). 
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Models M1-M3 are the same as in Biihlmann (1994) and Biihlmann and 
Kiinsch (1994). In all of them the largest root is around 0.8. M4 is included 
because it presents a considerable amount of repulsion, and Carlstein et al. 
(1998) show that this feature is contrary to matching block bootstrap. The 
models M2-M4 exhibit a "damped-periodic" auto correlation function, where 
the correlations can be negative. In M1 all the autocorrelations are positive. 
We also consider the following "dual" moving average models: 

• (M5) MA(l) ()l = -0.8, Et LLd. N(O, 1). 

• (M6) MA(2) ()l = -1.372, ()2 = 0.677, Et LLd. N(O, 0.4909). 

• (M7) MA(5) ()1 = -0.9, ()2 = 0.4, ()3 = -0.3, ()4 = 0.5, ()5 = -0.3, Et LLd. 
N(O,l). 

• (M8) MA(l) ()l = 0.8, Et i.i.d. N(O, 1). 

For M2BJ and M2BB, we use an autoregressive estimator for the autocovari­
ance matrix ~, choosing the order p of the approximating autoregressive pro­
cess by minimizing the BIC (cf. Schwarz (1978)) in a range 0 ~ p ~ 10 loglo n. 
As in Biihlmann and Kiinsch (1994) we choose the sample size N = 480 and 
N = 120. Our results are based on 1000 simulations, and block size range 
from l = 1 to l = 95 for N = 480, and from l = 1 to l = 30 for N = 120. 
The statistics T N included in the simulation study are the sample mean, me­
dian, variance, and autocovariance of order 1 and 5. Notice that in the case of 
h-th autocovariance, a block size l corresponds to l blocks of size h in MBJ, 
and l + h - 1 missing observations in M2BJ. We report the estimates for the 
variance of these statistics and, as recommended in Carlstein et al. (1998), we 
measure the accuracy using the mean square error (MSE) of the logarithm of 
the variance. The simulations have been done as follows. 

First, for each model M i (i = 1, ... ,8) NT = 1000 replications have been 
generated. In each replication the value of the statistic TN is computed and 
the "true" value of the variance of this statistic is calculated by 

",NT (T(i) _ T )2 
(J~ = NL..Jl N N 

NT 

where TN = E~T Tt) INT . The log of this value, log(J~, is reported in all the 
tables for each model and sample size, N. 

Second, in the jackknife simulations (Tables 1 to 5) an estimate of the vari­
ance is computed by the following steps: (1) For each model Mi (i = 1, ... ,8) 
generate a sample of size N; (2) Select the length l, build the N - l + 1 
jackknifed series, and compute in each series the value of the statistic TN ; 

(3) Compute the estimated jackknife variance by (2) and (4) and call them 
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o-'iv and a'iv respectively; and, (4) repeat the steps (1) to (3) 1000 times for 
each possible value l. The statistics given are El, SD1 , the average and stan­
dard deviation of the statistic log o-'iv in the 1000 replications, and MS El = 
(1ogO"'iv - E(1ogo-'iv))2 + SD(1ogo-'iv)2, the mean squared error. The value 
of l given in L1 is the block size producing the minimum MSE. The values 
E2, SD2, MSE2, L2 have the same interpretation and are computed for the 
proposed method based on a'iv. The results with the relative mean square 
error RMSE = MSE(o-'iv)/O"fv are similar and therefore are omitted from the 
tables. 

Third, in the bootstrap simulations (Tables 6 to 10) the estimate of the 
variance of the statistic is computed as follows: (1) For each model Mi (i = 
1, ... ,8) generate a sample of size N; (2) Choose the block length l (l and 
k in M2BB) and build B = 250 bootstrap samples by randomly selecting 
blocks with replacement among the blocks of observations. Compute in each 
bootstrap sample the value of the statistic TN; (3) Compute the estimated 
bootstrap variance by (8) and (10) and call them o-'iv and a'iv, respectively; and 
(4) repeat the steps (1) to (3) 1000 times. The values reported in the tables 
have the same interpretation as in the jackknife ones. The only difference is 
that for the method M2BB in column corresponding to L 2 , we report also the 
value of k, the optimal length of the missing value block (k takes values in 
{1, ... ,5}). Note that the MBB is equivalent to M2BB with k = o. 

Due to the large number of simulations, we find a significant difference 
between the two methods in almost all the cases. However, we are interested in 
the big differences, e.g. MSE(o-'iv) /MSE(a'iv) > 1.25, i.e. at least a 25 percent 
of gain. Also, we could use a smaller number of simulations, as in Biihlmann 
and Kiinsch (1994) and Biihlmann (1997); in such a case, the results are similar 
to those of the previous approach. 

Our main conclusions for jackknife methods are as follows: (a) In the cases 
where there exits a substantial difference between the two methods, the missing 
values replacement generally gives least MSE. In particular, only in the case 
of the sample mean and models M3 and M8, the MBJ have a better perfor­
mance; (b) for the median, and models M1 and M5-M8, the M2BJ outperforms 
the MBJ; (c) the methods are "equivalent" for the variance but, for the first 
autocovariance the proposed method presents a big difference in three cases; 
and, (d) for the autocovariance of order 5, which is the statistics that depend 
on the largest m-dimensional marginal distribution, in all cases and sample 
sizes the M2BJ have a significant smaller MSE than MBJ. We can conclude 
that the proposed method works better in general than previous procedures 
and that the advantages are especially large for autocovariance, especially for 
lags greater than 2. Other simulation studies (not shown here) have confirmed 
this advantage of the proposed method in autocovariance for lags larger than 
2. Regarding the optimal value of l, it is larger in MBJ than in M2BJ. 

14 



In the comparison of bootstrap methods, we observe that: (a) In the cases 
where there exits a substantial difference between the two methods, the missing 
values replacement always gives least MSE; (b) for the mean, in almost all 
models, and for the median, in all models, the M2BB outperforms the MBB; 
(c) the methods are "equivalent" in the variance and the autocovariance of 
order 5 (although the M2BB outperforms the MBB when the sample size is 
large, 480) but for the first order autocovariance the M2BB outperforms the 
MBB in all the cases and the differences are significantly larger for moving 
average models. 

6 Conclusions 

We have presented a generalization of the idea of using blocks for jackknife and 
bootstrapping estimation in time series. In the jackknife method we propose, 
instead of deleting observations, to assume that these observations are missing 
values. Note that for independent data both procedures are equivalent, but 
they are not for correlated data. It has been shown that with this procedure 
better results can be obtained in the model free estimation of the variance 
of the autocovariance of a stationary process. The advantages are especially 
important for larger lags. The consistency of the estimation of the variance 
and distribution of the sample mean has been established. 

In the block bootstrap case we propose to assume that there are miss­
ing observations among two consecutive blocks. In these way the dependency 
structure among observations is better preserved and it has been shown that 
this procedure leads to better estimation in general than previous procedures 
specially for large sample size. The consistency of the estimation of the vari­
ance and distribution of the sample mean has been proved. 

One additional advantage of this approach is that we are always dealing 
with complete series and, therefore, the usual routines for computing statistics 
in a time series can be applied to the jackknife or bootstrap samples generated 
with the missing value approach. In particular, previous bootstrap procedures 
can be seen as particular cases in which the length of the missing value block 
is equal to zero. 

Appendix 

Proof of Lemma 1: Using (19) and (21), we obtain: 

n(Tip - TN ) = -w~,jHj (H;r,-lHjr
1 
H;r,-l(X - 1-£) (45) 

and 
(46) 
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Let O'j = {j + 1, j + 2, ... ,j + l}. Using the formula for the inverse of a 
partitioned matrix, 

where ~(aj) is the principal submatrix of ~ with the elements indexed by aj, 
and ~(aj, aj) is the result of taking the rows indicated by aj and deleting 
the columns indicated by aj. ~(aj, aj) and ~(aj) are defined analogously, cf. 
Horn and Johnson (1990). Note that ~-l(aj) is a submatrix of ~-l, while 
~(aj)-l is the inverse of a submatrix of~. 

Using (4), and (46)-(47), we get: 

E[naJack] = (n - l + l)-ll-l 'L.j::~ E[n2(T~?l - TN)2] 
n-I 

= l-lw~~llWn - (n - l + l)-ll-l 'L. w~~(aj, aj)~(aj)-l~(aj, aj)Wn, 
j=O 

(48) 
where Wn = (wn(l), ... , wn(l))' = Hjwn,j = 11x1 , and ~(aj) = ~II is the l x l 
autocovariance matrix. 

Let's prove that l-lw~~llWn -+ a~. We have that 

l-l (Z,o + 2(l - 1)-y1 + ... + 21'1-1) 
,,1-1 2l-1,,1-1 k = L...k=-1+11'k - L...k=l I'k, 

(49) 

which has limit a~ using that l(n) -+ 00 and 'L.t~ kll'kl < 00. 

Now we prove that the second term in (48) is bounded. First, note that 

Second, we could write ~ = [ :' 
c' 

[ 

~(aj) B' D] 
Let's define ~ = B A C . 

D' C' E 

(50) 

~ ] , then E(aj) = [~, ~ 1 

Note that ~ is also symmetric and x'~x = :i'~x, where x' = (Xl, X2, . .. , xn) 
and x' = (Xj+b . .. ,Xj+l, Xl, . .. ,Xj, Xj+l+1, . .. , xn), then: 

{ X'~X } {x'~x _} -
Amax (~) = max --: X =1= 0 = max _,_: X =1= 0 = Amax (~) 

x'x X X 
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and the same is true for Amin (~). Then, we have: 

21fFl < Amin(~) < Amax(~) < 21fF2 
(21fF2)-1 < Amin(~-l) < Amax(~-l) < (21fFltl. 

Since ~(aj) is a principal symmetric submatrix of~, we have: 

< Amax(~) Amin(~) < Amin(~(aj)) 
Amax(~(aj)-l) < Amax(~-l) 

and 
and 

Amax (~( aj)) 
Amin(~-l ) < Amin(~(aj)-l). 

Finally, 

w~~(aj, aj)~(aj)-l~(aj, aj)wn :::; 1I~(aj)-lllspecllw~~(aj, aj)ll~ 
:::; (21fFd-l (2E~=1 kh'kl)2, 

and thus the second term in (48) goes to 0 as 1 goes to infinity .• 

Proof of Lemma 2: Let ~-l = Bi ~-l(aj) Dl ; then, using (16), 
[ 

Al Bl Cl ] 

and 

Cf Di El 

Bl(~-l(aj))-l 

f 1xl 
Di (~-l(aj))-l 

[ 

Bl(~-l(aj)tlllxl ] 
Wn,j = I lxl . 

Di (~-l (aj) )-lllxl 

OjxN-I-j ] 
OlxN-I-j , 

ON-I-jxN-I-j 
(51) 

(52) 

The elements in positions j + 1, ... ,j +l are 1 's, and the remaining elements 

depend on the product ~-l(aj, aj)(~-l(aj))-l, because [ ~t ] = ~-l(aj, aj). 

Using the expressions for the inverse of a partitioned matrix, we obtain 

~-l(aj, aj) = (~(aj, aj)~(aj)-l~(aj, aj) - ~(aj)) -1 ~(aj, aj)~(aj)-l 
(~-l(aj)tl = ~(aj) - ~(aj, aj)~(ajtl~(aj, aj). 

Let's denote Qj = (~(aj, aj)~(aj)-l~(aj, aj) - ~(aj)rl; then 

Qj~(aj, aj) - (f + Qj~(aj))~(ajtl~(aj, aj) 
-~(ajtl~(aj, aj). 

(53) 
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Thus, we could concentrate our attention on -~(aj)-l~(aj, aj). We have 
that 

'Yj 'Yj+1 'YHI-1 
'Yj-1 'Yj 'YHI-2 

~(aj, aj) = 'Y1 'Y2 'YI (54) 
'Yl 'Y1-1 'Y1 

'Yn-2-j 'Yn-3-j 'Yn-I-1-j 
'Yn-1-j 'Yn-2-j 'Yn-I-j n-Ixl 

Let I:(aj, aj)n-IxI be the matrix obtained writing 0 in each position of 
matrix ~(aj, aj) such that the index k of 'Yk satisfies k > W/21. The difference 
with ~(aj, aj) satisfies 

11 (~(aj, aj) - I:(aj, aj))wnl12 ~ 11 (~(aj, aj) - I:(aj, aj)) wn l11 
~ 2 E~:~z1/2l+1 kl'Ykl = 0(l-1/2), 

since Er=l k21'Ykl < 00 implies E~:~P/2l+1 kl'Ykl = 0(l-1/2). 

(55) 

On the other hand, ~(aj) = [~j-F1;j-1" . F . l' where ~h,h is 
~n-I-J-1,n-I-J-1 

the hxh autocovariance matrix. Define I:(aj) = [~j-01;j-l,, . 0 .]; 
~n-I-J-l,n-I-J-1 

as before, we have that 

11~(aj)-l- I:(aj)-lllspec = 11~(aj)-l (~(aj) - I: (aj2) I:(aj)-lll~ec 
~ 11~(aj)-lllspecll~(ajl- ~(aj) Ilspecll~(a..i)-lllspec 
~ (271" F1)-2(11~(aj) - ~(aj) Ilcolll~(aj) - ~(aj) Ilrow)1/2 
~ (271"Fd- 2 E~:11+1 hkl, 

(56) 
and Er=l k21'Ykl < 00 implies E~:i+1I'Ykl = 0(Z-2). Let ~h,h = ['Ya]hxh be 
the h x h covariance matrix of an AR(rZ1/21) process such that ~rll/21,rll/21 = 
~ rz1/2l,fzi/21· 

We can assume that Er=l k21'Ykl < 00, see Biihlmann (1995). Define 

~(aj) = [~j-~;j-1 ~a 0 ], then we have the following results: 
n-I-j-l,n-I-j-1 

11I:(aj)-l-~(aj)-lllspec = 11I:(aj)-l (I:(aj) - t(aj)) t(aj)-lllspec 

~ 11I:(aj)-lllspecllI:(aj) - t(aj) Ilspecll~(aj )-lllspec 
~ 2(271" F1)-2 E~:~ll/2l+1 (l'Ykl + l'Ykl), 

(57) 
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and L::1k2Irkl < 00 and L::1k21'Ykl < 00 implies L:~:hl/2l+11'Ykl = O(l-l) 

and L:~:~z1/21+1lrkl = O(l-l). 
Note that t(O!j)-l is a W/21-diagonal matrix; then t(O!j)-l~(aj, O!j)wn has 

at most 4rl1/ 21 non zero elements. Define Wn,j replacing in Wn,j the matrices 
~(O!j)-l and ~(O!j, O!j) with t(aj)-l and ~(O!j, O!j), then wnJ has at most 
l + 4 rz1/21 non zero elements. 
Finally, 

IIWn,j - Wn,jll2 II~(aj)-l~(O!j, O!j)wn - t(O!j)-l~(O!j, O!j)Wnll2 
< II~(O!j)-l~(O!j, O!j)wn - t(O!j)-l~(O!j, O!j)Wnll2 

+ IIt(O!jt1~(O!j, O!j)wn - t(O!jt1~(O!j, O!j)Wn1l2 
II(~(O!j)-l - ~(O!jt1 )~(O!j, O!j)Wnll2 

+ Ilt(O!j)-l(~(O!j, O!j) - ~(O!j, O!j))Wnll2 
< II~(aj)-l - t(O!jt1I1specll~(aj, O!j)Wnll2 

+ IIt(O!j)-ll1specll (~(O!j, O!j) - ~(O!j, O!j))Wnll2' 

and using (55) - (57) we have that IIwn,j - WnJ 112 = 0(l-1/2) .• 

Proof of Corollary 1: We have 

and is enough to prove that SN = n (Tt) - TN) = (n-l+1)-1 L:;:~WnJ(X­
J-L) is op(l). It's clear that E[SNJ = 0, and 

n-/ n-/ 

E[S~J = (n - l + 1)-2 L L W~,j~Wn,i' (59) 
j=o i=O 

As in Lemma 2, we can concentrate our attention on 

n-/ n-/ 

(n - l + 1)-2 L L W~,i~Wn,j. (60) 
j=o i=O 

Put a 0 in each position of matrix ~ with 'Yk such that k > l. ~ denote the 
resulting matrix. Since II~ - ~lIspec = 0(l-1), then 

n-l n-/ n-/ n-/ 
(n - l + 1)-2 L L W~,j~Wn,i = (n - l + 1)-2 L L W~,j~Wn,i + 0(1). (61) 

j=O i=O j=O i=O 
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On the other hand, note that W~,j~Wn,i is equal to a sum of 1, 2, ... , 
1 + 4 r11/ 21, non zero summands for the different values of i and j. Then 

n-l 

L IW~,j~Wn,il :::; 2C (1 + 2 + ... (1 + 4P1/21)) = 0(l2), (62) 
i=O 

and 
n-l n-l 

(n -1 + 1)-2 L L W~,j~Wn,i = 0 ((n -1 + 1)-112) , (63) 
j=O i=O 

Proof of Lemma 3: Under these assumptions, we have that (c.f. Hannan 
and Kavalieri (1986) and Biihlmann (1995)) 

max l)ik -1'kl = 0((njlogn)-1/2) a.s., 
O~k~p 

and there exists a random variable n1 such that: 

00 

sup Lk211'kl < +00 a.s. 
n~nl k=O 

Thus, we have that: 

II~ - ~llcol :::; 2l::~=o l)ik -1'kl 
= 2 (Il::~=o l)ik - 1'k I + l:::P+1 l)ik - 1'k I) 

(64) 

(65) 

= 0((njlogn)-1/2)p + O(p-2) a.s. = o((njlogn)-1/3) a.s., 
(66) 

and 
II~-l - ~-lllcol :::; 11~-11Icozll~ - ~llcozll~-11Icol 

= o((njlogn)-1/3) a.s. 

Let's define Bj , Aj , Hj and Aj by: 

Bj = AJ = n2(T~) - TN)2 

and 

(67) 

(68) 

(69) 

Note that IBj - Hjl = IAj - AjllAj +Ajl. Next, we find a bound that does 
not depend on j. 

(70) 
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and 

IIWn,jI11 ~ 11~-lHj (Hj~-lHj)-l HjllcozllWn,jl11 
~ lll~-lllcolll (Hj~-l Hjr

1 
Ilcol, 

(71) 

11(~-l(aj))-lllcol = 11~(aj) + ~(aj, aj)~(aj)-l~(aj, aj)llcol 
~ 11~(aj)llcol + ll/211~(aj, aj)~(ajt1~(aj, aj)llspec (72) 
~ 11~llcol + ll/211~11~1(27rFltl. 

In (72) we can consider the involved matrices as squared matrices, because 
defining ~ and ~(a) (~ augmented) by 

(73) 

and 

,,(a) _ [~(aj,aj)] "'( ')-1 ["'(' .) 0 ] un-lxn-l - 0 L.J aj L.J aj' aJ n-lxn-21, n-2Ixn-1 
(74) 

and using that IIAllspec = max{IIAxll : Ilxlb ~ I}, we have that 

11~llspec ~ 11~(a) Ilspec ~ II [~(a~, aj) ] Ilspecll~(ajt11Ispecll [~(aj, aj) 0] IIspec 

~ 11~(aj, aj) Ilcolll~(aj, aj) IITowll~(ajtlllspec. 
(75) 

From (72) we have Aj = 0(z3/2log1/2n) a.s. For IAjl, we can proceed in a 
similar way. Note that 11~llcol and 11~-lllcol are 0(1) a.s.; also, by symmetry, 
we have that II~IITOW and 11~-lIITow are 0(1) a.s., and 11~II~pec ~ 11~llcozll~IITOW 
and 11~-lll~pec ~ 11~-lllcolll~-lIITow; then Aj = 0(l3/2log1/2 n) a.s. 

Now, 

IIWn,j -Wn,jI11 = 11~-lHj (Hl~-lHj) -lHjwn,j _~-lHj (Hj~-lHj) -lHjwn,jI11 
~ l(II~-l - ~-lllcozll(~-l(aj)tlllcol 

+ 11~-11Icolll(~-1(aj)t1 - (~-1(aj)t11Icol) 
(77) 

and 
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II~-l(ajtl-~-l(ajtll\col ~ I\~(aj) -~(aj)l\col+ I\~(aj, aj)~(ajtl~(aj, aj) 
- ~(aj, aj)~(ajtl~(aj, aj)l\col 

~ OW/2)1I~ -~l\cOI = 0 (ll/2(n/logn)-1/3) a.s. 
(78) 

Then, 

and 

IAj - Ajl = 0 (l3/2(n/logn)-1/3Iog1/2 n) a.s., 

IBj - .Hjl = 0 (l9/2(n/ logntl/3Iog3/2 n) a.s. 

(79) 

(80) 

(81) 

InCTJack - n~~ackl = 0 (l7/2(n/logn)-1/310g3/2 n) a.s. (82) 

To end the proof, only rest to use that l = 0 (n2/21-e) .• 

Proof of Theorem 2: We use extensively the relation between HN and LN 
and the symmetry of J (p), i.e. J (x, p) = 1 - J ( - x, p) and the following result 
from Poli tis and Romano (1994): 

Theorem Assume that there exists a limiting law J(p) such that IN(p) con­
verge weakly to a limit law J(p), as n -+ 00. and that Tb/Tn -+ 0, bin -+ 0 and 
b -+ 00 as n -+ 00. Also assume that a-mixing sequence satisfy that ax(k) -+ 0 
as k -+ 00. 

1. If x is a continuity point of J(., p), then LN(X) -+ J(x, p) in probability. 

2. If J(.,p) is continuous, then sup x ILN(X) - J(x,p)l-+ 0 in probability. 

By symmetry, if x is a continuity point of J(., p), also -x is a continuity 
point. Then, using statement (1) of the theorem, we have 

HN(X) = 1 - L N( -x) -+ 1 - J( -x, p) = J(x, p) in probability. (83) 

Using the statement (2) of the theorem, we obtain the convergence to 0 in 
probability, since 

sUPx 11 - LN( -x) - (1 - J( -x, p))1 
sUPx ILN( -x) - J( -x, p) I. 
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Notice that if Tl = 0, and using that lln -+ 0, then the coefficient Tl l-1 (n­
l) is close to In(n _l)l-1 which is the standardizing constant of Wu (1990) .• 

Proof of Proposition 2: We have that 

(85) 
where W~,j = (wn(1- j), ... , wn(n - j)) and Xj = (X1,j,"" Xn,j)' Now, 

l-1/2W' .(X· -11.) = l-1/2W' . (1 - H·(H~'L,-1H·)-1H~'L,-1) (X -11.) 
n,J J r n,J J J J J r (86) 

= l-1/2(Wn,j - Wn,j),(X - J-L). 

From the proof of Lemma 2 we have that 

(87) 

and 

(88) 

Then, 

and for some 0 < c < 1/2, 

l-1/2(Wn,j - Wn,j),(X - J-L) = Op(l-1/2+e). (90) 

Therefore, 

n 

l-1/2 L wn(t - j) (Xt,j - TN ) = Op(l1/2n- 1/2) + op(l-1/2+e ). (91) 
t=1 

On the other hand, 

Il- 1
/
2(Wn,j - Wn,j)'(X - J-L)I < l-1/21Iwn,j - Wn,jll111 X - J-Llloo 

Oa.s.(l-1/21og1/2(n)) .• 

Proof of Proposition 3: Assuming that n = 8(l + k), we have that 

(8(l + k))-1/2 2:::=1 2::~~~+1(X(i-1)(l+k)+j - Xn) 
= (8(l + k))-1/2W' (Is(l+k) - H(H''L,-1 H)-1 H''L,-1) (X* - X), 
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where IS(l+k) is the s(1 + k) x s(1 + k) identity matrix, X* = (Xi,· .. , X:(l+k))" 
X = Xn1nxl' and W is a s(1 + k) x 1 vector defined as follows: 

W'=~,~, ...... ,~,~, 
I times k times I times k times 

i.e., W indicates the missing observations positions. 
Analogously to M2BJ, the matrix H(H''E- l H)-l H''E- l have submatrices 

equal to the k x k identity matrix in the missing observations positions, and 
the remaining non-zero elements are elements of _'E(Q:')-l'E(o:', 0:), where 0: = 
(I + 1, ... ,I + k, 2I + k + 1, ... , 2(1 + k), . .. , ... ,sI + (s -l)k + 1, ... , s(1 + k)). 
Therefore, 

W' (I - H(H''E- l H)-lH''E- l ) 
= (al, ... , a/,~, ... , a(s-l)(l+k)+l,··.···, a(S-l)(I+k)+I'~' 

ktim9 ktim9 
(94) 

where the a's are 0 or are the sum of one column of -'E(0:')-1'E(0:', 0:), and 
they satisfy that E:~tk) latl ::; 4M E~l kl'Ykl. Then, 

E* [(S(I + k))-1/2 I:;~:k) at (X; - Xn)] = 0, (95) 

and 

E* [ ((s(1 + k))-1/2 E:~tk) at(X; - Xn)) 2] 
= (s(1 + k))-l E:~tk) E:~ik) atasE* [(X; - Xn)(X; - Xn)] (96) 
::; (s(1 + k)t l E:~tk) E:~ik) latasl E* [(Xi - Xn?] 
= (s(1 + k))-lO(l)Oa.s.(l) = Oa.s.((s(1 + k))-1+c), 

for some 0 < c < 1. 
Finally, (95) and (96) imply that (s(1 + k))-1/2 E:~:k) at (X;-Xn) = op(l) 

for almost all sample sequences Xl, . .. , X N .• 
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Table 1: MBJ and M2BJ to estimate O"'iv in the case of the sample mean. 
MSE denotes the mean square error of log(a'iv). (+) denotes where the MBJ 
outperforms the M2BJ. (*) denotes where the M2BJ outperforms the MBJ. 

Model N logaN El SDI LI MSEI E2 SD2 L2 MSE2 
M1 480 3.21 2.95 0.25 35 0.130 (0.011) 2.90 0.24 45 0.152 (0.011) 
M1 120 3.18 2.57 0.36 15 0.502 (0.030) 2.51 0.34 20 0.568 (0.032) 
M2 480 1.68 1.61 0.09 2 0.012 (0.001) 1.65 0.09 7 0.009 (0.001) * 
M2 120 1.70 1.57 0.18 2 0.050 (0.004) 1.55 0.18 7 0.056 (0.006) 
M3 480 1.82 1.67 0.14 15 0.045 (0.003) 1.64 0.16 20 0.056 (0.004) 
M3 120 1.83 1.52 0.17 4 0.119 (0.006) 1.38 0.23 10 0.251 (0.020) + 
M4 480 -1.16 -1.09 0.16 25 0.030 (0.003) -1.13 0.12 10 0.017 (0.002) * 
M4 120 -1.13 -1.09 0.22 15 0.050 (0.005) -1.07 0.16 4 0.029 (0.003) * 
M5 480 -3.14 -3.04 0.22 85 0.057 (0.005) -3.09 0.22 35 0.048 (0.005) 
M5 120 -2.93 -2.57 0.18 30 0.166 (0.008) -2.89 0.31 15 0.100 (0.012) * 
M6 480 -3.05 -2.96 0.21 60 0.054 (0.004) -3.03 0.10 5 0.011 (0.001) * 
M6 120 -2.92 -2.85 0.21 30 0.051 (0.006) -2.88 0.19 2 0.038 (0.004) * 
M7 480 -1.81 -1.72 0.19 40 0.043 (0.004) -1.71 0.15 15 0.032 (0.003) * 
M7 120 -1.76 -1.64 0.24 20 0.073 (0.007) -1.67 0.25 8 0.073 (0.007) 
M8 480 1.18 1.09 0.11 8 0.020 (0.001) 1.05 0.11 10 0.030 (0.002) + 
M8 120 1.17 0.99 0.16 4 0.058 (0.005) 0.90 0.22 7 0.118 (0.011) + 

Table 2: MBJ and M2BJ to estimate O"'iv in the case of the median. MSE 
denotes the mean square error of log(a'iv). (*) denotes where the M2BJ out­
performs the MBJ. 

Model N logat El SDI LI MSEI E2 SD2 L2 MSE2 
M1 480 3.31 3.04 0.36 35 0.202 (0.022) 3.37 0.31 15 0.101 (0.010) * 
M1 120 3.29 2.67 0.52 20 0.654 (0.054) 2.81 0.48 15 0.458 (0.054) * 
M2 480 2.04 2.02 0.43 35 0.183 (0.023) 1.93 0.42 20 0.187 (0.024) 
M2 120 2.05 1.97 0.56 15 0.315 (0.035) 1.98 0.52 10 0.273 (0.033) 
M3 480 2.05 1.91 0.42 20 0.194 (0.024) 1.90 0.39 15 0.177 (0.022) 
M3 120 2.03 1.71 0.50 10 0.356 (0.038) 1.77 0.52 6 0.337 (0.036) 
M4 480 0.33 0.24 0.56 40 0.329 (0.049) 0.28 0.49 30 0.243 (0.045) * 
M4 120 0.34 0.29 0.65 15 0.426 (0.070) 0.18 0.57 15 0.352 (0.050) 
M5 480 -0.10 -0.20 0.53 40 0.295 (0.037) -0.15 0.42 20 0.180 (0.024) * 
M5 120 -0.10 -0.22 0.72 15 0.528 (0.056) -0.05 0.56 10 0.317 (0.035) * 
M6 480 -0.28 -0.45 0.57 50 0.349 (0.036) -0.36 0.53 20 0.288 (0.029) 
M6 120 -0.28 -0.35 0.70 15 0.501 (0.060) -0.12 0.54 10 0.321 (0.034) * 
M7 480 0.18 0.06 0.52 55 0.285 (0.042) 0.17 0.45 25 0.201 (0.025) * 
M7 120 0.19 -0.01 0.68 20 0.497 (0.071) 0.09 0.58 15 0.342 (0.062) * 
M8 480 1.45 1.33 0.44 30 0.208 (0.026) 1.38 0.44 15 0.200 (0.023) 
M8 120 1.43 1.25 0.57 10 0.360 (0.039) 1.24 0.47 8 0.263 (0.030) * 
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Table 3: MBJ and M2BJ to estimate (JJv in the case of the variance. MSE 

denotes the mean square error of log(O'Jv). 

Model N logCTN El SD1 L1 MSE1 E2 SD2 L2 MSE2 
M1 480 4.22 3.91 0.33 20 0.209 (0.016) 3.94 0.34 30 0.197 (0.017) 
M1 120 4.11 3.31 0.55 9 0.941 (0.050) 3.43 0.59 15 0.810 (0.052) 
M2 480 3.98 3.73 0.26 15 0.134 (0.010) 3.71 0.28 25 0.151 (0.011) 
M2 120 3.98 3.38 0.46 9 0.576 (0.035) 3.35 0.47 15 0.616 (0.040) 
M3 480 3.04 2.86 0.19 10 0.069 (0.005) 2.86 0.20 15 0.072 (0.006) 
M3 120 3.02 2.58 0.36 7 0.327 (0.021) 2.59 0.37 10 0.327 (0.026) 
M4 480 4.25 3.95 0.36 20 0.217 (0.016) 3.94 0.36 30 0.220 (0.018) 
M4 120 4.25 3.51 0.58 10 0.883 (0.049) 3.50 0.56 15 0.891 (0.050) 
M5 480 2.07 1.94 0.16 6 0.043 (0.003) 1.93 0.16 7 0.047 (0.003) 
M5 120 2.08 1.82 0.29 4 0.149 (0.011) 1.79 0.31 5 0.178 (0.013) 
M6 480 2.39 2.24 0.20 7 0.059 (0.005) 2.22 0.21 15 0.073 (0.006) 
M6 120 2.40 2.10 0.34 5 0.205 (0.018) 2.05 0.37 8 0.255 (0.020) 
M7 480 3.47 3.28 0.28 20 0.112 (0.009) 3.26 0.27 20 0.116 (0.009) 
M7 120 3.48 3.04 0.47 9 0.423 (0.030) 2.97 0.43 7 0.447 (0.030) 
M8 480 2.08 1.95 0.17 7 0.046 (0.004) 1.95 0.18 9 0.049 (0.004) 
M8 120 2.06 1.83 0.33 4 0.162 (0.011) 1.82 0.33 5 0.168 (0.012) 

Table 4: MBJ and M2BJ to estimate (JJv in the case of the covariance of order 
1. MSE denotes the mean square error of log(O'Jv). (*) denotes where the 
M2BJ outperforms the MBJ. 

Model N logCT~ El SD1 L1 MSE1 E2 SD2 L2 MSE2 
M1 480 4.17 3.85 0.34 20 0.216 (0.018) 3.85 0.32 20 0.205 (0.016) 
M1 120 4.04 3.24 0.58 9 0.960 (0.056) 3.31 0.53 10 0.808 (0.050) 
M2 480 3.69 3.45 0.26 15 0.124 (0.010) 3.43 0.28 25 0.147 (0.011) 
M2 120 3.67 3.08 0.46 8 0.553 (0.034) 3.06 0.47 15 0.579 (0.040) 
M3 480 2.66 2.51 0.21 9 0.067 (0.006) 2.49 0.19 10 0.066 (0.005) 
M3 120 2.62 2.21 0.38 5 0.317 (0.022) 2.22 0.39 8 0.317 (0.025) 
M4 480 4.20 3.91 0.38 25 0.232 (0.018) 3.90 0.37 30 0.229 (0.018) 
M4 120 4.19 3.43 0.58 10 0.914 (0.052) 3.38 0.52 10 0.927 (0.0491 
M5 480 1.52 1.40 0.19 6 0.054 (0.004) 1.40 0.14 2 0.035 (0.003) * 
M5 120 1.51 1.25 0.29 2 0.150 (0.012) 1.29 0.28 2 0.124 (0.011) 
M6 480 2.05 1.91 0.21 9 0.064 (0.006) 1.88 0.21 10 0.074 (0.006) 
M6 120 2.04 1.69 0.36 3 0.250 (0.020) 1.70 0.41 8 0.290 (0.025) 
M7 480 3.34 3.13 0.29 20 0.125 (0.011) 3.12 0.28 20 0.127 (0.010) 
M7 120 3.33 2.85 0.52 9 0.501 (0.035) 2.83 0.49 7 0.484 (0.035) 
M8 480 1.52 1.39 0.18 4 0.050 (0.004) 1.46 0.17 3 0.032 (0.003) * 
M8 120 1.48 1.21 0.32 2 0.173 (0.014) 1.26 0.29 2 0.135 (0.012) * 

29 

I 
I 

I 



Table 5: MBJ and M2BJ to estimate a'fy in the case of the autocovariance of 
order 5. MSE denotes the mean square error of log(a'fy). (*) denotes where 
the M2BJ outperforms the MBJ. 

Model N logu"1v El SDl Ll MSEl E2 SD2 L2 MSE2 
M1 480 3.79 3.39 0.40 25 0.319 (0.022) 3.52 0.33 15 0.176 (0.014) * 
M1 120 3.55 2.72 0.59 7 1.041 (0.055) 2.97 0.49 9 0.578 (0.042 * 
M2 480 3.50 3.22 0.29 20 0.157 (0.012) 3.30 0.24 15 0.097 (0.008 * 
M2 120 3.43 2.78 0.48 8 0.651 (0.039) 2.91 0.44 10 0.469 (0.031 * 
M3 480 2.39 2.20 0.20 10 0.078 (0.006) 2.42 0.17 5 0.029 (0.003 * 
M3 120 2.30 1.92 0.38 6 0.278 (0.022) 2.22 0.37 6 0.144 (0.016 * 
M4 480 3.84 3.46 0.41 20 0.311 (0.019) 3.56 0.34 15 0.198 (0.013) * 
M4 120 3.79 2.92 0.58 7 1.109 (0.053) 3.18 0.55 10 0.684 (0.042) * 
M5 480 1.37 1.25 0.14 4 0.031 (0.003) 1.46 0.12 2 0.023 (0.002) * 
M5 120 1.33 1.14 0.29 3 0.121 (0.009) 1.33 0.27 2 0.072 (0.007) * 
M6 480 1.69 1.55 0.18 6 0.050 (0.004) 1.77 0.15 4 0.029 (0.003) * 
M6 120 1.65 1.40 0.35 5 0.185 (0.016) 1.61 0.32 4 0.102 (0.010) * 
M7 480 2.78 2.54 0.27 10 0.133 (0.009) 2.74 0.22 7 0.048 (0.005 * 
M7 120 2.73 2.28 0.44 6 0.399 (0.029) 2.53 0.39 6 0.193 (0.021 * 
M8 480 1.36 1.26 0.15 5 0.033 (0.003) 1.45 0.13 2 0.025 (0.002) * 
M8 120 1.28 1.12 0.31 3 0.122 (0.011) 1.27 0.27 2 0.073 (0.008) * 

Table 6: MBB and M2BB to estimate a'fy in the case of the sample mean. 
MSE denotes the mean square error of log(a'fy). (*) denotes where the M2BB 

outperforms the MBB. 

Model N logu"1v El SDl Ll MSEl E2 SD2 L2 MSE2 
M1 480 3.21 2.93 0.24 30 0.135 (0.010) 3.00 0.19 515 0.079 (0.006) * 
M1 120 3.18 2.56 0.36 15 0.521 (0.031) 2.76 0.31 59 0.275 (0.018) * 
M2 480 1.68 1.60 0.11 2 0.018 (0.001) 1.70 0.10 1 1 0.011 (0.001) * 
M2 120 1.70 1.83 0.20 3 0.055 (0.005) 1.65 0.19 1 1 0.040 (0.004) * 
M3 480 1.82 1.66 0.16 15 0.052 (0.004) 1.87 0.11 35 0.014 (0.001) * 
M3 120 1.83 1.51 0.18 4 0.130 (0.007) 1.86 0.17 23 0.028 (0.003) * 
M4 480 -1.16 -1.08 0.16 25 0.033 (0.003) -1.09 0.16 1 15 0.029 (0.003) 
M4 120 -1.13 -1.10 0.24 15 0.057 (0.005) -1.03 0.20 18 0.049 (0.004) 
M5 480 -3.14 -2.84 0.17 60 0.117 (0.006) -3.12 0.22 155 0.050 (0.005) * 
M5 120 -2.93 -2.57 0.19 30 0.167 (0.008) -2.90 0.24 230 0.056 (0.007) * 
M6 480 -3.05 -2.96 0.22 60 0.056 (0.005) -2.96 0.11 1 10 0.020 (0.002) * 
M6 120 -2.92 -2.85 0.21 30 0.049 (0.006) -2.94 0.22 1 15 0.047 (0.004) 
M7 480 -1.81 -1.74 0.20 40 0.045 (0.004) -1.76 0.18 125 0.035 (0.004) * 
M7 120 -1.76 -1.79 0.27 25 0.072 (0.007) -1.72 0.26 1 15 0.068 (0.007) 
M8 480 1.18 1.09 0.13 9 0.025 (0.002) 1.17 0.08 1 1 0.006 (0.001) '" 
M8 120 1.17 0.98 0.17 4 0.064 (0.005) 1.15 0.12 1 1 0.015 (0.002) * 
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Table 7: MBB and M2BB to estimate cJ'jy in the case of the median. MSE 

denotes the mean square error of log(&'jy). (*) denotes where the M2BB out­
performs the MBB. 

Model N log ut El SDI Ll MSEl E2 SD2 L2 MSE2 
M1 480 3.31 3.06 0.29 30 0.147 (0.013) 3.10 0.19 59 0.084 (0.006) * 
M1 120 3.29 2.76 0.44 15 0.471 (0.035) 2.90 0.36 510 0.277 (0.021) * 
M2 480 2.04 2.08 0.24 15 0.058 (0.007) 1.98 0.14 1 1 0.023 (0.002) * 
M2 120 2.05 2.07 0.33 9 0.111 (0.013) 1.94 0.23 1 1 0.066 (0.006) * 
M3 480 2.05 1.89 0.23 15 0.075 (0.008) 2.06 0.14 35 0.021 (0.003) * 
M3 120 2.03 1.80 0.29 4 0.137 (0.013) 2.06 0.22 23 0.051 (0.006) * 
M4 480 0.33 0.44 0.29 8 0.097 (0.009) 0.26 0.18 35 0.037 (0.004) * 
M4 120 0.34 0.45 0.38 4 0.156 (0.016) 0.26 0.27 35 0.077 (0.009) * 
M5 480 -0.10 -0.04 0.30 15 0.093 (0.009) -0.22 0.16 35 0.038 (0.003) * 
M5 120 -0.10 0.05 0.37 7 0.162 (0.016) -0.12 0.23 35 0.054 (0.005) * 
M6 480 -0.28 -0.23 0.30 15 0.092 (0.009) -0.25 0.21 25 0.046 (0.004) * 
M6 120 -0.28 -0.18 0.40 9 0.168 (0.019) -0.37 0.27 35 0.084 (0.007) * 
M7 480 0.18 0.20 0.29 20 0.085 (0.011) 0.14 0.18 35 0.033 (0.003) * 
M7 120 0.19 0.27 0.40 9 0.167 (0.019) 0.15 0.24 35 0.061 (0.007) * 
M8 480 1.45 1.36 0.21 6 0.053 (0.005) 1.39 0.12 1 1 0.017 (0.001) * 
M8 120 1.43 1.27 0.28 3 0.105 (0.010) 1.39 0.16 1 1 0.028 (0.003) * 

Table 8: MBB and M2BB to estimate (J'jy in the case of the variance. MSE 

denotes the mean square error of log(&'jy). 

Model N logut El SDI Ll MSEl E2 SD2 L2 MSE2 
M1 480 4.22 3.88 0.33 20 0.219 (0.017) 3.86 0.33 320 0.233 (0.018) 
M1 120 4.11 3.28 0.53 8 0.970 (0.050) 3.24 0.51 37 1.026 (0.054) 
M2 480 3.98 3.73 0.27 15 0.139 (0.011) 3.74 0.29 320 0.139 (0.011) 
M2 120 3.98 3.34 0.47 10 0.622 (0.036) 3.38 0.47 3 10 0.581 (0.037) 
M3 480 3.04 2.83 0.20 9 0.082 (0.006) 2.83 0.20 1 10 0.081 (0.006) 
M3 120 3.02 2.55 0.37 8 0.353 (0.023) 2.55 0.36 1 7 0.350 (0.022) 
M4 480 4.25 3.94 0.35 20 0.222 (0.017) 3.92 0.36 425 0.238 (0.019) 
M4 120 4.25 3.50 0.56 9 0.875 (0.050) 3.46 0.56 47 0.948 (0.053) 
M5 480 2.07 1.95 0.17 9 0.044 (0.004) 1.95 0.17 1 8 0.043 (0.004) 
M5 120 2.08 1.81 0.28 3 0.152 (0.012) 1.80 0.26 1 2 0.146 (0.011) 
M6 480 2.39 2.24 0.20 7 0.062 (0.005) 2.25 0.18 24 0.050 (0.005) 
M6 120 2.40 2.09 0.36 6 0.225 (0.019) 2.10 0.33 24 0.199 (0.017) 
M7 480 3.47 3.26 0.27 15 0.118 (0.009) 3.26 0.27 1 15 0.115 (0.009) 
M7 120 3.48 3.01 0.46 8 0.438 (0.030) 2.98 0.46 1 7 0.464 (0.029) 
M8 480 2.08 1.93 0.18 5 0.052 (0.004) 1.95 0.18 1 5 0.048 (0.004) 
M8 120 2.06 1.80 0.31 3 0.168 (0.012) 1.79 0.30 1 4 0.163 (0.012) 
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Table 9: MBB and M2BB to estimate (T'iv in the case of the autocovariance of 
order 1. MSE denotes the mean square error of log(a'iv). (*) denotes where 
M2BB outperforms the MBB. 

Model N log 0'1. El SDl Ll MSEl E2 SD2 L2 MSE2 
M1 480 4.17 3.79 0.35 25 0.268 (0.019) 3.80 0.32 320 0.245 (0.019) 
M1 120 4.04 3.13 0.61 15 1.195 (0.065) 3.14 0.53 37 1.081 (0.059) 
M2 480 3.69 3.41 0.27 20 0.153 (0.011) 3.43 0.24 39 0.125 (0.009) 
M2 120 3.67 2.99 0.46 10 0.678 (0.036) 3.11 0.45 37 0.519 (0.034) ,. 
M3 480 2.66 2.45 0.23 20 0.098 (0.007) 2.48 0.22 210 0.080 (0.006) 
M3 120 2.62 2.11 0.39 8 0.414 (0.025) 2.18 0.37 25 0.336 (0.025) 
M4 480 4.20 3.84 0.37 20 0.263 (0.019) 3.86 0.37 425 0.247 (0.019) 
M4 120 4.19 3.35 0.62 15 1.081 (0.058) 3.37 0.57 47 1.002 (0.056) 
M5 480 1.52 1.36 0.19 9 0.065 (0.005) 1.39 0.18 15 0.049 (0.004) ,. 
M5 120 1.51 1.20 0.32 5 0.194 (0.013) 1.24 0.30 13 0.159 (0.012) 
M6 480 2.05 1.88 0.24 15 0.086 (0.008) 1.90 0.19 24 0.057 (0.005) ,. 
M6 120 2.04 1.65 0.40 8 0.315 (0.025) 1.73 0.35 23 0.217 (0.020) ,. 
M7 480 3.34 3.09 0.30 20 0.151 (0.011) 3.10 0.28 215 0.133 (0.010) 
M7 120 3.33 2.77 0.50 10 0.564 (0.037) 2.81 0.53 210 0.544 (0.037) 
M8 480 1.52 1.34 0.20 8 0.073 (0.005) 1.41 0.20 1 8 0.051 (0.005) ,. 
M8 120 1.48 1.09 0.29 3 0.231 (0.014) 1.16 0.28 1 1 0.179 (0.013) ,. 

Table 10: MBB and M2BB to estimate (T'iv in the case of the autocovariance 
of order 5. MSE denotes the mean square error of log(a'iv). 

Model N log 0'1. El SDl Ll MSEl E2 SD2 L2 MSE2 
M1 480 3.79 3.30 0.39 35 0.389 (0.022) 3.31 0.37 325 0.366 (0.022) 
M1 120 3.55 2.60 0.47 5 1.133 (0.045) 2.59 0.53 210 1.204 (0.054) 
M2 480 3.50 3.16 0.29 30 0.201 (0.013) 3.18 0.29 425 0.189 (0.012) 
M2 120 3.43 2.68 0.38 5 0.702 (0.032) 2.76 0.44 310 0.643 (0.035) 
M3 480 2.39 2.15 0.18 15 0.092 (0.006) 2.19 0.20 215 0.081 (0.006) 
M3 120 2.30 1.94 0.30 5 0.212 (0.015) 1.92 0.31 19 0.241 (0.016) 
M4 480 3.84 3.40 0.39 30 0.351 (0.020) 3.40 0.39 225 0.337 (0.019) 
M4 120 3.79 2.89 0.46 5 1.034 (0.045) 2.92 0.54 310 1.053 (0.050) 
M5 480 1.37 1.29 0.14 5 _ 0.025 (0.002) 1.29 0.13 16 0.022 (0.002) 
M5 120 1.33 1.24 0.25 5 0.070 (0.006) 1.22 0.24 1 4 0.069 (0.006) 
M6 480 1.69 1.56 0.15 5 0.038 (0.003) 1.60 0.17 29 0.034 (0.003) 
M6 120 1.65 1.51 0.27 5 0.095 (0.011) 1.50 0.28 26 0.100 (0.012) 
M7 480 2.78 2.52 0.24 15 0.124 (0.008) 2.54 0.26 215 0.124 (0.008) 
M7 120 2.73 2.40 0.41 5 0.273 (0.018) 2.34 0.37 1 4 0.292 (0.019) 
M8 480 1.36 1.26 0.13 5 0.027 (0.002) 1.28 0.13 1 9 0.024 (0.002) 
M8 120 1.28 1.18 0.25 5 0.073 (0.007) 1.17 0.24 1 4 0.069 (0.007) 
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